8180055: Upgrade the Marlin renderer in Java2D
Summary: added the double-precision variant + MarlinFX backports + Improved MarlinTileGenerator + higher precision of the cubic / quadratic curve
Reviewed-by: flar, pnarayanan
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/ArrayCacheConst.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/ArrayCacheConst.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -242,6 +242,8 @@
int factor = 1;
if (name.contains("Int") || name.contains("Float")) {
factor = 4;
+ } else if (name.contains("Double")) {
+ factor = 8;
}
return factor;
}
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/ByteArrayCache.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/ByteArrayCache.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -22,6 +22,7 @@
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
+
package sun.java2d.marlin;
import static sun.java2d.marlin.ArrayCacheConst.ARRAY_SIZES;
@@ -37,13 +38,14 @@
import sun.java2d.marlin.ArrayCacheConst.CacheStats;
/*
- * Note that the [BYTE/INT/FLOAT]ArrayCache files are nearly identical except
+ * Note that the [BYTE/INT/FLOAT/DOUBLE]ArrayCache files are nearly identical except
* for a few type and name differences. Typically, the [BYTE]ArrayCache.java file
- * is edited manually and then [INT]ArrayCache.java and [FLOAT]ArrayCache.java
+ * is edited manually and then [INT/FLOAT/DOUBLE]ArrayCache.java
* files are generated with the following command lines:
*/
// % sed -e 's/(b\yte)[ ]*//g' -e 's/b\yte/int/g' -e 's/B\yte/Int/g' < B\yteArrayCache.java > IntArrayCache.java
-// % sed -e 's/(b\yte)[ ]*/(float) /g' -e 's/b\yte/float/g' -e 's/B\yte/Float/g' < B\yteArrayCache.java > FloatArrayCache.java
+// % sed -e 's/(b\yte)[ ]*0/0.0f/g' -e 's/(b\yte)[ ]*/(float) /g' -e 's/b\yte/float/g' -e 's/B\yte/Float/g' < B\yteArrayCache.java > FloatArrayCache.java
+// % sed -e 's/(b\yte)[ ]*0/0.0d/g' -e 's/(b\yte)[ ]*/(double) /g' -e 's/b\yte/double/g' -e 's/B\yte/Double/g' < B\yteArrayCache.java > DoubleArrayCache.java
final class ByteArrayCache implements MarlinConst {
@@ -231,8 +233,8 @@
if (clean) {
return new byte[length];
}
- // use JDK9 Unsafe.allocateUninitializedArray(class, length):
- return (byte[]) OffHeapArray.UNSAFE.allocateUninitializedArray(byte.class, length);
+ // use JDK9 Unsafe.allocateUninitializedArray(class, length):
+ return (byte[]) OffHeapArray.UNSAFE.allocateUninitializedArray(byte.class, length);
}
static void fill(final byte[] array, final int fromIndex,
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/CollinearSimplifier.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/CollinearSimplifier.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -146,7 +146,7 @@
private static float getSlope(float x1, float y1, float x2, float y2) {
float dy = y2 - y1;
- if (dy == 0f) {
+ if (dy == 0.0f) {
return (x2 > x1) ? Float.POSITIVE_INFINITY
: Float.NEGATIVE_INFINITY;
}
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Curve.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Curve.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -29,8 +29,6 @@
float ax, ay, bx, by, cx, cy, dx, dy;
float dax, day, dbx, dby;
- // shared iterator instance
- private final BreakPtrIterator iterator = new BreakPtrIterator();
Curve() {
}
@@ -58,31 +56,31 @@
float x3, float y3,
float x4, float y4)
{
- ax = 3f * (x2 - x3) + x4 - x1;
- ay = 3f * (y2 - y3) + y4 - y1;
- bx = 3f * (x1 - 2f * x2 + x3);
- by = 3f * (y1 - 2f * y2 + y3);
- cx = 3f * (x2 - x1);
- cy = 3f * (y2 - y1);
+ ax = 3.0f * (x2 - x3) + x4 - x1;
+ ay = 3.0f * (y2 - y3) + y4 - y1;
+ bx = 3.0f * (x1 - 2.0f * x2 + x3);
+ by = 3.0f * (y1 - 2.0f * y2 + y3);
+ cx = 3.0f * (x2 - x1);
+ cy = 3.0f * (y2 - y1);
dx = x1;
dy = y1;
- dax = 3f * ax; day = 3f * ay;
- dbx = 2f * bx; dby = 2f * by;
+ dax = 3.0f * ax; day = 3.0f * ay;
+ dbx = 2.0f * bx; dby = 2.0f * by;
}
void set(float x1, float y1,
float x2, float y2,
float x3, float y3)
{
- ax = 0f; ay = 0f;
- bx = x1 - 2f * x2 + x3;
- by = y1 - 2f * y2 + y3;
- cx = 2f * (x2 - x1);
- cy = 2f * (y2 - y1);
+ ax = 0.0f; ay = 0.0f;
+ bx = x1 - 2.0f * x2 + x3;
+ by = y1 - 2.0f * y2 + y3;
+ cx = 2.0f * (x2 - x1);
+ cy = 2.0f * (y2 - y1);
dx = x1;
dy = y1;
- dax = 0f; day = 0f;
- dbx = 2f * bx; dby = 2f * by;
+ dax = 0.0f; day = 0.0f;
+ dbx = 2.0f * bx; dby = 2.0f * by;
}
float xat(float t) {
@@ -113,7 +111,7 @@
// Fortunately, this turns out to be quadratic, so there are at
// most 2 inflection points.
final float a = dax * dby - dbx * day;
- final float b = 2f * (cy * dax - day * cx);
+ final float b = 2.0f * (cy * dax - day * cx);
final float c = cy * dbx - cx * dby;
return Helpers.quadraticRoots(a, b, c, pts, off);
@@ -128,11 +126,11 @@
// these are the coefficients of some multiple of g(t) (not g(t),
// because the roots of a polynomial are not changed after multiplication
// by a constant, and this way we save a few multiplications).
- final float a = 2f * (dax*dax + day*day);
- final float b = 3f * (dax*dbx + day*dby);
- final float c = 2f * (dax*cx + day*cy) + dbx*dbx + dby*dby;
+ final float a = 2.0f * (dax*dax + day*day);
+ final float b = 3.0f * (dax*dbx + day*dby);
+ final float c = 2.0f * (dax*cx + day*cy) + dbx*dbx + dby*dby;
final float d = dbx*cx + dby*cy;
- return Helpers.cubicRootsInAB(a, b, c, d, pts, off, 0f, 1f);
+ return Helpers.cubicRootsInAB(a, b, c, d, pts, off, 0.0f, 1.0f);
}
// Tries to find the roots of the function ROC(t)-w in [0, 1). It uses
@@ -153,14 +151,14 @@
assert off <= 6 && roots.length >= 10;
int ret = off;
int numPerpdfddf = perpendiculardfddf(roots, off);
- float t0 = 0, ft0 = ROCsq(t0) - w*w;
- roots[off + numPerpdfddf] = 1f; // always check interval end points
+ float t0 = 0.0f, ft0 = ROCsq(t0) - w*w;
+ roots[off + numPerpdfddf] = 1.0f; // always check interval end points
numPerpdfddf++;
for (int i = off; i < off + numPerpdfddf; i++) {
float t1 = roots[i], ft1 = ROCsq(t1) - w*w;
- if (ft0 == 0f) {
+ if (ft0 == 0.0f) {
roots[ret++] = t0;
- } else if (ft1 * ft0 < 0f) { // have opposite signs
+ } else if (ft1 * ft0 < 0.0f) { // have opposite signs
// (ROC(t)^2 == w^2) == (ROC(t) == w) is true because
// ROC(t) >= 0 for all t.
roots[ret++] = falsePositionROCsqMinusX(t0, t1, w*w, err);
@@ -220,7 +218,7 @@
private static boolean sameSign(float x, float y) {
// another way is to test if x*y > 0. This is bad for small x, y.
- return (x < 0f && y < 0f) || (x > 0f && y > 0f);
+ return (x < 0.0f && y < 0.0f) || (x > 0.0f && y > 0.0f);
}
// returns the radius of curvature squared at t of this curve
@@ -229,76 +227,11 @@
// dx=xat(t) and dy=yat(t). These calls have been inlined for efficiency
final float dx = t * (t * dax + dbx) + cx;
final float dy = t * (t * day + dby) + cy;
- final float ddx = 2f * dax * t + dbx;
- final float ddy = 2f * day * t + dby;
+ final float ddx = 2.0f * dax * t + dbx;
+ final float ddy = 2.0f * day * t + dby;
final float dx2dy2 = dx*dx + dy*dy;
final float ddx2ddy2 = ddx*ddx + ddy*ddy;
final float ddxdxddydy = ddx*dx + ddy*dy;
return dx2dy2*((dx2dy2*dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy*ddxdxddydy));
}
-
- // curve to be broken should be in pts
- // this will change the contents of pts but not Ts
- // TODO: There's no reason for Ts to be an array. All we need is a sequence
- // of t values at which to subdivide. An array statisfies this condition,
- // but is unnecessarily restrictive. Ts should be an Iterator<Float> instead.
- // Doing this will also make dashing easier, since we could easily make
- // LengthIterator an Iterator<Float> and feed it to this function to simplify
- // the loop in Dasher.somethingTo.
- BreakPtrIterator breakPtsAtTs(final float[] pts, final int type,
- final float[] Ts, final int numTs)
- {
- assert pts.length >= 2*type && numTs <= Ts.length;
-
- // initialize shared iterator:
- iterator.init(pts, type, Ts, numTs);
-
- return iterator;
- }
-
- static final class BreakPtrIterator {
- private int nextCurveIdx;
- private int curCurveOff;
- private float prevT;
- private float[] pts;
- private int type;
- private float[] ts;
- private int numTs;
-
- void init(final float[] pts, final int type,
- final float[] ts, final int numTs) {
- this.pts = pts;
- this.type = type;
- this.ts = ts;
- this.numTs = numTs;
-
- nextCurveIdx = 0;
- curCurveOff = 0;
- prevT = 0f;
- }
-
- public boolean hasNext() {
- return nextCurveIdx <= numTs;
- }
-
- public int next() {
- int ret;
- if (nextCurveIdx < numTs) {
- float curT = ts[nextCurveIdx];
- float splitT = (curT - prevT) / (1f - prevT);
- Helpers.subdivideAt(splitT,
- pts, curCurveOff,
- pts, 0,
- pts, type, type);
- prevT = curT;
- ret = 0;
- curCurveOff = type;
- } else {
- ret = curCurveOff;
- }
- nextCurveIdx++;
- return ret;
- }
- }
}
-
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/DCollinearSimplifier.java Wed May 17 22:05:11 2017 +0200
@@ -0,0 +1,154 @@
+/*
+ * Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+
+final class DCollinearSimplifier implements DPathConsumer2D {
+
+ enum SimplifierState {
+
+ Empty, PreviousPoint, PreviousLine
+ };
+ // slope precision threshold
+ static final double EPS = 1e-4d; // aaime proposed 1e-3d
+
+ DPathConsumer2D delegate;
+ SimplifierState state;
+ double px1, py1, px2, py2;
+ double pslope;
+
+ DCollinearSimplifier() {
+ }
+
+ public DCollinearSimplifier init(DPathConsumer2D delegate) {
+ this.delegate = delegate;
+ this.state = SimplifierState.Empty;
+
+ return this; // fluent API
+ }
+
+ @Override
+ public void pathDone() {
+ emitStashedLine();
+ state = SimplifierState.Empty;
+ delegate.pathDone();
+ }
+
+ @Override
+ public void closePath() {
+ emitStashedLine();
+ state = SimplifierState.Empty;
+ delegate.closePath();
+ }
+
+ @Override
+ public long getNativeConsumer() {
+ return 0;
+ }
+
+ @Override
+ public void quadTo(double x1, double y1, double x2, double y2) {
+ emitStashedLine();
+ delegate.quadTo(x1, y1, x2, y2);
+ // final end point:
+ state = SimplifierState.PreviousPoint;
+ px1 = x2;
+ py1 = y2;
+ }
+
+ @Override
+ public void curveTo(double x1, double y1, double x2, double y2,
+ double x3, double y3) {
+ emitStashedLine();
+ delegate.curveTo(x1, y1, x2, y2, x3, y3);
+ // final end point:
+ state = SimplifierState.PreviousPoint;
+ px1 = x3;
+ py1 = y3;
+ }
+
+ @Override
+ public void moveTo(double x, double y) {
+ emitStashedLine();
+ delegate.moveTo(x, y);
+ state = SimplifierState.PreviousPoint;
+ px1 = x;
+ py1 = y;
+ }
+
+ @Override
+ public void lineTo(final double x, final double y) {
+ switch (state) {
+ case Empty:
+ delegate.lineTo(x, y);
+ state = SimplifierState.PreviousPoint;
+ px1 = x;
+ py1 = y;
+ return;
+
+ case PreviousPoint:
+ state = SimplifierState.PreviousLine;
+ px2 = x;
+ py2 = y;
+ pslope = getSlope(px1, py1, x, y);
+ return;
+
+ case PreviousLine:
+ final double slope = getSlope(px2, py2, x, y);
+ // test for collinearity
+ if ((slope == pslope) || (Math.abs(pslope - slope) < EPS)) {
+ // merge segments
+ px2 = x;
+ py2 = y;
+ return;
+ }
+ // emit previous segment
+ delegate.lineTo(px2, py2);
+ px1 = px2;
+ py1 = py2;
+ px2 = x;
+ py2 = y;
+ pslope = slope;
+ return;
+ default:
+ }
+ }
+
+ private void emitStashedLine() {
+ if (state == SimplifierState.PreviousLine) {
+ delegate.lineTo(px2, py2);
+ }
+ }
+
+ private static double getSlope(double x1, double y1, double x2, double y2) {
+ double dy = y2 - y1;
+ if (dy == 0.0d) {
+ return (x2 > x1) ? Double.POSITIVE_INFINITY
+ : Double.NEGATIVE_INFINITY;
+ }
+ return (x2 - x1) / dy;
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/DCurve.java Wed May 17 22:05:11 2017 +0200
@@ -0,0 +1,237 @@
+/*
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+final class DCurve {
+
+ double ax, ay, bx, by, cx, cy, dx, dy;
+ double dax, day, dbx, dby;
+
+ DCurve() {
+ }
+
+ void set(double[] points, int type) {
+ switch(type) {
+ case 8:
+ set(points[0], points[1],
+ points[2], points[3],
+ points[4], points[5],
+ points[6], points[7]);
+ return;
+ case 6:
+ set(points[0], points[1],
+ points[2], points[3],
+ points[4], points[5]);
+ return;
+ default:
+ throw new InternalError("Curves can only be cubic or quadratic");
+ }
+ }
+
+ void set(double x1, double y1,
+ double x2, double y2,
+ double x3, double y3,
+ double x4, double y4)
+ {
+ ax = 3.0d * (x2 - x3) + x4 - x1;
+ ay = 3.0d * (y2 - y3) + y4 - y1;
+ bx = 3.0d * (x1 - 2.0d * x2 + x3);
+ by = 3.0d * (y1 - 2.0d * y2 + y3);
+ cx = 3.0d * (x2 - x1);
+ cy = 3.0d * (y2 - y1);
+ dx = x1;
+ dy = y1;
+ dax = 3.0d * ax; day = 3.0d * ay;
+ dbx = 2.0d * bx; dby = 2.0d * by;
+ }
+
+ void set(double x1, double y1,
+ double x2, double y2,
+ double x3, double y3)
+ {
+ ax = 0.0d; ay = 0.0d;
+ bx = x1 - 2.0d * x2 + x3;
+ by = y1 - 2.0d * y2 + y3;
+ cx = 2.0d * (x2 - x1);
+ cy = 2.0d * (y2 - y1);
+ dx = x1;
+ dy = y1;
+ dax = 0.0d; day = 0.0d;
+ dbx = 2.0d * bx; dby = 2.0d * by;
+ }
+
+ double xat(double t) {
+ return t * (t * (t * ax + bx) + cx) + dx;
+ }
+ double yat(double t) {
+ return t * (t * (t * ay + by) + cy) + dy;
+ }
+
+ double dxat(double t) {
+ return t * (t * dax + dbx) + cx;
+ }
+
+ double dyat(double t) {
+ return t * (t * day + dby) + cy;
+ }
+
+ int dxRoots(double[] roots, int off) {
+ return DHelpers.quadraticRoots(dax, dbx, cx, roots, off);
+ }
+
+ int dyRoots(double[] roots, int off) {
+ return DHelpers.quadraticRoots(day, dby, cy, roots, off);
+ }
+
+ int infPoints(double[] pts, int off) {
+ // inflection point at t if -f'(t)x*f''(t)y + f'(t)y*f''(t)x == 0
+ // Fortunately, this turns out to be quadratic, so there are at
+ // most 2 inflection points.
+ final double a = dax * dby - dbx * day;
+ final double b = 2.0d * (cy * dax - day * cx);
+ final double c = cy * dbx - cx * dby;
+
+ return DHelpers.quadraticRoots(a, b, c, pts, off);
+ }
+
+ // finds points where the first and second derivative are
+ // perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where
+ // * is a dot product). Unfortunately, we have to solve a cubic.
+ private int perpendiculardfddf(double[] pts, int off) {
+ assert pts.length >= off + 4;
+
+ // these are the coefficients of some multiple of g(t) (not g(t),
+ // because the roots of a polynomial are not changed after multiplication
+ // by a constant, and this way we save a few multiplications).
+ final double a = 2.0d * (dax*dax + day*day);
+ final double b = 3.0d * (dax*dbx + day*dby);
+ final double c = 2.0d * (dax*cx + day*cy) + dbx*dbx + dby*dby;
+ final double d = dbx*cx + dby*cy;
+ return DHelpers.cubicRootsInAB(a, b, c, d, pts, off, 0.0d, 1.0d);
+ }
+
+ // Tries to find the roots of the function ROC(t)-w in [0, 1). It uses
+ // a variant of the false position algorithm to find the roots. False
+ // position requires that 2 initial values x0,x1 be given, and that the
+ // function must have opposite signs at those values. To find such
+ // values, we need the local extrema of the ROC function, for which we
+ // need the roots of its derivative; however, it's harder to find the
+ // roots of the derivative in this case than it is to find the roots
+ // of the original function. So, we find all points where this curve's
+ // first and second derivative are perpendicular, and we pretend these
+ // are our local extrema. There are at most 3 of these, so we will check
+ // at most 4 sub-intervals of (0,1). ROC has asymptotes at inflection
+ // points, so roc-w can have at least 6 roots. This shouldn't be a
+ // problem for what we're trying to do (draw a nice looking curve).
+ int rootsOfROCMinusW(double[] roots, int off, final double w, final double err) {
+ // no OOB exception, because by now off<=6, and roots.length >= 10
+ assert off <= 6 && roots.length >= 10;
+ int ret = off;
+ int numPerpdfddf = perpendiculardfddf(roots, off);
+ double t0 = 0.0d, ft0 = ROCsq(t0) - w*w;
+ roots[off + numPerpdfddf] = 1.0d; // always check interval end points
+ numPerpdfddf++;
+ for (int i = off; i < off + numPerpdfddf; i++) {
+ double t1 = roots[i], ft1 = ROCsq(t1) - w*w;
+ if (ft0 == 0.0d) {
+ roots[ret++] = t0;
+ } else if (ft1 * ft0 < 0.0d) { // have opposite signs
+ // (ROC(t)^2 == w^2) == (ROC(t) == w) is true because
+ // ROC(t) >= 0 for all t.
+ roots[ret++] = falsePositionROCsqMinusX(t0, t1, w*w, err);
+ }
+ t0 = t1;
+ ft0 = ft1;
+ }
+
+ return ret - off;
+ }
+
+ private static double eliminateInf(double x) {
+ return (x == Double.POSITIVE_INFINITY ? Double.MAX_VALUE :
+ (x == Double.NEGATIVE_INFINITY ? Double.MIN_VALUE : x));
+ }
+
+ // A slight modification of the false position algorithm on wikipedia.
+ // This only works for the ROCsq-x functions. It might be nice to have
+ // the function as an argument, but that would be awkward in java6.
+ // TODO: It is something to consider for java8 (or whenever lambda
+ // expressions make it into the language), depending on how closures
+ // and turn out. Same goes for the newton's method
+ // algorithm in DHelpers.java
+ private double falsePositionROCsqMinusX(double x0, double x1,
+ final double x, final double err)
+ {
+ final int iterLimit = 100;
+ int side = 0;
+ double t = x1, ft = eliminateInf(ROCsq(t) - x);
+ double s = x0, fs = eliminateInf(ROCsq(s) - x);
+ double r = s, fr;
+ for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) {
+ r = (fs * t - ft * s) / (fs - ft);
+ fr = ROCsq(r) - x;
+ if (sameSign(fr, ft)) {
+ ft = fr; t = r;
+ if (side < 0) {
+ fs /= (1 << (-side));
+ side--;
+ } else {
+ side = -1;
+ }
+ } else if (fr * fs > 0) {
+ fs = fr; s = r;
+ if (side > 0) {
+ ft /= (1 << side);
+ side++;
+ } else {
+ side = 1;
+ }
+ } else {
+ break;
+ }
+ }
+ return r;
+ }
+
+ private static boolean sameSign(double x, double y) {
+ // another way is to test if x*y > 0. This is bad for small x, y.
+ return (x < 0.0d && y < 0.0d) || (x > 0.0d && y > 0.0d);
+ }
+
+ // returns the radius of curvature squared at t of this curve
+ // see http://en.wikipedia.org/wiki/Radius_of_curvature_(applications)
+ private double ROCsq(final double t) {
+ // dx=xat(t) and dy=yat(t). These calls have been inlined for efficiency
+ final double dx = t * (t * dax + dbx) + cx;
+ final double dy = t * (t * day + dby) + cy;
+ final double ddx = 2.0d * dax * t + dbx;
+ final double ddy = 2.0d * day * t + dby;
+ final double dx2dy2 = dx*dx + dy*dy;
+ final double ddx2ddy2 = ddx*ddx + ddy*ddy;
+ final double ddxdxddydy = ddx*dx + ddy*dy;
+ return dx2dy2*((dx2dy2*dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy*ddxdxddydy));
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/DDasher.java Wed May 17 22:05:11 2017 +0200
@@ -0,0 +1,746 @@
+/*
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.util.Arrays;
+
+/**
+ * The <code>DDasher</code> class takes a series of linear commands
+ * (<code>moveTo</code>, <code>lineTo</code>, <code>close</code> and
+ * <code>end</code>) and breaks them into smaller segments according to a
+ * dash pattern array and a starting dash phase.
+ *
+ * <p> Issues: in J2Se, a zero length dash segment as drawn as a very
+ * short dash, whereas Pisces does not draw anything. The PostScript
+ * semantics are unclear.
+ *
+ */
+final class DDasher implements DPathConsumer2D, MarlinConst {
+
+ static final int REC_LIMIT = 4;
+ static final double ERR = 0.01d;
+ static final double MIN_T_INC = 1.0d / (1 << REC_LIMIT);
+
+ // More than 24 bits of mantissa means we can no longer accurately
+ // measure the number of times cycled through the dash array so we
+ // punt and override the phase to just be 0 past that point.
+ static final double MAX_CYCLES = 16000000.0d;
+
+ private DPathConsumer2D out;
+ private double[] dash;
+ private int dashLen;
+ private double startPhase;
+ private boolean startDashOn;
+ private int startIdx;
+
+ private boolean starting;
+ private boolean needsMoveTo;
+
+ private int idx;
+ private boolean dashOn;
+ private double phase;
+
+ private double sx, sy;
+ private double x0, y0;
+
+ // temporary storage for the current curve
+ private final double[] curCurvepts;
+
+ // per-thread renderer context
+ final DRendererContext rdrCtx;
+
+ // flag to recycle dash array copy
+ boolean recycleDashes;
+
+ // dashes ref (dirty)
+ final DoubleArrayCache.Reference dashes_ref;
+ // firstSegmentsBuffer ref (dirty)
+ final DoubleArrayCache.Reference firstSegmentsBuffer_ref;
+
+ /**
+ * Constructs a <code>DDasher</code>.
+ * @param rdrCtx per-thread renderer context
+ */
+ DDasher(final DRendererContext rdrCtx) {
+ this.rdrCtx = rdrCtx;
+
+ dashes_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_ARRAY); // 1K
+
+ firstSegmentsBuffer_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_ARRAY); // 1K
+ firstSegmentsBuffer = firstSegmentsBuffer_ref.initial;
+
+ // we need curCurvepts to be able to contain 2 curves because when
+ // dashing curves, we need to subdivide it
+ curCurvepts = new double[8 * 2];
+ }
+
+ /**
+ * Initialize the <code>DDasher</code>.
+ *
+ * @param out an output <code>DPathConsumer2D</code>.
+ * @param dash an array of <code>double</code>s containing the dash pattern
+ * @param dashLen length of the given dash array
+ * @param phase a <code>double</code> containing the dash phase
+ * @param recycleDashes true to indicate to recycle the given dash array
+ * @return this instance
+ */
+ DDasher init(final DPathConsumer2D out, double[] dash, int dashLen,
+ double phase, boolean recycleDashes)
+ {
+ this.out = out;
+
+ // Normalize so 0 <= phase < dash[0]
+ int sidx = 0;
+ dashOn = true;
+ double sum = 0.0d;
+ for (double d : dash) {
+ sum += d;
+ }
+ double cycles = phase / sum;
+ if (phase < 0.0d) {
+ if (-cycles >= MAX_CYCLES) {
+ phase = 0.0d;
+ } else {
+ int fullcycles = FloatMath.floor_int(-cycles);
+ if ((fullcycles & dash.length & 1) != 0) {
+ dashOn = !dashOn;
+ }
+ phase += fullcycles * sum;
+ while (phase < 0.0d) {
+ if (--sidx < 0) {
+ sidx = dash.length - 1;
+ }
+ phase += dash[sidx];
+ dashOn = !dashOn;
+ }
+ }
+ } else if (phase > 0) {
+ if (cycles >= MAX_CYCLES) {
+ phase = 0.0d;
+ } else {
+ int fullcycles = FloatMath.floor_int(cycles);
+ if ((fullcycles & dash.length & 1) != 0) {
+ dashOn = !dashOn;
+ }
+ phase -= fullcycles * sum;
+ double d;
+ while (phase >= (d = dash[sidx])) {
+ phase -= d;
+ sidx = (sidx + 1) % dash.length;
+ dashOn = !dashOn;
+ }
+ }
+ }
+
+ this.dash = dash;
+ this.dashLen = dashLen;
+ this.startPhase = this.phase = phase;
+ this.startDashOn = dashOn;
+ this.startIdx = sidx;
+ this.starting = true;
+ needsMoveTo = false;
+ firstSegidx = 0;
+
+ this.recycleDashes = recycleDashes;
+
+ return this; // fluent API
+ }
+
+ /**
+ * Disposes this dasher:
+ * clean up before reusing this instance
+ */
+ void dispose() {
+ if (DO_CLEAN_DIRTY) {
+ // Force zero-fill dirty arrays:
+ Arrays.fill(curCurvepts, 0.0d);
+ }
+ // Return arrays:
+ if (recycleDashes) {
+ dash = dashes_ref.putArray(dash);
+ }
+ firstSegmentsBuffer = firstSegmentsBuffer_ref.putArray(firstSegmentsBuffer);
+ }
+
+ double[] copyDashArray(final float[] dashes) {
+ final int len = dashes.length;
+ final double[] newDashes;
+ if (len <= MarlinConst.INITIAL_ARRAY) {
+ newDashes = dashes_ref.initial;
+ } else {
+ if (DO_STATS) {
+ rdrCtx.stats.stat_array_dasher_dasher.add(len);
+ }
+ newDashes = dashes_ref.getArray(len);
+ }
+ for (int i = 0; i < len; i++) { newDashes[i] = dashes[i]; }
+ return newDashes;
+ }
+
+ @Override
+ public void moveTo(double x0, double y0) {
+ if (firstSegidx > 0) {
+ out.moveTo(sx, sy);
+ emitFirstSegments();
+ }
+ needsMoveTo = true;
+ this.idx = startIdx;
+ this.dashOn = this.startDashOn;
+ this.phase = this.startPhase;
+ this.sx = this.x0 = x0;
+ this.sy = this.y0 = y0;
+ this.starting = true;
+ }
+
+ private void emitSeg(double[] buf, int off, int type) {
+ switch (type) {
+ case 8:
+ out.curveTo(buf[off+0], buf[off+1],
+ buf[off+2], buf[off+3],
+ buf[off+4], buf[off+5]);
+ return;
+ case 6:
+ out.quadTo(buf[off+0], buf[off+1],
+ buf[off+2], buf[off+3]);
+ return;
+ case 4:
+ out.lineTo(buf[off], buf[off+1]);
+ return;
+ default:
+ }
+ }
+
+ private void emitFirstSegments() {
+ final double[] fSegBuf = firstSegmentsBuffer;
+
+ for (int i = 0; i < firstSegidx; ) {
+ int type = (int)fSegBuf[i];
+ emitSeg(fSegBuf, i + 1, type);
+ i += (type - 1);
+ }
+ firstSegidx = 0;
+ }
+ // We don't emit the first dash right away. If we did, caps would be
+ // drawn on it, but we need joins to be drawn if there's a closePath()
+ // So, we store the path elements that make up the first dash in the
+ // buffer below.
+ private double[] firstSegmentsBuffer; // dynamic array
+ private int firstSegidx;
+
+ // precondition: pts must be in relative coordinates (relative to x0,y0)
+ private void goTo(double[] pts, int off, final int type) {
+ double x = pts[off + type - 4];
+ double y = pts[off + type - 3];
+ if (dashOn) {
+ if (starting) {
+ int len = type - 1; // - 2 + 1
+ int segIdx = firstSegidx;
+ double[] buf = firstSegmentsBuffer;
+ if (segIdx + len > buf.length) {
+ if (DO_STATS) {
+ rdrCtx.stats.stat_array_dasher_firstSegmentsBuffer
+ .add(segIdx + len);
+ }
+ firstSegmentsBuffer = buf
+ = firstSegmentsBuffer_ref.widenArray(buf, segIdx,
+ segIdx + len);
+ }
+ buf[segIdx++] = type;
+ len--;
+ // small arraycopy (2, 4 or 6) but with offset:
+ System.arraycopy(pts, off, buf, segIdx, len);
+ segIdx += len;
+ firstSegidx = segIdx;
+ } else {
+ if (needsMoveTo) {
+ out.moveTo(x0, y0);
+ needsMoveTo = false;
+ }
+ emitSeg(pts, off, type);
+ }
+ } else {
+ starting = false;
+ needsMoveTo = true;
+ }
+ this.x0 = x;
+ this.y0 = y;
+ }
+
+ @Override
+ public void lineTo(double x1, double y1) {
+ double dx = x1 - x0;
+ double dy = y1 - y0;
+
+ double len = dx*dx + dy*dy;
+ if (len == 0.0d) {
+ return;
+ }
+ len = Math.sqrt(len);
+
+ // The scaling factors needed to get the dx and dy of the
+ // transformed dash segments.
+ final double cx = dx / len;
+ final double cy = dy / len;
+
+ final double[] _curCurvepts = curCurvepts;
+ final double[] _dash = dash;
+
+ double leftInThisDashSegment;
+ double dashdx, dashdy, p;
+
+ while (true) {
+ leftInThisDashSegment = _dash[idx] - phase;
+
+ if (len <= leftInThisDashSegment) {
+ _curCurvepts[0] = x1;
+ _curCurvepts[1] = y1;
+ goTo(_curCurvepts, 0, 4);
+
+ // Advance phase within current dash segment
+ phase += len;
+ // TODO: compare double values using epsilon:
+ if (len == leftInThisDashSegment) {
+ phase = 0.0d;
+ idx = (idx + 1) % dashLen;
+ dashOn = !dashOn;
+ }
+ return;
+ }
+
+ dashdx = _dash[idx] * cx;
+ dashdy = _dash[idx] * cy;
+
+ if (phase == 0.0d) {
+ _curCurvepts[0] = x0 + dashdx;
+ _curCurvepts[1] = y0 + dashdy;
+ } else {
+ p = leftInThisDashSegment / _dash[idx];
+ _curCurvepts[0] = x0 + p * dashdx;
+ _curCurvepts[1] = y0 + p * dashdy;
+ }
+
+ goTo(_curCurvepts, 0, 4);
+
+ len -= leftInThisDashSegment;
+ // Advance to next dash segment
+ idx = (idx + 1) % dashLen;
+ dashOn = !dashOn;
+ phase = 0.0d;
+ }
+ }
+
+ // shared instance in DDasher
+ private final LengthIterator li = new LengthIterator();
+
+ // preconditions: curCurvepts must be an array of length at least 2 * type,
+ // that contains the curve we want to dash in the first type elements
+ private void somethingTo(int type) {
+ if (pointCurve(curCurvepts, type)) {
+ return;
+ }
+ li.initializeIterationOnCurve(curCurvepts, type);
+
+ // initially the current curve is at curCurvepts[0...type]
+ int curCurveoff = 0;
+ double lastSplitT = 0.0d;
+ double t;
+ double leftInThisDashSegment = dash[idx] - phase;
+
+ while ((t = li.next(leftInThisDashSegment)) < 1.0d) {
+ if (t != 0.0d) {
+ DHelpers.subdivideAt((t - lastSplitT) / (1.0d - lastSplitT),
+ curCurvepts, curCurveoff,
+ curCurvepts, 0,
+ curCurvepts, type, type);
+ lastSplitT = t;
+ goTo(curCurvepts, 2, type);
+ curCurveoff = type;
+ }
+ // Advance to next dash segment
+ idx = (idx + 1) % dashLen;
+ dashOn = !dashOn;
+ phase = 0.0d;
+ leftInThisDashSegment = dash[idx];
+ }
+ goTo(curCurvepts, curCurveoff+2, type);
+ phase += li.lastSegLen();
+ if (phase >= dash[idx]) {
+ phase = 0.0d;
+ idx = (idx + 1) % dashLen;
+ dashOn = !dashOn;
+ }
+ // reset LengthIterator:
+ li.reset();
+ }
+
+ private static boolean pointCurve(double[] curve, int type) {
+ for (int i = 2; i < type; i++) {
+ if (curve[i] != curve[i-2]) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // Objects of this class are used to iterate through curves. They return
+ // t values where the left side of the curve has a specified length.
+ // It does this by subdividing the input curve until a certain error
+ // condition has been met. A recursive subdivision procedure would
+ // return as many as 1<<limit curves, but this is an iterator and we
+ // don't need all the curves all at once, so what we carry out a
+ // lazy inorder traversal of the recursion tree (meaning we only move
+ // through the tree when we need the next subdivided curve). This saves
+ // us a lot of memory because at any one time we only need to store
+ // limit+1 curves - one for each level of the tree + 1.
+ // NOTE: the way we do things here is not enough to traverse a general
+ // tree; however, the trees we are interested in have the property that
+ // every non leaf node has exactly 2 children
+ static final class LengthIterator {
+ private enum Side {LEFT, RIGHT};
+ // Holds the curves at various levels of the recursion. The root
+ // (i.e. the original curve) is at recCurveStack[0] (but then it
+ // gets subdivided, the left half is put at 1, so most of the time
+ // only the right half of the original curve is at 0)
+ private final double[][] recCurveStack; // dirty
+ // sides[i] indicates whether the node at level i+1 in the path from
+ // the root to the current leaf is a left or right child of its parent.
+ private final Side[] sides; // dirty
+ private int curveType;
+ // lastT and nextT delimit the current leaf.
+ private double nextT;
+ private double lenAtNextT;
+ private double lastT;
+ private double lenAtLastT;
+ private double lenAtLastSplit;
+ private double lastSegLen;
+ // the current level in the recursion tree. 0 is the root. limit
+ // is the deepest possible leaf.
+ private int recLevel;
+ private boolean done;
+
+ // the lengths of the lines of the control polygon. Only its first
+ // curveType/2 - 1 elements are valid. This is an optimization. See
+ // next() for more detail.
+ private final double[] curLeafCtrlPolyLengths = new double[3];
+
+ LengthIterator() {
+ this.recCurveStack = new double[REC_LIMIT + 1][8];
+ this.sides = new Side[REC_LIMIT];
+ // if any methods are called without first initializing this object
+ // on a curve, we want it to fail ASAP.
+ this.nextT = Double.MAX_VALUE;
+ this.lenAtNextT = Double.MAX_VALUE;
+ this.lenAtLastSplit = Double.MIN_VALUE;
+ this.recLevel = Integer.MIN_VALUE;
+ this.lastSegLen = Double.MAX_VALUE;
+ this.done = true;
+ }
+
+ /**
+ * Reset this LengthIterator.
+ */
+ void reset() {
+ // keep data dirty
+ // as it appears not useful to reset data:
+ if (DO_CLEAN_DIRTY) {
+ final int recLimit = recCurveStack.length - 1;
+ for (int i = recLimit; i >= 0; i--) {
+ Arrays.fill(recCurveStack[i], 0.0d);
+ }
+ Arrays.fill(sides, Side.LEFT);
+ Arrays.fill(curLeafCtrlPolyLengths, 0.0d);
+ Arrays.fill(nextRoots, 0.0d);
+ Arrays.fill(flatLeafCoefCache, 0.0d);
+ flatLeafCoefCache[2] = -1.0d;
+ }
+ }
+
+ void initializeIterationOnCurve(double[] pts, int type) {
+ // optimize arraycopy (8 values faster than 6 = type):
+ System.arraycopy(pts, 0, recCurveStack[0], 0, 8);
+ this.curveType = type;
+ this.recLevel = 0;
+ this.lastT = 0.0d;
+ this.lenAtLastT = 0.0d;
+ this.nextT = 0.0d;
+ this.lenAtNextT = 0.0d;
+ goLeft(); // initializes nextT and lenAtNextT properly
+ this.lenAtLastSplit = 0.0d;
+ if (recLevel > 0) {
+ this.sides[0] = Side.LEFT;
+ this.done = false;
+ } else {
+ // the root of the tree is a leaf so we're done.
+ this.sides[0] = Side.RIGHT;
+ this.done = true;
+ }
+ this.lastSegLen = 0.0d;
+ }
+
+ // 0 == false, 1 == true, -1 == invalid cached value.
+ private int cachedHaveLowAcceleration = -1;
+
+ private boolean haveLowAcceleration(double err) {
+ if (cachedHaveLowAcceleration == -1) {
+ final double len1 = curLeafCtrlPolyLengths[0];
+ final double len2 = curLeafCtrlPolyLengths[1];
+ // the test below is equivalent to !within(len1/len2, 1, err).
+ // It is using a multiplication instead of a division, so it
+ // should be a bit faster.
+ if (!DHelpers.within(len1, len2, err * len2)) {
+ cachedHaveLowAcceleration = 0;
+ return false;
+ }
+ if (curveType == 8) {
+ final double len3 = curLeafCtrlPolyLengths[2];
+ // if len1 is close to 2 and 2 is close to 3, that probably
+ // means 1 is close to 3 so the second part of this test might
+ // not be needed, but it doesn't hurt to include it.
+ final double errLen3 = err * len3;
+ if (!(DHelpers.within(len2, len3, errLen3) &&
+ DHelpers.within(len1, len3, errLen3))) {
+ cachedHaveLowAcceleration = 0;
+ return false;
+ }
+ }
+ cachedHaveLowAcceleration = 1;
+ return true;
+ }
+
+ return (cachedHaveLowAcceleration == 1);
+ }
+
+ // we want to avoid allocations/gc so we keep this array so we
+ // can put roots in it,
+ private final double[] nextRoots = new double[4];
+
+ // caches the coefficients of the current leaf in its flattened
+ // form (see inside next() for what that means). The cache is
+ // invalid when it's third element is negative, since in any
+ // valid flattened curve, this would be >= 0.
+ private final double[] flatLeafCoefCache = new double[]{0.0d, 0.0d, -1.0d, 0.0d};
+
+ // returns the t value where the remaining curve should be split in
+ // order for the left subdivided curve to have length len. If len
+ // is >= than the length of the uniterated curve, it returns 1.
+ double next(final double len) {
+ final double targetLength = lenAtLastSplit + len;
+ while (lenAtNextT < targetLength) {
+ if (done) {
+ lastSegLen = lenAtNextT - lenAtLastSplit;
+ return 1.0d;
+ }
+ goToNextLeaf();
+ }
+ lenAtLastSplit = targetLength;
+ final double leaflen = lenAtNextT - lenAtLastT;
+ double t = (targetLength - lenAtLastT) / leaflen;
+
+ // cubicRootsInAB is a fairly expensive call, so we just don't do it
+ // if the acceleration in this section of the curve is small enough.
+ if (!haveLowAcceleration(0.05d)) {
+ // We flatten the current leaf along the x axis, so that we're
+ // left with a, b, c which define a 1D Bezier curve. We then
+ // solve this to get the parameter of the original leaf that
+ // gives us the desired length.
+ final double[] _flatLeafCoefCache = flatLeafCoefCache;
+
+ if (_flatLeafCoefCache[2] < 0.0d) {
+ double x = curLeafCtrlPolyLengths[0],
+ y = x + curLeafCtrlPolyLengths[1];
+ if (curveType == 8) {
+ double z = y + curLeafCtrlPolyLengths[2];
+ _flatLeafCoefCache[0] = 3.0d * (x - y) + z;
+ _flatLeafCoefCache[1] = 3.0d * (y - 2.0d * x);
+ _flatLeafCoefCache[2] = 3.0d * x;
+ _flatLeafCoefCache[3] = -z;
+ } else if (curveType == 6) {
+ _flatLeafCoefCache[0] = 0.0d;
+ _flatLeafCoefCache[1] = y - 2.0d * x;
+ _flatLeafCoefCache[2] = 2.0d * x;
+ _flatLeafCoefCache[3] = -y;
+ }
+ }
+ double a = _flatLeafCoefCache[0];
+ double b = _flatLeafCoefCache[1];
+ double c = _flatLeafCoefCache[2];
+ double d = t * _flatLeafCoefCache[3];
+
+ // we use cubicRootsInAB here, because we want only roots in 0, 1,
+ // and our quadratic root finder doesn't filter, so it's just a
+ // matter of convenience.
+ int n = DHelpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0.0d, 1.0d);
+ if (n == 1 && !Double.isNaN(nextRoots[0])) {
+ t = nextRoots[0];
+ }
+ }
+ // t is relative to the current leaf, so we must make it a valid parameter
+ // of the original curve.
+ t = t * (nextT - lastT) + lastT;
+ if (t >= 1.0d) {
+ t = 1.0d;
+ done = true;
+ }
+ // even if done = true, if we're here, that means targetLength
+ // is equal to, or very, very close to the total length of the
+ // curve, so lastSegLen won't be too high. In cases where len
+ // overshoots the curve, this method will exit in the while
+ // loop, and lastSegLen will still be set to the right value.
+ lastSegLen = len;
+ return t;
+ }
+
+ double lastSegLen() {
+ return lastSegLen;
+ }
+
+ // go to the next leaf (in an inorder traversal) in the recursion tree
+ // preconditions: must be on a leaf, and that leaf must not be the root.
+ private void goToNextLeaf() {
+ // We must go to the first ancestor node that has an unvisited
+ // right child.
+ int _recLevel = recLevel;
+ final Side[] _sides = sides;
+
+ _recLevel--;
+ while(_sides[_recLevel] == Side.RIGHT) {
+ if (_recLevel == 0) {
+ recLevel = 0;
+ done = true;
+ return;
+ }
+ _recLevel--;
+ }
+
+ _sides[_recLevel] = Side.RIGHT;
+ // optimize arraycopy (8 values faster than 6 = type):
+ System.arraycopy(recCurveStack[_recLevel], 0,
+ recCurveStack[_recLevel+1], 0, 8);
+ _recLevel++;
+
+ recLevel = _recLevel;
+ goLeft();
+ }
+
+ // go to the leftmost node from the current node. Return its length.
+ private void goLeft() {
+ double len = onLeaf();
+ if (len >= 0.0d) {
+ lastT = nextT;
+ lenAtLastT = lenAtNextT;
+ nextT += (1 << (REC_LIMIT - recLevel)) * MIN_T_INC;
+ lenAtNextT += len;
+ // invalidate caches
+ flatLeafCoefCache[2] = -1.0d;
+ cachedHaveLowAcceleration = -1;
+ } else {
+ DHelpers.subdivide(recCurveStack[recLevel], 0,
+ recCurveStack[recLevel+1], 0,
+ recCurveStack[recLevel], 0, curveType);
+ sides[recLevel] = Side.LEFT;
+ recLevel++;
+ goLeft();
+ }
+ }
+
+ // this is a bit of a hack. It returns -1 if we're not on a leaf, and
+ // the length of the leaf if we are on a leaf.
+ private double onLeaf() {
+ double[] curve = recCurveStack[recLevel];
+ double polyLen = 0.0d;
+
+ double x0 = curve[0], y0 = curve[1];
+ for (int i = 2; i < curveType; i += 2) {
+ final double x1 = curve[i], y1 = curve[i+1];
+ final double len = DHelpers.linelen(x0, y0, x1, y1);
+ polyLen += len;
+ curLeafCtrlPolyLengths[i/2 - 1] = len;
+ x0 = x1;
+ y0 = y1;
+ }
+
+ final double lineLen = DHelpers.linelen(curve[0], curve[1],
+ curve[curveType-2],
+ curve[curveType-1]);
+ if ((polyLen - lineLen) < ERR || recLevel == REC_LIMIT) {
+ return (polyLen + lineLen) / 2.0d;
+ }
+ return -1.0d;
+ }
+ }
+
+ @Override
+ public void curveTo(double x1, double y1,
+ double x2, double y2,
+ double x3, double y3)
+ {
+ final double[] _curCurvepts = curCurvepts;
+ _curCurvepts[0] = x0; _curCurvepts[1] = y0;
+ _curCurvepts[2] = x1; _curCurvepts[3] = y1;
+ _curCurvepts[4] = x2; _curCurvepts[5] = y2;
+ _curCurvepts[6] = x3; _curCurvepts[7] = y3;
+ somethingTo(8);
+ }
+
+ @Override
+ public void quadTo(double x1, double y1, double x2, double y2) {
+ final double[] _curCurvepts = curCurvepts;
+ _curCurvepts[0] = x0; _curCurvepts[1] = y0;
+ _curCurvepts[2] = x1; _curCurvepts[3] = y1;
+ _curCurvepts[4] = x2; _curCurvepts[5] = y2;
+ somethingTo(6);
+ }
+
+ @Override
+ public void closePath() {
+ lineTo(sx, sy);
+ if (firstSegidx > 0) {
+ if (!dashOn || needsMoveTo) {
+ out.moveTo(sx, sy);
+ }
+ emitFirstSegments();
+ }
+ moveTo(sx, sy);
+ }
+
+ @Override
+ public void pathDone() {
+ if (firstSegidx > 0) {
+ out.moveTo(sx, sy);
+ emitFirstSegments();
+ }
+ out.pathDone();
+
+ // Dispose this instance:
+ dispose();
+ }
+
+ @Override
+ public long getNativeConsumer() {
+ throw new InternalError("DDasher does not use a native consumer");
+ }
+}
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/DHelpers.java Wed May 17 22:05:11 2017 +0200
@@ -0,0 +1,436 @@
+/*
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import static java.lang.Math.PI;
+import static java.lang.Math.cos;
+import static java.lang.Math.sqrt;
+import static java.lang.Math.cbrt;
+import static java.lang.Math.acos;
+
+final class DHelpers implements MarlinConst {
+
+ private DHelpers() {
+ throw new Error("This is a non instantiable class");
+ }
+
+ static boolean within(final double x, final double y, final double err) {
+ final double d = y - x;
+ return (d <= err && d >= -err);
+ }
+
+ static int quadraticRoots(final double a, final double b,
+ final double c, double[] zeroes, final int off)
+ {
+ int ret = off;
+ double t;
+ if (a != 0.0d) {
+ final double dis = b*b - 4*a*c;
+ if (dis > 0.0d) {
+ final double sqrtDis = Math.sqrt(dis);
+ // depending on the sign of b we use a slightly different
+ // algorithm than the traditional one to find one of the roots
+ // so we can avoid adding numbers of different signs (which
+ // might result in loss of precision).
+ if (b >= 0.0d) {
+ zeroes[ret++] = (2.0d * c) / (-b - sqrtDis);
+ zeroes[ret++] = (-b - sqrtDis) / (2.0d * a);
+ } else {
+ zeroes[ret++] = (-b + sqrtDis) / (2.0d * a);
+ zeroes[ret++] = (2.0d * c) / (-b + sqrtDis);
+ }
+ } else if (dis == 0.0d) {
+ t = (-b) / (2.0d * a);
+ zeroes[ret++] = t;
+ }
+ } else {
+ if (b != 0.0d) {
+ t = (-c) / b;
+ zeroes[ret++] = t;
+ }
+ }
+ return ret - off;
+ }
+
+ // find the roots of g(t) = d*t^3 + a*t^2 + b*t + c in [A,B)
+ static int cubicRootsInAB(double d, double a, double b, double c,
+ double[] pts, final int off,
+ final double A, final double B)
+ {
+ if (d == 0.0d) {
+ int num = quadraticRoots(a, b, c, pts, off);
+ return filterOutNotInAB(pts, off, num, A, B) - off;
+ }
+ // From Graphics Gems:
+ // http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
+ // (also from awt.geom.CubicCurve2D. But here we don't need as
+ // much accuracy and we don't want to create arrays so we use
+ // our own customized version).
+
+ // normal form: x^3 + ax^2 + bx + c = 0
+ a /= d;
+ b /= d;
+ c /= d;
+
+ // substitute x = y - A/3 to eliminate quadratic term:
+ // x^3 +Px + Q = 0
+ //
+ // Since we actually need P/3 and Q/2 for all of the
+ // calculations that follow, we will calculate
+ // p = P/3
+ // q = Q/2
+ // instead and use those values for simplicity of the code.
+ double sq_A = a * a;
+ double p = (1.0d/3.0d) * ((-1.0d/3.0d) * sq_A + b);
+ double q = (1.0d/2.0d) * ((2.0d/27.0d) * a * sq_A - (1.0d/3.0d) * a * b + c);
+
+ // use Cardano's formula
+
+ double cb_p = p * p * p;
+ double D = q * q + cb_p;
+
+ int num;
+ if (D < 0.0d) {
+ // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
+ final double phi = (1.0d/3.0d) * acos(-q / sqrt(-cb_p));
+ final double t = 2.0d * sqrt(-p);
+
+ pts[ off+0 ] = ( t * cos(phi));
+ pts[ off+1 ] = (-t * cos(phi + (PI / 3.0d)));
+ pts[ off+2 ] = (-t * cos(phi - (PI / 3.0d)));
+ num = 3;
+ } else {
+ final double sqrt_D = sqrt(D);
+ final double u = cbrt(sqrt_D - q);
+ final double v = - cbrt(sqrt_D + q);
+
+ pts[ off ] = (u + v);
+ num = 1;
+
+ if (within(D, 0.0d, 1e-8d)) {
+ pts[off+1] = -(pts[off] / 2.0d);
+ num = 2;
+ }
+ }
+
+ final double sub = (1.0d/3.0d) * a;
+
+ for (int i = 0; i < num; ++i) {
+ pts[ off+i ] -= sub;
+ }
+
+ return filterOutNotInAB(pts, off, num, A, B) - off;
+ }
+
+ static double evalCubic(final double a, final double b,
+ final double c, final double d,
+ final double t)
+ {
+ return t * (t * (t * a + b) + c) + d;
+ }
+
+ static double evalQuad(final double a, final double b,
+ final double c, final double t)
+ {
+ return t * (t * a + b) + c;
+ }
+
+ // returns the index 1 past the last valid element remaining after filtering
+ static int filterOutNotInAB(double[] nums, final int off, final int len,
+ final double a, final double b)
+ {
+ int ret = off;
+ for (int i = off, end = off + len; i < end; i++) {
+ if (nums[i] >= a && nums[i] < b) {
+ nums[ret++] = nums[i];
+ }
+ }
+ return ret;
+ }
+
+ static double polyLineLength(double[] poly, final int off, final int nCoords) {
+ assert nCoords % 2 == 0 && poly.length >= off + nCoords : "";
+ double acc = 0.0d;
+ for (int i = off + 2; i < off + nCoords; i += 2) {
+ acc += linelen(poly[i], poly[i+1], poly[i-2], poly[i-1]);
+ }
+ return acc;
+ }
+
+ static double linelen(double x1, double y1, double x2, double y2) {
+ final double dx = x2 - x1;
+ final double dy = y2 - y1;
+ return Math.sqrt(dx*dx + dy*dy);
+ }
+
+ static void subdivide(double[] src, int srcoff, double[] left, int leftoff,
+ double[] right, int rightoff, int type)
+ {
+ switch(type) {
+ case 6:
+ DHelpers.subdivideQuad(src, srcoff, left, leftoff, right, rightoff);
+ return;
+ case 8:
+ DHelpers.subdivideCubic(src, srcoff, left, leftoff, right, rightoff);
+ return;
+ default:
+ throw new InternalError("Unsupported curve type");
+ }
+ }
+
+ static void isort(double[] a, int off, int len) {
+ for (int i = off + 1, end = off + len; i < end; i++) {
+ double ai = a[i];
+ int j = i - 1;
+ for (; j >= off && a[j] > ai; j--) {
+ a[j+1] = a[j];
+ }
+ a[j+1] = ai;
+ }
+ }
+
+ // Most of these are copied from classes in java.awt.geom because we need
+ // both single and double precision variants of these functions, and Line2D,
+ // CubicCurve2D, QuadCurve2D don't provide them.
+ /**
+ * Subdivides the cubic curve specified by the coordinates
+ * stored in the <code>src</code> array at indices <code>srcoff</code>
+ * through (<code>srcoff</code> + 7) and stores the
+ * resulting two subdivided curves into the two result arrays at the
+ * corresponding indices.
+ * Either or both of the <code>left</code> and <code>right</code>
+ * arrays may be <code>null</code> or a reference to the same array
+ * as the <code>src</code> array.
+ * Note that the last point in the first subdivided curve is the
+ * same as the first point in the second subdivided curve. Thus,
+ * it is possible to pass the same array for <code>left</code>
+ * and <code>right</code> and to use offsets, such as <code>rightoff</code>
+ * equals (<code>leftoff</code> + 6), in order
+ * to avoid allocating extra storage for this common point.
+ * @param src the array holding the coordinates for the source curve
+ * @param srcoff the offset into the array of the beginning of the
+ * the 6 source coordinates
+ * @param left the array for storing the coordinates for the first
+ * half of the subdivided curve
+ * @param leftoff the offset into the array of the beginning of the
+ * the 6 left coordinates
+ * @param right the array for storing the coordinates for the second
+ * half of the subdivided curve
+ * @param rightoff the offset into the array of the beginning of the
+ * the 6 right coordinates
+ * @since 1.7
+ */
+ static void subdivideCubic(double[] src, int srcoff,
+ double[] left, int leftoff,
+ double[] right, int rightoff)
+ {
+ double x1 = src[srcoff + 0];
+ double y1 = src[srcoff + 1];
+ double ctrlx1 = src[srcoff + 2];
+ double ctrly1 = src[srcoff + 3];
+ double ctrlx2 = src[srcoff + 4];
+ double ctrly2 = src[srcoff + 5];
+ double x2 = src[srcoff + 6];
+ double y2 = src[srcoff + 7];
+ if (left != null) {
+ left[leftoff + 0] = x1;
+ left[leftoff + 1] = y1;
+ }
+ if (right != null) {
+ right[rightoff + 6] = x2;
+ right[rightoff + 7] = y2;
+ }
+ x1 = (x1 + ctrlx1) / 2.0d;
+ y1 = (y1 + ctrly1) / 2.0d;
+ x2 = (x2 + ctrlx2) / 2.0d;
+ y2 = (y2 + ctrly2) / 2.0d;
+ double centerx = (ctrlx1 + ctrlx2) / 2.0d;
+ double centery = (ctrly1 + ctrly2) / 2.0d;
+ ctrlx1 = (x1 + centerx) / 2.0d;
+ ctrly1 = (y1 + centery) / 2.0d;
+ ctrlx2 = (x2 + centerx) / 2.0d;
+ ctrly2 = (y2 + centery) / 2.0d;
+ centerx = (ctrlx1 + ctrlx2) / 2.0d;
+ centery = (ctrly1 + ctrly2) / 2.0d;
+ if (left != null) {
+ left[leftoff + 2] = x1;
+ left[leftoff + 3] = y1;
+ left[leftoff + 4] = ctrlx1;
+ left[leftoff + 5] = ctrly1;
+ left[leftoff + 6] = centerx;
+ left[leftoff + 7] = centery;
+ }
+ if (right != null) {
+ right[rightoff + 0] = centerx;
+ right[rightoff + 1] = centery;
+ right[rightoff + 2] = ctrlx2;
+ right[rightoff + 3] = ctrly2;
+ right[rightoff + 4] = x2;
+ right[rightoff + 5] = y2;
+ }
+ }
+
+
+ static void subdivideCubicAt(double t, double[] src, int srcoff,
+ double[] left, int leftoff,
+ double[] right, int rightoff)
+ {
+ double x1 = src[srcoff + 0];
+ double y1 = src[srcoff + 1];
+ double ctrlx1 = src[srcoff + 2];
+ double ctrly1 = src[srcoff + 3];
+ double ctrlx2 = src[srcoff + 4];
+ double ctrly2 = src[srcoff + 5];
+ double x2 = src[srcoff + 6];
+ double y2 = src[srcoff + 7];
+ if (left != null) {
+ left[leftoff + 0] = x1;
+ left[leftoff + 1] = y1;
+ }
+ if (right != null) {
+ right[rightoff + 6] = x2;
+ right[rightoff + 7] = y2;
+ }
+ x1 = x1 + t * (ctrlx1 - x1);
+ y1 = y1 + t * (ctrly1 - y1);
+ x2 = ctrlx2 + t * (x2 - ctrlx2);
+ y2 = ctrly2 + t * (y2 - ctrly2);
+ double centerx = ctrlx1 + t * (ctrlx2 - ctrlx1);
+ double centery = ctrly1 + t * (ctrly2 - ctrly1);
+ ctrlx1 = x1 + t * (centerx - x1);
+ ctrly1 = y1 + t * (centery - y1);
+ ctrlx2 = centerx + t * (x2 - centerx);
+ ctrly2 = centery + t * (y2 - centery);
+ centerx = ctrlx1 + t * (ctrlx2 - ctrlx1);
+ centery = ctrly1 + t * (ctrly2 - ctrly1);
+ if (left != null) {
+ left[leftoff + 2] = x1;
+ left[leftoff + 3] = y1;
+ left[leftoff + 4] = ctrlx1;
+ left[leftoff + 5] = ctrly1;
+ left[leftoff + 6] = centerx;
+ left[leftoff + 7] = centery;
+ }
+ if (right != null) {
+ right[rightoff + 0] = centerx;
+ right[rightoff + 1] = centery;
+ right[rightoff + 2] = ctrlx2;
+ right[rightoff + 3] = ctrly2;
+ right[rightoff + 4] = x2;
+ right[rightoff + 5] = y2;
+ }
+ }
+
+ static void subdivideQuad(double[] src, int srcoff,
+ double[] left, int leftoff,
+ double[] right, int rightoff)
+ {
+ double x1 = src[srcoff + 0];
+ double y1 = src[srcoff + 1];
+ double ctrlx = src[srcoff + 2];
+ double ctrly = src[srcoff + 3];
+ double x2 = src[srcoff + 4];
+ double y2 = src[srcoff + 5];
+ if (left != null) {
+ left[leftoff + 0] = x1;
+ left[leftoff + 1] = y1;
+ }
+ if (right != null) {
+ right[rightoff + 4] = x2;
+ right[rightoff + 5] = y2;
+ }
+ x1 = (x1 + ctrlx) / 2.0d;
+ y1 = (y1 + ctrly) / 2.0d;
+ x2 = (x2 + ctrlx) / 2.0d;
+ y2 = (y2 + ctrly) / 2.0d;
+ ctrlx = (x1 + x2) / 2.0d;
+ ctrly = (y1 + y2) / 2.0d;
+ if (left != null) {
+ left[leftoff + 2] = x1;
+ left[leftoff + 3] = y1;
+ left[leftoff + 4] = ctrlx;
+ left[leftoff + 5] = ctrly;
+ }
+ if (right != null) {
+ right[rightoff + 0] = ctrlx;
+ right[rightoff + 1] = ctrly;
+ right[rightoff + 2] = x2;
+ right[rightoff + 3] = y2;
+ }
+ }
+
+ static void subdivideQuadAt(double t, double[] src, int srcoff,
+ double[] left, int leftoff,
+ double[] right, int rightoff)
+ {
+ double x1 = src[srcoff + 0];
+ double y1 = src[srcoff + 1];
+ double ctrlx = src[srcoff + 2];
+ double ctrly = src[srcoff + 3];
+ double x2 = src[srcoff + 4];
+ double y2 = src[srcoff + 5];
+ if (left != null) {
+ left[leftoff + 0] = x1;
+ left[leftoff + 1] = y1;
+ }
+ if (right != null) {
+ right[rightoff + 4] = x2;
+ right[rightoff + 5] = y2;
+ }
+ x1 = x1 + t * (ctrlx - x1);
+ y1 = y1 + t * (ctrly - y1);
+ x2 = ctrlx + t * (x2 - ctrlx);
+ y2 = ctrly + t * (y2 - ctrly);
+ ctrlx = x1 + t * (x2 - x1);
+ ctrly = y1 + t * (y2 - y1);
+ if (left != null) {
+ left[leftoff + 2] = x1;
+ left[leftoff + 3] = y1;
+ left[leftoff + 4] = ctrlx;
+ left[leftoff + 5] = ctrly;
+ }
+ if (right != null) {
+ right[rightoff + 0] = ctrlx;
+ right[rightoff + 1] = ctrly;
+ right[rightoff + 2] = x2;
+ right[rightoff + 3] = y2;
+ }
+ }
+
+ static void subdivideAt(double t, double[] src, int srcoff,
+ double[] left, int leftoff,
+ double[] right, int rightoff, int size)
+ {
+ switch(size) {
+ case 8:
+ subdivideCubicAt(t, src, srcoff, left, leftoff, right, rightoff);
+ return;
+ case 6:
+ subdivideQuadAt(t, src, srcoff, left, leftoff, right, rightoff);
+ return;
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/DMarlinRenderingEngine.java Wed May 17 22:05:11 2017 +0200
@@ -0,0 +1,1111 @@
+/*
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.awt.BasicStroke;
+import java.awt.Shape;
+import java.awt.geom.AffineTransform;
+import java.awt.geom.Path2D;
+import java.awt.geom.PathIterator;
+import java.security.AccessController;
+import static sun.java2d.marlin.MarlinUtils.logInfo;
+import sun.java2d.ReentrantContextProvider;
+import sun.java2d.ReentrantContextProviderCLQ;
+import sun.java2d.ReentrantContextProviderTL;
+import sun.java2d.pipe.AATileGenerator;
+import sun.java2d.pipe.Region;
+import sun.java2d.pipe.RenderingEngine;
+import sun.security.action.GetPropertyAction;
+
+/**
+ * Marlin RendererEngine implementation (derived from Pisces)
+ */
+public final class DMarlinRenderingEngine extends RenderingEngine
+ implements MarlinConst
+{
+ private static enum NormMode {
+ ON_WITH_AA {
+ @Override
+ PathIterator getNormalizingPathIterator(final DRendererContext rdrCtx,
+ final PathIterator src)
+ {
+ // NormalizingPathIterator NearestPixelCenter:
+ return rdrCtx.nPCPathIterator.init(src);
+ }
+ },
+ ON_NO_AA{
+ @Override
+ PathIterator getNormalizingPathIterator(final DRendererContext rdrCtx,
+ final PathIterator src)
+ {
+ // NearestPixel NormalizingPathIterator:
+ return rdrCtx.nPQPathIterator.init(src);
+ }
+ },
+ OFF{
+ @Override
+ PathIterator getNormalizingPathIterator(final DRendererContext rdrCtx,
+ final PathIterator src)
+ {
+ // return original path iterator if normalization is disabled:
+ return src;
+ }
+ };
+
+ abstract PathIterator getNormalizingPathIterator(DRendererContext rdrCtx,
+ PathIterator src);
+ }
+
+ private static final float MIN_PEN_SIZE = 1.0f / NORM_SUBPIXELS;
+
+ static final double UPPER_BND = Float.MAX_VALUE / 2.0d;
+ static final double LOWER_BND = -UPPER_BND;
+
+ /**
+ * Public constructor
+ */
+ public DMarlinRenderingEngine() {
+ super();
+ logSettings(DMarlinRenderingEngine.class.getName());
+ }
+
+ /**
+ * Create a widened path as specified by the parameters.
+ * <p>
+ * The specified {@code src} {@link Shape} is widened according
+ * to the specified attribute parameters as per the
+ * {@link BasicStroke} specification.
+ *
+ * @param src the source path to be widened
+ * @param width the width of the widened path as per {@code BasicStroke}
+ * @param caps the end cap decorations as per {@code BasicStroke}
+ * @param join the segment join decorations as per {@code BasicStroke}
+ * @param miterlimit the miter limit as per {@code BasicStroke}
+ * @param dashes the dash length array as per {@code BasicStroke}
+ * @param dashphase the initial dash phase as per {@code BasicStroke}
+ * @return the widened path stored in a new {@code Shape} object
+ * @since 1.7
+ */
+ @Override
+ public Shape createStrokedShape(Shape src,
+ float width,
+ int caps,
+ int join,
+ float miterlimit,
+ float[] dashes,
+ float dashphase)
+ {
+ final DRendererContext rdrCtx = getRendererContext();
+ try {
+ // initialize a large copyable Path2D to avoid a lot of array growing:
+ final Path2D.Double p2d = rdrCtx.getPath2D();
+
+ strokeTo(rdrCtx,
+ src,
+ null,
+ width,
+ NormMode.OFF,
+ caps,
+ join,
+ miterlimit,
+ dashes,
+ dashphase,
+ rdrCtx.transformerPC2D.wrapPath2d(p2d)
+ );
+
+ // Use Path2D copy constructor (trim)
+ return new Path2D.Double(p2d);
+
+ } finally {
+ // recycle the DRendererContext instance
+ returnRendererContext(rdrCtx);
+ }
+ }
+
+ /**
+ * Sends the geometry for a widened path as specified by the parameters
+ * to the specified consumer.
+ * <p>
+ * The specified {@code src} {@link Shape} is widened according
+ * to the parameters specified by the {@link BasicStroke} object.
+ * Adjustments are made to the path as appropriate for the
+ * {@link java.awt.RenderingHints#VALUE_STROKE_NORMALIZE} hint if the
+ * {@code normalize} boolean parameter is true.
+ * Adjustments are made to the path as appropriate for the
+ * {@link java.awt.RenderingHints#VALUE_ANTIALIAS_ON} hint if the
+ * {@code antialias} boolean parameter is true.
+ * <p>
+ * The geometry of the widened path is forwarded to the indicated
+ * {@link DPathConsumer2D} object as it is calculated.
+ *
+ * @param src the source path to be widened
+ * @param bs the {@code BasicSroke} object specifying the
+ * decorations to be applied to the widened path
+ * @param normalize indicates whether stroke normalization should
+ * be applied
+ * @param antialias indicates whether or not adjustments appropriate
+ * to antialiased rendering should be applied
+ * @param consumer the {@code DPathConsumer2D} instance to forward
+ * the widened geometry to
+ * @since 1.7
+ */
+ @Override
+ public void strokeTo(Shape src,
+ AffineTransform at,
+ BasicStroke bs,
+ boolean thin,
+ boolean normalize,
+ boolean antialias,
+ final sun.awt.geom.PathConsumer2D consumer)
+ {
+ final NormMode norm = (normalize) ?
+ ((antialias) ? NormMode.ON_WITH_AA : NormMode.ON_NO_AA)
+ : NormMode.OFF;
+
+ final DRendererContext rdrCtx = getRendererContext();
+ try {
+ strokeTo(rdrCtx, src, at, bs, thin, norm, antialias,
+ rdrCtx.p2dAdapter.init(consumer));
+ } finally {
+ // recycle the DRendererContext instance
+ returnRendererContext(rdrCtx);
+ }
+ }
+
+ final void strokeTo(final DRendererContext rdrCtx,
+ Shape src,
+ AffineTransform at,
+ BasicStroke bs,
+ boolean thin,
+ NormMode normalize,
+ boolean antialias,
+ DPathConsumer2D pc2d)
+ {
+ double lw;
+ if (thin) {
+ if (antialias) {
+ lw = userSpaceLineWidth(at, MIN_PEN_SIZE);
+ } else {
+ lw = userSpaceLineWidth(at, 1.0d);
+ }
+ } else {
+ lw = bs.getLineWidth();
+ }
+ strokeTo(rdrCtx,
+ src,
+ at,
+ lw,
+ normalize,
+ bs.getEndCap(),
+ bs.getLineJoin(),
+ bs.getMiterLimit(),
+ bs.getDashArray(),
+ bs.getDashPhase(),
+ pc2d);
+ }
+
+ private final double userSpaceLineWidth(AffineTransform at, double lw) {
+
+ double widthScale;
+
+ if (at == null) {
+ widthScale = 1.0d;
+ } else if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM |
+ AffineTransform.TYPE_GENERAL_SCALE)) != 0) {
+ widthScale = Math.sqrt(at.getDeterminant());
+ } else {
+ // First calculate the "maximum scale" of this transform.
+ double A = at.getScaleX(); // m00
+ double C = at.getShearX(); // m01
+ double B = at.getShearY(); // m10
+ double D = at.getScaleY(); // m11
+
+ /*
+ * Given a 2 x 2 affine matrix [ A B ] such that
+ * [ C D ]
+ * v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
+ * find the maximum magnitude (norm) of the vector v'
+ * with the constraint (x^2 + y^2 = 1).
+ * The equation to maximize is
+ * |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
+ * or |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
+ * Since sqrt is monotonic we can maximize |v'|^2
+ * instead and plug in the substitution y = sqrt(1 - x^2).
+ * Trigonometric equalities can then be used to get
+ * rid of most of the sqrt terms.
+ */
+
+ double EA = A*A + B*B; // x^2 coefficient
+ double EB = 2.0d * (A*C + B*D); // xy coefficient
+ double EC = C*C + D*D; // y^2 coefficient
+
+ /*
+ * There is a lot of calculus omitted here.
+ *
+ * Conceptually, in the interests of understanding the
+ * terms that the calculus produced we can consider
+ * that EA and EC end up providing the lengths along
+ * the major axes and the hypot term ends up being an
+ * adjustment for the additional length along the off-axis
+ * angle of rotated or sheared ellipses as well as an
+ * adjustment for the fact that the equation below
+ * averages the two major axis lengths. (Notice that
+ * the hypot term contains a part which resolves to the
+ * difference of these two axis lengths in the absence
+ * of rotation.)
+ *
+ * In the calculus, the ratio of the EB and (EA-EC) terms
+ * ends up being the tangent of 2*theta where theta is
+ * the angle that the long axis of the ellipse makes
+ * with the horizontal axis. Thus, this equation is
+ * calculating the length of the hypotenuse of a triangle
+ * along that axis.
+ */
+
+ double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
+ // sqrt omitted, compare to squared limits below.
+ double widthsquared = ((EA + EC + hypot) / 2.0d);
+
+ widthScale = Math.sqrt(widthsquared);
+ }
+
+ return (lw / widthScale);
+ }
+
+ final void strokeTo(final DRendererContext rdrCtx,
+ Shape src,
+ AffineTransform at,
+ double width,
+ NormMode norm,
+ int caps,
+ int join,
+ float miterlimit,
+ float[] dashes,
+ float dashphase,
+ DPathConsumer2D pc2d)
+ {
+ // We use strokerat so that in Stroker and Dasher we can work only
+ // with the pre-transformation coordinates. This will repeat a lot of
+ // computations done in the path iterator, but the alternative is to
+ // work with transformed paths and compute untransformed coordinates
+ // as needed. This would be faster but I do not think the complexity
+ // of working with both untransformed and transformed coordinates in
+ // the same code is worth it.
+ // However, if a path's width is constant after a transformation,
+ // we can skip all this untransforming.
+
+ // As pathTo() will check transformed coordinates for invalid values
+ // (NaN / Infinity) to ignore such points, it is necessary to apply the
+ // transformation before the path processing.
+ AffineTransform strokerat = null;
+
+ int dashLen = -1;
+ boolean recycleDashes = false;
+ double[] dashesD = null;
+
+ // Ensure converting dashes to double precision:
+ if (dashes != null) {
+ recycleDashes = true;
+ dashLen = dashes.length;
+ dashesD = rdrCtx.dasher.copyDashArray(dashes);
+ }
+
+ if (at != null && !at.isIdentity()) {
+ final double a = at.getScaleX();
+ final double b = at.getShearX();
+ final double c = at.getShearY();
+ final double d = at.getScaleY();
+ final double det = a * d - c * b;
+
+ if (Math.abs(det) <= (2.0d * Double.MIN_VALUE)) {
+ // this rendering engine takes one dimensional curves and turns
+ // them into 2D shapes by giving them width.
+ // However, if everything is to be passed through a singular
+ // transformation, these 2D shapes will be squashed down to 1D
+ // again so, nothing can be drawn.
+
+ // Every path needs an initial moveTo and a pathDone. If these
+ // are not there this causes a SIGSEGV in libawt.so (at the time
+ // of writing of this comment (September 16, 2010)). Actually,
+ // I am not sure if the moveTo is necessary to avoid the SIGSEGV
+ // but the pathDone is definitely needed.
+ pc2d.moveTo(0.0d, 0.0d);
+ pc2d.pathDone();
+ return;
+ }
+
+ // If the transform is a constant multiple of an orthogonal transformation
+ // then every length is just multiplied by a constant, so we just
+ // need to transform input paths to stroker and tell stroker
+ // the scaled width. This condition is satisfied if
+ // a*b == -c*d && a*a+c*c == b*b+d*d. In the actual check below, we
+ // leave a bit of room for error.
+ if (nearZero(a*b + c*d) && nearZero(a*a + c*c - (b*b + d*d))) {
+ final double scale = Math.sqrt(a*a + c*c);
+
+ if (dashesD != null) {
+ for (int i = 0; i < dashLen; i++) {
+ dashesD[i] *= scale;
+ }
+ dashphase *= scale;
+ }
+ width *= scale;
+
+ // by now strokerat == null. Input paths to
+ // stroker (and maybe dasher) will have the full transform at
+ // applied to them and nothing will happen to the output paths.
+ } else {
+ strokerat = at;
+
+ // by now strokerat == at. Input paths to
+ // stroker (and maybe dasher) will have the full transform at
+ // applied to them, then they will be normalized, and then
+ // the inverse of *only the non translation part of at* will
+ // be applied to the normalized paths. This won't cause problems
+ // in stroker, because, suppose at = T*A, where T is just the
+ // translation part of at, and A is the rest. T*A has already
+ // been applied to Stroker/Dasher's input. Then Ainv will be
+ // applied. Ainv*T*A is not equal to T, but it is a translation,
+ // which means that none of stroker's assumptions about its
+ // input will be violated. After all this, A will be applied
+ // to stroker's output.
+ }
+ } else {
+ // either at is null or it's the identity. In either case
+ // we don't transform the path.
+ at = null;
+ }
+
+ if (USE_SIMPLIFIER) {
+ // Use simplifier after stroker before Renderer
+ // to remove collinear segments (notably due to cap square)
+ pc2d = rdrCtx.simplifier.init(pc2d);
+ }
+
+ final DTransformingPathConsumer2D transformerPC2D = rdrCtx.transformerPC2D;
+ pc2d = transformerPC2D.deltaTransformConsumer(pc2d, strokerat);
+
+ pc2d = rdrCtx.stroker.init(pc2d, width, caps, join, miterlimit);
+
+ if (dashesD != null) {
+ pc2d = rdrCtx.dasher.init(pc2d, dashesD, dashLen, dashphase,
+ recycleDashes);
+ }
+ pc2d = transformerPC2D.inverseDeltaTransformConsumer(pc2d, strokerat);
+
+ final PathIterator pi = norm.getNormalizingPathIterator(rdrCtx,
+ src.getPathIterator(at));
+
+ pathTo(rdrCtx, pi, pc2d);
+
+ /*
+ * Pipeline seems to be:
+ * shape.getPathIterator(at)
+ * -> (NormalizingPathIterator)
+ * -> (inverseDeltaTransformConsumer)
+ * -> (Dasher)
+ * -> Stroker
+ * -> (deltaTransformConsumer)
+ *
+ * -> (CollinearSimplifier) to remove redundant segments
+ *
+ * -> pc2d = Renderer (bounding box)
+ */
+ }
+
+ private static boolean nearZero(final double num) {
+ return Math.abs(num) < 2.0d * Math.ulp(num);
+ }
+
+ abstract static class NormalizingPathIterator implements PathIterator {
+
+ private PathIterator src;
+
+ // the adjustment applied to the current position.
+ private double curx_adjust, cury_adjust;
+ // the adjustment applied to the last moveTo position.
+ private double movx_adjust, movy_adjust;
+
+ private final double[] tmp;
+
+ NormalizingPathIterator(final double[] tmp) {
+ this.tmp = tmp;
+ }
+
+ final NormalizingPathIterator init(final PathIterator src) {
+ this.src = src;
+ return this; // fluent API
+ }
+
+ /**
+ * Disposes this path iterator:
+ * clean up before reusing this instance
+ */
+ final void dispose() {
+ // free source PathIterator:
+ this.src = null;
+ }
+
+ @Override
+ public final int currentSegment(final double[] coords) {
+ int lastCoord;
+ final int type = src.currentSegment(coords);
+
+ switch(type) {
+ case PathIterator.SEG_MOVETO:
+ case PathIterator.SEG_LINETO:
+ lastCoord = 0;
+ break;
+ case PathIterator.SEG_QUADTO:
+ lastCoord = 2;
+ break;
+ case PathIterator.SEG_CUBICTO:
+ lastCoord = 4;
+ break;
+ case PathIterator.SEG_CLOSE:
+ // we don't want to deal with this case later. We just exit now
+ curx_adjust = movx_adjust;
+ cury_adjust = movy_adjust;
+ return type;
+ default:
+ throw new InternalError("Unrecognized curve type");
+ }
+
+ // normalize endpoint
+ double coord, x_adjust, y_adjust;
+
+ coord = coords[lastCoord];
+ x_adjust = normCoord(coord); // new coord
+ coords[lastCoord] = x_adjust;
+ x_adjust -= coord;
+
+ coord = coords[lastCoord + 1];
+ y_adjust = normCoord(coord); // new coord
+ coords[lastCoord + 1] = y_adjust;
+ y_adjust -= coord;
+
+ // now that the end points are done, normalize the control points
+ switch(type) {
+ case PathIterator.SEG_MOVETO:
+ movx_adjust = x_adjust;
+ movy_adjust = y_adjust;
+ break;
+ case PathIterator.SEG_LINETO:
+ break;
+ case PathIterator.SEG_QUADTO:
+ coords[0] += (curx_adjust + x_adjust) / 2.0d;
+ coords[1] += (cury_adjust + y_adjust) / 2.0d;
+ break;
+ case PathIterator.SEG_CUBICTO:
+ coords[0] += curx_adjust;
+ coords[1] += cury_adjust;
+ coords[2] += x_adjust;
+ coords[3] += y_adjust;
+ break;
+ case PathIterator.SEG_CLOSE:
+ // handled earlier
+ default:
+ }
+ curx_adjust = x_adjust;
+ cury_adjust = y_adjust;
+ return type;
+ }
+
+ abstract double normCoord(final double coord);
+
+ @Override
+ public final int currentSegment(final float[] coords) {
+ final double[] _tmp = tmp; // dirty
+ int type = this.currentSegment(_tmp);
+ for (int i = 0; i < 6; i++) {
+ coords[i] = (float)_tmp[i];
+ }
+ return type;
+ }
+
+ @Override
+ public final int getWindingRule() {
+ return src.getWindingRule();
+ }
+
+ @Override
+ public final boolean isDone() {
+ if (src.isDone()) {
+ // Dispose this instance:
+ dispose();
+ return true;
+ }
+ return false;
+ }
+
+ @Override
+ public final void next() {
+ src.next();
+ }
+
+ static final class NearestPixelCenter
+ extends NormalizingPathIterator
+ {
+ NearestPixelCenter(final double[] tmp) {
+ super(tmp);
+ }
+
+ @Override
+ double normCoord(final double coord) {
+ // round to nearest pixel center
+ return Math.floor(coord) + 0.5d;
+ }
+ }
+
+ static final class NearestPixelQuarter
+ extends NormalizingPathIterator
+ {
+ NearestPixelQuarter(final double[] tmp) {
+ super(tmp);
+ }
+
+ @Override
+ double normCoord(final double coord) {
+ // round to nearest (0.25, 0.25) pixel quarter
+ return Math.floor(coord + 0.25d) + 0.25d;
+ }
+ }
+ }
+
+ private static void pathTo(final DRendererContext rdrCtx, final PathIterator pi,
+ final DPathConsumer2D pc2d)
+ {
+ // mark context as DIRTY:
+ rdrCtx.dirty = true;
+
+ final double[] coords = rdrCtx.double6;
+
+ pathToLoop(coords, pi, pc2d);
+
+ // mark context as CLEAN:
+ rdrCtx.dirty = false;
+ }
+
+ private static void pathToLoop(final double[] coords, final PathIterator pi,
+ final DPathConsumer2D pc2d)
+ {
+ // ported from DuctusRenderingEngine.feedConsumer() but simplified:
+ // - removed skip flag = !subpathStarted
+ // - removed pathClosed (ie subpathStarted not set to false)
+ boolean subpathStarted = false;
+
+ for (; !pi.isDone(); pi.next()) {
+ switch (pi.currentSegment(coords)) {
+ case PathIterator.SEG_MOVETO:
+ /* Checking SEG_MOVETO coordinates if they are out of the
+ * [LOWER_BND, UPPER_BND] range. This check also handles NaN
+ * and Infinity values. Skipping next path segment in case of
+ * invalid data.
+ */
+ if (coords[0] < UPPER_BND && coords[0] > LOWER_BND &&
+ coords[1] < UPPER_BND && coords[1] > LOWER_BND)
+ {
+ pc2d.moveTo(coords[0], coords[1]);
+ subpathStarted = true;
+ }
+ break;
+ case PathIterator.SEG_LINETO:
+ /* Checking SEG_LINETO coordinates if they are out of the
+ * [LOWER_BND, UPPER_BND] range. This check also handles NaN
+ * and Infinity values. Ignoring current path segment in case
+ * of invalid data. If segment is skipped its endpoint
+ * (if valid) is used to begin new subpath.
+ */
+ if (coords[0] < UPPER_BND && coords[0] > LOWER_BND &&
+ coords[1] < UPPER_BND && coords[1] > LOWER_BND)
+ {
+ if (subpathStarted) {
+ pc2d.lineTo(coords[0], coords[1]);
+ } else {
+ pc2d.moveTo(coords[0], coords[1]);
+ subpathStarted = true;
+ }
+ }
+ break;
+ case PathIterator.SEG_QUADTO:
+ // Quadratic curves take two points
+ /* Checking SEG_QUADTO coordinates if they are out of the
+ * [LOWER_BND, UPPER_BND] range. This check also handles NaN
+ * and Infinity values. Ignoring current path segment in case
+ * of invalid endpoints's data. Equivalent to the SEG_LINETO
+ * if endpoint coordinates are valid but there are invalid data
+ * among other coordinates
+ */
+ if (coords[2] < UPPER_BND && coords[2] > LOWER_BND &&
+ coords[3] < UPPER_BND && coords[3] > LOWER_BND)
+ {
+ if (subpathStarted) {
+ if (coords[0] < UPPER_BND && coords[0] > LOWER_BND &&
+ coords[1] < UPPER_BND && coords[1] > LOWER_BND)
+ {
+ pc2d.quadTo(coords[0], coords[1],
+ coords[2], coords[3]);
+ } else {
+ pc2d.lineTo(coords[2], coords[3]);
+ }
+ } else {
+ pc2d.moveTo(coords[2], coords[3]);
+ subpathStarted = true;
+ }
+ }
+ break;
+ case PathIterator.SEG_CUBICTO:
+ // Cubic curves take three points
+ /* Checking SEG_CUBICTO coordinates if they are out of the
+ * [LOWER_BND, UPPER_BND] range. This check also handles NaN
+ * and Infinity values. Ignoring current path segment in case
+ * of invalid endpoints's data. Equivalent to the SEG_LINETO
+ * if endpoint coordinates are valid but there are invalid data
+ * among other coordinates
+ */
+ if (coords[4] < UPPER_BND && coords[4] > LOWER_BND &&
+ coords[5] < UPPER_BND && coords[5] > LOWER_BND)
+ {
+ if (subpathStarted) {
+ if (coords[0] < UPPER_BND && coords[0] > LOWER_BND &&
+ coords[1] < UPPER_BND && coords[1] > LOWER_BND &&
+ coords[2] < UPPER_BND && coords[2] > LOWER_BND &&
+ coords[3] < UPPER_BND && coords[3] > LOWER_BND)
+ {
+ pc2d.curveTo(coords[0], coords[1],
+ coords[2], coords[3],
+ coords[4], coords[5]);
+ } else {
+ pc2d.lineTo(coords[4], coords[5]);
+ }
+ } else {
+ pc2d.moveTo(coords[4], coords[5]);
+ subpathStarted = true;
+ }
+ }
+ break;
+ case PathIterator.SEG_CLOSE:
+ if (subpathStarted) {
+ pc2d.closePath();
+ // do not set subpathStarted to false
+ // in case of missing moveTo() after close()
+ }
+ break;
+ default:
+ }
+ }
+ pc2d.pathDone();
+ }
+
+ /**
+ * Construct an antialiased tile generator for the given shape with
+ * the given rendering attributes and store the bounds of the tile
+ * iteration in the bbox parameter.
+ * The {@code at} parameter specifies a transform that should affect
+ * both the shape and the {@code BasicStroke} attributes.
+ * The {@code clip} parameter specifies the current clip in effect
+ * in device coordinates and can be used to prune the data for the
+ * operation, but the renderer is not required to perform any
+ * clipping.
+ * If the {@code BasicStroke} parameter is null then the shape
+ * should be filled as is, otherwise the attributes of the
+ * {@code BasicStroke} should be used to specify a draw operation.
+ * The {@code thin} parameter indicates whether or not the
+ * transformed {@code BasicStroke} represents coordinates smaller
+ * than the minimum resolution of the antialiasing rasterizer as
+ * specified by the {@code getMinimumAAPenWidth()} method.
+ * <p>
+ * Upon returning, this method will fill the {@code bbox} parameter
+ * with 4 values indicating the bounds of the iteration of the
+ * tile generator.
+ * The iteration order of the tiles will be as specified by the
+ * pseudo-code:
+ * <pre>
+ * for (y = bbox[1]; y < bbox[3]; y += tileheight) {
+ * for (x = bbox[0]; x < bbox[2]; x += tilewidth) {
+ * }
+ * }
+ * </pre>
+ * If there is no output to be rendered, this method may return
+ * null.
+ *
+ * @param s the shape to be rendered (fill or draw)
+ * @param at the transform to be applied to the shape and the
+ * stroke attributes
+ * @param clip the current clip in effect in device coordinates
+ * @param bs if non-null, a {@code BasicStroke} whose attributes
+ * should be applied to this operation
+ * @param thin true if the transformed stroke attributes are smaller
+ * than the minimum dropout pen width
+ * @param normalize true if the {@code VALUE_STROKE_NORMALIZE}
+ * {@code RenderingHint} is in effect
+ * @param bbox returns the bounds of the iteration
+ * @return the {@code AATileGenerator} instance to be consulted
+ * for tile coverages, or null if there is no output to render
+ * @since 1.7
+ */
+ @Override
+ public AATileGenerator getAATileGenerator(Shape s,
+ AffineTransform at,
+ Region clip,
+ BasicStroke bs,
+ boolean thin,
+ boolean normalize,
+ int[] bbox)
+ {
+ MarlinTileGenerator ptg = null;
+ DRenderer r = null;
+
+ final DRendererContext rdrCtx = getRendererContext();
+ try {
+ // Test if at is identity:
+ final AffineTransform _at = (at != null && !at.isIdentity()) ? at
+ : null;
+
+ final NormMode norm = (normalize) ? NormMode.ON_WITH_AA : NormMode.OFF;
+
+ if (bs == null) {
+ // fill shape:
+ final PathIterator pi = norm.getNormalizingPathIterator(rdrCtx,
+ s.getPathIterator(_at));
+
+ // note: Winding rule may be EvenOdd ONLY for fill operations !
+ r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(),
+ clip.getWidth(), clip.getHeight(),
+ pi.getWindingRule());
+
+ // TODO: subdivide quad/cubic curves into monotonic curves ?
+ pathTo(rdrCtx, pi, r);
+ } else {
+ // draw shape with given stroke:
+ r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(),
+ clip.getWidth(), clip.getHeight(),
+ PathIterator.WIND_NON_ZERO);
+
+ strokeTo(rdrCtx, s, _at, bs, thin, norm, true, r);
+ }
+ if (r.endRendering()) {
+ ptg = rdrCtx.ptg.init();
+ ptg.getBbox(bbox);
+ // note: do not returnRendererContext(rdrCtx)
+ // as it will be called later by MarlinTileGenerator.dispose()
+ r = null;
+ }
+ } finally {
+ if (r != null) {
+ // dispose renderer and recycle the RendererContext instance:
+ r.dispose();
+ }
+ }
+
+ // Return null to cancel AA tile generation (nothing to render)
+ return ptg;
+ }
+
+ @Override
+ public final AATileGenerator getAATileGenerator(double x, double y,
+ double dx1, double dy1,
+ double dx2, double dy2,
+ double lw1, double lw2,
+ Region clip,
+ int[] bbox)
+ {
+ // REMIND: Deal with large coordinates!
+ double ldx1, ldy1, ldx2, ldy2;
+ boolean innerpgram = (lw1 > 0.0d && lw2 > 0.0d);
+
+ if (innerpgram) {
+ ldx1 = dx1 * lw1;
+ ldy1 = dy1 * lw1;
+ ldx2 = dx2 * lw2;
+ ldy2 = dy2 * lw2;
+ x -= (ldx1 + ldx2) / 2.0d;
+ y -= (ldy1 + ldy2) / 2.0d;
+ dx1 += ldx1;
+ dy1 += ldy1;
+ dx2 += ldx2;
+ dy2 += ldy2;
+ if (lw1 > 1.0d && lw2 > 1.0d) {
+ // Inner parallelogram was entirely consumed by stroke...
+ innerpgram = false;
+ }
+ } else {
+ ldx1 = ldy1 = ldx2 = ldy2 = 0.0d;
+ }
+
+ MarlinTileGenerator ptg = null;
+ DRenderer r = null;
+
+ final DRendererContext rdrCtx = getRendererContext();
+ try {
+ r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(),
+ clip.getWidth(), clip.getHeight(),
+ DRenderer.WIND_EVEN_ODD);
+
+ r.moveTo( x, y);
+ r.lineTo( (x+dx1), (y+dy1));
+ r.lineTo( (x+dx1+dx2), (y+dy1+dy2));
+ r.lineTo( (x+dx2), (y+dy2));
+ r.closePath();
+
+ if (innerpgram) {
+ x += ldx1 + ldx2;
+ y += ldy1 + ldy2;
+ dx1 -= 2.0d * ldx1;
+ dy1 -= 2.0d * ldy1;
+ dx2 -= 2.0d * ldx2;
+ dy2 -= 2.0d * ldy2;
+ r.moveTo( x, y);
+ r.lineTo( (x+dx1), (y+dy1));
+ r.lineTo( (x+dx1+dx2), (y+dy1+dy2));
+ r.lineTo( (x+dx2), (y+dy2));
+ r.closePath();
+ }
+ r.pathDone();
+
+ if (r.endRendering()) {
+ ptg = rdrCtx.ptg.init();
+ ptg.getBbox(bbox);
+ // note: do not returnRendererContext(rdrCtx)
+ // as it will be called later by MarlinTileGenerator.dispose()
+ r = null;
+ }
+ } finally {
+ if (r != null) {
+ // dispose renderer and recycle the RendererContext instance:
+ r.dispose();
+ }
+ }
+
+ // Return null to cancel AA tile generation (nothing to render)
+ return ptg;
+ }
+
+ /**
+ * Returns the minimum pen width that the antialiasing rasterizer
+ * can represent without dropouts occuring.
+ * @since 1.7
+ */
+ @Override
+ public float getMinimumAAPenSize() {
+ return MIN_PEN_SIZE;
+ }
+
+ static {
+ if (PathIterator.WIND_NON_ZERO != DRenderer.WIND_NON_ZERO ||
+ PathIterator.WIND_EVEN_ODD != DRenderer.WIND_EVEN_ODD ||
+ BasicStroke.JOIN_MITER != DStroker.JOIN_MITER ||
+ BasicStroke.JOIN_ROUND != DStroker.JOIN_ROUND ||
+ BasicStroke.JOIN_BEVEL != DStroker.JOIN_BEVEL ||
+ BasicStroke.CAP_BUTT != DStroker.CAP_BUTT ||
+ BasicStroke.CAP_ROUND != DStroker.CAP_ROUND ||
+ BasicStroke.CAP_SQUARE != DStroker.CAP_SQUARE)
+ {
+ throw new InternalError("mismatched renderer constants");
+ }
+ }
+
+ // --- DRendererContext handling ---
+ // use ThreadLocal or ConcurrentLinkedQueue to get one DRendererContext
+ private static final boolean USE_THREAD_LOCAL;
+
+ // reference type stored in either TL or CLQ
+ static final int REF_TYPE;
+
+ // Per-thread DRendererContext
+ private static final ReentrantContextProvider<DRendererContext> RDR_CTX_PROVIDER;
+
+ // Static initializer to use TL or CLQ mode
+ static {
+ USE_THREAD_LOCAL = MarlinProperties.isUseThreadLocal();
+
+ // Soft reference by default:
+ final String refType = AccessController.doPrivileged(
+ new GetPropertyAction("sun.java2d.renderer.useRef",
+ "soft"));
+
+ // Java 1.6 does not support strings in switch:
+ if ("hard".equalsIgnoreCase(refType)) {
+ REF_TYPE = ReentrantContextProvider.REF_HARD;
+ } else if ("weak".equalsIgnoreCase(refType)) {
+ REF_TYPE = ReentrantContextProvider.REF_WEAK;
+ } else {
+ REF_TYPE = ReentrantContextProvider.REF_SOFT;
+ }
+
+ if (USE_THREAD_LOCAL) {
+ RDR_CTX_PROVIDER = new ReentrantContextProviderTL<DRendererContext>(REF_TYPE)
+ {
+ @Override
+ protected DRendererContext newContext() {
+ return DRendererContext.createContext();
+ }
+ };
+ } else {
+ RDR_CTX_PROVIDER = new ReentrantContextProviderCLQ<DRendererContext>(REF_TYPE)
+ {
+ @Override
+ protected DRendererContext newContext() {
+ return DRendererContext.createContext();
+ }
+ };
+ }
+ }
+
+ private static boolean SETTINGS_LOGGED = !ENABLE_LOGS;
+
+ private static void logSettings(final String reClass) {
+ // log information at startup
+ if (SETTINGS_LOGGED) {
+ return;
+ }
+ SETTINGS_LOGGED = true;
+
+ String refType;
+ switch (REF_TYPE) {
+ default:
+ case ReentrantContextProvider.REF_HARD:
+ refType = "hard";
+ break;
+ case ReentrantContextProvider.REF_SOFT:
+ refType = "soft";
+ break;
+ case ReentrantContextProvider.REF_WEAK:
+ refType = "weak";
+ break;
+ }
+
+ logInfo("=========================================================="
+ + "=====================");
+
+ logInfo("Marlin software rasterizer = ENABLED");
+ logInfo("Version = ["
+ + Version.getVersion() + "]");
+ logInfo("sun.java2d.renderer = "
+ + reClass);
+ logInfo("sun.java2d.renderer.useThreadLocal = "
+ + USE_THREAD_LOCAL);
+ logInfo("sun.java2d.renderer.useRef = "
+ + refType);
+
+ logInfo("sun.java2d.renderer.edges = "
+ + MarlinConst.INITIAL_EDGES_COUNT);
+ logInfo("sun.java2d.renderer.pixelsize = "
+ + MarlinConst.INITIAL_PIXEL_DIM);
+
+ logInfo("sun.java2d.renderer.subPixel_log2_X = "
+ + MarlinConst.SUBPIXEL_LG_POSITIONS_X);
+ logInfo("sun.java2d.renderer.subPixel_log2_Y = "
+ + MarlinConst.SUBPIXEL_LG_POSITIONS_Y);
+
+ logInfo("sun.java2d.renderer.tileSize_log2 = "
+ + MarlinConst.TILE_H_LG);
+ logInfo("sun.java2d.renderer.tileWidth_log2 = "
+ + MarlinConst.TILE_W_LG);
+ logInfo("sun.java2d.renderer.blockSize_log2 = "
+ + MarlinConst.BLOCK_SIZE_LG);
+
+ // RLE / blockFlags settings
+
+ logInfo("sun.java2d.renderer.forceRLE = "
+ + MarlinProperties.isForceRLE());
+ logInfo("sun.java2d.renderer.forceNoRLE = "
+ + MarlinProperties.isForceNoRLE());
+ logInfo("sun.java2d.renderer.useTileFlags = "
+ + MarlinProperties.isUseTileFlags());
+ logInfo("sun.java2d.renderer.useTileFlags.useHeuristics = "
+ + MarlinProperties.isUseTileFlagsWithHeuristics());
+ logInfo("sun.java2d.renderer.rleMinWidth = "
+ + MarlinCache.RLE_MIN_WIDTH);
+
+ // optimisation parameters
+ logInfo("sun.java2d.renderer.useSimplifier = "
+ + MarlinConst.USE_SIMPLIFIER);
+
+ // debugging parameters
+ logInfo("sun.java2d.renderer.doStats = "
+ + MarlinConst.DO_STATS);
+ logInfo("sun.java2d.renderer.doMonitors = "
+ + MarlinConst.DO_MONITORS);
+ logInfo("sun.java2d.renderer.doChecks = "
+ + MarlinConst.DO_CHECKS);
+
+ // logging parameters
+ logInfo("sun.java2d.renderer.useLogger = "
+ + MarlinConst.USE_LOGGER);
+ logInfo("sun.java2d.renderer.logCreateContext = "
+ + MarlinConst.LOG_CREATE_CONTEXT);
+ logInfo("sun.java2d.renderer.logUnsafeMalloc = "
+ + MarlinConst.LOG_UNSAFE_MALLOC);
+
+ // quality settings
+ logInfo("sun.java2d.renderer.cubic_dec_d2 = "
+ + MarlinProperties.getCubicDecD2());
+ logInfo("sun.java2d.renderer.cubic_inc_d1 = "
+ + MarlinProperties.getCubicIncD1());
+ logInfo("sun.java2d.renderer.quad_dec_d2 = "
+ + MarlinProperties.getQuadDecD2());
+
+ logInfo("Renderer settings:");
+ logInfo("CUB_DEC_BND = " + DRenderer.CUB_DEC_BND);
+ logInfo("CUB_INC_BND = " + DRenderer.CUB_INC_BND);
+ logInfo("QUAD_DEC_BND = " + DRenderer.QUAD_DEC_BND);
+
+ logInfo("INITIAL_EDGES_CAPACITY = "
+ + MarlinConst.INITIAL_EDGES_CAPACITY);
+ logInfo("INITIAL_CROSSING_COUNT = "
+ + DRenderer.INITIAL_CROSSING_COUNT);
+
+ logInfo("=========================================================="
+ + "=====================");
+ }
+
+ /**
+ * Get the DRendererContext instance dedicated to the current thread
+ * @return DRendererContext instance
+ */
+ @SuppressWarnings({"unchecked"})
+ static DRendererContext getRendererContext() {
+ final DRendererContext rdrCtx = RDR_CTX_PROVIDER.acquire();
+ if (DO_MONITORS) {
+ rdrCtx.stats.mon_pre_getAATileGenerator.start();
+ }
+ return rdrCtx;
+ }
+
+ /**
+ * Reset and return the given DRendererContext instance for reuse
+ * @param rdrCtx DRendererContext instance
+ */
+ static void returnRendererContext(final DRendererContext rdrCtx) {
+ rdrCtx.dispose();
+
+ if (DO_MONITORS) {
+ rdrCtx.stats.mon_pre_getAATileGenerator.stop();
+ }
+ RDR_CTX_PROVIDER.release(rdrCtx);
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/DPathConsumer2D.java Wed May 17 22:05:11 2017 +0200
@@ -0,0 +1,78 @@
+/*
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+public interface DPathConsumer2D {
+ /**
+ * @see java.awt.geom.Path2D.Float#moveTo
+ */
+ public void moveTo(double x, double y);
+
+ /**
+ * @see java.awt.geom.Path2D.Float#lineTo
+ */
+ public void lineTo(double x, double y);
+
+ /**
+ * @see java.awt.geom.Path2D.Float#quadTo
+ */
+ public void quadTo(double x1, double y1,
+ double x2, double y2);
+
+ /**
+ * @see java.awt.geom.Path2D.Float#curveTo
+ */
+ public void curveTo(double x1, double y1,
+ double x2, double y2,
+ double x3, double y3);
+
+ /**
+ * @see java.awt.geom.Path2D.Float#closePath
+ */
+ public void closePath();
+
+ /**
+ * Called after the last segment of the last subpath when the
+ * iteration of the path segments is completely done. This
+ * method serves to trigger the end of path processing in the
+ * consumer that would normally be triggered when a
+ * {@link java.awt.geom.PathIterator PathIterator}
+ * returns {@code true} from its {@code done} method.
+ */
+ public void pathDone();
+
+ /**
+ * If a given PathConsumer performs all or most of its work
+ * natively then it can return a (non-zero) pointer to a
+ * native function vector that defines C functions for all
+ * of the above methods.
+ * The specific pointer it returns is a pointer to a
+ * PathConsumerVec structure as defined in the include file
+ * src/share/native/sun/java2d/pipe/PathConsumer2D.h
+ * @return a native pointer to a PathConsumerVec structure.
+ */
+ public long getNativeConsumer();
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/DRenderer.java Wed May 17 22:05:11 2017 +0200
@@ -0,0 +1,1526 @@
+/*
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import static sun.java2d.marlin.OffHeapArray.SIZE_INT;
+import jdk.internal.misc.Unsafe;
+
+final class DRenderer implements DPathConsumer2D, MarlinRenderer {
+
+ static final boolean DISABLE_RENDER = false;
+
+ static final boolean ENABLE_BLOCK_FLAGS = MarlinProperties.isUseTileFlags();
+ static final boolean ENABLE_BLOCK_FLAGS_HEURISTICS = MarlinProperties.isUseTileFlagsWithHeuristics();
+
+ private static final int ALL_BUT_LSB = 0xFFFFFFFE;
+ private static final int ERR_STEP_MAX = 0x7FFFFFFF; // = 2^31 - 1
+
+ private static final double POWER_2_TO_32 = 0x1.0p32d;
+
+ // use double to make tosubpix methods faster (no int to double conversion)
+ static final double SUBPIXEL_SCALE_X = SUBPIXEL_POSITIONS_X;
+ static final double SUBPIXEL_SCALE_Y = SUBPIXEL_POSITIONS_Y;
+ static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1;
+ static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1;
+
+ // number of subpixels corresponding to a tile line
+ private static final int SUBPIXEL_TILE
+ = TILE_H << SUBPIXEL_LG_POSITIONS_Y;
+
+ // 2048 (pixelSize) pixels (height) x 8 subpixels = 64K
+ static final int INITIAL_BUCKET_ARRAY
+ = INITIAL_PIXEL_DIM * SUBPIXEL_POSITIONS_Y;
+
+ // crossing capacity = edges count / 4 ~ 1024
+ static final int INITIAL_CROSSING_COUNT = INITIAL_EDGES_COUNT >> 2;
+
+ public static final int WIND_EVEN_ODD = 0;
+ public static final int WIND_NON_ZERO = 1;
+
+ // common to all types of input path segments.
+ // OFFSET as bytes
+ // only integer values:
+ public static final long OFF_CURX_OR = 0;
+ public static final long OFF_ERROR = OFF_CURX_OR + SIZE_INT;
+ public static final long OFF_BUMP_X = OFF_ERROR + SIZE_INT;
+ public static final long OFF_BUMP_ERR = OFF_BUMP_X + SIZE_INT;
+ public static final long OFF_NEXT = OFF_BUMP_ERR + SIZE_INT;
+ public static final long OFF_YMAX = OFF_NEXT + SIZE_INT;
+
+ // size of one edge in bytes
+ public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT);
+
+ // curve break into lines
+ // cubic error in subpixels to decrement step
+ private static final double CUB_DEC_ERR_SUBPIX
+ = MarlinProperties.getCubicDecD2() * (NORM_SUBPIXELS / 8.0d); // 1 pixel
+ // cubic error in subpixels to increment step
+ private static final double CUB_INC_ERR_SUBPIX
+ = MarlinProperties.getCubicIncD1() * (NORM_SUBPIXELS / 8.0d); // 0.4 pixel
+
+ // TestNonAARasterization (JDK-8170879): cubics
+ // bad paths (59294/100000 == 59,29%, 94335 bad pixels (avg = 1,59), 3966 warnings (avg = 0,07)
+
+ // cubic bind length to decrement step
+ public static final double CUB_DEC_BND
+ = 8.0d * CUB_DEC_ERR_SUBPIX;
+ // cubic bind length to increment step
+ public static final double CUB_INC_BND
+ = 8.0d * CUB_INC_ERR_SUBPIX;
+
+ // cubic countlg
+ public static final int CUB_COUNT_LG = 2;
+ // cubic count = 2^countlg
+ private static final int CUB_COUNT = 1 << CUB_COUNT_LG;
+ // cubic count^2 = 4^countlg
+ private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG);
+ // cubic count^3 = 8^countlg
+ private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG);
+ // cubic dt = 1 / count
+ private static final double CUB_INV_COUNT = 1.0d / CUB_COUNT;
+ // cubic dt^2 = 1 / count^2 = 1 / 4^countlg
+ private static final double CUB_INV_COUNT_2 = 1.0d / CUB_COUNT_2;
+ // cubic dt^3 = 1 / count^3 = 1 / 8^countlg
+ private static final double CUB_INV_COUNT_3 = 1.0d / CUB_COUNT_3;
+
+ // quad break into lines
+ // quadratic error in subpixels
+ private static final double QUAD_DEC_ERR_SUBPIX
+ = MarlinProperties.getQuadDecD2() * (NORM_SUBPIXELS / 8.0d); // 0.5 pixel
+
+ // TestNonAARasterization (JDK-8170879): quads
+ // bad paths (62916/100000 == 62,92%, 103818 bad pixels (avg = 1,65), 6514 warnings (avg = 0,10)
+
+ // quadratic bind length to decrement step
+ public static final double QUAD_DEC_BND
+ = 8.0d * QUAD_DEC_ERR_SUBPIX;
+
+//////////////////////////////////////////////////////////////////////////////
+// SCAN LINE
+//////////////////////////////////////////////////////////////////////////////
+ // crossings ie subpixel edge x coordinates
+ private int[] crossings;
+ // auxiliary storage for crossings (merge sort)
+ private int[] aux_crossings;
+
+ // indices into the segment pointer lists. They indicate the "active"
+ // sublist in the segment lists (the portion of the list that contains
+ // all the segments that cross the next scan line).
+ private int edgeCount;
+ private int[] edgePtrs;
+ // auxiliary storage for edge pointers (merge sort)
+ private int[] aux_edgePtrs;
+
+ // max used for both edgePtrs and crossings (stats only)
+ private int activeEdgeMaxUsed;
+
+ // crossings ref (dirty)
+ private final IntArrayCache.Reference crossings_ref;
+ // edgePtrs ref (dirty)
+ private final IntArrayCache.Reference edgePtrs_ref;
+ // merge sort initial arrays (large enough to satisfy most usages) (1024)
+ // aux_crossings ref (dirty)
+ private final IntArrayCache.Reference aux_crossings_ref;
+ // aux_edgePtrs ref (dirty)
+ private final IntArrayCache.Reference aux_edgePtrs_ref;
+
+//////////////////////////////////////////////////////////////////////////////
+// EDGE LIST
+//////////////////////////////////////////////////////////////////////////////
+ private int edgeMinY = Integer.MAX_VALUE;
+ private int edgeMaxY = Integer.MIN_VALUE;
+ private double edgeMinX = Double.POSITIVE_INFINITY;
+ private double edgeMaxX = Double.NEGATIVE_INFINITY;
+
+ // edges [ints] stored in off-heap memory
+ private final OffHeapArray edges;
+
+ private int[] edgeBuckets;
+ private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed)
+ // used range for edgeBuckets / edgeBucketCounts
+ private int buckets_minY;
+ private int buckets_maxY;
+
+ // edgeBuckets ref (clean)
+ private final IntArrayCache.Reference edgeBuckets_ref;
+ // edgeBucketCounts ref (clean)
+ private final IntArrayCache.Reference edgeBucketCounts_ref;
+
+ // Flattens using adaptive forward differencing. This only carries out
+ // one iteration of the AFD loop. All it does is update AFD variables (i.e.
+ // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
+ private void quadBreakIntoLinesAndAdd(double x0, double y0,
+ final DCurve c,
+ final double x2, final double y2)
+ {
+ int count = 1; // dt = 1 / count
+
+ // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1)
+ double maxDD = Math.abs(c.dbx) + Math.abs(c.dby);
+
+ final double _DEC_BND = QUAD_DEC_BND;
+
+ while (maxDD >= _DEC_BND) {
+ // divide step by half:
+ maxDD /= 4.0d; // error divided by 2^2 = 4
+
+ count <<= 1;
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_quadBreak_dec.add(count);
+ }
+ }
+
+ int nL = 0; // line count
+ if (count > 1) {
+ final double icount = 1.0d / count; // dt
+ final double icount2 = icount * icount; // dt^2
+
+ final double ddx = c.dbx * icount2;
+ final double ddy = c.dby * icount2;
+ double dx = c.bx * icount2 + c.cx * icount;
+ double dy = c.by * icount2 + c.cy * icount;
+
+ double x1, y1;
+
+ while (--count > 0) {
+ x1 = x0 + dx;
+ dx += ddx;
+ y1 = y0 + dy;
+ dy += ddy;
+
+ addLine(x0, y0, x1, y1);
+
+ if (DO_STATS) { nL++; }
+ x0 = x1;
+ y0 = y1;
+ }
+ }
+ addLine(x0, y0, x2, y2);
+
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_quadBreak.add(nL + 1);
+ }
+ }
+
+ // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
+ // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
+ // numerical errors, and our callers already have the exact values.
+ // Another alternative would be to pass all the control points, and call
+ // c.set here, but then too many numbers are passed around.
+ private void curveBreakIntoLinesAndAdd(double x0, double y0,
+ final DCurve c,
+ final double x3, final double y3)
+ {
+ int count = CUB_COUNT;
+ final double icount = CUB_INV_COUNT; // dt
+ final double icount2 = CUB_INV_COUNT_2; // dt^2
+ final double icount3 = CUB_INV_COUNT_3; // dt^3
+
+ // the dx and dy refer to forward differencing variables, not the last
+ // coefficients of the "points" polynomial
+ double dddx, dddy, ddx, ddy, dx, dy;
+ dddx = 2.0d * c.dax * icount3;
+ dddy = 2.0d * c.day * icount3;
+ ddx = dddx + c.dbx * icount2;
+ ddy = dddy + c.dby * icount2;
+ dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount;
+ dy = c.ay * icount3 + c.by * icount2 + c.cy * icount;
+
+ // we use x0, y0 to walk the line
+ double x1 = x0, y1 = y0;
+ int nL = 0; // line count
+
+ final double _DEC_BND = CUB_DEC_BND;
+ final double _INC_BND = CUB_INC_BND;
+
+ while (count > 0) {
+ // divide step by half:
+ while (Math.abs(ddx) + Math.abs(ddy) >= _DEC_BND) {
+ dddx /= 8.0d;
+ dddy /= 8.0d;
+ ddx = ddx / 4.0d - dddx;
+ ddy = ddy / 4.0d - dddy;
+ dx = (dx - ddx) / 2.0d;
+ dy = (dy - ddy) / 2.0d;
+
+ count <<= 1;
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_curveBreak_dec.add(count);
+ }
+ }
+
+ // double step:
+ // can only do this on even "count" values, because we must divide count by 2
+ while (count % 2 == 0
+ && Math.abs(dx) + Math.abs(dy) <= _INC_BND)
+ {
+ dx = 2.0d * dx + ddx;
+ dy = 2.0d * dy + ddy;
+ ddx = 4.0d * (ddx + dddx);
+ ddy = 4.0d * (ddy + dddy);
+ dddx *= 8.0d;
+ dddy *= 8.0d;
+
+ count >>= 1;
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_curveBreak_inc.add(count);
+ }
+ }
+ if (--count > 0) {
+ x1 += dx;
+ dx += ddx;
+ ddx += dddx;
+ y1 += dy;
+ dy += ddy;
+ ddy += dddy;
+ } else {
+ x1 = x3;
+ y1 = y3;
+ }
+
+ addLine(x0, y0, x1, y1);
+
+ if (DO_STATS) { nL++; }
+ x0 = x1;
+ y0 = y1;
+ }
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_curveBreak.add(nL);
+ }
+ }
+
+ private void addLine(double x1, double y1, double x2, double y2) {
+ if (DO_MONITORS) {
+ rdrCtx.stats.mon_rdr_addLine.start();
+ }
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_addLine.add(1);
+ }
+ int or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
+ if (y2 < y1) {
+ or = 0;
+ double tmp = y2;
+ y2 = y1;
+ y1 = tmp;
+ tmp = x2;
+ x2 = x1;
+ x1 = tmp;
+ }
+
+ // convert subpixel coordinates [double] into pixel positions [int]
+
+ // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5)
+ // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply
+ // ceil(y1) or ceil(y2)
+ // upper integer (inclusive)
+ final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY);
+
+ // note: use boundsMaxY (last Y exclusive) to compute correct coverage
+ // upper integer (exclusive)
+ final int lastCrossing = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY);
+
+ /* skip horizontal lines in pixel space and clip edges
+ out of y range [boundsMinY; boundsMaxY] */
+ if (firstCrossing >= lastCrossing) {
+ if (DO_MONITORS) {
+ rdrCtx.stats.mon_rdr_addLine.stop();
+ }
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_addLine_skip.add(1);
+ }
+ return;
+ }
+
+ // edge min/max X/Y are in subpixel space (half-open interval):
+ // note: Use integer crossings to ensure consistent range within
+ // edgeBuckets / edgeBucketCounts arrays in case of NaN values (int = 0)
+ if (firstCrossing < edgeMinY) {
+ edgeMinY = firstCrossing;
+ }
+ if (lastCrossing > edgeMaxY) {
+ edgeMaxY = lastCrossing;
+ }
+
+ final double slope = (x1 - x2) / (y1 - y2);
+
+ if (slope >= 0.0d) { // <==> x1 < x2
+ if (x1 < edgeMinX) {
+ edgeMinX = x1;
+ }
+ if (x2 > edgeMaxX) {
+ edgeMaxX = x2;
+ }
+ } else {
+ if (x2 < edgeMinX) {
+ edgeMinX = x2;
+ }
+ if (x1 > edgeMaxX) {
+ edgeMaxX = x1;
+ }
+ }
+
+ // local variables for performance:
+ final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES;
+
+ final OffHeapArray _edges = edges;
+
+ // get free pointer (ie length in bytes)
+ final int edgePtr = _edges.used;
+
+ // use substraction to avoid integer overflow:
+ if (_edges.length - edgePtr < _SIZEOF_EDGE_BYTES) {
+ // suppose _edges.length > _SIZEOF_EDGE_BYTES
+ // so doubling size is enough to add needed bytes
+ // note: throw IOOB if neededSize > 2Gb:
+ final long edgeNewSize = ArrayCacheConst.getNewLargeSize(
+ _edges.length,
+ edgePtr + _SIZEOF_EDGE_BYTES);
+
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_edges_resizes.add(edgeNewSize);
+ }
+ _edges.resize(edgeNewSize);
+ }
+
+
+ final Unsafe _unsafe = OffHeapArray.UNSAFE;
+ final long SIZE_INT = 4L;
+ long addr = _edges.address + edgePtr;
+
+ // The x value must be bumped up to its position at the next HPC we will evaluate.
+ // "firstcrossing" is the (sub)pixel number where the next crossing occurs
+ // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5"
+ // so the Y distance we cover is "firstcrossing + 0.5 - trueY".
+ // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have
+ // y1 = trueY - 0.5
+ // trueY = y1 + 0.5
+ // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5)
+ // = firstcrossing - y1
+ // The x coordinate at that HPC is then:
+ // x1_intercept = x1 + (firstcrossing - y1) * slope
+ // The next VPC is then given by:
+ // VPC index = ceil(x1_intercept - 0.5), or alternately
+ // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon)
+ // epsilon is hard to pin down in floating point, but easy in fixed point, so if
+ // we convert to fixed point then these operations get easier:
+ // long x1_fixed = x1_intercept * 2^32; (fixed point 32.32 format)
+ // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1)
+ // = fixed_floor(x1_fixed + 2^31 - 1)
+ // = fixed_floor(x1_fixed + 0x7FFFFFFF)
+ // and error = fixed_fract(x1_fixed + 0x7FFFFFFF)
+ final double x1_intercept = x1 + (firstCrossing - y1) * slope;
+
+ // inlined scalb(x1_intercept, 32):
+ final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept))
+ + 0x7FFFFFFFL;
+ // curx:
+ // last bit corresponds to the orientation
+ _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or);
+ addr += SIZE_INT;
+ _unsafe.putInt(addr, ((int) x1_fixed_biased) >>> 1);
+ addr += SIZE_INT;
+
+ // inlined scalb(slope, 32):
+ final long slope_fixed = (long) (POWER_2_TO_32 * slope);
+
+ // last bit set to 0 to keep orientation:
+ _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB));
+ addr += SIZE_INT;
+ _unsafe.putInt(addr, ((int) slope_fixed) >>> 1);
+ addr += SIZE_INT;
+
+ final int[] _edgeBuckets = edgeBuckets;
+ final int[] _edgeBucketCounts = edgeBucketCounts;
+
+ final int _boundsMinY = boundsMinY;
+
+ // each bucket is a linked list. this method adds ptr to the
+ // start of the "bucket"th linked list.
+ final int bucketIdx = firstCrossing - _boundsMinY;
+
+ // pointer from bucket
+ _unsafe.putInt(addr, _edgeBuckets[bucketIdx]);
+ addr += SIZE_INT;
+ // y max (exclusive)
+ _unsafe.putInt(addr, lastCrossing);
+
+ // Update buckets:
+ // directly the edge struct "pointer"
+ _edgeBuckets[bucketIdx] = edgePtr;
+ _edgeBucketCounts[bucketIdx] += 2; // 1 << 1
+ // last bit means edge end
+ _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1;
+
+ // update free pointer (ie length in bytes)
+ _edges.used += _SIZEOF_EDGE_BYTES;
+
+ if (DO_MONITORS) {
+ rdrCtx.stats.mon_rdr_addLine.stop();
+ }
+ }
+
+// END EDGE LIST
+//////////////////////////////////////////////////////////////////////////////
+
+ // Cache to store RLE-encoded coverage mask of the current primitive
+ final MarlinCache cache;
+
+ // Bounds of the drawing region, at subpixel precision.
+ private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY;
+
+ // Current winding rule
+ private int windingRule;
+
+ // Current drawing position, i.e., final point of last segment
+ private double x0, y0;
+
+ // Position of most recent 'moveTo' command
+ private double sx0, sy0;
+
+ // per-thread renderer context
+ final DRendererContext rdrCtx;
+ // dirty curve
+ private final DCurve curve;
+
+ // clean alpha array (zero filled)
+ private int[] alphaLine;
+
+ // alphaLine ref (clean)
+ private final IntArrayCache.Reference alphaLine_ref;
+
+ private boolean enableBlkFlags = false;
+ private boolean prevUseBlkFlags = false;
+
+ /* block flags (0|1) */
+ private int[] blkFlags;
+
+ // blkFlags ref (clean)
+ private final IntArrayCache.Reference blkFlags_ref;
+
+ DRenderer(final DRendererContext rdrCtx) {
+ this.rdrCtx = rdrCtx;
+
+ this.edges = rdrCtx.newOffHeapArray(INITIAL_EDGES_CAPACITY); // 96K
+
+ this.curve = rdrCtx.curve;
+
+ edgeBuckets_ref = rdrCtx.newCleanIntArrayRef(INITIAL_BUCKET_ARRAY); // 64K
+ edgeBucketCounts_ref = rdrCtx.newCleanIntArrayRef(INITIAL_BUCKET_ARRAY); // 64K
+
+ edgeBuckets = edgeBuckets_ref.initial;
+ edgeBucketCounts = edgeBucketCounts_ref.initial;
+
+ // 2048 (pixelsize) pixel large
+ alphaLine_ref = rdrCtx.newCleanIntArrayRef(INITIAL_AA_ARRAY); // 8K
+ alphaLine = alphaLine_ref.initial;
+
+ this.cache = rdrCtx.cache;
+
+ crossings_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
+ aux_crossings_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
+ edgePtrs_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
+ aux_edgePtrs_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
+
+ crossings = crossings_ref.initial;
+ aux_crossings = aux_crossings_ref.initial;
+ edgePtrs = edgePtrs_ref.initial;
+ aux_edgePtrs = aux_edgePtrs_ref.initial;
+
+ blkFlags_ref = rdrCtx.newCleanIntArrayRef(INITIAL_ARRAY); // 1K = 1 tile line
+ blkFlags = blkFlags_ref.initial;
+ }
+
+ DRenderer init(final int pix_boundsX, final int pix_boundsY,
+ final int pix_boundsWidth, final int pix_boundsHeight,
+ final int windingRule)
+ {
+ this.windingRule = windingRule;
+
+ // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
+ this.boundsMinX = pix_boundsX << SUBPIXEL_LG_POSITIONS_X;
+ this.boundsMaxX =
+ (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X;
+ this.boundsMinY = pix_boundsY << SUBPIXEL_LG_POSITIONS_Y;
+ this.boundsMaxY =
+ (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y;
+
+ if (DO_LOG_BOUNDS) {
+ MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... "
+ + boundsMaxX + "[ [" + boundsMinY + " ... "
+ + boundsMaxY + "[");
+ }
+
+ // see addLine: ceil(boundsMaxY) => boundsMaxY + 1
+ // +1 for edgeBucketCounts
+ final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1;
+
+ if (edgeBucketsLength > INITIAL_BUCKET_ARRAY) {
+ if (DO_STATS) {
+ rdrCtx.stats.stat_array_renderer_edgeBuckets
+ .add(edgeBucketsLength);
+ rdrCtx.stats.stat_array_renderer_edgeBucketCounts
+ .add(edgeBucketsLength);
+ }
+ edgeBuckets = edgeBuckets_ref.getArray(edgeBucketsLength);
+ edgeBucketCounts = edgeBucketCounts_ref.getArray(edgeBucketsLength);
+ }
+
+ edgeMinY = Integer.MAX_VALUE;
+ edgeMaxY = Integer.MIN_VALUE;
+ edgeMinX = Double.POSITIVE_INFINITY;
+ edgeMaxX = Double.NEGATIVE_INFINITY;
+
+ // reset used mark:
+ edgeCount = 0;
+ activeEdgeMaxUsed = 0;
+ edges.used = 0;
+
+ return this; // fluent API
+ }
+
+ /**
+ * Disposes this renderer and recycle it clean up before reusing this instance
+ */
+ void dispose() {
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed);
+ rdrCtx.stats.stat_rdr_edges.add(edges.used);
+ rdrCtx.stats.stat_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
+ rdrCtx.stats.hist_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
+ rdrCtx.stats.totalOffHeap += edges.length;
+ }
+ // Return arrays:
+ crossings = crossings_ref.putArray(crossings);
+ aux_crossings = aux_crossings_ref.putArray(aux_crossings);
+
+ edgePtrs = edgePtrs_ref.putArray(edgePtrs);
+ aux_edgePtrs = aux_edgePtrs_ref.putArray(aux_edgePtrs);
+
+ alphaLine = alphaLine_ref.putArray(alphaLine, 0, 0); // already zero filled
+ blkFlags = blkFlags_ref.putArray(blkFlags, 0, 0); // already zero filled
+
+ if (edgeMinY != Integer.MAX_VALUE) {
+ // if context is maked as DIRTY:
+ if (rdrCtx.dirty) {
+ // may happen if an exception if thrown in the pipeline processing:
+ // clear completely buckets arrays:
+ buckets_minY = 0;
+ buckets_maxY = boundsMaxY - boundsMinY;
+ }
+ // clear only used part
+ edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, buckets_minY,
+ buckets_maxY);
+ edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts,
+ buckets_minY,
+ buckets_maxY + 1);
+ } else {
+ // unused arrays
+ edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, 0, 0);
+ edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, 0, 0);
+ }
+
+ // At last: resize back off-heap edges to initial size
+ if (edges.length != INITIAL_EDGES_CAPACITY) {
+ // note: may throw OOME:
+ edges.resize(INITIAL_EDGES_CAPACITY);
+ }
+ if (DO_CLEAN_DIRTY) {
+ // Force zero-fill dirty arrays:
+ edges.fill(BYTE_0);
+ }
+ if (DO_MONITORS) {
+ rdrCtx.stats.mon_rdr_endRendering.stop();
+ }
+ // recycle the RendererContext instance
+ DMarlinRenderingEngine.returnRendererContext(rdrCtx);
+ }
+
+ private static double tosubpixx(final double pix_x) {
+ return SUBPIXEL_SCALE_X * pix_x;
+ }
+
+ private static double tosubpixy(final double pix_y) {
+ // shift y by -0.5 for fast ceil(y - 0.5):
+ return SUBPIXEL_SCALE_Y * pix_y - 0.5d;
+ }
+
+ @Override
+ public void moveTo(double pix_x0, double pix_y0) {
+ closePath();
+ final double sx = tosubpixx(pix_x0);
+ final double sy = tosubpixy(pix_y0);
+ this.sx0 = sx;
+ this.sy0 = sy;
+ this.x0 = sx;
+ this.y0 = sy;
+ }
+
+ @Override
+ public void lineTo(double pix_x1, double pix_y1) {
+ final double x1 = tosubpixx(pix_x1);
+ final double y1 = tosubpixy(pix_y1);
+ addLine(x0, y0, x1, y1);
+ x0 = x1;
+ y0 = y1;
+ }
+
+ @Override
+ public void curveTo(double x1, double y1,
+ double x2, double y2,
+ double x3, double y3)
+ {
+ final double xe = tosubpixx(x3);
+ final double ye = tosubpixy(y3);
+ curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1),
+ tosubpixx(x2), tosubpixy(y2), xe, ye);
+ curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
+ x0 = xe;
+ y0 = ye;
+ }
+
+ @Override
+ public void quadTo(double x1, double y1, double x2, double y2) {
+ final double xe = tosubpixx(x2);
+ final double ye = tosubpixy(y2);
+ curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1), xe, ye);
+ quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
+ x0 = xe;
+ y0 = ye;
+ }
+
+ @Override
+ public void closePath() {
+ addLine(x0, y0, sx0, sy0);
+ x0 = sx0;
+ y0 = sy0;
+ }
+
+ @Override
+ public void pathDone() {
+ closePath();
+ }
+
+ @Override
+ public long getNativeConsumer() {
+ throw new InternalError("Renderer does not use a native consumer.");
+ }
+
+ private void _endRendering(final int ymin, final int ymax) {
+ if (DISABLE_RENDER) {
+ return;
+ }
+
+ // Get X bounds as true pixel boundaries to compute correct pixel coverage:
+ final int bboxx0 = bbox_spminX;
+ final int bboxx1 = bbox_spmaxX;
+
+ final boolean windingRuleEvenOdd = (windingRule == WIND_EVEN_ODD);
+
+ // Useful when processing tile line by tile line
+ final int[] _alpha = alphaLine;
+
+ // local vars (performance):
+ final MarlinCache _cache = cache;
+ final OffHeapArray _edges = edges;
+ final int[] _edgeBuckets = edgeBuckets;
+ final int[] _edgeBucketCounts = edgeBucketCounts;
+
+ int[] _crossings = this.crossings;
+ int[] _edgePtrs = this.edgePtrs;
+
+ // merge sort auxiliary storage:
+ int[] _aux_crossings = this.aux_crossings;
+ int[] _aux_edgePtrs = this.aux_edgePtrs;
+
+ // copy constants:
+ final long _OFF_ERROR = OFF_ERROR;
+ final long _OFF_BUMP_X = OFF_BUMP_X;
+ final long _OFF_BUMP_ERR = OFF_BUMP_ERR;
+
+ final long _OFF_NEXT = OFF_NEXT;
+ final long _OFF_YMAX = OFF_YMAX;
+
+ final int _ALL_BUT_LSB = ALL_BUT_LSB;
+ final int _ERR_STEP_MAX = ERR_STEP_MAX;
+
+ // unsafe I/O:
+ final Unsafe _unsafe = OffHeapArray.UNSAFE;
+ final long addr0 = _edges.address;
+ long addr;
+ final int _SUBPIXEL_LG_POSITIONS_X = SUBPIXEL_LG_POSITIONS_X;
+ final int _SUBPIXEL_LG_POSITIONS_Y = SUBPIXEL_LG_POSITIONS_Y;
+ final int _SUBPIXEL_MASK_X = SUBPIXEL_MASK_X;
+ final int _SUBPIXEL_MASK_Y = SUBPIXEL_MASK_Y;
+ final int _SUBPIXEL_POSITIONS_X = SUBPIXEL_POSITIONS_X;
+
+ final int _MIN_VALUE = Integer.MIN_VALUE;
+ final int _MAX_VALUE = Integer.MAX_VALUE;
+
+ // Now we iterate through the scanlines. We must tell emitRow the coord
+ // of the first non-transparent pixel, so we must keep accumulators for
+ // the first and last pixels of the section of the current pixel row
+ // that we will emit.
+ // We also need to accumulate pix_bbox, but the iterator does it
+ // for us. We will just get the values from it once this loop is done
+ int minX = _MAX_VALUE;
+ int maxX = _MIN_VALUE;
+
+ int y = ymin;
+ int bucket = y - boundsMinY;
+
+ int numCrossings = this.edgeCount;
+ int edgePtrsLen = _edgePtrs.length;
+ int crossingsLen = _crossings.length;
+ int _arrayMaxUsed = activeEdgeMaxUsed;
+ int ptrLen = 0, newCount, ptrEnd;
+
+ int bucketcount, i, j, ecur;
+ int cross, lastCross;
+ int x0, x1, tmp, sum, prev, curx, curxo, crorientation, err;
+ int pix_x, pix_xmaxm1, pix_xmax;
+
+ int low, high, mid, prevNumCrossings;
+ boolean useBinarySearch;
+
+ final int[] _blkFlags = blkFlags;
+ final int _BLK_SIZE_LG = BLOCK_SIZE_LG;
+ final int _BLK_SIZE = BLOCK_SIZE;
+
+ final boolean _enableBlkFlagsHeuristics = ENABLE_BLOCK_FLAGS_HEURISTICS && this.enableBlkFlags;
+
+ // Use block flags if large pixel span and few crossings:
+ // ie mean(distance between crossings) is high
+ boolean useBlkFlags = this.prevUseBlkFlags;
+
+ final int stroking = rdrCtx.stroking;
+
+ int lastY = -1; // last emited row
+
+
+ // Iteration on scanlines
+ for (; y < ymax; y++, bucket++) {
+ // --- from former ScanLineIterator.next()
+ bucketcount = _edgeBucketCounts[bucket];
+
+ // marker on previously sorted edges:
+ prevNumCrossings = numCrossings;
+
+ // bucketCount indicates new edge / edge end:
+ if (bucketcount != 0) {
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_activeEdges_updates.add(numCrossings);
+ }
+
+ // last bit set to 1 means that edges ends
+ if ((bucketcount & 0x1) != 0) {
+ // eviction in active edge list
+ // cache edges[] address + offset
+ addr = addr0 + _OFF_YMAX;
+
+ for (i = 0, newCount = 0; i < numCrossings; i++) {
+ // get the pointer to the edge
+ ecur = _edgePtrs[i];
+ // random access so use unsafe:
+ if (_unsafe.getInt(addr + ecur) > y) {
+ _edgePtrs[newCount++] = ecur;
+ }
+ }
+ // update marker on sorted edges minus removed edges:
+ prevNumCrossings = numCrossings = newCount;
+ }
+
+ ptrLen = bucketcount >> 1; // number of new edge
+
+ if (ptrLen != 0) {
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_activeEdges_adds.add(ptrLen);
+ if (ptrLen > 10) {
+ rdrCtx.stats.stat_rdr_activeEdges_adds_high.add(ptrLen);
+ }
+ }
+ ptrEnd = numCrossings + ptrLen;
+
+ if (edgePtrsLen < ptrEnd) {
+ if (DO_STATS) {
+ rdrCtx.stats.stat_array_renderer_edgePtrs.add(ptrEnd);
+ }
+ this.edgePtrs = _edgePtrs
+ = edgePtrs_ref.widenArray(_edgePtrs, numCrossings,
+ ptrEnd);
+
+ edgePtrsLen = _edgePtrs.length;
+ // Get larger auxiliary storage:
+ aux_edgePtrs_ref.putArray(_aux_edgePtrs);
+
+ // use ArrayCache.getNewSize() to use the same growing
+ // factor than widenArray():
+ if (DO_STATS) {
+ rdrCtx.stats.stat_array_renderer_aux_edgePtrs.add(ptrEnd);
+ }
+ this.aux_edgePtrs = _aux_edgePtrs
+ = aux_edgePtrs_ref.getArray(
+ ArrayCacheConst.getNewSize(numCrossings, ptrEnd)
+ );
+ }
+
+ // cache edges[] address + offset
+ addr = addr0 + _OFF_NEXT;
+
+ // add new edges to active edge list:
+ for (ecur = _edgeBuckets[bucket];
+ numCrossings < ptrEnd; numCrossings++)
+ {
+ // store the pointer to the edge
+ _edgePtrs[numCrossings] = ecur;
+ // random access so use unsafe:
+ ecur = _unsafe.getInt(addr + ecur);
+ }
+
+ if (crossingsLen < numCrossings) {
+ // Get larger array:
+ crossings_ref.putArray(_crossings);
+
+ if (DO_STATS) {
+ rdrCtx.stats.stat_array_renderer_crossings
+ .add(numCrossings);
+ }
+ this.crossings = _crossings
+ = crossings_ref.getArray(numCrossings);
+
+ // Get larger auxiliary storage:
+ aux_crossings_ref.putArray(_aux_crossings);
+
+ if (DO_STATS) {
+ rdrCtx.stats.stat_array_renderer_aux_crossings
+ .add(numCrossings);
+ }
+ this.aux_crossings = _aux_crossings
+ = aux_crossings_ref.getArray(numCrossings);
+
+ crossingsLen = _crossings.length;
+ }
+ if (DO_STATS) {
+ // update max used mark
+ if (numCrossings > _arrayMaxUsed) {
+ _arrayMaxUsed = numCrossings;
+ }
+ }
+ } // ptrLen != 0
+ } // bucketCount != 0
+
+
+ if (numCrossings != 0) {
+ /*
+ * thresholds to switch to optimized merge sort
+ * for newly added edges + final merge pass.
+ */
+ if ((ptrLen < 10) || (numCrossings < 40)) {
+ if (DO_STATS) {
+ rdrCtx.stats.hist_rdr_crossings.add(numCrossings);
+ rdrCtx.stats.hist_rdr_crossings_adds.add(ptrLen);
+ }
+
+ /*
+ * threshold to use binary insertion sort instead of
+ * straight insertion sort (to reduce minimize comparisons).
+ */
+ useBinarySearch = (numCrossings >= 20);
+
+ // if small enough:
+ lastCross = _MIN_VALUE;
+
+ for (i = 0; i < numCrossings; i++) {
+ // get the pointer to the edge
+ ecur = _edgePtrs[i];
+
+ /* convert subpixel coordinates into pixel
+ positions for coming scanline */
+ /* note: it is faster to always update edges even
+ if it is removed from AEL for coming or last scanline */
+
+ // random access so use unsafe:
+ addr = addr0 + ecur; // ecur + OFF_F_CURX
+
+ // get current crossing:
+ curx = _unsafe.getInt(addr);
+
+ // update crossing with orientation at last bit:
+ cross = curx;
+
+ // Increment x using DDA (fixed point):
+ curx += _unsafe.getInt(addr + _OFF_BUMP_X);
+
+ // Increment error:
+ err = _unsafe.getInt(addr + _OFF_ERROR)
+ + _unsafe.getInt(addr + _OFF_BUMP_ERR);
+
+ // Manual carry handling:
+ // keep sign and carry bit only and ignore last bit (preserve orientation):
+ _unsafe.putInt(addr, curx - ((err >> 30) & _ALL_BUT_LSB));
+ _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
+
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
+ }
+
+ // insertion sort of crossings:
+ if (cross < lastCross) {
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
+ }
+
+ /* use binary search for newly added edges
+ in crossings if arrays are large enough */
+ if (useBinarySearch && (i >= prevNumCrossings)) {
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_crossings_bsearch.add(i);
+ }
+ low = 0;
+ high = i - 1;
+
+ do {
+ // note: use signed shift (not >>>) for performance
+ // as indices are small enough to exceed Integer.MAX_VALUE
+ mid = (low + high) >> 1;
+
+ if (_crossings[mid] < cross) {
+ low = mid + 1;
+ } else {
+ high = mid - 1;
+ }
+ } while (low <= high);
+
+ for (j = i - 1; j >= low; j--) {
+ _crossings[j + 1] = _crossings[j];
+ _edgePtrs [j + 1] = _edgePtrs[j];
+ }
+ _crossings[low] = cross;
+ _edgePtrs [low] = ecur;
+
+ } else {
+ j = i - 1;
+ _crossings[i] = _crossings[j];
+ _edgePtrs[i] = _edgePtrs[j];
+
+ while ((--j >= 0) && (_crossings[j] > cross)) {
+ _crossings[j + 1] = _crossings[j];
+ _edgePtrs [j + 1] = _edgePtrs[j];
+ }
+ _crossings[j + 1] = cross;
+ _edgePtrs [j + 1] = ecur;
+ }
+
+ } else {
+ _crossings[i] = lastCross = cross;
+ }
+ }
+ } else {
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_crossings_msorts.add(numCrossings);
+ rdrCtx.stats.hist_rdr_crossings_ratio
+ .add((1000 * ptrLen) / numCrossings);
+ rdrCtx.stats.hist_rdr_crossings_msorts.add(numCrossings);
+ rdrCtx.stats.hist_rdr_crossings_msorts_adds.add(ptrLen);
+ }
+
+ // Copy sorted data in auxiliary arrays
+ // and perform insertion sort on almost sorted data
+ // (ie i < prevNumCrossings):
+
+ lastCross = _MIN_VALUE;
+
+ for (i = 0; i < numCrossings; i++) {
+ // get the pointer to the edge
+ ecur = _edgePtrs[i];
+
+ /* convert subpixel coordinates into pixel
+ positions for coming scanline */
+ /* note: it is faster to always update edges even
+ if it is removed from AEL for coming or last scanline */
+
+ // random access so use unsafe:
+ addr = addr0 + ecur; // ecur + OFF_F_CURX
+
+ // get current crossing:
+ curx = _unsafe.getInt(addr);
+
+ // update crossing with orientation at last bit:
+ cross = curx;
+
+ // Increment x using DDA (fixed point):
+ curx += _unsafe.getInt(addr + _OFF_BUMP_X);
+
+ // Increment error:
+ err = _unsafe.getInt(addr + _OFF_ERROR)
+ + _unsafe.getInt(addr + _OFF_BUMP_ERR);
+
+ // Manual carry handling:
+ // keep sign and carry bit only and ignore last bit (preserve orientation):
+ _unsafe.putInt(addr, curx - ((err >> 30) & _ALL_BUT_LSB));
+ _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
+
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
+ }
+
+ if (i >= prevNumCrossings) {
+ // simply store crossing as edgePtrs is in-place:
+ // will be copied and sorted efficiently by mergesort later:
+ _crossings[i] = cross;
+
+ } else if (cross < lastCross) {
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
+ }
+
+ // (straight) insertion sort of crossings:
+ j = i - 1;
+ _aux_crossings[i] = _aux_crossings[j];
+ _aux_edgePtrs[i] = _aux_edgePtrs[j];
+
+ while ((--j >= 0) && (_aux_crossings[j] > cross)) {
+ _aux_crossings[j + 1] = _aux_crossings[j];
+ _aux_edgePtrs [j + 1] = _aux_edgePtrs[j];
+ }
+ _aux_crossings[j + 1] = cross;
+ _aux_edgePtrs [j + 1] = ecur;
+
+ } else {
+ // auxiliary storage:
+ _aux_crossings[i] = lastCross = cross;
+ _aux_edgePtrs [i] = ecur;
+ }
+ }
+
+ // use Mergesort using auxiliary arrays (sort only right part)
+ MergeSort.mergeSortNoCopy(_crossings, _edgePtrs,
+ _aux_crossings, _aux_edgePtrs,
+ numCrossings, prevNumCrossings);
+ }
+
+ // reset ptrLen
+ ptrLen = 0;
+ // --- from former ScanLineIterator.next()
+
+
+ /* note: bboxx0 and bboxx1 must be pixel boundaries
+ to have correct coverage computation */
+
+ // right shift on crossings to get the x-coordinate:
+ curxo = _crossings[0];
+ x0 = curxo >> 1;
+ if (x0 < minX) {
+ minX = x0; // subpixel coordinate
+ }
+
+ x1 = _crossings[numCrossings - 1] >> 1;
+ if (x1 > maxX) {
+ maxX = x1; // subpixel coordinate
+ }
+
+
+ // compute pixel coverages
+ prev = curx = x0;
+ // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
+ // last bit contains orientation (0 or 1)
+ crorientation = ((curxo & 0x1) << 1) - 1;
+
+ if (windingRuleEvenOdd) {
+ sum = crorientation;
+
+ // Even Odd winding rule: take care of mask ie sum(orientations)
+ for (i = 1; i < numCrossings; i++) {
+ curxo = _crossings[i];
+ curx = curxo >> 1;
+ // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
+ // last bit contains orientation (0 or 1)
+ crorientation = ((curxo & 0x1) << 1) - 1;
+
+ if ((sum & 0x1) != 0) {
+ // TODO: perform line clipping on left-right sides
+ // to avoid such bound checks:
+ x0 = (prev > bboxx0) ? prev : bboxx0;
+
+ if (curx < bboxx1) {
+ x1 = curx;
+ } else {
+ x1 = bboxx1;
+ // skip right side (fast exit loop):
+ i = numCrossings;
+ }
+
+ if (x0 < x1) {
+ x0 -= bboxx0; // turn x0, x1 from coords to indices
+ x1 -= bboxx0; // in the alpha array.
+
+ pix_x = x0 >> _SUBPIXEL_LG_POSITIONS_X;
+ pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
+
+ if (pix_x == pix_xmaxm1) {
+ // Start and end in same pixel
+ tmp = (x1 - x0); // number of subpixels
+ _alpha[pix_x ] += tmp;
+ _alpha[pix_x + 1] -= tmp;
+
+ if (useBlkFlags) {
+ // flag used blocks:
+ // note: block processing handles extra pixel:
+ _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
+ }
+ } else {
+ tmp = (x0 & _SUBPIXEL_MASK_X);
+ _alpha[pix_x ]
+ += (_SUBPIXEL_POSITIONS_X - tmp);
+ _alpha[pix_x + 1]
+ += tmp;
+
+ pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
+
+ tmp = (x1 & _SUBPIXEL_MASK_X);
+ _alpha[pix_xmax ]
+ -= (_SUBPIXEL_POSITIONS_X - tmp);
+ _alpha[pix_xmax + 1]
+ -= tmp;
+
+ if (useBlkFlags) {
+ // flag used blocks:
+ // note: block processing handles extra pixel:
+ _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
+ _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
+ }
+ }
+ }
+ }
+
+ sum += crorientation;
+ prev = curx;
+ }
+ } else {
+ // Non-zero winding rule: optimize that case (default)
+ // and avoid processing intermediate crossings
+ for (i = 1, sum = 0;; i++) {
+ sum += crorientation;
+
+ if (sum != 0) {
+ // prev = min(curx)
+ if (prev > curx) {
+ prev = curx;
+ }
+ } else {
+ // TODO: perform line clipping on left-right sides
+ // to avoid such bound checks:
+ x0 = (prev > bboxx0) ? prev : bboxx0;
+
+ if (curx < bboxx1) {
+ x1 = curx;
+ } else {
+ x1 = bboxx1;
+ // skip right side (fast exit loop):
+ i = numCrossings;
+ }
+
+ if (x0 < x1) {
+ x0 -= bboxx0; // turn x0, x1 from coords to indices
+ x1 -= bboxx0; // in the alpha array.
+
+ pix_x = x0 >> _SUBPIXEL_LG_POSITIONS_X;
+ pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
+
+ if (pix_x == pix_xmaxm1) {
+ // Start and end in same pixel
+ tmp = (x1 - x0); // number of subpixels
+ _alpha[pix_x ] += tmp;
+ _alpha[pix_x + 1] -= tmp;
+
+ if (useBlkFlags) {
+ // flag used blocks:
+ // note: block processing handles extra pixel:
+ _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
+ }
+ } else {
+ tmp = (x0 & _SUBPIXEL_MASK_X);
+ _alpha[pix_x ]
+ += (_SUBPIXEL_POSITIONS_X - tmp);
+ _alpha[pix_x + 1]
+ += tmp;
+
+ pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
+
+ tmp = (x1 & _SUBPIXEL_MASK_X);
+ _alpha[pix_xmax ]
+ -= (_SUBPIXEL_POSITIONS_X - tmp);
+ _alpha[pix_xmax + 1]
+ -= tmp;
+
+ if (useBlkFlags) {
+ // flag used blocks:
+ // note: block processing handles extra pixel:
+ _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
+ _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
+ }
+ }
+ }
+ prev = _MAX_VALUE;
+ }
+
+ if (i == numCrossings) {
+ break;
+ }
+
+ curxo = _crossings[i];
+ curx = curxo >> 1;
+ // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
+ // last bit contains orientation (0 or 1)
+ crorientation = ((curxo & 0x1) << 1) - 1;
+ }
+ }
+ } // numCrossings > 0
+
+ // even if this last row had no crossings, alpha will be zeroed
+ // from the last emitRow call. But this doesn't matter because
+ // maxX < minX, so no row will be emitted to the MarlinCache.
+ if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) {
+ lastY = y >> _SUBPIXEL_LG_POSITIONS_Y;
+
+ // convert subpixel to pixel coordinate within boundaries:
+ minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
+ maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
+
+ if (maxX >= minX) {
+ // note: alpha array will be zeroed by copyAARow()
+ // +1 because alpha [pix_minX; pix_maxX[
+ // fix range [x0; x1[
+ // note: if x1=bboxx1, then alpha is written up to bboxx1+1
+ // inclusive: alpha[bboxx1] ignored, alpha[bboxx1+1] == 0
+ // (normally so never cleared below)
+ copyAARow(_alpha, lastY, minX, maxX + 1, useBlkFlags);
+
+ // speculative for next pixel row (scanline coherence):
+ if (_enableBlkFlagsHeuristics) {
+ // Use block flags if large pixel span and few crossings:
+ // ie mean(distance between crossings) is larger than
+ // 1 block size;
+
+ // fast check width:
+ maxX -= minX;
+
+ // if stroking: numCrossings /= 2
+ // => shift numCrossings by 1
+ // condition = (width / (numCrossings - 1)) > blockSize
+ useBlkFlags = (maxX > _BLK_SIZE) && (maxX >
+ (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG));
+
+ if (DO_STATS) {
+ tmp = FloatMath.max(1,
+ ((numCrossings >> stroking) - 1));
+ rdrCtx.stats.hist_tile_generator_encoding_dist
+ .add(maxX / tmp);
+ }
+ }
+ } else {
+ _cache.clearAARow(lastY);
+ }
+ minX = _MAX_VALUE;
+ maxX = _MIN_VALUE;
+ }
+ } // scan line iterator
+
+ // Emit final row
+ y--;
+ y >>= _SUBPIXEL_LG_POSITIONS_Y;
+
+ // convert subpixel to pixel coordinate within boundaries:
+ minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
+ maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
+
+ if (maxX >= minX) {
+ // note: alpha array will be zeroed by copyAARow()
+ // +1 because alpha [pix_minX; pix_maxX[
+ // fix range [x0; x1[
+ // note: if x1=bboxx1, then alpha is written up to bboxx1+1
+ // inclusive: alpha[bboxx1] ignored then cleared and
+ // alpha[bboxx1+1] == 0 (normally so never cleared after)
+ copyAARow(_alpha, y, minX, maxX + 1, useBlkFlags);
+ } else if (y != lastY) {
+ _cache.clearAARow(y);
+ }
+
+ // update member:
+ edgeCount = numCrossings;
+ prevUseBlkFlags = useBlkFlags;
+
+ if (DO_STATS) {
+ // update max used mark
+ activeEdgeMaxUsed = _arrayMaxUsed;
+ }
+ }
+
+ boolean endRendering() {
+ if (DO_MONITORS) {
+ rdrCtx.stats.mon_rdr_endRendering.start();
+ }
+ if (edgeMinY == Integer.MAX_VALUE) {
+ return false; // undefined edges bounds
+ }
+
+ // bounds as half-open intervals
+ final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5d), boundsMinX);
+ final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5d), boundsMaxX);
+
+ // edge Min/Max Y are already rounded to subpixels within bounds:
+ final int spminY = edgeMinY;
+ final int spmaxY = edgeMaxY;
+
+ buckets_minY = spminY - boundsMinY;
+ buckets_maxY = spmaxY - boundsMinY;
+
+ if (DO_LOG_BOUNDS) {
+ MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX
+ + "[ [" + edgeMinY + " ... " + edgeMaxY + "[");
+ MarlinUtils.logInfo("spXY = [" + spminX + " ... " + spmaxX
+ + "[ [" + spminY + " ... " + spmaxY + "[");
+ }
+
+ // test clipping for shapes out of bounds
+ if ((spminX >= spmaxX) || (spminY >= spmaxY)) {
+ return false;
+ }
+
+ // half open intervals
+ // inclusive:
+ final int pminX = spminX >> SUBPIXEL_LG_POSITIONS_X;
+ // exclusive:
+ final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X;
+ // inclusive:
+ final int pminY = spminY >> SUBPIXEL_LG_POSITIONS_Y;
+ // exclusive:
+ final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
+
+ // store BBox to answer ptg.getBBox():
+ this.cache.init(pminX, pminY, pmaxX, pmaxY);
+
+ // Heuristics for using block flags:
+ if (ENABLE_BLOCK_FLAGS) {
+ enableBlkFlags = this.cache.useRLE;
+ prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS;
+
+ if (enableBlkFlags) {
+ // ensure blockFlags array is large enough:
+ // note: +2 to ensure enough space left at end
+ final int blkLen = ((pmaxX - pminX) >> BLOCK_SIZE_LG) + 2;
+ if (blkLen > INITIAL_ARRAY) {
+ blkFlags = blkFlags_ref.getArray(blkLen);
+ }
+ }
+ }
+
+ // memorize the rendering bounding box:
+ /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries
+ to have correct coverage computation */
+ // inclusive:
+ bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X;
+ // exclusive:
+ bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X;
+ // inclusive:
+ bbox_spminY = spminY;
+ // exclusive:
+ bbox_spmaxY = spmaxY;
+
+ if (DO_LOG_BOUNDS) {
+ MarlinUtils.logInfo("pXY = [" + pminX + " ... " + pmaxX
+ + "[ [" + pminY + " ... " + pmaxY + "[");
+ MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... "
+ + bbox_spmaxX + "[ [" + bbox_spminY + " ... "
+ + bbox_spmaxY + "[");
+ }
+
+ // Prepare alpha line:
+ // add 2 to better deal with the last pixel in a pixel row.
+ final int width = (pmaxX - pminX) + 2;
+
+ // Useful when processing tile line by tile line
+ if (width > INITIAL_AA_ARRAY) {
+ if (DO_STATS) {
+ rdrCtx.stats.stat_array_renderer_alphaline.add(width);
+ }
+ alphaLine = alphaLine_ref.getArray(width);
+ }
+
+ // process first tile line:
+ endRendering(pminY);
+
+ return true;
+ }
+
+ private int bbox_spminX, bbox_spmaxX, bbox_spminY, bbox_spmaxY;
+
+ void endRendering(final int pminY) {
+ if (DO_MONITORS) {
+ rdrCtx.stats.mon_rdr_endRendering_Y.start();
+ }
+
+ final int spminY = pminY << SUBPIXEL_LG_POSITIONS_Y;
+ final int fixed_spminY = FloatMath.max(bbox_spminY, spminY);
+
+ // avoid rendering for last call to nextTile()
+ if (fixed_spminY < bbox_spmaxY) {
+ // process a complete tile line ie scanlines for 32 rows
+ final int spmaxY = FloatMath.min(bbox_spmaxY, spminY + SUBPIXEL_TILE);
+
+ // process tile line [0 - 32]
+ cache.resetTileLine(pminY);
+
+ // Process only one tile line:
+ _endRendering(fixed_spminY, spmaxY);
+ }
+ if (DO_MONITORS) {
+ rdrCtx.stats.mon_rdr_endRendering_Y.stop();
+ }
+ }
+
+ void copyAARow(final int[] alphaRow,
+ final int pix_y, final int pix_from, final int pix_to,
+ final boolean useBlockFlags)
+ {
+ if (DO_MONITORS) {
+ rdrCtx.stats.mon_rdr_copyAARow.start();
+ }
+ if (useBlockFlags) {
+ if (DO_STATS) {
+ rdrCtx.stats.hist_tile_generator_encoding.add(1);
+ }
+ cache.copyAARowRLE_WithBlockFlags(blkFlags, alphaRow, pix_y, pix_from, pix_to);
+ } else {
+ if (DO_STATS) {
+ rdrCtx.stats.hist_tile_generator_encoding.add(0);
+ }
+ cache.copyAARowNoRLE(alphaRow, pix_y, pix_from, pix_to);
+ }
+ if (DO_MONITORS) {
+ rdrCtx.stats.mon_rdr_copyAARow.stop();
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/DRendererContext.java Wed May 17 22:05:11 2017 +0200
@@ -0,0 +1,260 @@
+/*
+ * Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.awt.geom.Path2D;
+import java.lang.ref.WeakReference;
+import java.util.concurrent.atomic.AtomicInteger;
+import sun.java2d.ReentrantContext;
+import sun.java2d.marlin.ArrayCacheConst.CacheStats;
+import sun.java2d.marlin.DMarlinRenderingEngine.NormalizingPathIterator;
+
+/**
+ * This class is a renderer context dedicated to a single thread
+ */
+final class DRendererContext extends ReentrantContext implements IRendererContext {
+
+ // RendererContext creation counter
+ private static final AtomicInteger CTX_COUNT = new AtomicInteger(1);
+
+ /**
+ * Create a new renderer context
+ *
+ * @return new RendererContext instance
+ */
+ static DRendererContext createContext() {
+ return new DRendererContext("ctx"
+ + Integer.toString(CTX_COUNT.getAndIncrement()));
+ }
+
+ // Smallest object used as Cleaner's parent reference
+ private final Object cleanerObj;
+ // dirty flag indicating an exception occured during pipeline in pathTo()
+ boolean dirty = false;
+ // shared data
+ final double[] double6 = new double[6];
+ // shared curve (dirty) (Renderer / Stroker)
+ final DCurve curve = new DCurve();
+ // MarlinRenderingEngine NormalizingPathIterator NearestPixelCenter:
+ final NormalizingPathIterator nPCPathIterator;
+ // MarlinRenderingEngine NearestPixelQuarter NormalizingPathIterator:
+ final NormalizingPathIterator nPQPathIterator;
+ // MarlinRenderingEngine.TransformingPathConsumer2D
+ final DTransformingPathConsumer2D transformerPC2D;
+ // recycled Path2D instance (weak)
+ private WeakReference<Path2D.Double> refPath2D = null;
+ final DRenderer renderer;
+ final DStroker stroker;
+ // Simplifies out collinear lines
+ final DCollinearSimplifier simplifier = new DCollinearSimplifier();
+ final DDasher dasher;
+ final MarlinTileGenerator ptg;
+ final MarlinCache cache;
+ // flag indicating the shape is stroked (1) or filled (0)
+ int stroking = 0;
+
+ // Array caches:
+ /* clean int[] cache (zero-filled) = 5 refs */
+ private final IntArrayCache cleanIntCache = new IntArrayCache(true, 5);
+ /* dirty int[] cache = 4 refs */
+ private final IntArrayCache dirtyIntCache = new IntArrayCache(false, 4);
+ /* dirty double[] cache = 3 refs */
+ private final DoubleArrayCache dirtyDoubleCache = new DoubleArrayCache(false, 3);
+ /* dirty byte[] cache = 1 ref */
+ private final ByteArrayCache dirtyByteCache = new ByteArrayCache(false, 1);
+
+ // RendererContext statistics
+ final RendererStats stats;
+
+ final PathConsumer2DAdapter p2dAdapter = new PathConsumer2DAdapter();
+
+
+ /**
+ * Constructor
+ *
+ * @param name context name (debugging)
+ */
+ DRendererContext(final String name) {
+ if (LOG_CREATE_CONTEXT) {
+ MarlinUtils.logInfo("new RendererContext = " + name);
+ }
+ this.cleanerObj = new Object();
+
+ // create first stats (needed by newOffHeapArray):
+ if (DO_STATS || DO_MONITORS) {
+ stats = RendererStats.createInstance(cleanerObj, name);
+ // push cache stats:
+ stats.cacheStats = new CacheStats[] { cleanIntCache.stats,
+ dirtyIntCache.stats, dirtyDoubleCache.stats, dirtyByteCache.stats
+ };
+ } else {
+ stats = null;
+ }
+
+ // NormalizingPathIterator instances:
+ nPCPathIterator = new NormalizingPathIterator.NearestPixelCenter(double6);
+ nPQPathIterator = new NormalizingPathIterator.NearestPixelQuarter(double6);
+
+ // MarlinRenderingEngine.TransformingPathConsumer2D
+ transformerPC2D = new DTransformingPathConsumer2D();
+
+ // Renderer:
+ cache = new MarlinCache(this);
+ renderer = new DRenderer(this); // needs MarlinCache from rdrCtx.cache
+ ptg = new MarlinTileGenerator(stats, renderer, cache);
+
+ stroker = new DStroker(this);
+ dasher = new DDasher(this);
+ }
+
+ /**
+ * Disposes this renderer context:
+ * clean up before reusing this context
+ */
+ void dispose() {
+ if (DO_STATS) {
+ if (stats.totalOffHeap > stats.totalOffHeapMax) {
+ stats.totalOffHeapMax = stats.totalOffHeap;
+ }
+ stats.totalOffHeap = 0L;
+ }
+ stroking = 0;
+ // if context is maked as DIRTY:
+ if (dirty) {
+ // may happen if an exception if thrown in the pipeline processing:
+ // force cleanup of all possible pipelined blocks (except Renderer):
+
+ // NormalizingPathIterator instances:
+ this.nPCPathIterator.dispose();
+ this.nPQPathIterator.dispose();
+ // Dasher:
+ this.dasher.dispose();
+ // Stroker:
+ this.stroker.dispose();
+
+ // mark context as CLEAN:
+ dirty = false;
+ }
+ }
+
+ Path2D.Double getPath2D() {
+ // resolve reference:
+ Path2D.Double p2d
+ = (refPath2D != null) ? refPath2D.get() : null;
+
+ // create a new Path2D ?
+ if (p2d == null) {
+ p2d = new Path2D.Double(Path2D.WIND_NON_ZERO, INITIAL_EDGES_COUNT); // 32K
+
+ // update weak reference:
+ refPath2D = new WeakReference<Path2D.Double>(p2d);
+ }
+ // reset the path anyway:
+ p2d.reset();
+ return p2d;
+ }
+
+ @Override
+ public RendererStats stats() {
+ return stats;
+ }
+
+ @Override
+ public OffHeapArray newOffHeapArray(final long initialSize) {
+ if (DO_STATS) {
+ stats.totalOffHeapInitial += initialSize;
+ }
+ return new OffHeapArray(cleanerObj, initialSize);
+ }
+
+ @Override
+ public IntArrayCache.Reference newCleanIntArrayRef(final int initialSize) {
+ return cleanIntCache.createRef(initialSize);
+ }
+
+ IntArrayCache.Reference newDirtyIntArrayRef(final int initialSize) {
+ return dirtyIntCache.createRef(initialSize);
+ }
+
+ DoubleArrayCache.Reference newDirtyDoubleArrayRef(final int initialSize) {
+ return dirtyDoubleCache.createRef(initialSize);
+ }
+
+ ByteArrayCache.Reference newDirtyByteArrayRef(final int initialSize) {
+ return dirtyByteCache.createRef(initialSize);
+ }
+
+ static final class PathConsumer2DAdapter implements DPathConsumer2D {
+ private sun.awt.geom.PathConsumer2D out;
+
+ PathConsumer2DAdapter() {}
+
+ PathConsumer2DAdapter init(sun.awt.geom.PathConsumer2D out) {
+ this.out = out;
+ return this;
+ }
+
+ @Override
+ public void moveTo(double x0, double y0) {
+ out.moveTo((float)x0, (float)y0);
+ }
+
+ @Override
+ public void lineTo(double x1, double y1) {
+ out.lineTo((float)x1, (float)y1);
+ }
+
+ @Override
+ public void closePath() {
+ out.closePath();
+ }
+
+ @Override
+ public void pathDone() {
+ out.pathDone();
+ }
+
+ @Override
+ public void curveTo(double x1, double y1,
+ double x2, double y2,
+ double x3, double y3)
+ {
+ out.curveTo((float)x1, (float)y1,
+ (float)x2, (float)y2,
+ (float)x3, (float)y3);
+ }
+
+ @Override
+ public void quadTo(double x1, double y1, double x2, double y2) {
+ out.quadTo((float)x1, (float)y1, (float)x2, (float)y2);
+ }
+
+ @Override
+ public long getNativeConsumer() {
+ throw new InternalError("Not using a native peer");
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/DStroker.java Wed May 17 22:05:11 2017 +0200
@@ -0,0 +1,1325 @@
+/*
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.util.Arrays;
+
+// TODO: some of the arithmetic here is too verbose and prone to hard to
+// debug typos. We should consider making a small Point/Vector class that
+// has methods like plus(Point), minus(Point), dot(Point), cross(Point)and such
+final class DStroker implements DPathConsumer2D, MarlinConst {
+
+ private static final int MOVE_TO = 0;
+ private static final int DRAWING_OP_TO = 1; // ie. curve, line, or quad
+ private static final int CLOSE = 2;
+
+ /**
+ * Constant value for join style.
+ */
+ public static final int JOIN_MITER = 0;
+
+ /**
+ * Constant value for join style.
+ */
+ public static final int JOIN_ROUND = 1;
+
+ /**
+ * Constant value for join style.
+ */
+ public static final int JOIN_BEVEL = 2;
+
+ /**
+ * Constant value for end cap style.
+ */
+ public static final int CAP_BUTT = 0;
+
+ /**
+ * Constant value for end cap style.
+ */
+ public static final int CAP_ROUND = 1;
+
+ /**
+ * Constant value for end cap style.
+ */
+ public static final int CAP_SQUARE = 2;
+
+ // pisces used to use fixed point arithmetic with 16 decimal digits. I
+ // didn't want to change the values of the constant below when I converted
+ // it to floating point, so that's why the divisions by 2^16 are there.
+ private static final double ROUND_JOIN_THRESHOLD = 1000.0d/65536.0d;
+
+ private static final double C = 0.5522847498307933d;
+
+ private static final int MAX_N_CURVES = 11;
+
+ private DPathConsumer2D out;
+
+ private int capStyle;
+ private int joinStyle;
+
+ private double lineWidth2;
+ private double invHalfLineWidth2Sq;
+
+ private final double[] offset0 = new double[2];
+ private final double[] offset1 = new double[2];
+ private final double[] offset2 = new double[2];
+ private final double[] miter = new double[2];
+ private double miterLimitSq;
+
+ private int prev;
+
+ // The starting point of the path, and the slope there.
+ private double sx0, sy0, sdx, sdy;
+ // the current point and the slope there.
+ private double cx0, cy0, cdx, cdy; // c stands for current
+ // vectors that when added to (sx0,sy0) and (cx0,cy0) respectively yield the
+ // first and last points on the left parallel path. Since this path is
+ // parallel, it's slope at any point is parallel to the slope of the
+ // original path (thought they may have different directions), so these
+ // could be computed from sdx,sdy and cdx,cdy (and vice versa), but that
+ // would be error prone and hard to read, so we keep these anyway.
+ private double smx, smy, cmx, cmy;
+
+ private final PolyStack reverse;
+
+ // This is where the curve to be processed is put. We give it
+ // enough room to store all curves.
+ private final double[] middle = new double[MAX_N_CURVES * 6 + 2];
+ private final double[] lp = new double[8];
+ private final double[] rp = new double[8];
+ private final double[] subdivTs = new double[MAX_N_CURVES - 1];
+
+ // per-thread renderer context
+ final DRendererContext rdrCtx;
+
+ // dirty curve
+ final DCurve curve;
+
+ /**
+ * Constructs a <code>DStroker</code>.
+ * @param rdrCtx per-thread renderer context
+ */
+ DStroker(final DRendererContext rdrCtx) {
+ this.rdrCtx = rdrCtx;
+
+ this.reverse = new PolyStack(rdrCtx);
+ this.curve = rdrCtx.curve;
+ }
+
+ /**
+ * Inits the <code>DStroker</code>.
+ *
+ * @param pc2d an output <code>DPathConsumer2D</code>.
+ * @param lineWidth the desired line width in pixels
+ * @param capStyle the desired end cap style, one of
+ * <code>CAP_BUTT</code>, <code>CAP_ROUND</code> or
+ * <code>CAP_SQUARE</code>.
+ * @param joinStyle the desired line join style, one of
+ * <code>JOIN_MITER</code>, <code>JOIN_ROUND</code> or
+ * <code>JOIN_BEVEL</code>.
+ * @param miterLimit the desired miter limit
+ * @return this instance
+ */
+ DStroker init(DPathConsumer2D pc2d,
+ double lineWidth,
+ int capStyle,
+ int joinStyle,
+ double miterLimit)
+ {
+ this.out = pc2d;
+
+ this.lineWidth2 = lineWidth / 2.0d;
+ this.invHalfLineWidth2Sq = 1.0d / (2.0d * lineWidth2 * lineWidth2);
+ this.capStyle = capStyle;
+ this.joinStyle = joinStyle;
+
+ double limit = miterLimit * lineWidth2;
+ this.miterLimitSq = limit * limit;
+
+ this.prev = CLOSE;
+
+ rdrCtx.stroking = 1;
+
+ return this; // fluent API
+ }
+
+ /**
+ * Disposes this stroker:
+ * clean up before reusing this instance
+ */
+ void dispose() {
+ reverse.dispose();
+
+ if (DO_CLEAN_DIRTY) {
+ // Force zero-fill dirty arrays:
+ Arrays.fill(offset0, 0.0d);
+ Arrays.fill(offset1, 0.0d);
+ Arrays.fill(offset2, 0.0d);
+ Arrays.fill(miter, 0.0d);
+ Arrays.fill(middle, 0.0d);
+ Arrays.fill(lp, 0.0d);
+ Arrays.fill(rp, 0.0d);
+ Arrays.fill(subdivTs, 0.0d);
+ }
+ }
+
+ private static void computeOffset(final double lx, final double ly,
+ final double w, final double[] m)
+ {
+ double len = lx*lx + ly*ly;
+ if (len == 0.0d) {
+ m[0] = 0.0d;
+ m[1] = 0.0d;
+ } else {
+ len = Math.sqrt(len);
+ m[0] = (ly * w) / len;
+ m[1] = -(lx * w) / len;
+ }
+ }
+
+ // Returns true if the vectors (dx1, dy1) and (dx2, dy2) are
+ // clockwise (if dx1,dy1 needs to be rotated clockwise to close
+ // the smallest angle between it and dx2,dy2).
+ // This is equivalent to detecting whether a point q is on the right side
+ // of a line passing through points p1, p2 where p2 = p1+(dx1,dy1) and
+ // q = p2+(dx2,dy2), which is the same as saying p1, p2, q are in a
+ // clockwise order.
+ // NOTE: "clockwise" here assumes coordinates with 0,0 at the bottom left.
+ private static boolean isCW(final double dx1, final double dy1,
+ final double dx2, final double dy2)
+ {
+ return dx1 * dy2 <= dy1 * dx2;
+ }
+
+ private void drawRoundJoin(double x, double y,
+ double omx, double omy, double mx, double my,
+ boolean rev,
+ double threshold)
+ {
+ if ((omx == 0.0d && omy == 0.0d) || (mx == 0.0d && my == 0.0d)) {
+ return;
+ }
+
+ double domx = omx - mx;
+ double domy = omy - my;
+ double len = domx*domx + domy*domy;
+ if (len < threshold) {
+ return;
+ }
+
+ if (rev) {
+ omx = -omx;
+ omy = -omy;
+ mx = -mx;
+ my = -my;
+ }
+ drawRoundJoin(x, y, omx, omy, mx, my, rev);
+ }
+
+ private void drawRoundJoin(double cx, double cy,
+ double omx, double omy,
+ double mx, double my,
+ boolean rev)
+ {
+ // The sign of the dot product of mx,my and omx,omy is equal to the
+ // the sign of the cosine of ext
+ // (ext is the angle between omx,omy and mx,my).
+ final double cosext = omx * mx + omy * my;
+ // If it is >=0, we know that abs(ext) is <= 90 degrees, so we only
+ // need 1 curve to approximate the circle section that joins omx,omy
+ // and mx,my.
+ final int numCurves = (cosext >= 0.0d) ? 1 : 2;
+
+ switch (numCurves) {
+ case 1:
+ drawBezApproxForArc(cx, cy, omx, omy, mx, my, rev);
+ break;
+ case 2:
+ // we need to split the arc into 2 arcs spanning the same angle.
+ // The point we want will be one of the 2 intersections of the
+ // perpendicular bisector of the chord (omx,omy)->(mx,my) and the
+ // circle. We could find this by scaling the vector
+ // (omx+mx, omy+my)/2 so that it has length=lineWidth2 (and thus lies
+ // on the circle), but that can have numerical problems when the angle
+ // between omx,omy and mx,my is close to 180 degrees. So we compute a
+ // normal of (omx,omy)-(mx,my). This will be the direction of the
+ // perpendicular bisector. To get one of the intersections, we just scale
+ // this vector that its length is lineWidth2 (this works because the
+ // perpendicular bisector goes through the origin). This scaling doesn't
+ // have numerical problems because we know that lineWidth2 divided by
+ // this normal's length is at least 0.5 and at most sqrt(2)/2 (because
+ // we know the angle of the arc is > 90 degrees).
+ double nx = my - omy, ny = omx - mx;
+ double nlen = Math.sqrt(nx*nx + ny*ny);
+ double scale = lineWidth2/nlen;
+ double mmx = nx * scale, mmy = ny * scale;
+
+ // if (isCW(omx, omy, mx, my) != isCW(mmx, mmy, mx, my)) then we've
+ // computed the wrong intersection so we get the other one.
+ // The test above is equivalent to if (rev).
+ if (rev) {
+ mmx = -mmx;
+ mmy = -mmy;
+ }
+ drawBezApproxForArc(cx, cy, omx, omy, mmx, mmy, rev);
+ drawBezApproxForArc(cx, cy, mmx, mmy, mx, my, rev);
+ break;
+ default:
+ }
+ }
+
+ // the input arc defined by omx,omy and mx,my must span <= 90 degrees.
+ private void drawBezApproxForArc(final double cx, final double cy,
+ final double omx, final double omy,
+ final double mx, final double my,
+ boolean rev)
+ {
+ final double cosext2 = (omx * mx + omy * my) * invHalfLineWidth2Sq;
+
+ // check round off errors producing cos(ext) > 1 and a NaN below
+ // cos(ext) == 1 implies colinear segments and an empty join anyway
+ if (cosext2 >= 0.5d) {
+ // just return to avoid generating a flat curve:
+ return;
+ }
+
+ // cv is the length of P1-P0 and P2-P3 divided by the radius of the arc
+ // (so, cv assumes the arc has radius 1). P0, P1, P2, P3 are the points that
+ // define the bezier curve we're computing.
+ // It is computed using the constraints that P1-P0 and P3-P2 are parallel
+ // to the arc tangents at the endpoints, and that |P1-P0|=|P3-P2|.
+ double cv = ((4.0d / 3.0d) * Math.sqrt(0.5d - cosext2) /
+ (1.0d + Math.sqrt(cosext2 + 0.5d)));
+ // if clockwise, we need to negate cv.
+ if (rev) { // rev is equivalent to isCW(omx, omy, mx, my)
+ cv = -cv;
+ }
+ final double x1 = cx + omx;
+ final double y1 = cy + omy;
+ final double x2 = x1 - cv * omy;
+ final double y2 = y1 + cv * omx;
+
+ final double x4 = cx + mx;
+ final double y4 = cy + my;
+ final double x3 = x4 + cv * my;
+ final double y3 = y4 - cv * mx;
+
+ emitCurveTo(x1, y1, x2, y2, x3, y3, x4, y4, rev);
+ }
+
+ private void drawRoundCap(double cx, double cy, double mx, double my) {
+ final double Cmx = C * mx;
+ final double Cmy = C * my;
+ emitCurveTo(cx + mx - Cmy, cy + my + Cmx,
+ cx - my + Cmx, cy + mx + Cmy,
+ cx - my, cy + mx);
+ emitCurveTo(cx - my - Cmx, cy + mx - Cmy,
+ cx - mx - Cmy, cy - my + Cmx,
+ cx - mx, cy - my);
+ }
+
+ // Return the intersection point of the lines (x0, y0) -> (x1, y1)
+ // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1]
+ private static void computeMiter(final double x0, final double y0,
+ final double x1, final double y1,
+ final double x0p, final double y0p,
+ final double x1p, final double y1p,
+ final double[] m, int off)
+ {
+ double x10 = x1 - x0;
+ double y10 = y1 - y0;
+ double x10p = x1p - x0p;
+ double y10p = y1p - y0p;
+
+ // if this is 0, the lines are parallel. If they go in the
+ // same direction, there is no intersection so m[off] and
+ // m[off+1] will contain infinity, so no miter will be drawn.
+ // If they go in the same direction that means that the start of the
+ // current segment and the end of the previous segment have the same
+ // tangent, in which case this method won't even be involved in
+ // miter drawing because it won't be called by drawMiter (because
+ // (mx == omx && my == omy) will be true, and drawMiter will return
+ // immediately).
+ double den = x10*y10p - x10p*y10;
+ double t = x10p*(y0-y0p) - y10p*(x0-x0p);
+ t /= den;
+ m[off++] = x0 + t*x10;
+ m[off] = y0 + t*y10;
+ }
+
+ // Return the intersection point of the lines (x0, y0) -> (x1, y1)
+ // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1]
+ private static void safeComputeMiter(final double x0, final double y0,
+ final double x1, final double y1,
+ final double x0p, final double y0p,
+ final double x1p, final double y1p,
+ final double[] m, int off)
+ {
+ double x10 = x1 - x0;
+ double y10 = y1 - y0;
+ double x10p = x1p - x0p;
+ double y10p = y1p - y0p;
+
+ // if this is 0, the lines are parallel. If they go in the
+ // same direction, there is no intersection so m[off] and
+ // m[off+1] will contain infinity, so no miter will be drawn.
+ // If they go in the same direction that means that the start of the
+ // current segment and the end of the previous segment have the same
+ // tangent, in which case this method won't even be involved in
+ // miter drawing because it won't be called by drawMiter (because
+ // (mx == omx && my == omy) will be true, and drawMiter will return
+ // immediately).
+ double den = x10*y10p - x10p*y10;
+ if (den == 0.0d) {
+ m[off++] = (x0 + x0p) / 2.0d;
+ m[off] = (y0 + y0p) / 2.0d;
+ return;
+ }
+ double t = x10p*(y0-y0p) - y10p*(x0-x0p);
+ t /= den;
+ m[off++] = x0 + t*x10;
+ m[off] = y0 + t*y10;
+ }
+
+ private void drawMiter(final double pdx, final double pdy,
+ final double x0, final double y0,
+ final double dx, final double dy,
+ double omx, double omy, double mx, double my,
+ boolean rev)
+ {
+ if ((mx == omx && my == omy) ||
+ (pdx == 0.0d && pdy == 0.0d) ||
+ (dx == 0.0d && dy == 0.0d))
+ {
+ return;
+ }
+
+ if (rev) {
+ omx = -omx;
+ omy = -omy;
+ mx = -mx;
+ my = -my;
+ }
+
+ computeMiter((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,
+ (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my,
+ miter, 0);
+
+ final double miterX = miter[0];
+ final double miterY = miter[1];
+ double lenSq = (miterX-x0)*(miterX-x0) + (miterY-y0)*(miterY-y0);
+
+ // If the lines are parallel, lenSq will be either NaN or +inf
+ // (actually, I'm not sure if the latter is possible. The important
+ // thing is that -inf is not possible, because lenSq is a square).
+ // For both of those values, the comparison below will fail and
+ // no miter will be drawn, which is correct.
+ if (lenSq < miterLimitSq) {
+ emitLineTo(miterX, miterY, rev);
+ }
+ }
+
+ @Override
+ public void moveTo(double x0, double y0) {
+ if (prev == DRAWING_OP_TO) {
+ finish();
+ }
+ this.sx0 = this.cx0 = x0;
+ this.sy0 = this.cy0 = y0;
+ this.cdx = this.sdx = 1.0d;
+ this.cdy = this.sdy = 0.0d;
+ this.prev = MOVE_TO;
+ }
+
+ @Override
+ public void lineTo(double x1, double y1) {
+ double dx = x1 - cx0;
+ double dy = y1 - cy0;
+ if (dx == 0.0d && dy == 0.0d) {
+ dx = 1.0d;
+ }
+ computeOffset(dx, dy, lineWidth2, offset0);
+ final double mx = offset0[0];
+ final double my = offset0[1];
+
+ drawJoin(cdx, cdy, cx0, cy0, dx, dy, cmx, cmy, mx, my);
+
+ emitLineTo(cx0 + mx, cy0 + my);
+ emitLineTo( x1 + mx, y1 + my);
+
+ emitLineToRev(cx0 - mx, cy0 - my);
+ emitLineToRev( x1 - mx, y1 - my);
+
+ this.cmx = mx;
+ this.cmy = my;
+ this.cdx = dx;
+ this.cdy = dy;
+ this.cx0 = x1;
+ this.cy0 = y1;
+ this.prev = DRAWING_OP_TO;
+ }
+
+ @Override
+ public void closePath() {
+ if (prev != DRAWING_OP_TO) {
+ if (prev == CLOSE) {
+ return;
+ }
+ emitMoveTo(cx0, cy0 - lineWidth2);
+ this.cmx = this.smx = 0.0d;
+ this.cmy = this.smy = -lineWidth2;
+ this.cdx = this.sdx = 1.0d;
+ this.cdy = this.sdy = 0.0d;
+ finish();
+ return;
+ }
+
+ if (cx0 != sx0 || cy0 != sy0) {
+ lineTo(sx0, sy0);
+ }
+
+ drawJoin(cdx, cdy, cx0, cy0, sdx, sdy, cmx, cmy, smx, smy);
+
+ emitLineTo(sx0 + smx, sy0 + smy);
+
+ emitMoveTo(sx0 - smx, sy0 - smy);
+ emitReverse();
+
+ this.prev = CLOSE;
+ emitClose();
+ }
+
+ private void emitReverse() {
+ reverse.popAll(out);
+ }
+
+ @Override
+ public void pathDone() {
+ if (prev == DRAWING_OP_TO) {
+ finish();
+ }
+
+ out.pathDone();
+
+ // this shouldn't matter since this object won't be used
+ // after the call to this method.
+ this.prev = CLOSE;
+
+ // Dispose this instance:
+ dispose();
+ }
+
+ private void finish() {
+ if (capStyle == CAP_ROUND) {
+ drawRoundCap(cx0, cy0, cmx, cmy);
+ } else if (capStyle == CAP_SQUARE) {
+ emitLineTo(cx0 - cmy + cmx, cy0 + cmx + cmy);
+ emitLineTo(cx0 - cmy - cmx, cy0 + cmx - cmy);
+ }
+
+ emitReverse();
+
+ if (capStyle == CAP_ROUND) {
+ drawRoundCap(sx0, sy0, -smx, -smy);
+ } else if (capStyle == CAP_SQUARE) {
+ emitLineTo(sx0 + smy - smx, sy0 - smx - smy);
+ emitLineTo(sx0 + smy + smx, sy0 - smx + smy);
+ }
+
+ emitClose();
+ }
+
+ private void emitMoveTo(final double x0, final double y0) {
+ out.moveTo(x0, y0);
+ }
+
+ private void emitLineTo(final double x1, final double y1) {
+ out.lineTo(x1, y1);
+ }
+
+ private void emitLineToRev(final double x1, final double y1) {
+ reverse.pushLine(x1, y1);
+ }
+
+ private void emitLineTo(final double x1, final double y1,
+ final boolean rev)
+ {
+ if (rev) {
+ emitLineToRev(x1, y1);
+ } else {
+ emitLineTo(x1, y1);
+ }
+ }
+
+ private void emitQuadTo(final double x1, final double y1,
+ final double x2, final double y2)
+ {
+ out.quadTo(x1, y1, x2, y2);
+ }
+
+ private void emitQuadToRev(final double x0, final double y0,
+ final double x1, final double y1)
+ {
+ reverse.pushQuad(x0, y0, x1, y1);
+ }
+
+ private void emitCurveTo(final double x1, final double y1,
+ final double x2, final double y2,
+ final double x3, final double y3)
+ {
+ out.curveTo(x1, y1, x2, y2, x3, y3);
+ }
+
+ private void emitCurveToRev(final double x0, final double y0,
+ final double x1, final double y1,
+ final double x2, final double y2)
+ {
+ reverse.pushCubic(x0, y0, x1, y1, x2, y2);
+ }
+
+ private void emitCurveTo(final double x0, final double y0,
+ final double x1, final double y1,
+ final double x2, final double y2,
+ final double x3, final double y3, final boolean rev)
+ {
+ if (rev) {
+ reverse.pushCubic(x0, y0, x1, y1, x2, y2);
+ } else {
+ out.curveTo(x1, y1, x2, y2, x3, y3);
+ }
+ }
+
+ private void emitClose() {
+ out.closePath();
+ }
+
+ private void drawJoin(double pdx, double pdy,
+ double x0, double y0,
+ double dx, double dy,
+ double omx, double omy,
+ double mx, double my)
+ {
+ if (prev != DRAWING_OP_TO) {
+ emitMoveTo(x0 + mx, y0 + my);
+ this.sdx = dx;
+ this.sdy = dy;
+ this.smx = mx;
+ this.smy = my;
+ } else {
+ boolean cw = isCW(pdx, pdy, dx, dy);
+ if (joinStyle == JOIN_MITER) {
+ drawMiter(pdx, pdy, x0, y0, dx, dy, omx, omy, mx, my, cw);
+ } else if (joinStyle == JOIN_ROUND) {
+ drawRoundJoin(x0, y0,
+ omx, omy,
+ mx, my, cw,
+ ROUND_JOIN_THRESHOLD);
+ }
+ emitLineTo(x0, y0, !cw);
+ }
+ prev = DRAWING_OP_TO;
+ }
+
+ private static boolean within(final double x1, final double y1,
+ final double x2, final double y2,
+ final double ERR)
+ {
+ assert ERR > 0 : "";
+ // compare taxicab distance. ERR will always be small, so using
+ // true distance won't give much benefit
+ return (DHelpers.within(x1, x2, ERR) && // we want to avoid calling Math.abs
+ DHelpers.within(y1, y2, ERR)); // this is just as good.
+ }
+
+ private void getLineOffsets(double x1, double y1,
+ double x2, double y2,
+ double[] left, double[] right) {
+ computeOffset(x2 - x1, y2 - y1, lineWidth2, offset0);
+ final double mx = offset0[0];
+ final double my = offset0[1];
+ left[0] = x1 + mx;
+ left[1] = y1 + my;
+ left[2] = x2 + mx;
+ left[3] = y2 + my;
+ right[0] = x1 - mx;
+ right[1] = y1 - my;
+ right[2] = x2 - mx;
+ right[3] = y2 - my;
+ }
+
+ private int computeOffsetCubic(double[] pts, final int off,
+ double[] leftOff, double[] rightOff)
+ {
+ // if p1=p2 or p3=p4 it means that the derivative at the endpoint
+ // vanishes, which creates problems with computeOffset. Usually
+ // this happens when this stroker object is trying to widen
+ // a curve with a cusp. What happens is that curveTo splits
+ // the input curve at the cusp, and passes it to this function.
+ // because of inaccuracies in the splitting, we consider points
+ // equal if they're very close to each other.
+ final double x1 = pts[off + 0], y1 = pts[off + 1];
+ final double x2 = pts[off + 2], y2 = pts[off + 3];
+ final double x3 = pts[off + 4], y3 = pts[off + 5];
+ final double x4 = pts[off + 6], y4 = pts[off + 7];
+
+ double dx4 = x4 - x3;
+ double dy4 = y4 - y3;
+ double dx1 = x2 - x1;
+ double dy1 = y2 - y1;
+
+ // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
+ // in which case ignore if p1 == p2
+ final boolean p1eqp2 = within(x1, y1, x2, y2, 6.0d * Math.ulp(y2));
+ final boolean p3eqp4 = within(x3, y3, x4, y4, 6.0d * Math.ulp(y4));
+ if (p1eqp2 && p3eqp4) {
+ getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
+ return 4;
+ } else if (p1eqp2) {
+ dx1 = x3 - x1;
+ dy1 = y3 - y1;
+ } else if (p3eqp4) {
+ dx4 = x4 - x2;
+ dy4 = y4 - y2;
+ }
+
+ // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
+ double dotsq = (dx1 * dx4 + dy1 * dy4);
+ dotsq *= dotsq;
+ double l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4;
+ if (DHelpers.within(dotsq, l1sq * l4sq, 4.0d * Math.ulp(dotsq))) {
+ getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
+ return 4;
+ }
+
+// What we're trying to do in this function is to approximate an ideal
+// offset curve (call it I) of the input curve B using a bezier curve Bp.
+// The constraints I use to get the equations are:
+//
+// 1. The computed curve Bp should go through I(0) and I(1). These are
+// x1p, y1p, x4p, y4p, which are p1p and p4p. We still need to find
+// 4 variables: the x and y components of p2p and p3p (i.e. x2p, y2p, x3p, y3p).
+//
+// 2. Bp should have slope equal in absolute value to I at the endpoints. So,
+// (by the way, the operator || in the comments below means "aligned with".
+// It is defined on vectors, so when we say I'(0) || Bp'(0) we mean that
+// vectors I'(0) and Bp'(0) are aligned, which is the same as saying
+// that the tangent lines of I and Bp at 0 are parallel. Mathematically
+// this means (I'(t) || Bp'(t)) <==> (I'(t) = c * Bp'(t)) where c is some
+// nonzero constant.)
+// I'(0) || Bp'(0) and I'(1) || Bp'(1). Obviously, I'(0) || B'(0) and
+// I'(1) || B'(1); therefore, Bp'(0) || B'(0) and Bp'(1) || B'(1).
+// We know that Bp'(0) || (p2p-p1p) and Bp'(1) || (p4p-p3p) and the same
+// is true for any bezier curve; therefore, we get the equations
+// (1) p2p = c1 * (p2-p1) + p1p
+// (2) p3p = c2 * (p4-p3) + p4p
+// We know p1p, p4p, p2, p1, p3, and p4; therefore, this reduces the number
+// of unknowns from 4 to 2 (i.e. just c1 and c2).
+// To eliminate these 2 unknowns we use the following constraint:
+//
+// 3. Bp(0.5) == I(0.5). Bp(0.5)=(x,y) and I(0.5)=(xi,yi), and I should note
+// that I(0.5) is *the only* reason for computing dxm,dym. This gives us
+// (3) Bp(0.5) = (p1p + 3 * (p2p + p3p) + p4p)/8, which is equivalent to
+// (4) p2p + p3p = (Bp(0.5)*8 - p1p - p4p) / 3
+// We can substitute (1) and (2) from above into (4) and we get:
+// (5) c1*(p2-p1) + c2*(p4-p3) = (Bp(0.5)*8 - p1p - p4p)/3 - p1p - p4p
+// which is equivalent to
+// (6) c1*(p2-p1) + c2*(p4-p3) = (4/3) * (Bp(0.5) * 2 - p1p - p4p)
+//
+// The right side of this is a 2D vector, and we know I(0.5), which gives us
+// Bp(0.5), which gives us the value of the right side.
+// The left side is just a matrix vector multiplication in disguise. It is
+//
+// [x2-x1, x4-x3][c1]
+// [y2-y1, y4-y3][c2]
+// which, is equal to
+// [dx1, dx4][c1]
+// [dy1, dy4][c2]
+// At this point we are left with a simple linear system and we solve it by
+// getting the inverse of the matrix above. Then we use [c1,c2] to compute
+// p2p and p3p.
+
+ double x = (x1 + 3.0d * (x2 + x3) + x4) / 8.0d;
+ double y = (y1 + 3.0d * (y2 + y3) + y4) / 8.0d;
+ // (dxm,dym) is some tangent of B at t=0.5. This means it's equal to
+ // c*B'(0.5) for some constant c.
+ double dxm = x3 + x4 - x1 - x2, dym = y3 + y4 - y1 - y2;
+
+ // this computes the offsets at t=0, 0.5, 1, using the property that
+ // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to
+ // the (dx/dt, dy/dt) vectors at the endpoints.
+ computeOffset(dx1, dy1, lineWidth2, offset0);
+ computeOffset(dxm, dym, lineWidth2, offset1);
+ computeOffset(dx4, dy4, lineWidth2, offset2);
+ double x1p = x1 + offset0[0]; // start
+ double y1p = y1 + offset0[1]; // point
+ double xi = x + offset1[0]; // interpolation
+ double yi = y + offset1[1]; // point
+ double x4p = x4 + offset2[0]; // end
+ double y4p = y4 + offset2[1]; // point
+
+ double invdet43 = 4.0d / (3.0d * (dx1 * dy4 - dy1 * dx4));
+
+ double two_pi_m_p1_m_p4x = 2.0d * xi - x1p - x4p;
+ double two_pi_m_p1_m_p4y = 2.0d * yi - y1p - y4p;
+ double c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
+ double c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);
+
+ double x2p, y2p, x3p, y3p;
+ x2p = x1p + c1*dx1;
+ y2p = y1p + c1*dy1;
+ x3p = x4p + c2*dx4;
+ y3p = y4p + c2*dy4;
+
+ leftOff[0] = x1p; leftOff[1] = y1p;
+ leftOff[2] = x2p; leftOff[3] = y2p;
+ leftOff[4] = x3p; leftOff[5] = y3p;
+ leftOff[6] = x4p; leftOff[7] = y4p;
+
+ x1p = x1 - offset0[0]; y1p = y1 - offset0[1];
+ xi = xi - 2.0d * offset1[0]; yi = yi - 2.0d * offset1[1];
+ x4p = x4 - offset2[0]; y4p = y4 - offset2[1];
+
+ two_pi_m_p1_m_p4x = 2.0d * xi - x1p - x4p;
+ two_pi_m_p1_m_p4y = 2.0d * yi - y1p - y4p;
+ c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
+ c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);
+
+ x2p = x1p + c1*dx1;
+ y2p = y1p + c1*dy1;
+ x3p = x4p + c2*dx4;
+ y3p = y4p + c2*dy4;
+
+ rightOff[0] = x1p; rightOff[1] = y1p;
+ rightOff[2] = x2p; rightOff[3] = y2p;
+ rightOff[4] = x3p; rightOff[5] = y3p;
+ rightOff[6] = x4p; rightOff[7] = y4p;
+ return 8;
+ }
+
+ // compute offset curves using bezier spline through t=0.5 (i.e.
+ // ComputedCurve(0.5) == IdealParallelCurve(0.5))
+ // return the kind of curve in the right and left arrays.
+ private int computeOffsetQuad(double[] pts, final int off,
+ double[] leftOff, double[] rightOff)
+ {
+ final double x1 = pts[off + 0], y1 = pts[off + 1];
+ final double x2 = pts[off + 2], y2 = pts[off + 3];
+ final double x3 = pts[off + 4], y3 = pts[off + 5];
+
+ final double dx3 = x3 - x2;
+ final double dy3 = y3 - y2;
+ final double dx1 = x2 - x1;
+ final double dy1 = y2 - y1;
+
+ // if p1=p2 or p3=p4 it means that the derivative at the endpoint
+ // vanishes, which creates problems with computeOffset. Usually
+ // this happens when this stroker object is trying to widen
+ // a curve with a cusp. What happens is that curveTo splits
+ // the input curve at the cusp, and passes it to this function.
+ // because of inaccuracies in the splitting, we consider points
+ // equal if they're very close to each other.
+
+ // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
+ // in which case ignore.
+ final boolean p1eqp2 = within(x1, y1, x2, y2, 6.0d * Math.ulp(y2));
+ final boolean p2eqp3 = within(x2, y2, x3, y3, 6.0d * Math.ulp(y3));
+ if (p1eqp2 || p2eqp3) {
+ getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
+ return 4;
+ }
+
+ // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
+ double dotsq = (dx1 * dx3 + dy1 * dy3);
+ dotsq *= dotsq;
+ double l1sq = dx1 * dx1 + dy1 * dy1, l3sq = dx3 * dx3 + dy3 * dy3;
+ if (DHelpers.within(dotsq, l1sq * l3sq, 4.0d * Math.ulp(dotsq))) {
+ getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
+ return 4;
+ }
+
+ // this computes the offsets at t=0, 0.5, 1, using the property that
+ // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to
+ // the (dx/dt, dy/dt) vectors at the endpoints.
+ computeOffset(dx1, dy1, lineWidth2, offset0);
+ computeOffset(dx3, dy3, lineWidth2, offset1);
+
+ double x1p = x1 + offset0[0]; // start
+ double y1p = y1 + offset0[1]; // point
+ double x3p = x3 + offset1[0]; // end
+ double y3p = y3 + offset1[1]; // point
+ safeComputeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2);
+ leftOff[0] = x1p; leftOff[1] = y1p;
+ leftOff[4] = x3p; leftOff[5] = y3p;
+
+ x1p = x1 - offset0[0]; y1p = y1 - offset0[1];
+ x3p = x3 - offset1[0]; y3p = y3 - offset1[1];
+ safeComputeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2);
+ rightOff[0] = x1p; rightOff[1] = y1p;
+ rightOff[4] = x3p; rightOff[5] = y3p;
+ return 6;
+ }
+
+ // finds values of t where the curve in pts should be subdivided in order
+ // to get good offset curves a distance of w away from the middle curve.
+ // Stores the points in ts, and returns how many of them there were.
+ private static int findSubdivPoints(final DCurve c, double[] pts, double[] ts,
+ final int type, final double w)
+ {
+ final double x12 = pts[2] - pts[0];
+ final double y12 = pts[3] - pts[1];
+ // if the curve is already parallel to either axis we gain nothing
+ // from rotating it.
+ if (y12 != 0.0d && x12 != 0.0d) {
+ // we rotate it so that the first vector in the control polygon is
+ // parallel to the x-axis. This will ensure that rotated quarter
+ // circles won't be subdivided.
+ final double hypot = Math.sqrt(x12 * x12 + y12 * y12);
+ final double cos = x12 / hypot;
+ final double sin = y12 / hypot;
+ final double x1 = cos * pts[0] + sin * pts[1];
+ final double y1 = cos * pts[1] - sin * pts[0];
+ final double x2 = cos * pts[2] + sin * pts[3];
+ final double y2 = cos * pts[3] - sin * pts[2];
+ final double x3 = cos * pts[4] + sin * pts[5];
+ final double y3 = cos * pts[5] - sin * pts[4];
+
+ switch(type) {
+ case 8:
+ final double x4 = cos * pts[6] + sin * pts[7];
+ final double y4 = cos * pts[7] - sin * pts[6];
+ c.set(x1, y1, x2, y2, x3, y3, x4, y4);
+ break;
+ case 6:
+ c.set(x1, y1, x2, y2, x3, y3);
+ break;
+ default:
+ }
+ } else {
+ c.set(pts, type);
+ }
+
+ int ret = 0;
+ // we subdivide at values of t such that the remaining rotated
+ // curves are monotonic in x and y.
+ ret += c.dxRoots(ts, ret);
+ ret += c.dyRoots(ts, ret);
+ // subdivide at inflection points.
+ if (type == 8) {
+ // quadratic curves can't have inflection points
+ ret += c.infPoints(ts, ret);
+ }
+
+ // now we must subdivide at points where one of the offset curves will have
+ // a cusp. This happens at ts where the radius of curvature is equal to w.
+ ret += c.rootsOfROCMinusW(ts, ret, w, 0.0001d);
+
+ ret = DHelpers.filterOutNotInAB(ts, 0, ret, 0.0001d, 0.9999d);
+ DHelpers.isort(ts, 0, ret);
+ return ret;
+ }
+
+ @Override public void curveTo(double x1, double y1,
+ double x2, double y2,
+ double x3, double y3)
+ {
+ final double[] mid = middle;
+
+ mid[0] = cx0; mid[1] = cy0;
+ mid[2] = x1; mid[3] = y1;
+ mid[4] = x2; mid[5] = y2;
+ mid[6] = x3; mid[7] = y3;
+
+ // need these so we can update the state at the end of this method
+ final double xf = mid[6], yf = mid[7];
+ double dxs = mid[2] - mid[0];
+ double dys = mid[3] - mid[1];
+ double dxf = mid[6] - mid[4];
+ double dyf = mid[7] - mid[5];
+
+ boolean p1eqp2 = (dxs == 0.0d && dys == 0.0d);
+ boolean p3eqp4 = (dxf == 0.0d && dyf == 0.0d);
+ if (p1eqp2) {
+ dxs = mid[4] - mid[0];
+ dys = mid[5] - mid[1];
+ if (dxs == 0.0d && dys == 0.0d) {
+ dxs = mid[6] - mid[0];
+ dys = mid[7] - mid[1];
+ }
+ }
+ if (p3eqp4) {
+ dxf = mid[6] - mid[2];
+ dyf = mid[7] - mid[3];
+ if (dxf == 0.0d && dyf == 0.0d) {
+ dxf = mid[6] - mid[0];
+ dyf = mid[7] - mid[1];
+ }
+ }
+ if (dxs == 0.0d && dys == 0.0d) {
+ // this happens if the "curve" is just a point
+ lineTo(mid[0], mid[1]);
+ return;
+ }
+
+ // if these vectors are too small, normalize them, to avoid future
+ // precision problems.
+ if (Math.abs(dxs) < 0.1d && Math.abs(dys) < 0.1d) {
+ double len = Math.sqrt(dxs*dxs + dys*dys);
+ dxs /= len;
+ dys /= len;
+ }
+ if (Math.abs(dxf) < 0.1d && Math.abs(dyf) < 0.1d) {
+ double len = Math.sqrt(dxf*dxf + dyf*dyf);
+ dxf /= len;
+ dyf /= len;
+ }
+
+ computeOffset(dxs, dys, lineWidth2, offset0);
+ drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]);
+
+ final int nSplits = findSubdivPoints(curve, mid, subdivTs, 8, lineWidth2);
+
+ double prevT = 0.0d;
+ for (int i = 0, off = 0; i < nSplits; i++, off += 6) {
+ final double t = subdivTs[i];
+ DHelpers.subdivideCubicAt((t - prevT) / (1.0d - prevT),
+ mid, off, mid, off, mid, off + 6);
+ prevT = t;
+ }
+
+ final double[] l = lp;
+ final double[] r = rp;
+
+ int kind = 0;
+ for (int i = 0, off = 0; i <= nSplits; i++, off += 6) {
+ kind = computeOffsetCubic(mid, off, l, r);
+
+ emitLineTo(l[0], l[1]);
+
+ switch(kind) {
+ case 8:
+ emitCurveTo(l[2], l[3], l[4], l[5], l[6], l[7]);
+ emitCurveToRev(r[0], r[1], r[2], r[3], r[4], r[5]);
+ break;
+ case 4:
+ emitLineTo(l[2], l[3]);
+ emitLineToRev(r[0], r[1]);
+ break;
+ default:
+ }
+ emitLineToRev(r[kind - 2], r[kind - 1]);
+ }
+
+ this.cmx = (l[kind - 2] - r[kind - 2]) / 2.0d;
+ this.cmy = (l[kind - 1] - r[kind - 1]) / 2.0d;
+ this.cdx = dxf;
+ this.cdy = dyf;
+ this.cx0 = xf;
+ this.cy0 = yf;
+ this.prev = DRAWING_OP_TO;
+ }
+
+ @Override public void quadTo(double x1, double y1, double x2, double y2) {
+ final double[] mid = middle;
+
+ mid[0] = cx0; mid[1] = cy0;
+ mid[2] = x1; mid[3] = y1;
+ mid[4] = x2; mid[5] = y2;
+
+ // need these so we can update the state at the end of this method
+ final double xf = mid[4], yf = mid[5];
+ double dxs = mid[2] - mid[0];
+ double dys = mid[3] - mid[1];
+ double dxf = mid[4] - mid[2];
+ double dyf = mid[5] - mid[3];
+ if ((dxs == 0.0d && dys == 0.0d) || (dxf == 0.0d && dyf == 0.0d)) {
+ dxs = dxf = mid[4] - mid[0];
+ dys = dyf = mid[5] - mid[1];
+ }
+ if (dxs == 0.0d && dys == 0.0d) {
+ // this happens if the "curve" is just a point
+ lineTo(mid[0], mid[1]);
+ return;
+ }
+ // if these vectors are too small, normalize them, to avoid future
+ // precision problems.
+ if (Math.abs(dxs) < 0.1d && Math.abs(dys) < 0.1d) {
+ double len = Math.sqrt(dxs*dxs + dys*dys);
+ dxs /= len;
+ dys /= len;
+ }
+ if (Math.abs(dxf) < 0.1d && Math.abs(dyf) < 0.1d) {
+ double len = Math.sqrt(dxf*dxf + dyf*dyf);
+ dxf /= len;
+ dyf /= len;
+ }
+
+ computeOffset(dxs, dys, lineWidth2, offset0);
+ drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]);
+
+ int nSplits = findSubdivPoints(curve, mid, subdivTs, 6, lineWidth2);
+
+ double prevt = 0.0d;
+ for (int i = 0, off = 0; i < nSplits; i++, off += 4) {
+ final double t = subdivTs[i];
+ DHelpers.subdivideQuadAt((t - prevt) / (1.0d - prevt),
+ mid, off, mid, off, mid, off + 4);
+ prevt = t;
+ }
+
+ final double[] l = lp;
+ final double[] r = rp;
+
+ int kind = 0;
+ for (int i = 0, off = 0; i <= nSplits; i++, off += 4) {
+ kind = computeOffsetQuad(mid, off, l, r);
+
+ emitLineTo(l[0], l[1]);
+
+ switch(kind) {
+ case 6:
+ emitQuadTo(l[2], l[3], l[4], l[5]);
+ emitQuadToRev(r[0], r[1], r[2], r[3]);
+ break;
+ case 4:
+ emitLineTo(l[2], l[3]);
+ emitLineToRev(r[0], r[1]);
+ break;
+ default:
+ }
+ emitLineToRev(r[kind - 2], r[kind - 1]);
+ }
+
+ this.cmx = (l[kind - 2] - r[kind - 2]) / 2.0d;
+ this.cmy = (l[kind - 1] - r[kind - 1]) / 2.0d;
+ this.cdx = dxf;
+ this.cdy = dyf;
+ this.cx0 = xf;
+ this.cy0 = yf;
+ this.prev = DRAWING_OP_TO;
+ }
+
+ @Override public long getNativeConsumer() {
+ throw new InternalError("Stroker doesn't use a native consumer");
+ }
+
+ // a stack of polynomial curves where each curve shares endpoints with
+ // adjacent ones.
+ static final class PolyStack {
+ private static final byte TYPE_LINETO = (byte) 0;
+ private static final byte TYPE_QUADTO = (byte) 1;
+ private static final byte TYPE_CUBICTO = (byte) 2;
+
+ // curves capacity = edges count (8192) = edges x 2 (coords)
+ private static final int INITIAL_CURVES_COUNT = INITIAL_EDGES_COUNT << 1;
+
+ // types capacity = edges count (4096)
+ private static final int INITIAL_TYPES_COUNT = INITIAL_EDGES_COUNT;
+
+ double[] curves;
+ int end;
+ byte[] curveTypes;
+ int numCurves;
+
+ // per-thread renderer context
+ final DRendererContext rdrCtx;
+
+ // curves ref (dirty)
+ final DoubleArrayCache.Reference curves_ref;
+ // curveTypes ref (dirty)
+ final ByteArrayCache.Reference curveTypes_ref;
+
+ // used marks (stats only)
+ int curveTypesUseMark;
+ int curvesUseMark;
+
+ /**
+ * Constructor
+ * @param rdrCtx per-thread renderer context
+ */
+ PolyStack(final DRendererContext rdrCtx) {
+ this.rdrCtx = rdrCtx;
+
+ curves_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_CURVES_COUNT); // 32K
+ curves = curves_ref.initial;
+
+ curveTypes_ref = rdrCtx.newDirtyByteArrayRef(INITIAL_TYPES_COUNT); // 4K
+ curveTypes = curveTypes_ref.initial;
+ numCurves = 0;
+ end = 0;
+
+ if (DO_STATS) {
+ curveTypesUseMark = 0;
+ curvesUseMark = 0;
+ }
+ }
+
+ /**
+ * Disposes this PolyStack:
+ * clean up before reusing this instance
+ */
+ void dispose() {
+ end = 0;
+ numCurves = 0;
+
+ if (DO_STATS) {
+ rdrCtx.stats.stat_rdr_poly_stack_types.add(curveTypesUseMark);
+ rdrCtx.stats.stat_rdr_poly_stack_curves.add(curvesUseMark);
+ rdrCtx.stats.hist_rdr_poly_stack_curves.add(curvesUseMark);
+
+ // reset marks
+ curveTypesUseMark = 0;
+ curvesUseMark = 0;
+ }
+
+ // Return arrays:
+ // curves and curveTypes are kept dirty
+ curves = curves_ref.putArray(curves);
+ curveTypes = curveTypes_ref.putArray(curveTypes);
+ }
+
+ private void ensureSpace(final int n) {
+ // use substraction to avoid integer overflow:
+ if (curves.length - end < n) {
+ if (DO_STATS) {
+ rdrCtx.stats.stat_array_stroker_polystack_curves
+ .add(end + n);
+ }
+ curves = curves_ref.widenArray(curves, end, end + n);
+ }
+ if (curveTypes.length <= numCurves) {
+ if (DO_STATS) {
+ rdrCtx.stats.stat_array_stroker_polystack_curveTypes
+ .add(numCurves + 1);
+ }
+ curveTypes = curveTypes_ref.widenArray(curveTypes,
+ numCurves,
+ numCurves + 1);
+ }
+ }
+
+ void pushCubic(double x0, double y0,
+ double x1, double y1,
+ double x2, double y2)
+ {
+ ensureSpace(6);
+ curveTypes[numCurves++] = TYPE_CUBICTO;
+ // we reverse the coordinate order to make popping easier
+ final double[] _curves = curves;
+ int e = end;
+ _curves[e++] = x2; _curves[e++] = y2;
+ _curves[e++] = x1; _curves[e++] = y1;
+ _curves[e++] = x0; _curves[e++] = y0;
+ end = e;
+ }
+
+ void pushQuad(double x0, double y0,
+ double x1, double y1)
+ {
+ ensureSpace(4);
+ curveTypes[numCurves++] = TYPE_QUADTO;
+ final double[] _curves = curves;
+ int e = end;
+ _curves[e++] = x1; _curves[e++] = y1;
+ _curves[e++] = x0; _curves[e++] = y0;
+ end = e;
+ }
+
+ void pushLine(double x, double y) {
+ ensureSpace(2);
+ curveTypes[numCurves++] = TYPE_LINETO;
+ curves[end++] = x; curves[end++] = y;
+ }
+
+ void popAll(DPathConsumer2D io) {
+ if (DO_STATS) {
+ // update used marks:
+ if (numCurves > curveTypesUseMark) {
+ curveTypesUseMark = numCurves;
+ }
+ if (end > curvesUseMark) {
+ curvesUseMark = end;
+ }
+ }
+ final byte[] _curveTypes = curveTypes;
+ final double[] _curves = curves;
+ int nc = numCurves;
+ int e = end;
+
+ while (nc != 0) {
+ switch(_curveTypes[--nc]) {
+ case TYPE_LINETO:
+ e -= 2;
+ io.lineTo(_curves[e], _curves[e+1]);
+ continue;
+ case TYPE_QUADTO:
+ e -= 4;
+ io.quadTo(_curves[e+0], _curves[e+1],
+ _curves[e+2], _curves[e+3]);
+ continue;
+ case TYPE_CUBICTO:
+ e -= 6;
+ io.curveTo(_curves[e+0], _curves[e+1],
+ _curves[e+2], _curves[e+3],
+ _curves[e+4], _curves[e+5]);
+ continue;
+ default:
+ }
+ }
+ numCurves = 0;
+ end = 0;
+ }
+
+ @Override
+ public String toString() {
+ String ret = "";
+ int nc = numCurves;
+ int last = end;
+ int len;
+ while (nc != 0) {
+ switch(curveTypes[--nc]) {
+ case TYPE_LINETO:
+ len = 2;
+ ret += "line: ";
+ break;
+ case TYPE_QUADTO:
+ len = 4;
+ ret += "quad: ";
+ break;
+ case TYPE_CUBICTO:
+ len = 6;
+ ret += "cubic: ";
+ break;
+ default:
+ len = 0;
+ }
+ last -= len;
+ ret += Arrays.toString(Arrays.copyOfRange(curves, last, last+len))
+ + "\n";
+ }
+ return ret;
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/DTransformingPathConsumer2D.java Wed May 17 22:05:11 2017 +0200
@@ -0,0 +1,277 @@
+/*
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.awt.geom.AffineTransform;
+import java.awt.geom.Path2D;
+
+final class DTransformingPathConsumer2D {
+
+ DTransformingPathConsumer2D() {
+ // used by DRendererContext
+ }
+
+ // recycled DPathConsumer2D instance from wrapPath2d()
+ private final Path2DWrapper wp_Path2DWrapper = new Path2DWrapper();
+
+ DPathConsumer2D wrapPath2d(Path2D.Double p2d)
+ {
+ return wp_Path2DWrapper.init(p2d);
+ }
+
+ // recycled DPathConsumer2D instances from deltaTransformConsumer()
+ private final DeltaScaleFilter dt_DeltaScaleFilter = new DeltaScaleFilter();
+ private final DeltaTransformFilter dt_DeltaTransformFilter = new DeltaTransformFilter();
+
+ DPathConsumer2D deltaTransformConsumer(DPathConsumer2D out,
+ AffineTransform at)
+ {
+ if (at == null) {
+ return out;
+ }
+ double mxx = at.getScaleX();
+ double mxy = at.getShearX();
+ double myx = at.getShearY();
+ double myy = at.getScaleY();
+
+ if (mxy == 0.0d && myx == 0.0d) {
+ if (mxx == 1.0d && myy == 1.0d) {
+ return out;
+ } else {
+ return dt_DeltaScaleFilter.init(out, mxx, myy);
+ }
+ } else {
+ return dt_DeltaTransformFilter.init(out, mxx, mxy, myx, myy);
+ }
+ }
+
+ // recycled DPathConsumer2D instances from inverseDeltaTransformConsumer()
+ private final DeltaScaleFilter iv_DeltaScaleFilter = new DeltaScaleFilter();
+ private final DeltaTransformFilter iv_DeltaTransformFilter = new DeltaTransformFilter();
+
+ DPathConsumer2D inverseDeltaTransformConsumer(DPathConsumer2D out,
+ AffineTransform at)
+ {
+ if (at == null) {
+ return out;
+ }
+ double mxx = at.getScaleX();
+ double mxy = at.getShearX();
+ double myx = at.getShearY();
+ double myy = at.getScaleY();
+
+ if (mxy == 0.0d && myx == 0.0d) {
+ if (mxx == 1.0d && myy == 1.0d) {
+ return out;
+ } else {
+ return iv_DeltaScaleFilter.init(out, 1.0d/mxx, 1.0d/myy);
+ }
+ } else {
+ double det = mxx * myy - mxy * myx;
+ return iv_DeltaTransformFilter.init(out,
+ myy / det,
+ -mxy / det,
+ -myx / det,
+ mxx / det);
+ }
+ }
+
+
+ static final class DeltaScaleFilter implements DPathConsumer2D {
+ private DPathConsumer2D out;
+ private double sx, sy;
+
+ DeltaScaleFilter() {}
+
+ DeltaScaleFilter init(DPathConsumer2D out,
+ double mxx, double myy)
+ {
+ this.out = out;
+ sx = mxx;
+ sy = myy;
+ return this; // fluent API
+ }
+
+ @Override
+ public void moveTo(double x0, double y0) {
+ out.moveTo(x0 * sx, y0 * sy);
+ }
+
+ @Override
+ public void lineTo(double x1, double y1) {
+ out.lineTo(x1 * sx, y1 * sy);
+ }
+
+ @Override
+ public void quadTo(double x1, double y1,
+ double x2, double y2)
+ {
+ out.quadTo(x1 * sx, y1 * sy,
+ x2 * sx, y2 * sy);
+ }
+
+ @Override
+ public void curveTo(double x1, double y1,
+ double x2, double y2,
+ double x3, double y3)
+ {
+ out.curveTo(x1 * sx, y1 * sy,
+ x2 * sx, y2 * sy,
+ x3 * sx, y3 * sy);
+ }
+
+ @Override
+ public void closePath() {
+ out.closePath();
+ }
+
+ @Override
+ public void pathDone() {
+ out.pathDone();
+ }
+
+ @Override
+ public long getNativeConsumer() {
+ return 0;
+ }
+ }
+
+ static final class DeltaTransformFilter implements DPathConsumer2D {
+ private DPathConsumer2D out;
+ private double mxx, mxy, myx, myy;
+
+ DeltaTransformFilter() {}
+
+ DeltaTransformFilter init(DPathConsumer2D out,
+ double mxx, double mxy,
+ double myx, double myy)
+ {
+ this.out = out;
+ this.mxx = mxx;
+ this.mxy = mxy;
+ this.myx = myx;
+ this.myy = myy;
+ return this; // fluent API
+ }
+
+ @Override
+ public void moveTo(double x0, double y0) {
+ out.moveTo(x0 * mxx + y0 * mxy,
+ x0 * myx + y0 * myy);
+ }
+
+ @Override
+ public void lineTo(double x1, double y1) {
+ out.lineTo(x1 * mxx + y1 * mxy,
+ x1 * myx + y1 * myy);
+ }
+
+ @Override
+ public void quadTo(double x1, double y1,
+ double x2, double y2)
+ {
+ out.quadTo(x1 * mxx + y1 * mxy,
+ x1 * myx + y1 * myy,
+ x2 * mxx + y2 * mxy,
+ x2 * myx + y2 * myy);
+ }
+
+ @Override
+ public void curveTo(double x1, double y1,
+ double x2, double y2,
+ double x3, double y3)
+ {
+ out.curveTo(x1 * mxx + y1 * mxy,
+ x1 * myx + y1 * myy,
+ x2 * mxx + y2 * mxy,
+ x2 * myx + y2 * myy,
+ x3 * mxx + y3 * mxy,
+ x3 * myx + y3 * myy);
+ }
+
+ @Override
+ public void closePath() {
+ out.closePath();
+ }
+
+ @Override
+ public void pathDone() {
+ out.pathDone();
+ }
+
+ @Override
+ public long getNativeConsumer() {
+ return 0;
+ }
+ }
+
+ static final class Path2DWrapper implements DPathConsumer2D {
+ private Path2D.Double p2d;
+
+ Path2DWrapper() {}
+
+ Path2DWrapper init(Path2D.Double p2d) {
+ this.p2d = p2d;
+ return this;
+ }
+
+ @Override
+ public void moveTo(double x0, double y0) {
+ p2d.moveTo(x0, y0);
+ }
+
+ @Override
+ public void lineTo(double x1, double y1) {
+ p2d.lineTo(x1, y1);
+ }
+
+ @Override
+ public void closePath() {
+ p2d.closePath();
+ }
+
+ @Override
+ public void pathDone() {}
+
+ @Override
+ public void curveTo(double x1, double y1,
+ double x2, double y2,
+ double x3, double y3)
+ {
+ p2d.curveTo(x1, y1, x2, y2, x3, y3);
+ }
+
+ @Override
+ public void quadTo(double x1, double y1, double x2, double y2) {
+ p2d.quadTo(x1, y1, x2, y2);
+ }
+
+ @Override
+ public long getNativeConsumer() {
+ throw new InternalError("Not using a native peer");
+ }
+ }
+}
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Dasher.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Dasher.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -39,11 +39,16 @@
* semantics are unclear.
*
*/
-final class Dasher implements sun.awt.geom.PathConsumer2D, MarlinConst {
+final class Dasher implements PathConsumer2D, MarlinConst {
static final int REC_LIMIT = 4;
static final float ERR = 0.01f;
- static final float MIN_T_INC = 1f / (1 << REC_LIMIT);
+ static final float MIN_T_INC = 1.0f / (1 << REC_LIMIT);
+
+ // More than 24 bits of mantissa means we can no longer accurately
+ // measure the number of times cycled through the dash array so we
+ // punt and override the phase to just be 0 past that point.
+ static final float MAX_CYCLES = 16000000.0f;
private PathConsumer2D out;
private float[] dash;
@@ -106,26 +111,56 @@
Dasher init(final PathConsumer2D out, float[] dash, int dashLen,
float phase, boolean recycleDashes)
{
- if (phase < 0f) {
- throw new IllegalArgumentException("phase < 0 !");
- }
this.out = out;
// Normalize so 0 <= phase < dash[0]
- int idx = 0;
+ int sidx = 0;
dashOn = true;
- float d;
- while (phase >= (d = dash[idx])) {
- phase -= d;
- idx = (idx + 1) % dashLen;
- dashOn = !dashOn;
+ float sum = 0.0f;
+ for (float d : dash) {
+ sum += d;
+ }
+ float cycles = phase / sum;
+ if (phase < 0.0f) {
+ if (-cycles >= MAX_CYCLES) {
+ phase = 0.0f;
+ } else {
+ int fullcycles = FloatMath.floor_int(-cycles);
+ if ((fullcycles & dash.length & 1) != 0) {
+ dashOn = !dashOn;
+ }
+ phase += fullcycles * sum;
+ while (phase < 0.0f) {
+ if (--sidx < 0) {
+ sidx = dash.length - 1;
+ }
+ phase += dash[sidx];
+ dashOn = !dashOn;
+ }
+ }
+ } else if (phase > 0) {
+ if (cycles >= MAX_CYCLES) {
+ phase = 0.0f;
+ } else {
+ int fullcycles = FloatMath.floor_int(cycles);
+ if ((fullcycles & dash.length & 1) != 0) {
+ dashOn = !dashOn;
+ }
+ phase -= fullcycles * sum;
+ float d;
+ while (phase >= (d = dash[sidx])) {
+ phase -= d;
+ sidx = (sidx + 1) % dash.length;
+ dashOn = !dashOn;
+ }
+ }
}
this.dash = dash;
this.dashLen = dashLen;
this.startPhase = this.phase = phase;
this.startDashOn = dashOn;
- this.startIdx = idx;
+ this.startIdx = sidx;
this.starting = true;
needsMoveTo = false;
firstSegidx = 0;
@@ -142,7 +177,7 @@
void dispose() {
if (DO_CLEAN_DIRTY) {
// Force zero-fill dirty arrays:
- Arrays.fill(curCurvepts, 0f);
+ Arrays.fill(curCurvepts, 0.0f);
}
// Return arrays:
if (recycleDashes) {
@@ -151,6 +186,21 @@
firstSegmentsBuffer = firstSegmentsBuffer_ref.putArray(firstSegmentsBuffer);
}
+ float[] copyDashArray(final float[] dashes) {
+ final int len = dashes.length;
+ final float[] newDashes;
+ if (len <= MarlinConst.INITIAL_ARRAY) {
+ newDashes = dashes_ref.initial;
+ } else {
+ if (DO_STATS) {
+ rdrCtx.stats.stat_array_dasher_dasher.add(len);
+ }
+ newDashes = dashes_ref.getArray(len);
+ }
+ System.arraycopy(dashes, 0, newDashes, 0, len);
+ return newDashes;
+ }
+
@Override
public void moveTo(float x0, float y0) {
if (firstSegidx > 0) {
@@ -202,13 +252,12 @@
private int firstSegidx;
// precondition: pts must be in relative coordinates (relative to x0,y0)
- // fullCurve is true iff the curve in pts has not been split.
private void goTo(float[] pts, int off, final int type) {
float x = pts[off + type - 4];
float y = pts[off + type - 3];
if (dashOn) {
if (starting) {
- int len = type - 2 + 1;
+ int len = type - 1; // - 2 + 1
int segIdx = firstSegidx;
float[] buf = firstSegmentsBuffer;
if (segIdx + len > buf.length) {
@@ -247,7 +296,7 @@
float dy = y1 - y0;
float len = dx*dx + dy*dy;
- if (len == 0f) {
+ if (len == 0.0f) {
return;
}
len = (float) Math.sqrt(len);
@@ -275,7 +324,7 @@
phase += len;
// TODO: compare float values using epsilon:
if (len == leftInThisDashSegment) {
- phase = 0f;
+ phase = 0.0f;
idx = (idx + 1) % dashLen;
dashOn = !dashOn;
}
@@ -285,7 +334,7 @@
dashdx = _dash[idx] * cx;
dashdy = _dash[idx] * cy;
- if (phase == 0f) {
+ if (phase == 0.0f) {
_curCurvepts[0] = x0 + dashdx;
_curCurvepts[1] = y0 + dashdy;
} else {
@@ -300,7 +349,7 @@
// Advance to next dash segment
idx = (idx + 1) % dashLen;
dashOn = !dashOn;
- phase = 0f;
+ phase = 0.0f;
}
}
@@ -317,13 +366,13 @@
// initially the current curve is at curCurvepts[0...type]
int curCurveoff = 0;
- float lastSplitT = 0f;
+ float lastSplitT = 0.0f;
float t;
float leftInThisDashSegment = dash[idx] - phase;
- while ((t = li.next(leftInThisDashSegment)) < 1f) {
- if (t != 0f) {
- Helpers.subdivideAt((t - lastSplitT) / (1f - lastSplitT),
+ while ((t = li.next(leftInThisDashSegment)) < 1.0f) {
+ if (t != 0.0f) {
+ Helpers.subdivideAt((t - lastSplitT) / (1.0f - lastSplitT),
curCurvepts, curCurveoff,
curCurvepts, 0,
curCurvepts, type, type);
@@ -334,13 +383,13 @@
// Advance to next dash segment
idx = (idx + 1) % dashLen;
dashOn = !dashOn;
- phase = 0f;
+ phase = 0.0f;
leftInThisDashSegment = dash[idx];
}
goTo(curCurvepts, curCurveoff+2, type);
phase += li.lastSegLen();
if (phase >= dash[idx]) {
- phase = 0f;
+ phase = 0.0f;
idx = (idx + 1) % dashLen;
dashOn = !dashOn;
}
@@ -395,7 +444,7 @@
// the lengths of the lines of the control polygon. Only its first
// curveType/2 - 1 elements are valid. This is an optimization. See
- // next(float) for more detail.
+ // next() for more detail.
private final float[] curLeafCtrlPolyLengths = new float[3];
LengthIterator() {
@@ -420,13 +469,13 @@
if (DO_CLEAN_DIRTY) {
final int recLimit = recCurveStack.length - 1;
for (int i = recLimit; i >= 0; i--) {
- Arrays.fill(recCurveStack[i], 0f);
+ Arrays.fill(recCurveStack[i], 0.0f);
}
Arrays.fill(sides, Side.LEFT);
- Arrays.fill(curLeafCtrlPolyLengths, 0f);
- Arrays.fill(nextRoots, 0f);
- Arrays.fill(flatLeafCoefCache, 0f);
- flatLeafCoefCache[2] = -1f;
+ Arrays.fill(curLeafCtrlPolyLengths, 0.0f);
+ Arrays.fill(nextRoots, 0.0f);
+ Arrays.fill(flatLeafCoefCache, 0.0f);
+ flatLeafCoefCache[2] = -1.0f;
}
}
@@ -435,12 +484,12 @@
System.arraycopy(pts, 0, recCurveStack[0], 0, 8);
this.curveType = type;
this.recLevel = 0;
- this.lastT = 0f;
- this.lenAtLastT = 0f;
- this.nextT = 0f;
- this.lenAtNextT = 0f;
+ this.lastT = 0.0f;
+ this.lenAtLastT = 0.0f;
+ this.nextT = 0.0f;
+ this.lenAtNextT = 0.0f;
goLeft(); // initializes nextT and lenAtNextT properly
- this.lenAtLastSplit = 0f;
+ this.lenAtLastSplit = 0.0f;
if (recLevel > 0) {
this.sides[0] = Side.LEFT;
this.done = false;
@@ -449,7 +498,7 @@
this.sides[0] = Side.RIGHT;
this.done = true;
}
- this.lastSegLen = 0f;
+ this.lastSegLen = 0.0f;
}
// 0 == false, 1 == true, -1 == invalid cached value.
@@ -462,7 +511,7 @@
// the test below is equivalent to !within(len1/len2, 1, err).
// It is using a multiplication instead of a division, so it
// should be a bit faster.
- if (!Helpers.within(len1, len2, err*len2)) {
+ if (!Helpers.within(len1, len2, err * len2)) {
cachedHaveLowAcceleration = 0;
return false;
}
@@ -493,7 +542,7 @@
// form (see inside next() for what that means). The cache is
// invalid when it's third element is negative, since in any
// valid flattened curve, this would be >= 0.
- private final float[] flatLeafCoefCache = new float[]{0f, 0f, -1f, 0f};
+ private final float[] flatLeafCoefCache = new float[]{0.0f, 0.0f, -1.0f, 0.0f};
// returns the t value where the remaining curve should be split in
// order for the left subdivided curve to have length len. If len
@@ -503,7 +552,7 @@
while (lenAtNextT < targetLength) {
if (done) {
lastSegLen = lenAtNextT - lenAtLastSplit;
- return 1f;
+ return 1.0f;
}
goToNextLeaf();
}
@@ -520,19 +569,19 @@
// gives us the desired length.
final float[] _flatLeafCoefCache = flatLeafCoefCache;
- if (_flatLeafCoefCache[2] < 0) {
- float x = 0f + curLeafCtrlPolyLengths[0],
- y = x + curLeafCtrlPolyLengths[1];
+ if (_flatLeafCoefCache[2] < 0.0f) {
+ float x = curLeafCtrlPolyLengths[0],
+ y = x + curLeafCtrlPolyLengths[1];
if (curveType == 8) {
float z = y + curLeafCtrlPolyLengths[2];
- _flatLeafCoefCache[0] = 3f * (x - y) + z;
- _flatLeafCoefCache[1] = 3f * (y - 2f * x);
- _flatLeafCoefCache[2] = 3f * x;
+ _flatLeafCoefCache[0] = 3.0f * (x - y) + z;
+ _flatLeafCoefCache[1] = 3.0f * (y - 2.0f * x);
+ _flatLeafCoefCache[2] = 3.0f * x;
_flatLeafCoefCache[3] = -z;
} else if (curveType == 6) {
- _flatLeafCoefCache[0] = 0f;
- _flatLeafCoefCache[1] = y - 2f * x;
- _flatLeafCoefCache[2] = 2f * x;
+ _flatLeafCoefCache[0] = 0.0f;
+ _flatLeafCoefCache[1] = y - 2.0f * x;
+ _flatLeafCoefCache[2] = 2.0f * x;
_flatLeafCoefCache[3] = -y;
}
}
@@ -544,7 +593,7 @@
// we use cubicRootsInAB here, because we want only roots in 0, 1,
// and our quadratic root finder doesn't filter, so it's just a
// matter of convenience.
- int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0, 1);
+ int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0.0f, 1.0f);
if (n == 1 && !Float.isNaN(nextRoots[0])) {
t = nextRoots[0];
}
@@ -552,8 +601,8 @@
// t is relative to the current leaf, so we must make it a valid parameter
// of the original curve.
t = t * (nextT - lastT) + lastT;
- if (t >= 1f) {
- t = 1f;
+ if (t >= 1.0f) {
+ t = 1.0f;
done = true;
}
// even if done = true, if we're here, that means targetLength
@@ -600,13 +649,13 @@
// go to the leftmost node from the current node. Return its length.
private void goLeft() {
float len = onLeaf();
- if (len >= 0f) {
+ if (len >= 0.0f) {
lastT = nextT;
lenAtLastT = lenAtNextT;
nextT += (1 << (REC_LIMIT - recLevel)) * MIN_T_INC;
lenAtNextT += len;
// invalidate caches
- flatLeafCoefCache[2] = -1f;
+ flatLeafCoefCache[2] = -1.0f;
cachedHaveLowAcceleration = -1;
} else {
Helpers.subdivide(recCurveStack[recLevel], 0,
@@ -622,7 +671,7 @@
// the length of the leaf if we are on a leaf.
private float onLeaf() {
float[] curve = recCurveStack[recLevel];
- float polyLen = 0f;
+ float polyLen = 0.0f;
float x0 = curve[0], y0 = curve[1];
for (int i = 2; i < curveType; i += 2) {
@@ -638,9 +687,9 @@
curve[curveType-2],
curve[curveType-1]);
if ((polyLen - lineLen) < ERR || recLevel == REC_LIMIT) {
- return (polyLen + lineLen) / 2f;
+ return (polyLen + lineLen) / 2.0f;
}
- return -1f;
+ return -1.0f;
}
}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/DoubleArrayCache.java Wed May 17 22:05:11 2017 +0200
@@ -0,0 +1,273 @@
+/*
+ * Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import static sun.java2d.marlin.ArrayCacheConst.ARRAY_SIZES;
+import static sun.java2d.marlin.ArrayCacheConst.BUCKETS;
+import static sun.java2d.marlin.ArrayCacheConst.MAX_ARRAY_SIZE;
+import static sun.java2d.marlin.MarlinUtils.logInfo;
+import static sun.java2d.marlin.MarlinUtils.logException;
+
+import java.lang.ref.WeakReference;
+import java.util.Arrays;
+
+import sun.java2d.marlin.ArrayCacheConst.BucketStats;
+import sun.java2d.marlin.ArrayCacheConst.CacheStats;
+
+/*
+ * Note that the [BYTE/INT/FLOAT/DOUBLE]ArrayCache files are nearly identical except
+ * for a few type and name differences. Typically, the [BYTE]ArrayCache.java file
+ * is edited manually and then [INT/FLOAT/DOUBLE]ArrayCache.java
+ * files are generated with the following command lines:
+ */
+// % sed -e 's/(b\yte)[ ]*//g' -e 's/b\yte/int/g' -e 's/B\yte/Int/g' < B\yteArrayCache.java > IntArrayCache.java
+// % sed -e 's/(b\yte)[ ]*0/0.0f/g' -e 's/(b\yte)[ ]*/(float) /g' -e 's/b\yte/float/g' -e 's/B\yte/Float/g' < B\yteArrayCache.java > FloatArrayCache.java
+// % sed -e 's/(b\yte)[ ]*0/0.0d/g' -e 's/(b\yte)[ ]*/(double) /g' -e 's/b\yte/double/g' -e 's/B\yte/Double/g' < B\yteArrayCache.java > DoubleArrayCache.java
+
+final class DoubleArrayCache implements MarlinConst {
+
+ final boolean clean;
+ private final int bucketCapacity;
+ private WeakReference<Bucket[]> refBuckets = null;
+ final CacheStats stats;
+
+ DoubleArrayCache(final boolean clean, final int bucketCapacity) {
+ this.clean = clean;
+ this.bucketCapacity = bucketCapacity;
+ this.stats = (DO_STATS) ?
+ new CacheStats(getLogPrefix(clean) + "DoubleArrayCache") : null;
+ }
+
+ Bucket getCacheBucket(final int length) {
+ final int bucket = ArrayCacheConst.getBucket(length);
+ return getBuckets()[bucket];
+ }
+
+ private Bucket[] getBuckets() {
+ // resolve reference:
+ Bucket[] buckets = (refBuckets != null) ? refBuckets.get() : null;
+
+ // create a new buckets ?
+ if (buckets == null) {
+ buckets = new Bucket[BUCKETS];
+
+ for (int i = 0; i < BUCKETS; i++) {
+ buckets[i] = new Bucket(clean, ARRAY_SIZES[i], bucketCapacity,
+ (DO_STATS) ? stats.bucketStats[i] : null);
+ }
+
+ // update weak reference:
+ refBuckets = new WeakReference<Bucket[]>(buckets);
+ }
+ return buckets;
+ }
+
+ Reference createRef(final int initialSize) {
+ return new Reference(this, initialSize);
+ }
+
+ static final class Reference {
+
+ // initial array reference (direct access)
+ final double[] initial;
+ private final boolean clean;
+ private final DoubleArrayCache cache;
+
+ Reference(final DoubleArrayCache cache, final int initialSize) {
+ this.cache = cache;
+ this.clean = cache.clean;
+ this.initial = createArray(initialSize, clean);
+ if (DO_STATS) {
+ cache.stats.totalInitial += initialSize;
+ }
+ }
+
+ double[] getArray(final int length) {
+ if (length <= MAX_ARRAY_SIZE) {
+ return cache.getCacheBucket(length).getArray();
+ }
+ if (DO_STATS) {
+ cache.stats.oversize++;
+ }
+ if (DO_LOG_OVERSIZE) {
+ logInfo(getLogPrefix(clean) + "DoubleArrayCache: "
+ + "getArray[oversize]: length=\t" + length);
+ }
+ return createArray(length, clean);
+ }
+
+ double[] widenArray(final double[] array, final int usedSize,
+ final int needSize)
+ {
+ final int length = array.length;
+ if (DO_CHECKS && length >= needSize) {
+ return array;
+ }
+ if (DO_STATS) {
+ cache.stats.resize++;
+ }
+
+ // maybe change bucket:
+ // ensure getNewSize() > newSize:
+ final double[] res = getArray(ArrayCacheConst.getNewSize(usedSize, needSize));
+
+ // use wrapper to ensure proper copy:
+ System.arraycopy(array, 0, res, 0, usedSize); // copy only used elements
+
+ // maybe return current array:
+ putArray(array, 0, usedSize); // ensure array is cleared
+
+ if (DO_LOG_WIDEN_ARRAY) {
+ logInfo(getLogPrefix(clean) + "DoubleArrayCache: "
+ + "widenArray[" + res.length
+ + "]: usedSize=\t" + usedSize + "\tlength=\t" + length
+ + "\tneeded length=\t" + needSize);
+ }
+ return res;
+ }
+
+ double[] putArray(final double[] array)
+ {
+ // dirty array helper:
+ return putArray(array, 0, array.length);
+ }
+
+ double[] putArray(final double[] array, final int fromIndex,
+ final int toIndex)
+ {
+ if (array.length <= MAX_ARRAY_SIZE) {
+ if ((clean || DO_CLEAN_DIRTY) && (toIndex != 0)) {
+ // clean-up array of dirty part[fromIndex; toIndex[
+ fill(array, fromIndex, toIndex, 0.0d);
+ }
+ // ensure to never store initial arrays in cache:
+ if (array != initial) {
+ cache.getCacheBucket(array.length).putArray(array);
+ }
+ }
+ return initial;
+ }
+ }
+
+ static final class Bucket {
+
+ private int tail = 0;
+ private final int arraySize;
+ private final boolean clean;
+ private final double[][] arrays;
+ private final BucketStats stats;
+
+ Bucket(final boolean clean, final int arraySize,
+ final int capacity, final BucketStats stats)
+ {
+ this.arraySize = arraySize;
+ this.clean = clean;
+ this.stats = stats;
+ this.arrays = new double[capacity][];
+ }
+
+ double[] getArray() {
+ if (DO_STATS) {
+ stats.getOp++;
+ }
+ // use cache:
+ if (tail != 0) {
+ final double[] array = arrays[--tail];
+ arrays[tail] = null;
+ return array;
+ }
+ if (DO_STATS) {
+ stats.createOp++;
+ }
+ return createArray(arraySize, clean);
+ }
+
+ void putArray(final double[] array)
+ {
+ if (DO_CHECKS && (array.length != arraySize)) {
+ logInfo(getLogPrefix(clean) + "DoubleArrayCache: "
+ + "bad length = " + array.length);
+ return;
+ }
+ if (DO_STATS) {
+ stats.returnOp++;
+ }
+ // fill cache:
+ if (arrays.length > tail) {
+ arrays[tail++] = array;
+
+ if (DO_STATS) {
+ stats.updateMaxSize(tail);
+ }
+ } else if (DO_CHECKS) {
+ logInfo(getLogPrefix(clean) + "DoubleArrayCache: "
+ + "array capacity exceeded !");
+ }
+ }
+ }
+
+ static double[] createArray(final int length, final boolean clean) {
+ if (clean) {
+ return new double[length];
+ }
+ // use JDK9 Unsafe.allocateUninitializedArray(class, length):
+ return (double[]) OffHeapArray.UNSAFE.allocateUninitializedArray(double.class, length);
+ }
+
+ static void fill(final double[] array, final int fromIndex,
+ final int toIndex, final double value)
+ {
+ // clear array data:
+ Arrays.fill(array, fromIndex, toIndex, value);
+ if (DO_CHECKS) {
+ check(array, fromIndex, toIndex, value);
+ }
+ }
+
+ static void check(final double[] array, final int fromIndex,
+ final int toIndex, final double value)
+ {
+ if (DO_CHECKS) {
+ // check zero on full array:
+ for (int i = 0; i < array.length; i++) {
+ if (array[i] != value) {
+ logException("Invalid value at: " + i + " = " + array[i]
+ + " from: " + fromIndex + " to: " + toIndex + "\n"
+ + Arrays.toString(array), new Throwable());
+
+ // ensure array is correctly filled:
+ Arrays.fill(array, value);
+
+ return;
+ }
+ }
+ }
+ }
+
+ static String getLogPrefix(final boolean clean) {
+ return (clean) ? "Clean" : "Dirty";
+ }
+}
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/FloatArrayCache.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/FloatArrayCache.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -22,6 +22,7 @@
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
+
package sun.java2d.marlin;
import static sun.java2d.marlin.ArrayCacheConst.ARRAY_SIZES;
@@ -37,13 +38,14 @@
import sun.java2d.marlin.ArrayCacheConst.CacheStats;
/*
- * Note that the [BYTE/INT/FLOAT]ArrayCache files are nearly identical except
+ * Note that the [BYTE/INT/FLOAT/DOUBLE]ArrayCache files are nearly identical except
* for a few type and name differences. Typically, the [BYTE]ArrayCache.java file
- * is edited manually and then [INT]ArrayCache.java and [FLOAT]ArrayCache.java
+ * is edited manually and then [INT/FLOAT/DOUBLE]ArrayCache.java
* files are generated with the following command lines:
*/
// % sed -e 's/(b\yte)[ ]*//g' -e 's/b\yte/int/g' -e 's/B\yte/Int/g' < B\yteArrayCache.java > IntArrayCache.java
-// % sed -e 's/(b\yte)[ ]*/(float) /g' -e 's/b\yte/float/g' -e 's/B\yte/Float/g' < B\yteArrayCache.java > FloatArrayCache.java
+// % sed -e 's/(b\yte)[ ]*0/0.0f/g' -e 's/(b\yte)[ ]*/(float) /g' -e 's/b\yte/float/g' -e 's/B\yte/Float/g' < B\yteArrayCache.java > FloatArrayCache.java
+// % sed -e 's/(b\yte)[ ]*0/0.0d/g' -e 's/(b\yte)[ ]*/(double) /g' -e 's/b\yte/double/g' -e 's/B\yte/Double/g' < B\yteArrayCache.java > DoubleArrayCache.java
final class FloatArrayCache implements MarlinConst {
@@ -159,7 +161,7 @@
if (array.length <= MAX_ARRAY_SIZE) {
if ((clean || DO_CLEAN_DIRTY) && (toIndex != 0)) {
// clean-up array of dirty part[fromIndex; toIndex[
- fill(array, fromIndex, toIndex, (float) 0);
+ fill(array, fromIndex, toIndex, 0.0f);
}
// ensure to never store initial arrays in cache:
if (array != initial) {
@@ -231,8 +233,8 @@
if (clean) {
return new float[length];
}
- // use JDK9 Unsafe.allocateUninitializedArray(class, length):
- return (float[]) OffHeapArray.UNSAFE.allocateUninitializedArray(float.class, length);
+ // use JDK9 Unsafe.allocateUninitializedArray(class, length):
+ return (float[]) OffHeapArray.UNSAFE.allocateUninitializedArray(float.class, length);
}
static void fill(final float[] array, final int fromIndex,
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/FloatMath.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/FloatMath.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -22,10 +22,9 @@
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
+
package sun.java2d.marlin;
-import jdk.internal.math.FloatConsts;
-
/**
* Faster Math ceil / floor routines derived from StrictMath
*/
@@ -34,17 +33,17 @@
// overflow / NaN handling enabled:
static final boolean CHECK_OVERFLOW = true;
static final boolean CHECK_NAN = true;
+ // Copied from sun.misc.FloatConsts:
+ public static final int FLOAT_SIGNIFICAND_WIDTH = 24; // sun.misc.FloatConsts.SIGNIFICAND_WIDTH
+ public static final int FLOAT_EXP_BIAS = 127; // sun.misc.FloatConsts.EXP_BIAS
+ public static final int FLOAT_EXP_BIT_MASK = 2139095040;// sun.misc.FloatConsts.EXP_BIT_MASK
+ public static final int FLOAT_SIGNIF_BIT_MASK = 8388607;// sun.misc.FloatConsts.SIGNIF_BIT_MASK
private FloatMath() {
// utility class
}
// faster inlined min/max functions in the branch prediction is high
- static float max(final float a, final float b) {
- // no NaN handling
- return (a >= b) ? a : b;
- }
-
static int max(final int a, final int b) {
return (a >= b) ? a : b;
}
@@ -77,9 +76,9 @@
// compute only once Float.floatToRawIntBits(a)
final int doppel = Float.floatToRawIntBits(a);
- final int exponent = ((doppel & FloatConsts.EXP_BIT_MASK)
- >> (FloatConsts.SIGNIFICAND_WIDTH - 1))
- - FloatConsts.EXP_BIAS;
+ final int exponent = ((doppel & FLOAT_EXP_BIT_MASK)
+ >> (FLOAT_SIGNIFICAND_WIDTH - 1))
+ - FLOAT_EXP_BIAS;
if (exponent < 0) {
/*
@@ -87,8 +86,8 @@
* floorOrceil(-0.0) => -0.0
* floorOrceil(+0.0) => +0.0
*/
- return ((a == 0) ? a :
- ( (a < 0f) ? -0f : 1f) );
+ return ((a == 0.0f) ? a :
+ ( (a < 0.0f) ? -0.0f : 1.0f) );
}
if (CHECK_OVERFLOW && (exponent >= 23)) { // 52 for double
/*
@@ -101,7 +100,7 @@
assert exponent >= 0 && exponent <= 22; // 51 for double
final int intpart = doppel
- & (~(FloatConsts.SIGNIF_BIT_MASK >> exponent));
+ & (~(FLOAT_SIGNIF_BIT_MASK >> exponent));
if (intpart == doppel) {
return a; // integral value (including 0)
@@ -134,9 +133,9 @@
// compute only once Float.floatToRawIntBits(a)
final int doppel = Float.floatToRawIntBits(a);
- final int exponent = ((doppel & FloatConsts.EXP_BIT_MASK)
- >> (FloatConsts.SIGNIFICAND_WIDTH - 1))
- - FloatConsts.EXP_BIAS;
+ final int exponent = ((doppel & FLOAT_EXP_BIT_MASK)
+ >> (FLOAT_SIGNIFICAND_WIDTH - 1))
+ - FLOAT_EXP_BIAS;
if (exponent < 0) {
/*
@@ -144,8 +143,8 @@
* floorOrceil(-0.0) => -0.0
* floorOrceil(+0.0) => +0.0
*/
- return ((a == 0) ? a :
- ( (a < 0f) ? -1f : 0f) );
+ return ((a == 0.0f) ? a :
+ ( (a < 0.0f) ? -1.0f : 0.0f) );
}
if (CHECK_OVERFLOW && (exponent >= 23)) { // 52 for double
/*
@@ -158,7 +157,7 @@
assert exponent >= 0 && exponent <= 22; // 51 for double
final int intpart = doppel
- & (~(FloatConsts.SIGNIF_BIT_MASK >> exponent));
+ & (~(FLOAT_SIGNIF_BIT_MASK >> exponent));
if (intpart == doppel) {
return a; // integral value (including 0)
@@ -191,6 +190,26 @@
}
/**
+ * Faster alternative to ceil(double) optimized for the integer domain
+ * and supporting NaN and +/-Infinity.
+ *
+ * @param a a value.
+ * @return the largest (closest to positive infinity) integer value
+ * that less than or equal to the argument and is equal to a mathematical
+ * integer.
+ */
+ public static int ceil_int(final double a) {
+ final int intpart = (int) a;
+
+ if (a <= intpart
+ || (CHECK_OVERFLOW && intpart == Integer.MAX_VALUE)
+ || CHECK_NAN && Double.isNaN(a)) {
+ return intpart;
+ }
+ return intpart + 1;
+ }
+
+ /**
* Faster alternative to floor(float) optimized for the integer domain
* and supporting NaN and +/-Infinity.
*
@@ -209,4 +228,24 @@
}
return intpart - 1;
}
+
+ /**
+ * Faster alternative to floor(double) optimized for the integer domain
+ * and supporting NaN and +/-Infinity.
+ *
+ * @param a a value.
+ * @return the largest (closest to positive infinity) floating-point value
+ * that less than or equal to the argument and is equal to a mathematical
+ * integer.
+ */
+ public static int floor_int(final double a) {
+ final int intpart = (int) a;
+
+ if (a >= intpart
+ || (CHECK_OVERFLOW && intpart == Integer.MIN_VALUE)
+ || CHECK_NAN && Double.isNaN(a)) {
+ return intpart;
+ }
+ return intpart - 1;
+ }
}
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Helpers.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Helpers.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -52,27 +52,27 @@
{
int ret = off;
float t;
- if (a != 0f) {
+ if (a != 0.0f) {
final float dis = b*b - 4*a*c;
- if (dis > 0f) {
- final float sqrtDis = (float)Math.sqrt(dis);
+ if (dis > 0.0f) {
+ final float sqrtDis = (float) Math.sqrt(dis);
// depending on the sign of b we use a slightly different
// algorithm than the traditional one to find one of the roots
// so we can avoid adding numbers of different signs (which
// might result in loss of precision).
- if (b >= 0f) {
- zeroes[ret++] = (2f * c) / (-b - sqrtDis);
- zeroes[ret++] = (-b - sqrtDis) / (2f * a);
+ if (b >= 0.0f) {
+ zeroes[ret++] = (2.0f * c) / (-b - sqrtDis);
+ zeroes[ret++] = (-b - sqrtDis) / (2.0f * a);
} else {
- zeroes[ret++] = (-b + sqrtDis) / (2f * a);
- zeroes[ret++] = (2f * c) / (-b + sqrtDis);
+ zeroes[ret++] = (-b + sqrtDis) / (2.0f * a);
+ zeroes[ret++] = (2.0f * c) / (-b + sqrtDis);
}
- } else if (dis == 0f) {
- t = (-b) / (2f * a);
+ } else if (dis == 0.0f) {
+ t = (-b) / (2.0f * a);
zeroes[ret++] = t;
}
} else {
- if (b != 0f) {
+ if (b != 0.0f) {
t = (-c) / b;
zeroes[ret++] = t;
}
@@ -85,7 +85,7 @@
float[] pts, final int off,
final float A, final float B)
{
- if (d == 0f) {
+ if (d == 0.0f) {
int num = quadraticRoots(a, b, c, pts, off);
return filterOutNotInAB(pts, off, num, A, B) - off;
}
@@ -109,8 +109,8 @@
// q = Q/2
// instead and use those values for simplicity of the code.
double sq_A = a * a;
- double p = (1.0/3.0) * ((-1.0/3.0) * sq_A + b);
- double q = (1.0/2.0) * ((2.0/27.0) * a * sq_A - (1.0/3.0) * a * b + c);
+ double p = (1.0d/3.0d) * ((-1.0d/3.0d) * sq_A + b);
+ double q = (1.0d/2.0d) * ((2.0d/27.0d) * a * sq_A - (1.0d/3.0d) * a * b + c);
// use Cardano's formula
@@ -118,30 +118,30 @@
double D = q * q + cb_p;
int num;
- if (D < 0.0) {
+ if (D < 0.0d) {
// see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
- final double phi = (1.0/3.0) * acos(-q / sqrt(-cb_p));
- final double t = 2.0 * sqrt(-p);
+ final double phi = (1.0d/3.0d) * acos(-q / sqrt(-cb_p));
+ final double t = 2.0d * sqrt(-p);
- pts[ off+0 ] = (float)( t * cos(phi));
- pts[ off+1 ] = (float)(-t * cos(phi + (PI / 3.0)));
- pts[ off+2 ] = (float)(-t * cos(phi - (PI / 3.0)));
+ pts[ off+0 ] = (float) ( t * cos(phi));
+ pts[ off+1 ] = (float) (-t * cos(phi + (PI / 3.0d)));
+ pts[ off+2 ] = (float) (-t * cos(phi - (PI / 3.0d)));
num = 3;
} else {
final double sqrt_D = sqrt(D);
final double u = cbrt(sqrt_D - q);
final double v = - cbrt(sqrt_D + q);
- pts[ off ] = (float)(u + v);
+ pts[ off ] = (float) (u + v);
num = 1;
- if (within(D, 0.0, 1e-8)) {
- pts[off+1] = -(pts[off] / 2f);
+ if (within(D, 0.0d, 1e-8d)) {
+ pts[off+1] = -(pts[off] / 2.0f);
num = 2;
}
}
- final float sub = (1f/3f) * a;
+ final float sub = (1.0f/3.0f) * a;
for (int i = 0; i < num; ++i) {
pts[ off+i ] -= sub;
@@ -178,7 +178,7 @@
static float polyLineLength(float[] poly, final int off, final int nCoords) {
assert nCoords % 2 == 0 && poly.length >= off + nCoords : "";
- float acc = 0;
+ float acc = 0.0f;
for (int i = off + 2; i < off + nCoords; i += 2) {
acc += linelen(poly[i], poly[i+1], poly[i-2], poly[i-1]);
}
@@ -188,7 +188,7 @@
static float linelen(float x1, float y1, float x2, float y2) {
final float dx = x2 - x1;
final float dy = y2 - y1;
- return (float)Math.sqrt(dx*dx + dy*dy);
+ return (float) Math.sqrt(dx*dx + dy*dy);
}
static void subdivide(float[] src, int srcoff, float[] left, int leftoff,
@@ -218,8 +218,8 @@
}
// Most of these are copied from classes in java.awt.geom because we need
- // float versions of these functions, and Line2D, CubicCurve2D,
- // QuadCurve2D don't provide them.
+ // both single and double precision variants of these functions, and Line2D,
+ // CubicCurve2D, QuadCurve2D don't provide them.
/**
* Subdivides the cubic curve specified by the coordinates
* stored in the <code>src</code> array at indices <code>srcoff</code>
@@ -268,18 +268,18 @@
right[rightoff + 6] = x2;
right[rightoff + 7] = y2;
}
- x1 = (x1 + ctrlx1) / 2f;
- y1 = (y1 + ctrly1) / 2f;
- x2 = (x2 + ctrlx2) / 2f;
- y2 = (y2 + ctrly2) / 2f;
- float centerx = (ctrlx1 + ctrlx2) / 2f;
- float centery = (ctrly1 + ctrly2) / 2f;
- ctrlx1 = (x1 + centerx) / 2f;
- ctrly1 = (y1 + centery) / 2f;
- ctrlx2 = (x2 + centerx) / 2f;
- ctrly2 = (y2 + centery) / 2f;
- centerx = (ctrlx1 + ctrlx2) / 2f;
- centery = (ctrly1 + ctrly2) / 2f;
+ x1 = (x1 + ctrlx1) / 2.0f;
+ y1 = (y1 + ctrly1) / 2.0f;
+ x2 = (x2 + ctrlx2) / 2.0f;
+ y2 = (y2 + ctrly2) / 2.0f;
+ float centerx = (ctrlx1 + ctrlx2) / 2.0f;
+ float centery = (ctrly1 + ctrly2) / 2.0f;
+ ctrlx1 = (x1 + centerx) / 2.0f;
+ ctrly1 = (y1 + centery) / 2.0f;
+ ctrlx2 = (x2 + centerx) / 2.0f;
+ ctrly2 = (y2 + centery) / 2.0f;
+ centerx = (ctrlx1 + ctrlx2) / 2.0f;
+ centery = (ctrly1 + ctrly2) / 2.0f;
if (left != null) {
left[leftoff + 2] = x1;
left[leftoff + 3] = y1;
@@ -367,12 +367,12 @@
right[rightoff + 4] = x2;
right[rightoff + 5] = y2;
}
- x1 = (x1 + ctrlx) / 2f;
- y1 = (y1 + ctrly) / 2f;
- x2 = (x2 + ctrlx) / 2f;
- y2 = (y2 + ctrly) / 2f;
- ctrlx = (x1 + x2) / 2f;
- ctrly = (y1 + y2) / 2f;
+ x1 = (x1 + ctrlx) / 2.0f;
+ y1 = (y1 + ctrly) / 2.0f;
+ x2 = (x2 + ctrlx) / 2.0f;
+ y2 = (y2 + ctrly) / 2.0f;
+ ctrlx = (x1 + x2) / 2.0f;
+ ctrly = (y1 + y2) / 2.0f;
if (left != null) {
left[leftoff + 2] = x1;
left[leftoff + 3] = y1;
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/IRendererContext.java Wed May 17 22:05:11 2017 +0200
@@ -0,0 +1,36 @@
+/*
+ * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+interface IRendererContext extends MarlinConst {
+
+ public RendererStats stats();
+
+ public OffHeapArray newOffHeapArray(final long initialSize);
+
+ public IntArrayCache.Reference newCleanIntArrayRef(final int initialSize);
+
+}
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/IntArrayCache.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/IntArrayCache.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -22,6 +22,7 @@
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
+
package sun.java2d.marlin;
import static sun.java2d.marlin.ArrayCacheConst.ARRAY_SIZES;
@@ -37,13 +38,14 @@
import sun.java2d.marlin.ArrayCacheConst.CacheStats;
/*
- * Note that the [BYTE/INT/FLOAT]ArrayCache files are nearly identical except
+ * Note that the [BYTE/INT/FLOAT/DOUBLE]ArrayCache files are nearly identical except
* for a few type and name differences. Typically, the [BYTE]ArrayCache.java file
- * is edited manually and then [INT]ArrayCache.java and [FLOAT]ArrayCache.java
+ * is edited manually and then [INT/FLOAT/DOUBLE]ArrayCache.java
* files are generated with the following command lines:
*/
// % sed -e 's/(b\yte)[ ]*//g' -e 's/b\yte/int/g' -e 's/B\yte/Int/g' < B\yteArrayCache.java > IntArrayCache.java
-// % sed -e 's/(b\yte)[ ]*/(float) /g' -e 's/b\yte/float/g' -e 's/B\yte/Float/g' < B\yteArrayCache.java > FloatArrayCache.java
+// % sed -e 's/(b\yte)[ ]*0/0.0f/g' -e 's/(b\yte)[ ]*/(float) /g' -e 's/b\yte/float/g' -e 's/B\yte/Float/g' < B\yteArrayCache.java > FloatArrayCache.java
+// % sed -e 's/(b\yte)[ ]*0/0.0d/g' -e 's/(b\yte)[ ]*/(double) /g' -e 's/b\yte/double/g' -e 's/B\yte/Double/g' < B\yteArrayCache.java > DoubleArrayCache.java
final class IntArrayCache implements MarlinConst {
@@ -231,8 +233,8 @@
if (clean) {
return new int[length];
}
- // use JDK9 Unsafe.allocateUninitializedArray(class, length):
- return (int[]) OffHeapArray.UNSAFE.allocateUninitializedArray(int.class, length);
+ // use JDK9 Unsafe.allocateUninitializedArray(class, length):
+ return (int[]) OffHeapArray.UNSAFE.allocateUninitializedArray(int.class, length);
}
static void fill(final int[] array, final int fromIndex,
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinCache.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinCache.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -45,7 +45,7 @@
// 2048 (pixelSize) alpha values (width) x 32 rows (tile) = 64K bytes
// x1 instead of 4 bytes (RLE) ie 1/4 capacity or average good RLE compression
- static final long INITIAL_CHUNK_ARRAY = TILE_SIZE * INITIAL_PIXEL_DIM; // 64K
+ static final long INITIAL_CHUNK_ARRAY = TILE_H * INITIAL_PIXEL_DIM; // 64K
// The alpha map used by this object (taken out of our map cache) to convert
// pixel coverage counts gotten from MarlinCache (which are in the range
@@ -72,17 +72,17 @@
// 1D dirty arrays
// row index in rowAAChunk[]
- final long[] rowAAChunkIndex = new long[TILE_SIZE];
+ final long[] rowAAChunkIndex = new long[TILE_H];
// first pixel (inclusive) for each row
- final int[] rowAAx0 = new int[TILE_SIZE];
+ final int[] rowAAx0 = new int[TILE_H];
// last pixel (exclusive) for each row
- final int[] rowAAx1 = new int[TILE_SIZE];
+ final int[] rowAAx1 = new int[TILE_H];
// encoding mode (0=raw, 1=RLE encoding) for each row
- final int[] rowAAEnc = new int[TILE_SIZE];
+ final int[] rowAAEnc = new int[TILE_H];
// coded length (RLE encoding) for each row
- final long[] rowAALen = new long[TILE_SIZE];
+ final long[] rowAALen = new long[TILE_H];
// last position in RLE decoding for each row (getAlpha):
- final long[] rowAAPos = new long[TILE_SIZE];
+ final long[] rowAAPos = new long[TILE_H];
// dirty off-heap array containing pixel coverages for (32) rows (packed)
// if encoding=raw, it contains alpha coverage values (val) as integer
@@ -97,8 +97,8 @@
// x=j*TILE_SIZE+bboxX0.
int[] touchedTile;
- // per-thread renderer context
- final RendererContext rdrCtx;
+ // per-thread renderer stats
+ final RendererStats rdrStats;
// touchedTile ref (clean)
private final IntArrayCache.Reference touchedTile_ref;
@@ -107,8 +107,8 @@
boolean useRLE = false;
- MarlinCache(final RendererContext rdrCtx) {
- this.rdrCtx = rdrCtx;
+ MarlinCache(final IRendererContext rdrCtx) {
+ this.rdrStats = rdrCtx.stats();
rowAAChunk = rdrCtx.newOffHeapArray(INITIAL_CHUNK_ARRAY); // 64K
@@ -120,7 +120,7 @@
tileMax = Integer.MIN_VALUE;
}
- void init(int minx, int miny, int maxx, int maxy, int edgeSumDeltaY)
+ void init(int minx, int miny, int maxx, int maxy)
{
// assert maxy >= miny && maxx >= minx;
bboxX0 = minx;
@@ -142,47 +142,16 @@
if (width <= RLE_MIN_WIDTH || width >= RLE_MAX_WIDTH) {
useRLE = false;
} else {
- // perimeter approach: how fit the total length into given height:
-
- // if stroking: meanCrossings /= 2 => divide edgeSumDeltaY by 2
- final int heightSubPixel
- = (((maxy - miny) << SUBPIXEL_LG_POSITIONS_Y) << rdrCtx.stroking);
-
- // check meanDist > block size:
- // check width / (meanCrossings - 1) >= RLE_THRESHOLD
-
- // fast case: (meanCrossingPerPixel <= 2) means 1 span only
- useRLE = (edgeSumDeltaY <= (heightSubPixel << 1))
- // note: already checked (meanCrossingPerPixel <= 2)
- // rewritten to avoid division:
- || (width * heightSubPixel) >
- ((edgeSumDeltaY - heightSubPixel) << BLOCK_SIZE_LG);
-
- if (DO_TRACE && !useRLE) {
- final float meanCrossings
- = ((float) edgeSumDeltaY) / heightSubPixel;
- final float meanDist = width / (meanCrossings - 1);
-
- System.out.println("High complexity: "
- + " for bbox[width = " + width
- + " height = " + (maxy - miny)
- + "] edgeSumDeltaY = " + edgeSumDeltaY
- + " heightSubPixel = " + heightSubPixel
- + " meanCrossings = "+ meanCrossings
- + " meanDist = " + meanDist
- + " width = " + (width * heightSubPixel)
- + " <= criteria: " + ((edgeSumDeltaY - heightSubPixel) << BLOCK_SIZE_LG)
- );
- }
+ useRLE = true;
}
}
// the ceiling of (maxy - miny + 1) / TILE_SIZE;
- final int nxTiles = (width + TILE_SIZE) >> TILE_SIZE_LG;
+ final int nxTiles = (width + TILE_W) >> TILE_W_LG;
if (nxTiles > INITIAL_ARRAY) {
if (DO_STATS) {
- rdrCtx.stats.stat_array_marlincache_touchedTile.add(nxTiles);
+ rdrStats.stat_array_marlincache_touchedTile.add(nxTiles);
}
touchedTile = touchedTile_ref.getArray(nxTiles);
}
@@ -197,7 +166,7 @@
resetTileLine(0);
if (DO_STATS) {
- rdrCtx.stats.totalOffHeap += rowAAChunk.length;
+ rdrStats.totalOffHeap += rowAAChunk.length;
}
// Return arrays:
@@ -220,14 +189,14 @@
// reset current pos
if (DO_STATS) {
- rdrCtx.stats.stat_cache_rowAAChunk.add(rowAAChunkPos);
+ rdrStats.stat_cache_rowAAChunk.add(rowAAChunkPos);
}
rowAAChunkPos = 0L;
// Reset touchedTile:
if (tileMin != Integer.MAX_VALUE) {
if (DO_STATS) {
- rdrCtx.stats.stat_cache_tiles.add(tileMax - tileMin);
+ rdrStats.stat_cache_tiles.add(tileMax - tileMin);
}
// clean only dirty touchedTile:
if (tileMax == 1) {
@@ -269,10 +238,6 @@
void copyAARowNoRLE(final int[] alphaRow, final int y,
final int px0, final int px1)
{
- if (DO_MONITORS) {
- rdrCtx.stats.mon_rdr_copyAARow.start();
- }
-
// skip useless pixels above boundary
final int px_bbox1 = FloatMath.min(px1, bboxX1);
@@ -308,12 +273,12 @@
expandRowAAChunk(needSize);
}
if (DO_STATS) {
- rdrCtx.stats.stat_cache_rowAA.add(px_bbox1 - px0);
+ rdrStats.stat_cache_rowAA.add(px_bbox1 - px0);
}
// rowAA contains only alpha values for range[x0; x1[
final int[] _touchedTile = touchedTile;
- final int _TILE_SIZE_LG = TILE_SIZE_LG;
+ final int _TILE_SIZE_LG = TILE_W_LG;
final int from = px0 - bboxX0; // first pixel inclusive
final int to = px_bbox1 - bboxX0; // last pixel exclusive
@@ -342,9 +307,9 @@
// store alpha sum (as byte):
if (val == 0) {
- _unsafe.putByte(addr_off, (byte)0); // [0..255]
+ _unsafe.putByte(addr_off, (byte)0); // [0-255]
} else {
- _unsafe.putByte(addr_off, _unsafe.getByte(addr_alpha + val)); // [0..255]
+ _unsafe.putByte(addr_off, _unsafe.getByte(addr_alpha + val)); // [0-255]
// update touchedTile
_touchedTile[x >> _TILE_SIZE_LG] += val;
@@ -368,25 +333,17 @@
}
// Clear alpha row for reuse:
- IntArrayCache.fill(alphaRow, from, px1 - bboxX0, 0);
-
- if (DO_MONITORS) {
- rdrCtx.stats.mon_rdr_copyAARow.stop();
- }
+ IntArrayCache.fill(alphaRow, from, px1 + 1 - bboxX0, 0);
}
void copyAARowRLE_WithBlockFlags(final int[] blkFlags, final int[] alphaRow,
final int y, final int px0, final int px1)
{
- if (DO_MONITORS) {
- rdrCtx.stats.mon_rdr_copyAARow.start();
- }
-
// Copy rowAA data into the piscesCache if one is present
final int _bboxX0 = bboxX0;
// process tile line [0 - 32]
- final int row = y - bboxY0;
+ final int row = y - bboxY0;
final int from = px0 - _bboxX0; // first pixel inclusive
// skip useless pixels above boundary
@@ -418,12 +375,14 @@
long addr_off = _rowAAChunk.address + initialPos;
final int[] _touchedTile = touchedTile;
- final int _TILE_SIZE_LG = TILE_SIZE_LG;
+ final int _TILE_SIZE_LG = TILE_W_LG;
final int _BLK_SIZE_LG = BLOCK_SIZE_LG;
// traverse flagged blocks:
final int blkW = (from >> _BLK_SIZE_LG);
final int blkE = (to >> _BLK_SIZE_LG) + 1;
+ // ensure last block flag = 0 to process final block:
+ blkFlags[blkE] = 0;
// Perform run-length encoding and store results in the piscesCache
int val = 0;
@@ -481,7 +440,7 @@
} else {
_unsafe.putInt(addr_off,
((_bboxX0 + cx) << 8)
- | (((int) _unsafe.getByte(addr_alpha + val)) & 0xFF) // [0..255]
+ | (((int) _unsafe.getByte(addr_alpha + val)) & 0xFF) // [0-255]
);
if (runLen == 1) {
@@ -493,7 +452,7 @@
addr_off += SIZE_INT;
if (DO_STATS) {
- rdrCtx.stats.hist_tile_generator_encoding_runLen
+ rdrStats.hist_tile_generator_encoding_runLen
.add(runLen);
}
cx0 = cx;
@@ -544,7 +503,7 @@
} else {
_unsafe.putInt(addr_off,
((_bboxX0 + to) << 8)
- | (((int) _unsafe.getByte(addr_alpha + val)) & 0xFF) // [0..255]
+ | (((int) _unsafe.getByte(addr_alpha + val)) & 0xFF) // [0-255]
);
if (runLen == 1) {
@@ -556,7 +515,7 @@
addr_off += SIZE_INT;
if (DO_STATS) {
- rdrCtx.stats.hist_tile_generator_encoding_runLen.add(runLen);
+ rdrStats.hist_tile_generator_encoding_runLen.add(runLen);
}
long len = (addr_off - _rowAAChunk.address);
@@ -568,8 +527,8 @@
rowAAChunkPos = len;
if (DO_STATS) {
- rdrCtx.stats.stat_cache_rowAA.add(rowAALen[row]);
- rdrCtx.stats.hist_tile_generator_encoding_ratio.add(
+ rdrStats.stat_cache_rowAA.add(rowAALen[row]);
+ rdrStats.hist_tile_generator_encoding_ratio.add(
(100 * skip) / (blkE - blkW)
);
}
@@ -586,17 +545,10 @@
}
// Clear alpha row for reuse:
- if (px1 > bboxX1) {
- alphaRow[to ] = 0;
- alphaRow[to + 1] = 0;
- }
+ alphaRow[to] = 0;
if (DO_CHECKS) {
IntArrayCache.check(blkFlags, blkW, blkE, 0);
- IntArrayCache.check(alphaRow, from, px1 - bboxX0, 0);
- }
-
- if (DO_MONITORS) {
- rdrCtx.stats.mon_rdr_copyAARow.stop();
+ IntArrayCache.check(alphaRow, from, px1 + 1 - bboxX0, 0);
}
}
@@ -613,7 +565,7 @@
private void expandRowAAChunk(final long needSize) {
if (DO_STATS) {
- rdrCtx.stats.stat_array_marlincache_rowAAChunk.add(needSize);
+ rdrStats.stat_array_marlincache_rowAAChunk.add(needSize);
}
// note: throw IOOB if neededSize > 2Gb:
@@ -629,7 +581,7 @@
{
// the x and y of the current row, minus bboxX0, bboxY0
// process tile line [0 - 32]
- final int _TILE_SIZE_LG = TILE_SIZE_LG;
+ final int _TILE_SIZE_LG = TILE_W_LG;
// update touchedTile
int tx = (x0 >> _TILE_SIZE_LG);
@@ -666,7 +618,7 @@
}
int alphaSumInTile(final int x) {
- return touchedTile[(x - bboxX0) >> TILE_SIZE_LG];
+ return touchedTile[(x - bboxX0) >> TILE_W_LG];
}
@Override
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinConst.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinConst.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -95,10 +95,10 @@
// 4096 edges for initial capacity
static final int INITIAL_EDGES_COUNT = MarlinProperties.getInitialEdges();
- // initial edges = 3/4 * edges count (4096)
+ // initial edges = edges count (4096)
// 6 ints per edges = 24 bytes
- // edges capacity = 24 x initial edges = 18 * edges count (4096) = 72K
- static final int INITIAL_EDGES_CAPACITY = INITIAL_EDGES_COUNT * 18;
+ // edges capacity = 24 x initial edges = 24 * edges count (4096) = 96K
+ static final int INITIAL_EDGES_CAPACITY = INITIAL_EDGES_COUNT * 24;
// zero value as byte
static final byte BYTE_0 = (byte) 0;
@@ -114,14 +114,17 @@
public static final int SUBPIXEL_POSITIONS_Y = 1 << (SUBPIXEL_LG_POSITIONS_Y);
public static final float NORM_SUBPIXELS
- = (float)Math.sqrt(( SUBPIXEL_POSITIONS_X * SUBPIXEL_POSITIONS_X
- + SUBPIXEL_POSITIONS_Y * SUBPIXEL_POSITIONS_Y)/2.0);
+ = (float) Math.sqrt(( SUBPIXEL_POSITIONS_X * SUBPIXEL_POSITIONS_X
+ + SUBPIXEL_POSITIONS_Y * SUBPIXEL_POSITIONS_Y) / 2.0d);
public static final int MAX_AA_ALPHA
= SUBPIXEL_POSITIONS_X * SUBPIXEL_POSITIONS_Y;
- public static final int TILE_SIZE_LG = MarlinProperties.getTileSize_Log2();
- public static final int TILE_SIZE = 1 << TILE_SIZE_LG; // 32 by default
+ public static final int TILE_H_LG = MarlinProperties.getTileSize_Log2();
+ public static final int TILE_H = 1 << TILE_H_LG; // 32 by default
+
+ public static final int TILE_W_LG = MarlinProperties.getTileWidth_Log2();
+ public static final int TILE_W = 1 << TILE_W_LG; // 32 by default
public static final int BLOCK_SIZE_LG = MarlinProperties.getBlockSize_Log2();
public static final int BLOCK_SIZE = 1 << BLOCK_SIZE_LG;
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinProperties.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinProperties.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -68,21 +68,21 @@
/**
* Return the log(2) corresponding to subpixel on x-axis (
*
- * @return 1 (2 subpixels) < initial pixel size < 4 (256 subpixels)
+ * @return 0 (1 subpixels) < initial pixel size < 8 (256 subpixels)
* (3 by default ie 8 subpixels)
*/
public static int getSubPixel_Log2_X() {
- return getInteger("sun.java2d.renderer.subPixel_log2_X", 3, 1, 8);
+ return getInteger("sun.java2d.renderer.subPixel_log2_X", 3, 0, 8);
}
/**
* Return the log(2) corresponding to subpixel on y-axis (
*
- * @return 1 (2 subpixels) < initial pixel size < 8 (256 subpixels)
+ * @return 0 (1 subpixels) < initial pixel size < 8 (256 subpixels)
* (3 by default ie 8 subpixels)
*/
public static int getSubPixel_Log2_Y() {
- return getInteger("sun.java2d.renderer.subPixel_log2_Y", 3, 1, 8);
+ return getInteger("sun.java2d.renderer.subPixel_log2_Y", 3, 0, 8);
}
/**
@@ -92,7 +92,18 @@
* (5 by default ie 32x32 pixels)
*/
public static int getTileSize_Log2() {
- return getInteger("sun.java2d.renderer.tileSize_log2", 5, 3, 8);
+ return getInteger("sun.java2d.renderer.tileSize_log2", 5, 3, 10);
+ }
+
+ /**
+ * Return the log(2) corresponding to the tile width in pixels
+ *
+ * @return 3 (8 pixels) < tile with < 8 (256 pixels)
+ * (by default is given by the square tile size)
+ */
+ public static int getTileWidth_Log2() {
+ final int tileSize = getTileSize_Log2();
+ return getInteger("sun.java2d.renderer.tileWidth_log2", tileSize, 3, 10);
}
/**
@@ -166,6 +177,20 @@
return getBoolean("sun.java2d.renderer.logUnsafeMalloc", "false");
}
+ // quality settings
+
+ public static float getCubicDecD2() {
+ return getFloat("sun.java2d.renderer.cubic_dec_d2", 1.0f, 0.01f, 4.0f);
+ }
+
+ public static float getCubicIncD1() {
+ return getFloat("sun.java2d.renderer.cubic_inc_d1", 0.4f, 0.01f, 2.0f);
+ }
+
+ public static float getQuadDecD2() {
+ return getFloat("sun.java2d.renderer.quad_dec_d2", 0.5f, 0.01f, 4.0f);
+ }
+
// system property utilities
static boolean getBoolean(final String key, final String def) {
return Boolean.valueOf(AccessController.doPrivileged(
@@ -197,7 +222,36 @@
}
static int align(final int val, final int norm) {
- final int ceil = FloatMath.ceil_int( ((float)val) / norm);
+ final int ceil = FloatMath.ceil_int( ((float) val) / norm);
return ceil * norm;
}
+
+ public static double getDouble(final String key, final double def,
+ final double min, final double max)
+ {
+ double value = def;
+ final String property = AccessController.doPrivileged(
+ new GetPropertyAction(key));
+
+ if (property != null) {
+ try {
+ value = Double.parseDouble(property);
+ } catch (NumberFormatException nfe) {
+ logInfo("Invalid value for " + key + " = " + property + " !");
+ }
+ }
+ // check for invalid values
+ if (value < min || value > max) {
+ logInfo("Invalid value for " + key + " = " + value
+ + "; expect value in range[" + min + ", " + max + "] !");
+ value = def;
+ }
+ return value;
+ }
+
+ public static float getFloat(final String key, final float def,
+ final float min, final float max)
+ {
+ return (float)getDouble(key, def, min, max);
+ }
}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinRenderer.java Wed May 17 22:05:11 2017 +0200
@@ -0,0 +1,30 @@
+/*
+ * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+public interface MarlinRenderer extends MarlinConst {
+
+}
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinRenderingEngine.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinRenderingEngine.java Wed May 17 22:05:11 2017 +0200
@@ -44,8 +44,8 @@
/**
* Marlin RendererEngine implementation (derived from Pisces)
*/
-public class MarlinRenderingEngine extends RenderingEngine
- implements MarlinConst
+public final class MarlinRenderingEngine extends RenderingEngine
+ implements MarlinConst
{
private static enum NormMode {
ON_WITH_AA {
@@ -80,7 +80,7 @@
PathIterator src);
}
- private static final float MIN_PEN_SIZE = 1f / NORM_SUBPIXELS;
+ private static final float MIN_PEN_SIZE = 1.0f / NORM_SUBPIXELS;
static final float UPPER_BND = Float.MAX_VALUE / 2.0f;
static final float LOWER_BND = -UPPER_BND;
@@ -259,7 +259,7 @@
*/
double EA = A*A + B*B; // x^2 coefficient
- double EB = 2.0*(A*C + B*D); // xy coefficient
+ double EB = 2.0d * (A*C + B*D); // xy coefficient
double EC = C*C + D*D; // y^2 coefficient
/*
@@ -287,7 +287,7 @@
double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
// sqrt omitted, compare to squared limits below.
- double widthsquared = ((EA + EC + hypot)/2.0);
+ double widthsquared = ((EA + EC + hypot) / 2.0d);
widthScale = (float)Math.sqrt(widthsquared);
}
@@ -332,7 +332,7 @@
final double d = at.getScaleY();
final double det = a * d - c * b;
- if (Math.abs(det) <= (2f * Float.MIN_VALUE)) {
+ if (Math.abs(det) <= (2.0f * Float.MIN_VALUE)) {
// this rendering engine takes one dimensional curves and turns
// them into 2D shapes by giving them width.
// However, if everything is to be passed through a singular
@@ -344,7 +344,7 @@
// of writing of this comment (September 16, 2010)). Actually,
// I am not sure if the moveTo is necessary to avoid the SIGSEGV
// but the pathDone is definitely needed.
- pc2d.moveTo(0f, 0f);
+ pc2d.moveTo(0.0f, 0.0f);
pc2d.pathDone();
return;
}
@@ -361,17 +361,7 @@
if (dashes != null) {
recycleDashes = true;
dashLen = dashes.length;
- final float[] newDashes;
- if (dashLen <= INITIAL_ARRAY) {
- newDashes = rdrCtx.dasher.dashes_ref.initial;
- } else {
- if (DO_STATS) {
- rdrCtx.stats.stat_array_dasher_dasher.add(dashLen);
- }
- newDashes = rdrCtx.dasher.dashes_ref.getArray(dashLen);
- }
- System.arraycopy(dashes, 0, newDashes, 0, dashLen);
- dashes = newDashes;
+ dashes = rdrCtx.dasher.copyDashArray(dashes);
for (int i = 0; i < dashLen; i++) {
dashes[i] *= scale;
}
@@ -445,7 +435,7 @@
}
private static boolean nearZero(final double num) {
- return Math.abs(num) < 2.0 * Math.ulp(num);
+ return Math.abs(num) < 2.0d * Math.ulp(num);
}
abstract static class NormalizingPathIterator implements PathIterator {
@@ -524,8 +514,8 @@
case PathIterator.SEG_LINETO:
break;
case PathIterator.SEG_QUADTO:
- coords[0] += (curx_adjust + x_adjust) / 2f;
- coords[1] += (cury_adjust + y_adjust) / 2f;
+ coords[0] += (curx_adjust + x_adjust) / 2.0f;
+ coords[1] += (cury_adjust + y_adjust) / 2.0f;
break;
case PathIterator.SEG_CUBICTO:
coords[0] += curx_adjust;
@@ -824,10 +814,8 @@
}
} finally {
if (r != null) {
- // dispose renderer:
+ // dispose renderer and recycle the RendererContext instance:
r.dispose();
- // recycle the RendererContext instance
- MarlinRenderingEngine.returnRendererContext(rdrCtx);
}
}
@@ -845,25 +833,25 @@
{
// REMIND: Deal with large coordinates!
double ldx1, ldy1, ldx2, ldy2;
- boolean innerpgram = (lw1 > 0.0 && lw2 > 0.0);
+ boolean innerpgram = (lw1 > 0.0d && lw2 > 0.0d);
if (innerpgram) {
ldx1 = dx1 * lw1;
ldy1 = dy1 * lw1;
ldx2 = dx2 * lw2;
ldy2 = dy2 * lw2;
- x -= (ldx1 + ldx2) / 2.0;
- y -= (ldy1 + ldy2) / 2.0;
+ x -= (ldx1 + ldx2) / 2.0d;
+ y -= (ldy1 + ldy2) / 2.0d;
dx1 += ldx1;
dy1 += ldy1;
dx2 += ldx2;
dy2 += ldy2;
- if (lw1 > 1.0 && lw2 > 1.0) {
+ if (lw1 > 1.0d && lw2 > 1.0d) {
// Inner parallelogram was entirely consumed by stroke...
innerpgram = false;
}
} else {
- ldx1 = ldy1 = ldx2 = ldy2 = 0.0;
+ ldx1 = ldy1 = ldx2 = ldy2 = 0.0d;
}
MarlinTileGenerator ptg = null;
@@ -884,10 +872,10 @@
if (innerpgram) {
x += ldx1 + ldx2;
y += ldy1 + ldy2;
- dx1 -= 2.0 * ldx1;
- dy1 -= 2.0 * ldy1;
- dx2 -= 2.0 * ldx2;
- dy2 -= 2.0 * ldy2;
+ dx1 -= 2.0d * ldx1;
+ dy1 -= 2.0d * ldy1;
+ dx2 -= 2.0d * ldx2;
+ dy2 -= 2.0d * ldy2;
r.moveTo((float) x, (float) y);
r.lineTo((float) (x+dx1), (float) (y+dy1));
r.lineTo((float) (x+dx1+dx2), (float) (y+dy1+dy2));
@@ -905,10 +893,8 @@
}
} finally {
if (r != null) {
- // dispose renderer:
+ // dispose renderer and recycle the RendererContext instance:
r.dispose();
- // recycle the RendererContext instance
- MarlinRenderingEngine.returnRendererContext(rdrCtx);
}
}
@@ -1035,12 +1021,11 @@
+ MarlinConst.SUBPIXEL_LG_POSITIONS_X);
logInfo("sun.java2d.renderer.subPixel_log2_Y = "
+ MarlinConst.SUBPIXEL_LG_POSITIONS_Y);
+
logInfo("sun.java2d.renderer.tileSize_log2 = "
- + MarlinConst.TILE_SIZE_LG);
-
- logInfo("sun.java2d.renderer.blockSize_log2 = "
- + MarlinConst.BLOCK_SIZE_LG);
-
+ + MarlinConst.TILE_H_LG);
+ logInfo("sun.java2d.renderer.tileWidth_log2 = "
+ + MarlinConst.TILE_W_LG);
logInfo("sun.java2d.renderer.blockSize_log2 = "
+ MarlinConst.BLOCK_SIZE_LG);
@@ -1078,8 +1063,14 @@
+ MarlinConst.LOG_UNSAFE_MALLOC);
// quality settings
+ logInfo("sun.java2d.renderer.cubic_dec_d2 = "
+ + MarlinProperties.getCubicDecD2());
+ logInfo("sun.java2d.renderer.cubic_inc_d1 = "
+ + MarlinProperties.getCubicIncD1());
+ logInfo("sun.java2d.renderer.quad_dec_d2 = "
+ + MarlinProperties.getQuadDecD2());
+
logInfo("Renderer settings:");
- logInfo("CUB_COUNT_LG = " + Renderer.CUB_COUNT_LG);
logInfo("CUB_DEC_BND = " + Renderer.CUB_DEC_BND);
logInfo("CUB_INC_BND = " + Renderer.CUB_INC_BND);
logInfo("QUAD_DEC_BND = " + Renderer.QUAD_DEC_BND);
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinTileGenerator.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinTileGenerator.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -25,25 +25,51 @@
package sun.java2d.marlin;
+import java.util.Arrays;
import sun.java2d.pipe.AATileGenerator;
import jdk.internal.misc.Unsafe;
final class MarlinTileGenerator implements AATileGenerator, MarlinConst {
- private static final int MAX_TILE_ALPHA_SUM = TILE_SIZE * TILE_SIZE
- * MAX_AA_ALPHA;
+ private static final int MAX_TILE_ALPHA_SUM = TILE_W * TILE_H * MAX_AA_ALPHA;
+
+ private static final int TH_AA_ALPHA_FILL_EMPTY = ((MAX_AA_ALPHA + 1) / 3); // 33%
+ private static final int TH_AA_ALPHA_FILL_FULL = ((MAX_AA_ALPHA + 1) * 2 / 3); // 66%
+
+ private static final int FILL_TILE_W = TILE_W >> 1; // half tile width
- private final Renderer rdr;
+ static {
+ if (MAX_TILE_ALPHA_SUM <= 0) {
+ throw new IllegalStateException("Invalid MAX_TILE_ALPHA_SUM: " + MAX_TILE_ALPHA_SUM);
+ }
+ if (DO_TRACE) {
+ System.out.println("MAX_AA_ALPHA : " + MAX_AA_ALPHA);
+ System.out.println("TH_AA_ALPHA_FILL_EMPTY : " + TH_AA_ALPHA_FILL_EMPTY);
+ System.out.println("TH_AA_ALPHA_FILL_FULL : " + TH_AA_ALPHA_FILL_FULL);
+ System.out.println("FILL_TILE_W : " + FILL_TILE_W);
+ }
+ }
+
+ private final Renderer rdrF;
+ private final DRenderer rdrD;
private final MarlinCache cache;
private int x, y;
- // per-thread renderer context
- final RendererContext rdrCtx;
+ // per-thread renderer stats
+ final RendererStats rdrStats;
- MarlinTileGenerator(Renderer r) {
- this.rdr = r;
- this.cache = r.cache;
- this.rdrCtx = r.rdrCtx;
+ MarlinTileGenerator(final RendererStats stats, final MarlinRenderer r,
+ final MarlinCache cache)
+ {
+ this.rdrStats = stats;
+ if (r instanceof Renderer) {
+ this.rdrF = (Renderer)r;
+ this.rdrD = null;
+ } else {
+ this.rdrF = null;
+ this.rdrD = (DRenderer)r;
+ }
+ this.cache = cache;
}
MarlinTileGenerator init() {
@@ -61,14 +87,17 @@
public void dispose() {
if (DO_MONITORS) {
// called from AAShapePipe.renderTiles() (render tiles end):
- rdrCtx.stats.mon_pipe_renderTiles.stop();
+ rdrStats.mon_pipe_renderTiles.stop();
}
// dispose cache:
cache.dispose();
- // dispose renderer:
- rdr.dispose();
- // recycle the RendererContext instance
- MarlinRenderingEngine.returnRendererContext(rdrCtx);
+ // dispose renderer and recycle the RendererContext instance:
+ // bimorphic call optimization:
+ if (rdrF != null) {
+ rdrF.dispose();
+ } else if (rdrD != null) {
+ rdrD.dispose();
+ }
}
void getBbox(int[] bbox) {
@@ -86,9 +115,9 @@
public int getTileWidth() {
if (DO_MONITORS) {
// called from AAShapePipe.renderTiles() (render tiles start):
- rdrCtx.stats.mon_pipe_renderTiles.start();
+ rdrStats.mon_pipe_renderTiles.start();
}
- return TILE_SIZE;
+ return TILE_W;
}
/**
@@ -97,7 +126,7 @@
*/
@Override
public int getTileHeight() {
- return TILE_SIZE;
+ return TILE_H;
}
/**
@@ -131,7 +160,7 @@
final int alpha = (al == 0x00 ? 0x00
: (al == MAX_TILE_ALPHA_SUM ? 0xff : 0x80));
if (DO_STATS) {
- rdrCtx.stats.hist_tile_generator_alpha.add(alpha);
+ rdrStats.hist_tile_generator_alpha.add(alpha);
}
return alpha;
}
@@ -143,14 +172,19 @@
*/
@Override
public void nextTile() {
- if ((x += TILE_SIZE) >= cache.bboxX1) {
+ if ((x += TILE_W) >= cache.bboxX1) {
x = cache.bboxX0;
- y += TILE_SIZE;
+ y += TILE_H;
if (y < cache.bboxY1) {
// compute for the tile line
// [ y; max(y + TILE_SIZE, bboxY1) ]
- this.rdr.endRendering(y);
+ // bimorphic call optimization:
+ if (rdrF != null) {
+ rdrF.endRendering(y);
+ } else if (rdrD != null) {
+ rdrD.endRendering(y);
+ }
}
}
}
@@ -180,7 +214,7 @@
final int rowstride)
{
if (DO_MONITORS) {
- rdrCtx.stats.mon_ptg_getAlpha.start();
+ rdrStats.mon_ptg_getAlpha.start();
}
// local vars for performance:
@@ -190,11 +224,11 @@
final int[] rowAAx1 = _cache.rowAAx1;
final int x0 = this.x;
- final int x1 = FloatMath.min(x0 + TILE_SIZE, _cache.bboxX1);
+ final int x1 = FloatMath.min(x0 + TILE_W, _cache.bboxX1);
// note: process tile line [0 - 32[
final int y0 = 0;
- final int y1 = FloatMath.min(this.y + TILE_SIZE, _cache.bboxY1) - this.y;
+ final int y1 = FloatMath.min(this.y + TILE_H, _cache.bboxY1) - this.y;
if (DO_LOG_BOUNDS) {
MarlinUtils.logInfo("getAlpha = [" + x0 + " ... " + x1
@@ -237,14 +271,14 @@
}
}
- // now: cx >= x0 but cx < aax0 (x1 < aax0)
+ // now: cx >= x0 and cx >= aax0
// Copy AA data (sum alpha data):
addr = addr_rowAA + rowAAChunkIndex[cy] + (cx - aax0);
for (end = (aax1 <= x1) ? aax1 : x1; cx < end; cx++) {
// cx inside tile[x0; x1[ :
- tile[idx++] = _unsafe.getByte(addr); // [0..255]
+ tile[idx++] = _unsafe.getByte(addr); // [0-255]
addr += SIZE;
}
}
@@ -269,7 +303,7 @@
nextTile();
if (DO_MONITORS) {
- rdrCtx.stats.mon_ptg_getAlpha.stop();
+ rdrStats.mon_ptg_getAlpha.stop();
}
}
@@ -282,7 +316,7 @@
final int rowstride)
{
if (DO_MONITORS) {
- rdrCtx.stats.mon_ptg_getAlpha.start();
+ rdrStats.mon_ptg_getAlpha.start();
}
// Decode run-length encoded alpha mask data
@@ -300,24 +334,48 @@
final long[] rowAAPos = _cache.rowAAPos;
final int x0 = this.x;
- final int x1 = FloatMath.min(x0 + TILE_SIZE, _cache.bboxX1);
+ final int x1 = FloatMath.min(x0 + TILE_W, _cache.bboxX1);
+ final int w = x1 - x0;
// note: process tile line [0 - 32[
final int y0 = 0;
- final int y1 = FloatMath.min(this.y + TILE_SIZE, _cache.bboxY1) - this.y;
+ final int y1 = FloatMath.min(this.y + TILE_H, _cache.bboxY1) - this.y;
if (DO_LOG_BOUNDS) {
MarlinUtils.logInfo("getAlpha = [" + x0 + " ... " + x1
+ "[ [" + y0 + " ... " + y1 + "[");
}
+ // avoid too small area: fill is not faster !
+ final int clearTile;
+ final byte refVal;
+ final int area;
+
+ if ((w >= FILL_TILE_W) && (area = w * y1) > 64) { // 64 / 4 ie 16 words min (faster)
+ final int alphaSum = cache.alphaSumInTile(x0);
+
+ if (alphaSum < area * TH_AA_ALPHA_FILL_EMPTY) {
+ clearTile = 1;
+ refVal = 0;
+ } else if (alphaSum > area * TH_AA_ALPHA_FILL_FULL) {
+ clearTile = 2;
+ refVal = (byte)0xff;
+ } else {
+ clearTile = 0;
+ refVal = 0;
+ }
+ } else {
+ clearTile = 0;
+ refVal = 0;
+ }
+
final Unsafe _unsafe = OffHeapArray.UNSAFE;
final long SIZE_BYTE = 1L;
final long SIZE_INT = 4L;
final long addr_rowAA = _cache.rowAAChunk.address;
long addr, addr_row, last_addr, addr_end;
- final int skipRowPixels = (rowstride - (x1 - x0));
+ final int skipRowPixels = (rowstride - w);
int cx, cy, cx1;
int rx0, rx1, runLen, end;
@@ -325,137 +383,414 @@
byte val;
int idx = offset;
- for (cy = y0; cy < y1; cy++) {
- // empty line (default)
- cx = x0;
+ switch (clearTile) {
+ case 1: // 0x00
+ // Clear full tile rows:
+ Arrays.fill(tile, offset, offset + (y1 * rowstride), refVal);
+
+ for (cy = y0; cy < y1; cy++) {
+ // empty line (default)
+ cx = x0;
+
+ if (rowAAEnc[cy] == 0) {
+ // Raw encoding:
+
+ final int aax1 = rowAAx1[cy]; // exclusive
+
+ // quick check if there is AA data
+ // corresponding to this tile [x0; x1[
+ if (aax1 > x0) {
+ final int aax0 = rowAAx0[cy]; // inclusive
+
+ if (aax0 < x1) {
+ // note: cx is the cursor pointer in the tile array
+ // (left to right)
+ cx = aax0;
- if (rowAAEnc[cy] == 0) {
- // Raw encoding:
+ // ensure cx >= x0
+ if (cx <= x0) {
+ cx = x0;
+ } else {
+ // skip line start until first AA pixel rowAA exclusive:
+ idx += (cx - x0); // > 0
+ }
+
+ // now: cx >= x0 and cx >= aax0
+
+ // Copy AA data (sum alpha data):
+ addr = addr_rowAA + rowAAChunkIndex[cy] + (cx - aax0);
- final int aax1 = rowAAx1[cy]; // exclusive
+ for (end = (aax1 <= x1) ? aax1 : x1; cx < end; cx++) {
+ tile[idx++] = _unsafe.getByte(addr); // [0-255]
+ addr += SIZE_BYTE;
+ }
+ }
+ }
+ } else {
+ // RLE encoding:
+
+ // quick check if there is AA data
+ // corresponding to this tile [x0; x1[
+ if (rowAAx1[cy] > x0) { // last pixel exclusive
- // quick check if there is AA data
- // corresponding to this tile [x0; x1[
- if (aax1 > x0) {
- final int aax0 = rowAAx0[cy]; // inclusive
+ cx = rowAAx0[cy]; // inclusive
+ if (cx > x1) {
+ cx = x1;
+ }
+
+ // skip line start until first AA pixel rowAA exclusive:
+ if (cx > x0) {
+ idx += (cx - x0); // > 0
+ }
+
+ // get row address:
+ addr_row = addr_rowAA + rowAAChunkIndex[cy];
+ // get row end address:
+ addr_end = addr_row + rowAALen[cy]; // coded length
+
+ // reuse previous iteration position:
+ addr = addr_row + rowAAPos[cy];
+
+ last_addr = 0L;
+
+ while ((cx < x1) && (addr < addr_end)) {
+ // keep current position:
+ last_addr = addr;
+
+ // packed value:
+ packed = _unsafe.getInt(addr);
- if (aax0 < x1) {
- // note: cx is the cursor pointer in the tile array
- // (left to right)
- cx = aax0;
+ // last exclusive pixel x-coordinate:
+ cx1 = (packed >> 8);
+ // as bytes:
+ addr += SIZE_INT;
- // ensure cx >= x0
- if (cx <= x0) {
- cx = x0;
- } else {
- // fill line start until first AA pixel rowAA exclusive:
- for (end = x0; end < cx; end++) {
- tile[idx++] = 0;
+ rx0 = cx;
+ if (rx0 < x0) {
+ rx0 = x0;
+ }
+ rx1 = cx = cx1;
+ if (rx1 > x1) {
+ rx1 = x1;
+ cx = x1; // fix last x
+ }
+ // adjust runLen:
+ runLen = rx1 - rx0;
+
+ // ensure rx1 > rx0:
+ if (runLen > 0) {
+ packed &= 0xFF; // [0-255]
+
+ if (packed == 0)
+ {
+ idx += runLen;
+ continue;
+ }
+ val = (byte) packed; // [0-255]
+ do {
+ tile[idx++] = val;
+ } while (--runLen > 0);
}
}
- // now: cx >= x0 but cx < aax0 (x1 < aax0)
-
- // Copy AA data (sum alpha data):
- addr = addr_rowAA + rowAAChunkIndex[cy] + (cx - aax0);
-
- for (end = (aax1 <= x1) ? aax1 : x1; cx < end; cx++) {
- tile[idx++] = _unsafe.getByte(addr); // [0..255]
- addr += SIZE_BYTE;
+ // Update last position in RLE entries:
+ if (last_addr != 0L) {
+ // Fix x0:
+ rowAAx0[cy] = cx; // inclusive
+ // Fix position:
+ rowAAPos[cy] = (last_addr - addr_row);
}
}
}
- } else {
- // RLE encoding:
+
+ // skip line end
+ if (cx < x1) {
+ idx += (x1 - cx); // > 0
+ }
+
+ if (DO_TRACE) {
+ for (int i = idx - (x1 - x0); i < idx; i++) {
+ System.out.print(hex(tile[i], 2));
+ }
+ System.out.println();
+ }
- // quick check if there is AA data
- // corresponding to this tile [x0; x1[
- if (rowAAx1[cy] > x0) { // last pixel exclusive
+ idx += skipRowPixels;
+ }
+ break;
- cx = rowAAx0[cy]; // inclusive
- if (cx > x1) {
- cx = x1;
- }
+ case 0:
+ default:
+ for (cy = y0; cy < y1; cy++) {
+ // empty line (default)
+ cx = x0;
+
+ if (rowAAEnc[cy] == 0) {
+ // Raw encoding:
+
+ final int aax1 = rowAAx1[cy]; // exclusive
- // fill line start until first AA pixel rowAA exclusive:
- for (int i = x0; i < cx; i++) {
- tile[idx++] = 0;
- }
+ // quick check if there is AA data
+ // corresponding to this tile [x0; x1[
+ if (aax1 > x0) {
+ final int aax0 = rowAAx0[cy]; // inclusive
+
+ if (aax0 < x1) {
+ // note: cx is the cursor pointer in the tile array
+ // (left to right)
+ cx = aax0;
- // get row address:
- addr_row = addr_rowAA + rowAAChunkIndex[cy];
- // get row end address:
- addr_end = addr_row + rowAALen[cy]; // coded length
+ // ensure cx >= x0
+ if (cx <= x0) {
+ cx = x0;
+ } else {
+ for (end = x0; end < cx; end++) {
+ tile[idx++] = 0;
+ }
+ }
+
+ // now: cx >= x0 and cx >= aax0
- // reuse previous iteration position:
- addr = addr_row + rowAAPos[cy];
+ // Copy AA data (sum alpha data):
+ addr = addr_rowAA + rowAAChunkIndex[cy] + (cx - aax0);
- last_addr = 0L;
+ for (end = (aax1 <= x1) ? aax1 : x1; cx < end; cx++) {
+ tile[idx++] = _unsafe.getByte(addr); // [0-255]
+ addr += SIZE_BYTE;
+ }
+ }
+ }
+ } else {
+ // RLE encoding:
- while ((cx < x1) && (addr < addr_end)) {
- // keep current position:
- last_addr = addr;
-
- // packed value:
- packed = _unsafe.getInt(addr);
+ // quick check if there is AA data
+ // corresponding to this tile [x0; x1[
+ if (rowAAx1[cy] > x0) { // last pixel exclusive
- // last exclusive pixel x-coordinate:
- cx1 = (packed >> 8);
- // as bytes:
- addr += SIZE_INT;
+ cx = rowAAx0[cy]; // inclusive
+ if (cx > x1) {
+ cx = x1;
+ }
- rx0 = cx;
- if (rx0 < x0) {
- rx0 = x0;
+ // fill line start until first AA pixel rowAA exclusive:
+ for (end = x0; end < cx; end++) {
+ tile[idx++] = 0;
}
- rx1 = cx = cx1;
- if (rx1 > x1) {
- rx1 = x1;
- cx = x1; // fix last x
- }
- // adjust runLen:
- runLen = rx1 - rx0;
+
+ // get row address:
+ addr_row = addr_rowAA + rowAAChunkIndex[cy];
+ // get row end address:
+ addr_end = addr_row + rowAALen[cy]; // coded length
+
+ // reuse previous iteration position:
+ addr = addr_row + rowAAPos[cy];
+
+ last_addr = 0L;
+
+ while ((cx < x1) && (addr < addr_end)) {
+ // keep current position:
+ last_addr = addr;
+
+ // packed value:
+ packed = _unsafe.getInt(addr);
+
+ // last exclusive pixel x-coordinate:
+ cx1 = (packed >> 8);
+ // as bytes:
+ addr += SIZE_INT;
- // ensure rx1 > rx0:
- if (runLen > 0) {
- val = (byte)(packed & 0xFF); // [0..255]
+ rx0 = cx;
+ if (rx0 < x0) {
+ rx0 = x0;
+ }
+ rx1 = cx = cx1;
+ if (rx1 > x1) {
+ rx1 = x1;
+ cx = x1; // fix last x
+ }
+ // adjust runLen:
+ runLen = rx1 - rx0;
- do {
- tile[idx++] = val;
- } while (--runLen > 0);
+ // ensure rx1 > rx0:
+ if (runLen > 0) {
+ packed &= 0xFF; // [0-255]
+
+ val = (byte) packed; // [0-255]
+ do {
+ tile[idx++] = val;
+ } while (--runLen > 0);
+ }
+ }
+
+ // Update last position in RLE entries:
+ if (last_addr != 0L) {
+ // Fix x0:
+ rowAAx0[cy] = cx; // inclusive
+ // Fix position:
+ rowAAPos[cy] = (last_addr - addr_row);
}
}
+ }
- // Update last position in RLE entries:
- if (last_addr != 0L) {
- // Fix x0:
- rowAAx0[cy] = cx; // inclusive
- // Fix position:
- rowAAPos[cy] = (last_addr - addr_row);
+ // fill line end
+ while (cx < x1) {
+ tile[idx++] = 0;
+ cx++;
+ }
+
+ if (DO_TRACE) {
+ for (int i = idx - (x1 - x0); i < idx; i++) {
+ System.out.print(hex(tile[i], 2));
+ }
+ System.out.println();
+ }
+
+ idx += skipRowPixels;
+ }
+ break;
+
+ case 2: // 0xFF
+ // Fill full tile rows:
+ Arrays.fill(tile, offset, offset + (y1 * rowstride), refVal);
+
+ for (cy = y0; cy < y1; cy++) {
+ // empty line (default)
+ cx = x0;
+
+ if (rowAAEnc[cy] == 0) {
+ // Raw encoding:
+
+ final int aax1 = rowAAx1[cy]; // exclusive
+
+ // quick check if there is AA data
+ // corresponding to this tile [x0; x1[
+ if (aax1 > x0) {
+ final int aax0 = rowAAx0[cy]; // inclusive
+
+ if (aax0 < x1) {
+ // note: cx is the cursor pointer in the tile array
+ // (left to right)
+ cx = aax0;
+
+ // ensure cx >= x0
+ if (cx <= x0) {
+ cx = x0;
+ } else {
+ // fill line start until first AA pixel rowAA exclusive:
+ for (end = x0; end < cx; end++) {
+ tile[idx++] = 0;
+ }
+ }
+
+ // now: cx >= x0 and cx >= aax0
+
+ // Copy AA data (sum alpha data):
+ addr = addr_rowAA + rowAAChunkIndex[cy] + (cx - aax0);
+
+ for (end = (aax1 <= x1) ? aax1 : x1; cx < end; cx++) {
+ tile[idx++] = _unsafe.getByte(addr); // [0-255]
+ addr += SIZE_BYTE;
+ }
+ }
+ }
+ } else {
+ // RLE encoding:
+
+ // quick check if there is AA data
+ // corresponding to this tile [x0; x1[
+ if (rowAAx1[cy] > x0) { // last pixel exclusive
+
+ cx = rowAAx0[cy]; // inclusive
+ if (cx > x1) {
+ cx = x1;
+ }
+
+ // fill line start until first AA pixel rowAA exclusive:
+ for (end = x0; end < cx; end++) {
+ tile[idx++] = 0;
+ }
+
+ // get row address:
+ addr_row = addr_rowAA + rowAAChunkIndex[cy];
+ // get row end address:
+ addr_end = addr_row + rowAALen[cy]; // coded length
+
+ // reuse previous iteration position:
+ addr = addr_row + rowAAPos[cy];
+
+ last_addr = 0L;
+
+ while ((cx < x1) && (addr < addr_end)) {
+ // keep current position:
+ last_addr = addr;
+
+ // packed value:
+ packed = _unsafe.getInt(addr);
+
+ // last exclusive pixel x-coordinate:
+ cx1 = (packed >> 8);
+ // as bytes:
+ addr += SIZE_INT;
+
+ rx0 = cx;
+ if (rx0 < x0) {
+ rx0 = x0;
+ }
+ rx1 = cx = cx1;
+ if (rx1 > x1) {
+ rx1 = x1;
+ cx = x1; // fix last x
+ }
+ // adjust runLen:
+ runLen = rx1 - rx0;
+
+ // ensure rx1 > rx0:
+ if (runLen > 0) {
+ packed &= 0xFF; // [0-255]
+
+ if (packed == 0xFF)
+ {
+ idx += runLen;
+ continue;
+ }
+ val = (byte) packed; // [0-255]
+ do {
+ tile[idx++] = val;
+ } while (--runLen > 0);
+ }
+ }
+
+ // Update last position in RLE entries:
+ if (last_addr != 0L) {
+ // Fix x0:
+ rowAAx0[cy] = cx; // inclusive
+ // Fix position:
+ rowAAPos[cy] = (last_addr - addr_row);
+ }
}
}
- }
- // fill line end
- while (cx < x1) {
- tile[idx++] = 0;
- cx++;
- }
+ // fill line end
+ while (cx < x1) {
+ tile[idx++] = 0;
+ cx++;
+ }
- if (DO_TRACE) {
- for (int i = idx - (x1 - x0); i < idx; i++) {
- System.out.print(hex(tile[i], 2));
+ if (DO_TRACE) {
+ for (int i = idx - (x1 - x0); i < idx; i++) {
+ System.out.print(hex(tile[i], 2));
+ }
+ System.out.println();
}
- System.out.println();
+
+ idx += skipRowPixels;
}
-
- idx += skipRowPixels;
}
nextTile();
if (DO_MONITORS) {
- rdrCtx.stats.mon_ptg_getAlpha.stop();
+ rdrStats.mon_ptg_getAlpha.stop();
}
}
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/OffHeapArray.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/OffHeapArray.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -89,6 +89,7 @@
+ this.length
+ " at addr = " + this.address);
}
+ this.address = 0L;
}
void fill(final byte val) {
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Renderer.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Renderer.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -25,41 +25,38 @@
package sun.java2d.marlin;
-import java.util.Arrays;
import sun.awt.geom.PathConsumer2D;
import static sun.java2d.marlin.OffHeapArray.SIZE_INT;
import jdk.internal.misc.Unsafe;
-final class Renderer implements PathConsumer2D, MarlinConst {
+final class Renderer implements PathConsumer2D, MarlinRenderer {
static final boolean DISABLE_RENDER = false;
static final boolean ENABLE_BLOCK_FLAGS = MarlinProperties.isUseTileFlags();
static final boolean ENABLE_BLOCK_FLAGS_HEURISTICS = MarlinProperties.isUseTileFlagsWithHeuristics();
- private static final int ALL_BUT_LSB = 0xfffffffe;
- private static final int ERR_STEP_MAX = 0x7fffffff; // = 2^31 - 1
+ private static final int ALL_BUT_LSB = 0xFFFFFFFE;
+ private static final int ERR_STEP_MAX = 0x7FFFFFFF; // = 2^31 - 1
- private static final double POWER_2_TO_32 = 0x1.0p32;
+ private static final double POWER_2_TO_32 = 0x1.0p32d;
// use float to make tosubpix methods faster (no int to float conversion)
- public static final float F_SUBPIXEL_POSITIONS_X
- = (float) SUBPIXEL_POSITIONS_X;
- public static final float F_SUBPIXEL_POSITIONS_Y
- = (float) SUBPIXEL_POSITIONS_Y;
- public static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1;
- public static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1;
+ static final float SUBPIXEL_SCALE_X = (float) SUBPIXEL_POSITIONS_X;
+ static final float SUBPIXEL_SCALE_Y = (float) SUBPIXEL_POSITIONS_Y;
+ static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1;
+ static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1;
// number of subpixels corresponding to a tile line
private static final int SUBPIXEL_TILE
- = TILE_SIZE << SUBPIXEL_LG_POSITIONS_Y;
+ = TILE_H << SUBPIXEL_LG_POSITIONS_Y;
// 2048 (pixelSize) pixels (height) x 8 subpixels = 64K
static final int INITIAL_BUCKET_ARRAY
= INITIAL_PIXEL_DIM * SUBPIXEL_POSITIONS_Y;
- // crossing capacity = edges count / 8 ~ 512
- static final int INITIAL_CROSSING_COUNT = INITIAL_EDGES_COUNT >> 3;
+ // crossing capacity = edges count / 4 ~ 1024
+ static final int INITIAL_CROSSING_COUNT = INITIAL_EDGES_COUNT >> 2;
public static final int WIND_EVEN_ODD = 0;
public static final int WIND_NON_ZERO = 1;
@@ -80,20 +77,20 @@
// curve break into lines
// cubic error in subpixels to decrement step
private static final float CUB_DEC_ERR_SUBPIX
- = 2.5f * (NORM_SUBPIXELS / 8f); // 2.5 subpixel for typical 8x8 subpixels
+ = MarlinProperties.getCubicDecD2() * (NORM_SUBPIXELS / 8.0f); // 1 pixel
// cubic error in subpixels to increment step
private static final float CUB_INC_ERR_SUBPIX
- = 1f * (NORM_SUBPIXELS / 8f); // 1 subpixel for typical 8x8 subpixels
+ = MarlinProperties.getCubicIncD1() * (NORM_SUBPIXELS / 8.0f); // 0.4 pixel
+
+ // TestNonAARasterization (JDK-8170879): cubics
+ // bad paths (59294/100000 == 59,29%, 94335 bad pixels (avg = 1,59), 3966 warnings (avg = 0,07)
- // cubic bind length to decrement step = 8 * error in subpixels
- // pisces: 20 / 8
- // openjfx pisces: 8 / 3.2
- // multiply by 8 = error scale factor:
+ // cubic bind length to decrement step
public static final float CUB_DEC_BND
- = 8f * CUB_DEC_ERR_SUBPIX; // 20f means 2.5 subpixel error
- // cubic bind length to increment step = 8 * error in subpixels
+ = 8.0f * CUB_DEC_ERR_SUBPIX;
+ // cubic bind length to increment step
public static final float CUB_INC_BND
- = 8f * CUB_INC_ERR_SUBPIX; // 8f means 1 subpixel error
+ = 8.0f * CUB_INC_ERR_SUBPIX;
// cubic countlg
public static final int CUB_COUNT_LG = 2;
@@ -104,21 +101,23 @@
// cubic count^3 = 8^countlg
private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG);
// cubic dt = 1 / count
- private static final float CUB_INV_COUNT = 1f / CUB_COUNT;
+ private static final float CUB_INV_COUNT = 1.0f / CUB_COUNT;
// cubic dt^2 = 1 / count^2 = 1 / 4^countlg
- private static final float CUB_INV_COUNT_2 = 1f / CUB_COUNT_2;
+ private static final float CUB_INV_COUNT_2 = 1.0f / CUB_COUNT_2;
// cubic dt^3 = 1 / count^3 = 1 / 8^countlg
- private static final float CUB_INV_COUNT_3 = 1f / CUB_COUNT_3;
+ private static final float CUB_INV_COUNT_3 = 1.0f / CUB_COUNT_3;
// quad break into lines
// quadratic error in subpixels
private static final float QUAD_DEC_ERR_SUBPIX
- = 1f * (NORM_SUBPIXELS / 8f); // 1 subpixel for typical 8x8 subpixels
+ = MarlinProperties.getQuadDecD2() * (NORM_SUBPIXELS / 8.0f); // 0.5 pixel
- // quadratic bind length to decrement step = 8 * error in subpixels
- // pisces and openjfx pisces: 32
+ // TestNonAARasterization (JDK-8170879): quads
+ // bad paths (62916/100000 == 62,92%, 103818 bad pixels (avg = 1,65), 6514 warnings (avg = 0,10)
+
+ // quadratic bind length to decrement step
public static final float QUAD_DEC_BND
- = 8f * QUAD_DEC_ERR_SUBPIX; // 8f means 1 subpixel error
+ = 8.0f * QUAD_DEC_ERR_SUBPIX;
//////////////////////////////////////////////////////////////////////////////
// SCAN LINE
@@ -157,7 +156,7 @@
private float edgeMinX = Float.POSITIVE_INFINITY;
private float edgeMaxX = Float.NEGATIVE_INFINITY;
- // edges [floats|ints] stored in off-heap memory
+ // edges [ints] stored in off-heap memory
private final OffHeapArray edges;
private int[] edgeBuckets;
@@ -165,8 +164,6 @@
// used range for edgeBuckets / edgeBucketCounts
private int buckets_minY;
private int buckets_maxY;
- // sum of each edge delta Y (subpixels)
- private int edgeSumDeltaY;
// edgeBuckets ref (clean)
private final IntArrayCache.Reference edgeBuckets_ref;
@@ -183,13 +180,13 @@
int count = 1; // dt = 1 / count
// maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1)
- float maxDD = FloatMath.max(Math.abs(c.dbx), Math.abs(c.dby));
+ float maxDD = Math.abs(c.dbx) + Math.abs(c.dby);
final float _DEC_BND = QUAD_DEC_BND;
while (maxDD >= _DEC_BND) {
// divide step by half:
- maxDD /= 4f; // error divided by 2^2 = 4
+ maxDD /= 4.0f; // error divided by 2^2 = 4
count <<= 1;
if (DO_STATS) {
@@ -199,7 +196,7 @@
int nL = 0; // line count
if (count > 1) {
- final float icount = 1f / count; // dt
+ final float icount = 1.0f / count; // dt
final float icount2 = icount * icount; // dt^2
final float ddx = c.dbx * icount2;
@@ -246,8 +243,8 @@
// the dx and dy refer to forward differencing variables, not the last
// coefficients of the "points" polynomial
float dddx, dddy, ddx, ddy, dx, dy;
- dddx = 2f * c.dax * icount3;
- dddy = 2f * c.day * icount3;
+ dddx = 2.0f * c.dax * icount3;
+ dddy = 2.0f * c.day * icount3;
ddx = dddx + c.dbx * icount2;
ddy = dddy + c.dby * icount2;
dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount;
@@ -262,13 +259,13 @@
while (count > 0) {
// divide step by half:
- while (Math.abs(ddx) >= _DEC_BND || Math.abs(ddy) >= _DEC_BND) {
- dddx /= 8f;
- dddy /= 8f;
- ddx = ddx/4f - dddx;
- ddy = ddy/4f - dddy;
- dx = (dx - ddx) / 2f;
- dy = (dy - ddy) / 2f;
+ while (Math.abs(ddx) + Math.abs(ddy) >= _DEC_BND) {
+ dddx /= 8.0f;
+ dddy /= 8.0f;
+ ddx = ddx / 4.0f - dddx;
+ ddy = ddy / 4.0f - dddy;
+ dx = (dx - ddx) / 2.0f;
+ dy = (dy - ddy) / 2.0f;
count <<= 1;
if (DO_STATS) {
@@ -277,19 +274,16 @@
}
// double step:
- // TODO: why use first derivative dX|Y instead of second ddX|Y ?
- // both scale changes should use speed or acceleration to have the same metric.
-
// can only do this on even "count" values, because we must divide count by 2
while (count % 2 == 0
- && Math.abs(dx) <= _INC_BND && Math.abs(dy) <= _INC_BND)
+ && Math.abs(dx) + Math.abs(dy) <= _INC_BND)
{
- dx = 2f * dx + ddx;
- dy = 2f * dy + ddy;
- ddx = 4f * (ddx + dddx);
- ddy = 4f * (ddy + dddy);
- dddx *= 8f;
- dddy *= 8f;
+ dx = 2.0f * dx + ddx;
+ dy = 2.0f * dy + ddy;
+ ddx = 4.0f * (ddx + dddx);
+ ddy = 4.0f * (ddy + dddy);
+ dddx *= 8.0f;
+ dddy *= 8.0f;
count >>= 1;
if (DO_STATS) {
@@ -337,7 +331,7 @@
x1 = tmp;
}
- // convert subpixel coordinates (float) into pixel positions (int)
+ // convert subpixel coordinates [float] into pixel positions [int]
// The index of the pixel that holds the next HPC is at ceil(trueY - 0.5)
// Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply
@@ -361,7 +355,7 @@
return;
}
- // edge min/max X/Y are in subpixel space (inclusive) within bounds:
+ // edge min/max X/Y are in subpixel space (half-open interval):
// note: Use integer crossings to ensure consistent range within
// edgeBuckets / edgeBucketCounts arrays in case of NaN values (int = 0)
if (firstCrossing < edgeMinY) {
@@ -376,7 +370,7 @@
final double y1d = y1;
final double slope = (x1d - x2) / (y1d - y2);
- if (slope >= 0.0) { // <==> x1 < x2
+ if (slope >= 0.0d) { // <==> x1 < x2
if (x1 < edgeMinX) {
edgeMinX = x1;
}
@@ -439,13 +433,13 @@
// long x1_fixed = x1_intercept * 2^32; (fixed point 32.32 format)
// curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1)
// = fixed_floor(x1_fixed + 2^31 - 1)
- // = fixed_floor(x1_fixed + 0x7fffffff)
- // and error = fixed_fract(x1_fixed + 0x7fffffff)
+ // = fixed_floor(x1_fixed + 0x7FFFFFFF)
+ // and error = fixed_fract(x1_fixed + 0x7FFFFFFF)
final double x1_intercept = x1d + (firstCrossing - y1d) * slope;
// inlined scalb(x1_intercept, 32):
final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept))
- + 0x7fffffffL;
+ + 0x7FFFFFFFL;
// curx:
// last bit corresponds to the orientation
_unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or);
@@ -474,7 +468,7 @@
// pointer from bucket
_unsafe.putInt(addr, _edgeBuckets[bucketIdx]);
addr += SIZE_INT;
- // y max (inclusive)
+ // y max (exclusive)
_unsafe.putInt(addr, lastCrossing);
// Update buckets:
@@ -484,9 +478,6 @@
// last bit means edge end
_edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1;
- // update sum of delta Y (subpixels):
- edgeSumDeltaY += (lastCrossing - firstCrossing);
-
// update free pointer (ie length in bytes)
_edges.used += _SIZEOF_EDGE_BYTES;
@@ -568,8 +559,8 @@
Renderer init(final int pix_boundsX, final int pix_boundsY,
final int pix_boundsWidth, final int pix_boundsHeight,
- final int windingRule) {
-
+ final int windingRule)
+ {
this.windingRule = windingRule;
// bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
@@ -611,8 +602,6 @@
activeEdgeMaxUsed = 0;
edges.used = 0;
- edgeSumDeltaY = 0;
-
return this; // fluent API
}
@@ -669,15 +658,17 @@
if (DO_MONITORS) {
rdrCtx.stats.mon_rdr_endRendering.stop();
}
+ // recycle the RendererContext instance
+ MarlinRenderingEngine.returnRendererContext(rdrCtx);
}
private static float tosubpixx(final float pix_x) {
- return F_SUBPIXEL_POSITIONS_X * pix_x;
+ return SUBPIXEL_SCALE_X * pix_x;
}
private static float tosubpixy(final float pix_y) {
// shift y by -0.5 for fast ceil(y - 0.5):
- return F_SUBPIXEL_POSITIONS_Y * pix_y - 0.5f;
+ return SUBPIXEL_SCALE_Y * pix_y - 0.5f;
}
@Override
@@ -702,8 +693,8 @@
@Override
public void curveTo(float x1, float y1,
- float x2, float y2,
- float x3, float y3)
+ float x2, float y2,
+ float x3, float y3)
{
final float xe = tosubpixx(x3);
final float ye = tosubpixy(y3);
@@ -969,8 +960,8 @@
// get the pointer to the edge
ecur = _edgePtrs[i];
- /* convert subpixel coordinates (float) into pixel
- positions (int) for coming scanline */
+ /* convert subpixel coordinates into pixel
+ positions for coming scanline */
/* note: it is faster to always update edges even
if it is removed from AEL for coming or last scanline */
@@ -1069,8 +1060,8 @@
// get the pointer to the edge
ecur = _edgePtrs[i];
- /* convert subpixel coordinates (float) into pixel
- positions (int) for coming scanline */
+ /* convert subpixel coordinates into pixel
+ positions for coming scanline */
/* note: it is faster to always update edges even
if it is removed from AEL for coming or last scanline */
@@ -1176,7 +1167,14 @@
// TODO: perform line clipping on left-right sides
// to avoid such bound checks:
x0 = (prev > bboxx0) ? prev : bboxx0;
- x1 = (curx < bboxx1) ? curx : bboxx1;
+
+ if (curx < bboxx1) {
+ x1 = curx;
+ } else {
+ x1 = bboxx1;
+ // skip right side (fast exit loop):
+ i = numCrossings;
+ }
if (x0 < x1) {
x0 -= bboxx0; // turn x0, x1 from coords to indices
@@ -1193,7 +1191,8 @@
if (useBlkFlags) {
// flag used blocks:
- _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
+ // note: block processing handles extra pixel:
+ _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
}
} else {
tmp = (x0 & _SUBPIXEL_MASK_X);
@@ -1212,6 +1211,7 @@
if (useBlkFlags) {
// flag used blocks:
+ // note: block processing handles extra pixel:
_blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
_blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
}
@@ -1237,7 +1237,14 @@
// TODO: perform line clipping on left-right sides
// to avoid such bound checks:
x0 = (prev > bboxx0) ? prev : bboxx0;
- x1 = (curx < bboxx1) ? curx : bboxx1;
+
+ if (curx < bboxx1) {
+ x1 = curx;
+ } else {
+ x1 = bboxx1;
+ // skip right side (fast exit loop):
+ i = numCrossings;
+ }
if (x0 < x1) {
x0 -= bboxx0; // turn x0, x1 from coords to indices
@@ -1254,7 +1261,8 @@
if (useBlkFlags) {
// flag used blocks:
- _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
+ // note: block processing handles extra pixel:
+ _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
}
} else {
tmp = (x0 & _SUBPIXEL_MASK_X);
@@ -1273,6 +1281,7 @@
if (useBlkFlags) {
// flag used blocks:
+ // note: block processing handles extra pixel:
_blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
_blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
}
@@ -1306,9 +1315,12 @@
if (maxX >= minX) {
// note: alpha array will be zeroed by copyAARow()
- // +2 because alpha [pix_minX; pix_maxX+1]
+ // +1 because alpha [pix_minX; pix_maxX[
// fix range [x0; x1[
- copyAARow(_alpha, lastY, minX, maxX + 2, useBlkFlags);
+ // note: if x1=bboxx1, then alpha is written up to bboxx1+1
+ // inclusive: alpha[bboxx1] ignored, alpha[bboxx1+1] == 0
+ // (normally so never cleared below)
+ copyAARow(_alpha, lastY, minX, maxX + 1, useBlkFlags);
// speculative for next pixel row (scanline coherence):
if (_enableBlkFlagsHeuristics) {
@@ -1350,9 +1362,12 @@
if (maxX >= minX) {
// note: alpha array will be zeroed by copyAARow()
- // +2 because alpha [pix_minX; pix_maxX+1]
+ // +1 because alpha [pix_minX; pix_maxX[
// fix range [x0; x1[
- copyAARow(_alpha, y, minX, maxX + 2, useBlkFlags);
+ // note: if x1=bboxx1, then alpha is written up to bboxx1+1
+ // inclusive: alpha[bboxx1] ignored then cleared and
+ // alpha[bboxx1+1] == 0 (normally so never cleared after)
+ copyAARow(_alpha, y, minX, maxX + 1, useBlkFlags);
} else if (y != lastY) {
_cache.clearAARow(y);
}
@@ -1375,36 +1390,26 @@
return false; // undefined edges bounds
}
- final int _boundsMinY = boundsMinY;
- final int _boundsMaxY = boundsMaxY;
-
- // bounds as inclusive intervals
+ // bounds as half-open intervals
final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5f), boundsMinX);
- final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5f), boundsMaxX - 1);
+ final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5f), boundsMaxX);
// edge Min/Max Y are already rounded to subpixels within bounds:
final int spminY = edgeMinY;
- final int spmaxY;
- int maxY = edgeMaxY;
+ final int spmaxY = edgeMaxY;
- if (maxY <= _boundsMaxY - 1) {
- spmaxY = maxY;
- } else {
- spmaxY = _boundsMaxY - 1;
- maxY = _boundsMaxY;
- }
- buckets_minY = spminY - _boundsMinY;
- buckets_maxY = maxY - _boundsMinY;
+ buckets_minY = spminY - boundsMinY;
+ buckets_maxY = spmaxY - boundsMinY;
if (DO_LOG_BOUNDS) {
MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX
- + "][" + edgeMinY + " ... " + edgeMaxY + "]");
+ + "[ [" + edgeMinY + " ... " + edgeMaxY + "[");
MarlinUtils.logInfo("spXY = [" + spminX + " ... " + spmaxX
- + "][" + spminY + " ... " + spmaxY + "]");
+ + "[ [" + spminY + " ... " + spmaxY + "[");
}
// test clipping for shapes out of bounds
- if ((spminX > spmaxX) || (spminY > spmaxY)) {
+ if ((spminX >= spmaxX) || (spminY >= spmaxY)) {
return false;
}
@@ -1419,7 +1424,7 @@
final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
// store BBox to answer ptg.getBBox():
- this.cache.init(pminX, pminY, pmaxX, pmaxY, edgeSumDeltaY);
+ this.cache.init(pminX, pminY, pmaxX, pmaxY);
// Heuristics for using block flags:
if (ENABLE_BLOCK_FLAGS) {
@@ -1429,9 +1434,9 @@
if (enableBlkFlags) {
// ensure blockFlags array is large enough:
// note: +2 to ensure enough space left at end
- final int nxTiles = ((pmaxX - pminX) >> TILE_SIZE_LG) + 2;
- if (nxTiles > INITIAL_ARRAY) {
- blkFlags = blkFlags_ref.getArray(nxTiles);
+ final int blkLen = ((pmaxX - pminX) >> BLOCK_SIZE_LG) + 2;
+ if (blkLen > INITIAL_ARRAY) {
+ blkFlags = blkFlags_ref.getArray(blkLen);
}
}
}
@@ -1446,7 +1451,7 @@
// inclusive:
bbox_spminY = spminY;
// exclusive:
- bbox_spmaxY = FloatMath.min(spmaxY + 1, pmaxY << SUBPIXEL_LG_POSITIONS_Y);
+ bbox_spmaxY = spmaxY;
if (DO_LOG_BOUNDS) {
MarlinUtils.logInfo("pXY = [" + pminX + " ... " + pmaxX
@@ -1504,6 +1509,9 @@
final int pix_y, final int pix_from, final int pix_to,
final boolean useBlockFlags)
{
+ if (DO_MONITORS) {
+ rdrCtx.stats.mon_rdr_copyAARow.start();
+ }
if (useBlockFlags) {
if (DO_STATS) {
rdrCtx.stats.hist_tile_generator_encoding.add(1);
@@ -1515,5 +1523,8 @@
}
cache.copyAARowNoRLE(alphaRow, pix_y, pix_from, pix_to);
}
+ if (DO_MONITORS) {
+ rdrCtx.stats.mon_rdr_copyAARow.stop();
+ }
}
}
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/RendererContext.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/RendererContext.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -35,7 +35,7 @@
/**
* This class is a renderer context dedicated to a single thread
*/
-final class RendererContext extends ReentrantContext implements MarlinConst {
+final class RendererContext extends ReentrantContext implements IRendererContext {
// RendererContext creation counter
private static final AtomicInteger CTX_COUNT = new AtomicInteger(1);
@@ -121,7 +121,7 @@
// Renderer:
cache = new MarlinCache(this);
renderer = new Renderer(this); // needs MarlinCache from rdrCtx.cache
- ptg = new MarlinTileGenerator(renderer);
+ ptg = new MarlinTileGenerator(stats, renderer, cache);
stroker = new Stroker(this);
dasher = new Dasher(this);
@@ -174,14 +174,21 @@
return p2d;
}
- OffHeapArray newOffHeapArray(final long initialSize) {
+ @Override
+ public RendererStats stats() {
+ return stats;
+ }
+
+ @Override
+ public OffHeapArray newOffHeapArray(final long initialSize) {
if (DO_STATS) {
stats.totalOffHeapInitial += initialSize;
}
return new OffHeapArray(cleanerObj, initialSize);
}
- IntArrayCache.Reference newCleanIntArrayRef(final int initialSize) {
+ @Override
+ public IntArrayCache.Reference newCleanIntArrayRef(final int initialSize) {
return cleanIntCache.createRef(initialSize);
}
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Stroker.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Stroker.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -26,12 +26,8 @@
package sun.java2d.marlin;
import java.util.Arrays;
-import static java.lang.Math.ulp;
-import static java.lang.Math.sqrt;
import sun.awt.geom.PathConsumer2D;
-import sun.java2d.marlin.Curve.BreakPtrIterator;
-
// TODO: some of the arithmetic here is too verbose and prone to hard to
// debug typos. We should consider making a small Point/Vector class that
@@ -75,7 +71,7 @@
// pisces used to use fixed point arithmetic with 16 decimal digits. I
// didn't want to change the values of the constant below when I converted
// it to floating point, so that's why the divisions by 2^16 are there.
- private static final float ROUND_JOIN_THRESHOLD = 1000/65536f;
+ private static final float ROUND_JOIN_THRESHOLD = 1000.0f/65536.0f;
private static final float C = 0.5522847498307933f;
@@ -112,9 +108,8 @@
private final PolyStack reverse;
// This is where the curve to be processed is put. We give it
- // enough room to store 2 curves: one for the current subdivision, the
- // other for the rest of the curve.
- private final float[] middle = new float[2 * 8];
+ // enough room to store all curves.
+ private final float[] middle = new float[MAX_N_CURVES * 6 + 2];
private final float[] lp = new float[8];
private final float[] rp = new float[8];
private final float[] subdivTs = new float[MAX_N_CURVES - 1];
@@ -158,8 +153,8 @@
{
this.out = pc2d;
- this.lineWidth2 = lineWidth / 2f;
- this.invHalfLineWidth2Sq = 1f / (2f * lineWidth2 * lineWidth2);
+ this.lineWidth2 = lineWidth / 2.0f;
+ this.invHalfLineWidth2Sq = 1.0f / (2.0f * lineWidth2 * lineWidth2);
this.capStyle = capStyle;
this.joinStyle = joinStyle;
@@ -182,14 +177,14 @@
if (DO_CLEAN_DIRTY) {
// Force zero-fill dirty arrays:
- Arrays.fill(offset0, 0f);
- Arrays.fill(offset1, 0f);
- Arrays.fill(offset2, 0f);
- Arrays.fill(miter, 0f);
- Arrays.fill(middle, 0f);
- Arrays.fill(lp, 0f);
- Arrays.fill(rp, 0f);
- Arrays.fill(subdivTs, 0f);
+ Arrays.fill(offset0, 0.0f);
+ Arrays.fill(offset1, 0.0f);
+ Arrays.fill(offset2, 0.0f);
+ Arrays.fill(miter, 0.0f);
+ Arrays.fill(middle, 0.0f);
+ Arrays.fill(lp, 0.0f);
+ Arrays.fill(rp, 0.0f);
+ Arrays.fill(subdivTs, 0.0f);
}
}
@@ -197,11 +192,11 @@
final float w, final float[] m)
{
float len = lx*lx + ly*ly;
- if (len == 0f) {
- m[0] = 0f;
- m[1] = 0f;
+ if (len == 0.0f) {
+ m[0] = 0.0f;
+ m[1] = 0.0f;
} else {
- len = (float) sqrt(len);
+ len = (float) Math.sqrt(len);
m[0] = (ly * w) / len;
m[1] = -(lx * w) / len;
}
@@ -226,7 +221,7 @@
boolean rev,
float threshold)
{
- if ((omx == 0f && omy == 0f) || (mx == 0f && my == 0f)) {
+ if ((omx == 0.0f && omy == 0.0f) || (mx == 0.0f && my == 0.0f)) {
return;
}
@@ -258,7 +253,7 @@
// If it is >=0, we know that abs(ext) is <= 90 degrees, so we only
// need 1 curve to approximate the circle section that joins omx,omy
// and mx,my.
- final int numCurves = (cosext >= 0f) ? 1 : 2;
+ final int numCurves = (cosext >= 0.0f) ? 1 : 2;
switch (numCurves) {
case 1:
@@ -280,7 +275,7 @@
// this normal's length is at least 0.5 and at most sqrt(2)/2 (because
// we know the angle of the arc is > 90 degrees).
float nx = my - omy, ny = omx - mx;
- float nlen = (float) sqrt(nx*nx + ny*ny);
+ float nlen = (float) Math.sqrt(nx*nx + ny*ny);
float scale = lineWidth2/nlen;
float mmx = nx * scale, mmy = ny * scale;
@@ -318,8 +313,8 @@
// define the bezier curve we're computing.
// It is computed using the constraints that P1-P0 and P3-P2 are parallel
// to the arc tangents at the endpoints, and that |P1-P0|=|P3-P2|.
- float cv = (float) ((4.0 / 3.0) * sqrt(0.5 - cosext2) /
- (1.0 + sqrt(cosext2 + 0.5)));
+ float cv = (float) ((4.0d / 3.0d) * Math.sqrt(0.5d - cosext2) /
+ (1.0d + Math.sqrt(cosext2 + 0.5d)));
// if clockwise, we need to negate cv.
if (rev) { // rev is equivalent to isCW(omx, omy, mx, my)
cv = -cv;
@@ -348,20 +343,28 @@
cx - mx, cy - my);
}
- // Put the intersection point of the lines (x0, y0) -> (x1, y1)
- // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1].
- // If the lines are parallel, it will put a non finite number in m.
- private static void computeIntersection(final float x0, final float y0,
- final float x1, final float y1,
- final float x0p, final float y0p,
- final float x1p, final float y1p,
- final float[] m, int off)
+ // Return the intersection point of the lines (x0, y0) -> (x1, y1)
+ // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1]
+ private static void computeMiter(final float x0, final float y0,
+ final float x1, final float y1,
+ final float x0p, final float y0p,
+ final float x1p, final float y1p,
+ final float[] m, int off)
{
float x10 = x1 - x0;
float y10 = y1 - y0;
float x10p = x1p - x0p;
float y10p = y1p - y0p;
+ // if this is 0, the lines are parallel. If they go in the
+ // same direction, there is no intersection so m[off] and
+ // m[off+1] will contain infinity, so no miter will be drawn.
+ // If they go in the same direction that means that the start of the
+ // current segment and the end of the previous segment have the same
+ // tangent, in which case this method won't even be involved in
+ // miter drawing because it won't be called by drawMiter (because
+ // (mx == omx && my == omy) will be true, and drawMiter will return
+ // immediately).
float den = x10*y10p - x10p*y10;
float t = x10p*(y0-y0p) - y10p*(x0-x0p);
t /= den;
@@ -369,6 +372,40 @@
m[off] = y0 + t*y10;
}
+ // Return the intersection point of the lines (x0, y0) -> (x1, y1)
+ // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1]
+ private static void safeComputeMiter(final float x0, final float y0,
+ final float x1, final float y1,
+ final float x0p, final float y0p,
+ final float x1p, final float y1p,
+ final float[] m, int off)
+ {
+ float x10 = x1 - x0;
+ float y10 = y1 - y0;
+ float x10p = x1p - x0p;
+ float y10p = y1p - y0p;
+
+ // if this is 0, the lines are parallel. If they go in the
+ // same direction, there is no intersection so m[off] and
+ // m[off+1] will contain infinity, so no miter will be drawn.
+ // If they go in the same direction that means that the start of the
+ // current segment and the end of the previous segment have the same
+ // tangent, in which case this method won't even be involved in
+ // miter drawing because it won't be called by drawMiter (because
+ // (mx == omx && my == omy) will be true, and drawMiter will return
+ // immediately).
+ float den = x10*y10p - x10p*y10;
+ if (den == 0.0f) {
+ m[off++] = (x0 + x0p) / 2.0f;
+ m[off] = (y0 + y0p) / 2.0f;
+ return;
+ }
+ float t = x10p*(y0-y0p) - y10p*(x0-x0p);
+ t /= den;
+ m[off++] = x0 + t*x10;
+ m[off] = y0 + t*y10;
+ }
+
private void drawMiter(final float pdx, final float pdy,
final float x0, final float y0,
final float dx, final float dy,
@@ -376,8 +413,8 @@
boolean rev)
{
if ((mx == omx && my == omy) ||
- (pdx == 0f && pdy == 0f) ||
- (dx == 0f && dy == 0f))
+ (pdx == 0.0f && pdy == 0.0f) ||
+ (dx == 0.0f && dy == 0.0f))
{
return;
}
@@ -389,9 +426,9 @@
my = -my;
}
- computeIntersection((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,
- (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my,
- miter, 0);
+ computeMiter((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,
+ (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my,
+ miter, 0);
final float miterX = miter[0];
final float miterY = miter[1];
@@ -414,8 +451,8 @@
}
this.sx0 = this.cx0 = x0;
this.sy0 = this.cy0 = y0;
- this.cdx = this.sdx = 1f;
- this.cdy = this.sdy = 0f;
+ this.cdx = this.sdx = 1.0f;
+ this.cdy = this.sdy = 0.0f;
this.prev = MOVE_TO;
}
@@ -423,8 +460,8 @@
public void lineTo(float x1, float y1) {
float dx = x1 - cx0;
float dy = y1 - cy0;
- if (dx == 0f && dy == 0f) {
- dx = 1f;
+ if (dx == 0.0f && dy == 0.0f) {
+ dx = 1.0f;
}
computeOffset(dx, dy, lineWidth2, offset0);
final float mx = offset0[0];
@@ -454,10 +491,10 @@
return;
}
emitMoveTo(cx0, cy0 - lineWidth2);
- this.cmx = this.smx = 0f;
+ this.cmx = this.smx = 0.0f;
this.cmy = this.smy = -lineWidth2;
- this.cdx = this.sdx = 1f;
- this.cdy = this.sdy = 0f;
+ this.cdx = this.sdx = 1.0f;
+ this.cdy = this.sdy = 0.0f;
finish();
return;
}
@@ -640,7 +677,7 @@
{
// if p1=p2 or p3=p4 it means that the derivative at the endpoint
// vanishes, which creates problems with computeOffset. Usually
- // this happens when this stroker object is trying to winden
+ // this happens when this stroker object is trying to widen
// a curve with a cusp. What happens is that curveTo splits
// the input curve at the cusp, and passes it to this function.
// because of inaccuracies in the splitting, we consider points
@@ -657,8 +694,8 @@
// if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
// in which case ignore if p1 == p2
- final boolean p1eqp2 = within(x1,y1,x2,y2, 6f * ulp(y2));
- final boolean p3eqp4 = within(x3,y3,x4,y4, 6f * ulp(y4));
+ final boolean p1eqp2 = within(x1, y1, x2, y2, 6.0f * Math.ulp(y2));
+ final boolean p3eqp4 = within(x3, y3, x4, y4, 6.0f * Math.ulp(y4));
if (p1eqp2 && p3eqp4) {
getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
return 4;
@@ -674,7 +711,7 @@
float dotsq = (dx1 * dx4 + dy1 * dy4);
dotsq *= dotsq;
float l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4;
- if (Helpers.within(dotsq, l1sq * l4sq, 4f * ulp(dotsq))) {
+ if (Helpers.within(dotsq, l1sq * l4sq, 4.0f * Math.ulp(dotsq))) {
getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
return 4;
}
@@ -726,8 +763,8 @@
// getting the inverse of the matrix above. Then we use [c1,c2] to compute
// p2p and p3p.
- float x = (x1 + 3f * (x2 + x3) + x4) / 8f;
- float y = (y1 + 3f * (y2 + y3) + y4) / 8f;
+ float x = (x1 + 3.0f * (x2 + x3) + x4) / 8.0f;
+ float y = (y1 + 3.0f * (y2 + y3) + y4) / 8.0f;
// (dxm,dym) is some tangent of B at t=0.5. This means it's equal to
// c*B'(0.5) for some constant c.
float dxm = x3 + x4 - x1 - x2, dym = y3 + y4 - y1 - y2;
@@ -745,10 +782,10 @@
float x4p = x4 + offset2[0]; // end
float y4p = y4 + offset2[1]; // point
- float invdet43 = 4f / (3f * (dx1 * dy4 - dy1 * dx4));
+ float invdet43 = 4.0f / (3.0f * (dx1 * dy4 - dy1 * dx4));
- float two_pi_m_p1_m_p4x = 2f * xi - x1p - x4p;
- float two_pi_m_p1_m_p4y = 2f * yi - y1p - y4p;
+ float two_pi_m_p1_m_p4x = 2.0f * xi - x1p - x4p;
+ float two_pi_m_p1_m_p4y = 2.0f * yi - y1p - y4p;
float c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
float c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);
@@ -764,11 +801,11 @@
leftOff[6] = x4p; leftOff[7] = y4p;
x1p = x1 - offset0[0]; y1p = y1 - offset0[1];
- xi = xi - 2f * offset1[0]; yi = yi - 2f * offset1[1];
+ xi = xi - 2.0f * offset1[0]; yi = yi - 2.0f * offset1[1];
x4p = x4 - offset2[0]; y4p = y4 - offset2[1];
- two_pi_m_p1_m_p4x = 2f * xi - x1p - x4p;
- two_pi_m_p1_m_p4y = 2f * yi - y1p - y4p;
+ two_pi_m_p1_m_p4x = 2.0f * xi - x1p - x4p;
+ two_pi_m_p1_m_p4y = 2.0f * yi - y1p - y4p;
c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);
@@ -784,6 +821,8 @@
return 8;
}
+ // compute offset curves using bezier spline through t=0.5 (i.e.
+ // ComputedCurve(0.5) == IdealParallelCurve(0.5))
// return the kind of curve in the right and left arrays.
private int computeOffsetQuad(float[] pts, final int off,
float[] leftOff, float[] rightOff)
@@ -797,170 +836,54 @@
final float dx1 = x2 - x1;
final float dy1 = y2 - y1;
- // this computes the offsets at t = 0, 1
+ // if p1=p2 or p3=p4 it means that the derivative at the endpoint
+ // vanishes, which creates problems with computeOffset. Usually
+ // this happens when this stroker object is trying to widen
+ // a curve with a cusp. What happens is that curveTo splits
+ // the input curve at the cusp, and passes it to this function.
+ // because of inaccuracies in the splitting, we consider points
+ // equal if they're very close to each other.
+
+ // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
+ // in which case ignore.
+ final boolean p1eqp2 = within(x1, y1, x2, y2, 6.0f * Math.ulp(y2));
+ final boolean p2eqp3 = within(x2, y2, x3, y3, 6.0f * Math.ulp(y3));
+ if (p1eqp2 || p2eqp3) {
+ getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
+ return 4;
+ }
+
+ // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
+ float dotsq = (dx1 * dx3 + dy1 * dy3);
+ dotsq *= dotsq;
+ float l1sq = dx1 * dx1 + dy1 * dy1, l3sq = dx3 * dx3 + dy3 * dy3;
+ if (Helpers.within(dotsq, l1sq * l3sq, 4.0f * Math.ulp(dotsq))) {
+ getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
+ return 4;
+ }
+
+ // this computes the offsets at t=0, 0.5, 1, using the property that
+ // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to
+ // the (dx/dt, dy/dt) vectors at the endpoints.
computeOffset(dx1, dy1, lineWidth2, offset0);
computeOffset(dx3, dy3, lineWidth2, offset1);
- leftOff[0] = x1 + offset0[0]; leftOff[1] = y1 + offset0[1];
- leftOff[4] = x3 + offset1[0]; leftOff[5] = y3 + offset1[1];
- rightOff[0] = x1 - offset0[0]; rightOff[1] = y1 - offset0[1];
- rightOff[4] = x3 - offset1[0]; rightOff[5] = y3 - offset1[1];
-
- float x1p = leftOff[0]; // start
- float y1p = leftOff[1]; // point
- float x3p = leftOff[4]; // end
- float y3p = leftOff[5]; // point
-
- // Corner cases:
- // 1. If the two control vectors are parallel, we'll end up with NaN's
- // in leftOff (and rightOff in the body of the if below), so we'll
- // do getLineOffsets, which is right.
- // 2. If the first or second two points are equal, then (dx1,dy1)==(0,0)
- // or (dx3,dy3)==(0,0), so (x1p, y1p)==(x1p+dx1, y1p+dy1)
- // or (x3p, y3p)==(x3p-dx3, y3p-dy3), which means that
- // computeIntersection will put NaN's in leftOff and right off, and
- // we will do getLineOffsets, which is right.
- computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2);
- float cx = leftOff[2];
- float cy = leftOff[3];
+ float x1p = x1 + offset0[0]; // start
+ float y1p = y1 + offset0[1]; // point
+ float x3p = x3 + offset1[0]; // end
+ float y3p = y3 + offset1[1]; // point
+ safeComputeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2);
+ leftOff[0] = x1p; leftOff[1] = y1p;
+ leftOff[4] = x3p; leftOff[5] = y3p;
- if (!(isFinite(cx) && isFinite(cy))) {
- // maybe the right path is not degenerate.
- x1p = rightOff[0];
- y1p = rightOff[1];
- x3p = rightOff[4];
- y3p = rightOff[5];
- computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2);
- cx = rightOff[2];
- cy = rightOff[3];
- if (!(isFinite(cx) && isFinite(cy))) {
- // both are degenerate. This curve is a line.
- getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
- return 4;
- }
- // {left,right}Off[0,1,4,5] are already set to the correct values.
- leftOff[2] = 2f * x2 - cx;
- leftOff[3] = 2f * y2 - cy;
- return 6;
- }
-
- // rightOff[2,3] = (x2,y2) - ((left_x2, left_y2) - (x2, y2))
- // == 2*(x2, y2) - (left_x2, left_y2)
- rightOff[2] = 2f * x2 - cx;
- rightOff[3] = 2f * y2 - cy;
+ x1p = x1 - offset0[0]; y1p = y1 - offset0[1];
+ x3p = x3 - offset1[0]; y3p = y3 - offset1[1];
+ safeComputeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2);
+ rightOff[0] = x1p; rightOff[1] = y1p;
+ rightOff[4] = x3p; rightOff[5] = y3p;
return 6;
}
- private static boolean isFinite(float x) {
- return (Float.NEGATIVE_INFINITY < x && x < Float.POSITIVE_INFINITY);
- }
-
- // If this class is compiled with ecj, then Hotspot crashes when OSR
- // compiling this function. See bugs 7004570 and 6675699
- // TODO: until those are fixed, we should work around that by
- // manually inlining this into curveTo and quadTo.
-/******************************* WORKAROUND **********************************
- private void somethingTo(final int type) {
- // need these so we can update the state at the end of this method
- final float xf = middle[type-2], yf = middle[type-1];
- float dxs = middle[2] - middle[0];
- float dys = middle[3] - middle[1];
- float dxf = middle[type - 2] - middle[type - 4];
- float dyf = middle[type - 1] - middle[type - 3];
- switch(type) {
- case 6:
- if ((dxs == 0f && dys == 0f) ||
- (dxf == 0f && dyf == 0f)) {
- dxs = dxf = middle[4] - middle[0];
- dys = dyf = middle[5] - middle[1];
- }
- break;
- case 8:
- boolean p1eqp2 = (dxs == 0f && dys == 0f);
- boolean p3eqp4 = (dxf == 0f && dyf == 0f);
- if (p1eqp2) {
- dxs = middle[4] - middle[0];
- dys = middle[5] - middle[1];
- if (dxs == 0f && dys == 0f) {
- dxs = middle[6] - middle[0];
- dys = middle[7] - middle[1];
- }
- }
- if (p3eqp4) {
- dxf = middle[6] - middle[2];
- dyf = middle[7] - middle[3];
- if (dxf == 0f && dyf == 0f) {
- dxf = middle[6] - middle[0];
- dyf = middle[7] - middle[1];
- }
- }
- }
- if (dxs == 0f && dys == 0f) {
- // this happens iff the "curve" is just a point
- lineTo(middle[0], middle[1]);
- return;
- }
- // if these vectors are too small, normalize them, to avoid future
- // precision problems.
- if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
- float len = (float) sqrt(dxs*dxs + dys*dys);
- dxs /= len;
- dys /= len;
- }
- if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
- float len = (float) sqrt(dxf*dxf + dyf*dyf);
- dxf /= len;
- dyf /= len;
- }
-
- computeOffset(dxs, dys, lineWidth2, offset0);
- final float mx = offset0[0];
- final float my = offset0[1];
- drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, mx, my);
-
- int nSplits = findSubdivPoints(curve, middle, subdivTs, type, lineWidth2);
-
- int kind = 0;
- BreakPtrIterator it = curve.breakPtsAtTs(middle, type, subdivTs, nSplits);
- while(it.hasNext()) {
- int curCurveOff = it.next();
-
- switch (type) {
- case 8:
- kind = computeOffsetCubic(middle, curCurveOff, lp, rp);
- break;
- case 6:
- kind = computeOffsetQuad(middle, curCurveOff, lp, rp);
- break;
- }
- emitLineTo(lp[0], lp[1]);
- switch(kind) {
- case 8:
- emitCurveTo(lp[2], lp[3], lp[4], lp[5], lp[6], lp[7]);
- emitCurveToRev(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5]);
- break;
- case 6:
- emitQuadTo(lp[2], lp[3], lp[4], lp[5]);
- emitQuadToRev(rp[0], rp[1], rp[2], rp[3]);
- break;
- case 4:
- emitLineTo(lp[2], lp[3]);
- emitLineTo(rp[0], rp[1], true);
- break;
- }
- emitLineTo(rp[kind - 2], rp[kind - 1], true);
- }
-
- this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2;
- this.cmy = (lp[kind - 1] - rp[kind - 1]) / 2;
- this.cdx = dxf;
- this.cdy = dyf;
- this.cx0 = xf;
- this.cy0 = yf;
- this.prev = DRAWING_OP_TO;
- }
-****************************** END WORKAROUND *******************************/
-
// finds values of t where the curve in pts should be subdivided in order
// to get good offset curves a distance of w away from the middle curve.
// Stores the points in ts, and returns how many of them there were.
@@ -971,11 +894,11 @@
final float y12 = pts[3] - pts[1];
// if the curve is already parallel to either axis we gain nothing
// from rotating it.
- if (y12 != 0f && x12 != 0f) {
+ if (y12 != 0.0f && x12 != 0.0f) {
// we rotate it so that the first vector in the control polygon is
// parallel to the x-axis. This will ensure that rotated quarter
// circles won't be subdivided.
- final float hypot = (float) sqrt(x12 * x12 + y12 * y12);
+ final float hypot = (float) Math.sqrt(x12 * x12 + y12 * y12);
final float cos = x12 / hypot;
final float sin = y12 / hypot;
final float x1 = cos * pts[0] + sin * pts[1];
@@ -1031,9 +954,6 @@
mid[4] = x2; mid[5] = y2;
mid[6] = x3; mid[7] = y3;
- // inlined version of somethingTo(8);
- // See the TODO on somethingTo
-
// need these so we can update the state at the end of this method
final float xf = mid[6], yf = mid[7];
float dxs = mid[2] - mid[0];
@@ -1041,12 +961,12 @@
float dxf = mid[6] - mid[4];
float dyf = mid[7] - mid[5];
- boolean p1eqp2 = (dxs == 0f && dys == 0f);
- boolean p3eqp4 = (dxf == 0f && dyf == 0f);
+ boolean p1eqp2 = (dxs == 0.0f && dys == 0.0f);
+ boolean p3eqp4 = (dxf == 0.0f && dyf == 0.0f);
if (p1eqp2) {
dxs = mid[4] - mid[0];
dys = mid[5] - mid[1];
- if (dxs == 0f && dys == 0f) {
+ if (dxs == 0.0f && dys == 0.0f) {
dxs = mid[6] - mid[0];
dys = mid[7] - mid[1];
}
@@ -1054,12 +974,12 @@
if (p3eqp4) {
dxf = mid[6] - mid[2];
dyf = mid[7] - mid[3];
- if (dxf == 0f && dyf == 0f) {
+ if (dxf == 0.0f && dyf == 0.0f) {
dxf = mid[6] - mid[0];
dyf = mid[7] - mid[1];
}
}
- if (dxs == 0f && dys == 0f) {
+ if (dxs == 0.0f && dys == 0.0f) {
// this happens if the "curve" is just a point
lineTo(mid[0], mid[1]);
return;
@@ -1068,12 +988,12 @@
// if these vectors are too small, normalize them, to avoid future
// precision problems.
if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
- float len = (float) sqrt(dxs*dxs + dys*dys);
+ float len = (float) Math.sqrt(dxs*dxs + dys*dys);
dxs /= len;
dys /= len;
}
if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
- float len = (float) sqrt(dxf*dxf + dyf*dyf);
+ float len = (float) Math.sqrt(dxf*dxf + dyf*dyf);
dxf /= len;
dyf /= len;
}
@@ -1081,17 +1001,23 @@
computeOffset(dxs, dys, lineWidth2, offset0);
drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]);
- int nSplits = findSubdivPoints(curve, mid, subdivTs, 8, lineWidth2);
+ final int nSplits = findSubdivPoints(curve, mid, subdivTs, 8, lineWidth2);
+
+ float prevT = 0.0f;
+ for (int i = 0, off = 0; i < nSplits; i++, off += 6) {
+ final float t = subdivTs[i];
+ Helpers.subdivideCubicAt((t - prevT) / (1.0f - prevT),
+ mid, off, mid, off, mid, off + 6);
+ prevT = t;
+ }
final float[] l = lp;
final float[] r = rp;
int kind = 0;
- BreakPtrIterator it = curve.breakPtsAtTs(mid, 8, subdivTs, nSplits);
- while(it.hasNext()) {
- int curCurveOff = it.next();
+ for (int i = 0, off = 0; i <= nSplits; i++, off += 6) {
+ kind = computeOffsetCubic(mid, off, l, r);
- kind = computeOffsetCubic(mid, curCurveOff, l, r);
emitLineTo(l[0], l[1]);
switch(kind) {
@@ -1108,8 +1034,8 @@
emitLineToRev(r[kind - 2], r[kind - 1]);
}
- this.cmx = (l[kind - 2] - r[kind - 2]) / 2f;
- this.cmy = (l[kind - 1] - r[kind - 1]) / 2f;
+ this.cmx = (l[kind - 2] - r[kind - 2]) / 2.0f;
+ this.cmy = (l[kind - 1] - r[kind - 1]) / 2.0f;
this.cdx = dxf;
this.cdy = dyf;
this.cx0 = xf;
@@ -1124,20 +1050,17 @@
mid[2] = x1; mid[3] = y1;
mid[4] = x2; mid[5] = y2;
- // inlined version of somethingTo(8);
- // See the TODO on somethingTo
-
// need these so we can update the state at the end of this method
final float xf = mid[4], yf = mid[5];
float dxs = mid[2] - mid[0];
float dys = mid[3] - mid[1];
float dxf = mid[4] - mid[2];
float dyf = mid[5] - mid[3];
- if ((dxs == 0f && dys == 0f) || (dxf == 0f && dyf == 0f)) {
+ if ((dxs == 0.0f && dys == 0.0f) || (dxf == 0.0f && dyf == 0.0f)) {
dxs = dxf = mid[4] - mid[0];
dys = dyf = mid[5] - mid[1];
}
- if (dxs == 0f && dys == 0f) {
+ if (dxs == 0.0f && dys == 0.0f) {
// this happens if the "curve" is just a point
lineTo(mid[0], mid[1]);
return;
@@ -1145,12 +1068,12 @@
// if these vectors are too small, normalize them, to avoid future
// precision problems.
if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
- float len = (float) sqrt(dxs*dxs + dys*dys);
+ float len = (float) Math.sqrt(dxs*dxs + dys*dys);
dxs /= len;
dys /= len;
}
if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
- float len = (float) sqrt(dxf*dxf + dyf*dyf);
+ float len = (float) Math.sqrt(dxf*dxf + dyf*dyf);
dxf /= len;
dyf /= len;
}
@@ -1160,15 +1083,21 @@
int nSplits = findSubdivPoints(curve, mid, subdivTs, 6, lineWidth2);
+ float prevt = 0.0f;
+ for (int i = 0, off = 0; i < nSplits; i++, off += 4) {
+ final float t = subdivTs[i];
+ Helpers.subdivideQuadAt((t - prevt) / (1.0f - prevt),
+ mid, off, mid, off, mid, off + 4);
+ prevt = t;
+ }
+
final float[] l = lp;
final float[] r = rp;
int kind = 0;
- BreakPtrIterator it = curve.breakPtsAtTs(mid, 6, subdivTs, nSplits);
- while(it.hasNext()) {
- int curCurveOff = it.next();
+ for (int i = 0, off = 0; i <= nSplits; i++, off += 4) {
+ kind = computeOffsetQuad(mid, off, l, r);
- kind = computeOffsetQuad(mid, curCurveOff, l, r);
emitLineTo(l[0], l[1]);
switch(kind) {
@@ -1185,8 +1114,8 @@
emitLineToRev(r[kind - 2], r[kind - 1]);
}
- this.cmx = (l[kind - 2] - r[kind - 2]) / 2f;
- this.cmy = (l[kind - 1] - r[kind - 1]) / 2f;
+ this.cmx = (l[kind - 2] - r[kind - 2]) / 2.0f;
+ this.cmy = (l[kind - 1] - r[kind - 1]) / 2.0f;
this.cdx = dxf;
this.cdy = dyf;
this.cx0 = xf;
@@ -1205,11 +1134,11 @@
private static final byte TYPE_QUADTO = (byte) 1;
private static final byte TYPE_CUBICTO = (byte) 2;
- // curves capacity = edges count (4096) = half edges x 2 (coords)
- private static final int INITIAL_CURVES_COUNT = INITIAL_EDGES_COUNT;
+ // curves capacity = edges count (8192) = edges x 2 (coords)
+ private static final int INITIAL_CURVES_COUNT = INITIAL_EDGES_COUNT << 1;
- // types capacity = half edges count (2048)
- private static final int INITIAL_TYPES_COUNT = INITIAL_EDGES_COUNT >> 1;
+ // types capacity = edges count (4096)
+ private static final int INITIAL_TYPES_COUNT = INITIAL_EDGES_COUNT;
float[] curves;
int end;
@@ -1235,10 +1164,10 @@
PolyStack(final RendererContext rdrCtx) {
this.rdrCtx = rdrCtx;
- curves_ref = rdrCtx.newDirtyFloatArrayRef(INITIAL_CURVES_COUNT); // 16K
+ curves_ref = rdrCtx.newDirtyFloatArrayRef(INITIAL_CURVES_COUNT); // 32K
curves = curves_ref.initial;
- curveTypes_ref = rdrCtx.newDirtyByteArrayRef(INITIAL_TYPES_COUNT); // 2K
+ curveTypes_ref = rdrCtx.newDirtyByteArrayRef(INITIAL_TYPES_COUNT); // 4K
curveTypes = curveTypes_ref.initial;
numCurves = 0;
end = 0;
@@ -1369,7 +1298,7 @@
public String toString() {
String ret = "";
int nc = numCurves;
- int e = end;
+ int last = end;
int len;
while (nc != 0) {
switch(curveTypes[--nc]) {
@@ -1388,8 +1317,8 @@
default:
len = 0;
}
- e -= len;
- ret += Arrays.toString(Arrays.copyOfRange(curves, e, e+len))
+ last -= len;
+ ret += Arrays.toString(Arrays.copyOfRange(curves, last, last+len))
+ "\n";
}
return ret;
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/TransformingPathConsumer2D.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/TransformingPathConsumer2D.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -58,8 +58,8 @@
float myx = (float) at.getShearY();
float myy = (float) at.getScaleY();
- if (mxy == 0f && myx == 0f) {
- if (mxx == 1f && myy == 1f) {
+ if (mxy == 0.0f && myx == 0.0f) {
+ if (mxx == 1.0f && myy == 1.0f) {
return out;
} else {
return dt_DeltaScaleFilter.init(out, mxx, myy);
@@ -84,8 +84,8 @@
float myx = (float) at.getShearY();
float myy = (float) at.getScaleY();
- if (mxy == 0f && myx == 0f) {
- if (mxx == 1f && myy == 1f) {
+ if (mxy == 0.0f && myx == 0.0f) {
+ if (mxx == 1.0f && myy == 1.0f) {
return out;
} else {
return iv_DeltaScaleFilter.init(out, 1.0f/mxx, 1.0f/myy);
--- a/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Version.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Version.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -27,7 +27,7 @@
public final class Version {
- private static final String VERSION = "marlin-0.7.4-Unsafe-OpenJDK";
+ private static final String VERSION = "marlin-0.7.5-Unsafe-OpenJDK";
public static String getVersion() {
return VERSION;
--- a/jdk/src/java.desktop/share/classes/sun/java2d/pipe/RenderingEngine.java Wed Jul 05 23:27:00 2017 +0200
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/pipe/RenderingEngine.java Wed May 17 22:05:11 2017 +0200
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -132,7 +132,7 @@
}
}
if (reImpl == null) {
- final String marlinREClass = "sun.java2d.marlin.MarlinRenderingEngine";
+ final String marlinREClass = "sun.java2d.marlin.DMarlinRenderingEngine";
try {
Class<?> cls = Class.forName(marlinREClass);
reImpl = (RenderingEngine) cls.getConstructor().newInstance();