jdk/src/java.desktop/share/classes/sun/java2d/marlin/DDasher.java
changeset 47126 188ef162f019
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/DDasher.java	Wed May 17 22:05:11 2017 +0200
@@ -0,0 +1,746 @@
+/*
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.util.Arrays;
+
+/**
+ * The <code>DDasher</code> class takes a series of linear commands
+ * (<code>moveTo</code>, <code>lineTo</code>, <code>close</code> and
+ * <code>end</code>) and breaks them into smaller segments according to a
+ * dash pattern array and a starting dash phase.
+ *
+ * <p> Issues: in J2Se, a zero length dash segment as drawn as a very
+ * short dash, whereas Pisces does not draw anything.  The PostScript
+ * semantics are unclear.
+ *
+ */
+final class DDasher implements DPathConsumer2D, MarlinConst {
+
+    static final int REC_LIMIT = 4;
+    static final double ERR = 0.01d;
+    static final double MIN_T_INC = 1.0d / (1 << REC_LIMIT);
+
+    // More than 24 bits of mantissa means we can no longer accurately
+    // measure the number of times cycled through the dash array so we
+    // punt and override the phase to just be 0 past that point.
+    static final double MAX_CYCLES = 16000000.0d;
+
+    private DPathConsumer2D out;
+    private double[] dash;
+    private int dashLen;
+    private double startPhase;
+    private boolean startDashOn;
+    private int startIdx;
+
+    private boolean starting;
+    private boolean needsMoveTo;
+
+    private int idx;
+    private boolean dashOn;
+    private double phase;
+
+    private double sx, sy;
+    private double x0, y0;
+
+    // temporary storage for the current curve
+    private final double[] curCurvepts;
+
+    // per-thread renderer context
+    final DRendererContext rdrCtx;
+
+    // flag to recycle dash array copy
+    boolean recycleDashes;
+
+    // dashes ref (dirty)
+    final DoubleArrayCache.Reference dashes_ref;
+    // firstSegmentsBuffer ref (dirty)
+    final DoubleArrayCache.Reference firstSegmentsBuffer_ref;
+
+    /**
+     * Constructs a <code>DDasher</code>.
+     * @param rdrCtx per-thread renderer context
+     */
+    DDasher(final DRendererContext rdrCtx) {
+        this.rdrCtx = rdrCtx;
+
+        dashes_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_ARRAY); // 1K
+
+        firstSegmentsBuffer_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_ARRAY); // 1K
+        firstSegmentsBuffer     = firstSegmentsBuffer_ref.initial;
+
+        // we need curCurvepts to be able to contain 2 curves because when
+        // dashing curves, we need to subdivide it
+        curCurvepts = new double[8 * 2];
+    }
+
+    /**
+     * Initialize the <code>DDasher</code>.
+     *
+     * @param out an output <code>DPathConsumer2D</code>.
+     * @param dash an array of <code>double</code>s containing the dash pattern
+     * @param dashLen length of the given dash array
+     * @param phase a <code>double</code> containing the dash phase
+     * @param recycleDashes true to indicate to recycle the given dash array
+     * @return this instance
+     */
+    DDasher init(final DPathConsumer2D out, double[] dash, int dashLen,
+                double phase, boolean recycleDashes)
+    {
+        this.out = out;
+
+        // Normalize so 0 <= phase < dash[0]
+        int sidx = 0;
+        dashOn = true;
+        double sum = 0.0d;
+        for (double d : dash) {
+            sum += d;
+        }
+        double cycles = phase / sum;
+        if (phase < 0.0d) {
+            if (-cycles >= MAX_CYCLES) {
+                phase = 0.0d;
+            } else {
+                int fullcycles = FloatMath.floor_int(-cycles);
+                if ((fullcycles & dash.length & 1) != 0) {
+                    dashOn = !dashOn;
+                }
+                phase += fullcycles * sum;
+                while (phase < 0.0d) {
+                    if (--sidx < 0) {
+                        sidx = dash.length - 1;
+                    }
+                    phase += dash[sidx];
+                    dashOn = !dashOn;
+                }
+            }
+        } else if (phase > 0) {
+            if (cycles >= MAX_CYCLES) {
+                phase = 0.0d;
+            } else {
+                int fullcycles = FloatMath.floor_int(cycles);
+                if ((fullcycles & dash.length & 1) != 0) {
+                    dashOn = !dashOn;
+                }
+                phase -= fullcycles * sum;
+                double d;
+                while (phase >= (d = dash[sidx])) {
+                    phase -= d;
+                    sidx = (sidx + 1) % dash.length;
+                    dashOn = !dashOn;
+                }
+            }
+        }
+
+        this.dash = dash;
+        this.dashLen = dashLen;
+        this.startPhase = this.phase = phase;
+        this.startDashOn = dashOn;
+        this.startIdx = sidx;
+        this.starting = true;
+        needsMoveTo = false;
+        firstSegidx = 0;
+
+        this.recycleDashes = recycleDashes;
+
+        return this; // fluent API
+    }
+
+    /**
+     * Disposes this dasher:
+     * clean up before reusing this instance
+     */
+    void dispose() {
+        if (DO_CLEAN_DIRTY) {
+            // Force zero-fill dirty arrays:
+            Arrays.fill(curCurvepts, 0.0d);
+        }
+        // Return arrays:
+        if (recycleDashes) {
+            dash = dashes_ref.putArray(dash);
+        }
+        firstSegmentsBuffer = firstSegmentsBuffer_ref.putArray(firstSegmentsBuffer);
+    }
+
+    double[] copyDashArray(final float[] dashes) {
+        final int len = dashes.length;
+        final double[] newDashes;
+        if (len <= MarlinConst.INITIAL_ARRAY) {
+            newDashes = dashes_ref.initial;
+        } else {
+            if (DO_STATS) {
+                rdrCtx.stats.stat_array_dasher_dasher.add(len);
+            }
+            newDashes = dashes_ref.getArray(len);
+        }
+        for (int i = 0; i < len; i++) { newDashes[i] = dashes[i]; }
+        return newDashes;
+    }
+
+    @Override
+    public void moveTo(double x0, double y0) {
+        if (firstSegidx > 0) {
+            out.moveTo(sx, sy);
+            emitFirstSegments();
+        }
+        needsMoveTo = true;
+        this.idx = startIdx;
+        this.dashOn = this.startDashOn;
+        this.phase = this.startPhase;
+        this.sx = this.x0 = x0;
+        this.sy = this.y0 = y0;
+        this.starting = true;
+    }
+
+    private void emitSeg(double[] buf, int off, int type) {
+        switch (type) {
+        case 8:
+            out.curveTo(buf[off+0], buf[off+1],
+                        buf[off+2], buf[off+3],
+                        buf[off+4], buf[off+5]);
+            return;
+        case 6:
+            out.quadTo(buf[off+0], buf[off+1],
+                       buf[off+2], buf[off+3]);
+            return;
+        case 4:
+            out.lineTo(buf[off], buf[off+1]);
+            return;
+        default:
+        }
+    }
+
+    private void emitFirstSegments() {
+        final double[] fSegBuf = firstSegmentsBuffer;
+
+        for (int i = 0; i < firstSegidx; ) {
+            int type = (int)fSegBuf[i];
+            emitSeg(fSegBuf, i + 1, type);
+            i += (type - 1);
+        }
+        firstSegidx = 0;
+    }
+    // We don't emit the first dash right away. If we did, caps would be
+    // drawn on it, but we need joins to be drawn if there's a closePath()
+    // So, we store the path elements that make up the first dash in the
+    // buffer below.
+    private double[] firstSegmentsBuffer; // dynamic array
+    private int firstSegidx;
+
+    // precondition: pts must be in relative coordinates (relative to x0,y0)
+    private void goTo(double[] pts, int off, final int type) {
+        double x = pts[off + type - 4];
+        double y = pts[off + type - 3];
+        if (dashOn) {
+            if (starting) {
+                int len = type - 1; // - 2 + 1
+                int segIdx = firstSegidx;
+                double[] buf = firstSegmentsBuffer;
+                if (segIdx + len  > buf.length) {
+                    if (DO_STATS) {
+                        rdrCtx.stats.stat_array_dasher_firstSegmentsBuffer
+                            .add(segIdx + len);
+                    }
+                    firstSegmentsBuffer = buf
+                        = firstSegmentsBuffer_ref.widenArray(buf, segIdx,
+                                                             segIdx + len);
+                }
+                buf[segIdx++] = type;
+                len--;
+                // small arraycopy (2, 4 or 6) but with offset:
+                System.arraycopy(pts, off, buf, segIdx, len);
+                segIdx += len;
+                firstSegidx = segIdx;
+            } else {
+                if (needsMoveTo) {
+                    out.moveTo(x0, y0);
+                    needsMoveTo = false;
+                }
+                emitSeg(pts, off, type);
+            }
+        } else {
+            starting = false;
+            needsMoveTo = true;
+        }
+        this.x0 = x;
+        this.y0 = y;
+    }
+
+    @Override
+    public void lineTo(double x1, double y1) {
+        double dx = x1 - x0;
+        double dy = y1 - y0;
+
+        double len = dx*dx + dy*dy;
+        if (len == 0.0d) {
+            return;
+        }
+        len = Math.sqrt(len);
+
+        // The scaling factors needed to get the dx and dy of the
+        // transformed dash segments.
+        final double cx = dx / len;
+        final double cy = dy / len;
+
+        final double[] _curCurvepts = curCurvepts;
+        final double[] _dash = dash;
+
+        double leftInThisDashSegment;
+        double dashdx, dashdy, p;
+
+        while (true) {
+            leftInThisDashSegment = _dash[idx] - phase;
+
+            if (len <= leftInThisDashSegment) {
+                _curCurvepts[0] = x1;
+                _curCurvepts[1] = y1;
+                goTo(_curCurvepts, 0, 4);
+
+                // Advance phase within current dash segment
+                phase += len;
+                // TODO: compare double values using epsilon:
+                if (len == leftInThisDashSegment) {
+                    phase = 0.0d;
+                    idx = (idx + 1) % dashLen;
+                    dashOn = !dashOn;
+                }
+                return;
+            }
+
+            dashdx = _dash[idx] * cx;
+            dashdy = _dash[idx] * cy;
+
+            if (phase == 0.0d) {
+                _curCurvepts[0] = x0 + dashdx;
+                _curCurvepts[1] = y0 + dashdy;
+            } else {
+                p = leftInThisDashSegment / _dash[idx];
+                _curCurvepts[0] = x0 + p * dashdx;
+                _curCurvepts[1] = y0 + p * dashdy;
+            }
+
+            goTo(_curCurvepts, 0, 4);
+
+            len -= leftInThisDashSegment;
+            // Advance to next dash segment
+            idx = (idx + 1) % dashLen;
+            dashOn = !dashOn;
+            phase = 0.0d;
+        }
+    }
+
+    // shared instance in DDasher
+    private final LengthIterator li = new LengthIterator();
+
+    // preconditions: curCurvepts must be an array of length at least 2 * type,
+    // that contains the curve we want to dash in the first type elements
+    private void somethingTo(int type) {
+        if (pointCurve(curCurvepts, type)) {
+            return;
+        }
+        li.initializeIterationOnCurve(curCurvepts, type);
+
+        // initially the current curve is at curCurvepts[0...type]
+        int curCurveoff = 0;
+        double lastSplitT = 0.0d;
+        double t;
+        double leftInThisDashSegment = dash[idx] - phase;
+
+        while ((t = li.next(leftInThisDashSegment)) < 1.0d) {
+            if (t != 0.0d) {
+                DHelpers.subdivideAt((t - lastSplitT) / (1.0d - lastSplitT),
+                                    curCurvepts, curCurveoff,
+                                    curCurvepts, 0,
+                                    curCurvepts, type, type);
+                lastSplitT = t;
+                goTo(curCurvepts, 2, type);
+                curCurveoff = type;
+            }
+            // Advance to next dash segment
+            idx = (idx + 1) % dashLen;
+            dashOn = !dashOn;
+            phase = 0.0d;
+            leftInThisDashSegment = dash[idx];
+        }
+        goTo(curCurvepts, curCurveoff+2, type);
+        phase += li.lastSegLen();
+        if (phase >= dash[idx]) {
+            phase = 0.0d;
+            idx = (idx + 1) % dashLen;
+            dashOn = !dashOn;
+        }
+        // reset LengthIterator:
+        li.reset();
+    }
+
+    private static boolean pointCurve(double[] curve, int type) {
+        for (int i = 2; i < type; i++) {
+            if (curve[i] != curve[i-2]) {
+                return false;
+            }
+        }
+        return true;
+    }
+
+    // Objects of this class are used to iterate through curves. They return
+    // t values where the left side of the curve has a specified length.
+    // It does this by subdividing the input curve until a certain error
+    // condition has been met. A recursive subdivision procedure would
+    // return as many as 1<<limit curves, but this is an iterator and we
+    // don't need all the curves all at once, so what we carry out a
+    // lazy inorder traversal of the recursion tree (meaning we only move
+    // through the tree when we need the next subdivided curve). This saves
+    // us a lot of memory because at any one time we only need to store
+    // limit+1 curves - one for each level of the tree + 1.
+    // NOTE: the way we do things here is not enough to traverse a general
+    // tree; however, the trees we are interested in have the property that
+    // every non leaf node has exactly 2 children
+    static final class LengthIterator {
+        private enum Side {LEFT, RIGHT};
+        // Holds the curves at various levels of the recursion. The root
+        // (i.e. the original curve) is at recCurveStack[0] (but then it
+        // gets subdivided, the left half is put at 1, so most of the time
+        // only the right half of the original curve is at 0)
+        private final double[][] recCurveStack; // dirty
+        // sides[i] indicates whether the node at level i+1 in the path from
+        // the root to the current leaf is a left or right child of its parent.
+        private final Side[] sides; // dirty
+        private int curveType;
+        // lastT and nextT delimit the current leaf.
+        private double nextT;
+        private double lenAtNextT;
+        private double lastT;
+        private double lenAtLastT;
+        private double lenAtLastSplit;
+        private double lastSegLen;
+        // the current level in the recursion tree. 0 is the root. limit
+        // is the deepest possible leaf.
+        private int recLevel;
+        private boolean done;
+
+        // the lengths of the lines of the control polygon. Only its first
+        // curveType/2 - 1 elements are valid. This is an optimization. See
+        // next() for more detail.
+        private final double[] curLeafCtrlPolyLengths = new double[3];
+
+        LengthIterator() {
+            this.recCurveStack = new double[REC_LIMIT + 1][8];
+            this.sides = new Side[REC_LIMIT];
+            // if any methods are called without first initializing this object
+            // on a curve, we want it to fail ASAP.
+            this.nextT = Double.MAX_VALUE;
+            this.lenAtNextT = Double.MAX_VALUE;
+            this.lenAtLastSplit = Double.MIN_VALUE;
+            this.recLevel = Integer.MIN_VALUE;
+            this.lastSegLen = Double.MAX_VALUE;
+            this.done = true;
+        }
+
+        /**
+         * Reset this LengthIterator.
+         */
+        void reset() {
+            // keep data dirty
+            // as it appears not useful to reset data:
+            if (DO_CLEAN_DIRTY) {
+                final int recLimit = recCurveStack.length - 1;
+                for (int i = recLimit; i >= 0; i--) {
+                    Arrays.fill(recCurveStack[i], 0.0d);
+                }
+                Arrays.fill(sides, Side.LEFT);
+                Arrays.fill(curLeafCtrlPolyLengths, 0.0d);
+                Arrays.fill(nextRoots, 0.0d);
+                Arrays.fill(flatLeafCoefCache, 0.0d);
+                flatLeafCoefCache[2] = -1.0d;
+            }
+        }
+
+        void initializeIterationOnCurve(double[] pts, int type) {
+            // optimize arraycopy (8 values faster than 6 = type):
+            System.arraycopy(pts, 0, recCurveStack[0], 0, 8);
+            this.curveType = type;
+            this.recLevel = 0;
+            this.lastT = 0.0d;
+            this.lenAtLastT = 0.0d;
+            this.nextT = 0.0d;
+            this.lenAtNextT = 0.0d;
+            goLeft(); // initializes nextT and lenAtNextT properly
+            this.lenAtLastSplit = 0.0d;
+            if (recLevel > 0) {
+                this.sides[0] = Side.LEFT;
+                this.done = false;
+            } else {
+                // the root of the tree is a leaf so we're done.
+                this.sides[0] = Side.RIGHT;
+                this.done = true;
+            }
+            this.lastSegLen = 0.0d;
+        }
+
+        // 0 == false, 1 == true, -1 == invalid cached value.
+        private int cachedHaveLowAcceleration = -1;
+
+        private boolean haveLowAcceleration(double err) {
+            if (cachedHaveLowAcceleration == -1) {
+                final double len1 = curLeafCtrlPolyLengths[0];
+                final double len2 = curLeafCtrlPolyLengths[1];
+                // the test below is equivalent to !within(len1/len2, 1, err).
+                // It is using a multiplication instead of a division, so it
+                // should be a bit faster.
+                if (!DHelpers.within(len1, len2, err * len2)) {
+                    cachedHaveLowAcceleration = 0;
+                    return false;
+                }
+                if (curveType == 8) {
+                    final double len3 = curLeafCtrlPolyLengths[2];
+                    // if len1 is close to 2 and 2 is close to 3, that probably
+                    // means 1 is close to 3 so the second part of this test might
+                    // not be needed, but it doesn't hurt to include it.
+                    final double errLen3 = err * len3;
+                    if (!(DHelpers.within(len2, len3, errLen3) &&
+                          DHelpers.within(len1, len3, errLen3))) {
+                        cachedHaveLowAcceleration = 0;
+                        return false;
+                    }
+                }
+                cachedHaveLowAcceleration = 1;
+                return true;
+            }
+
+            return (cachedHaveLowAcceleration == 1);
+        }
+
+        // we want to avoid allocations/gc so we keep this array so we
+        // can put roots in it,
+        private final double[] nextRoots = new double[4];
+
+        // caches the coefficients of the current leaf in its flattened
+        // form (see inside next() for what that means). The cache is
+        // invalid when it's third element is negative, since in any
+        // valid flattened curve, this would be >= 0.
+        private final double[] flatLeafCoefCache = new double[]{0.0d, 0.0d, -1.0d, 0.0d};
+
+        // returns the t value where the remaining curve should be split in
+        // order for the left subdivided curve to have length len. If len
+        // is >= than the length of the uniterated curve, it returns 1.
+        double next(final double len) {
+            final double targetLength = lenAtLastSplit + len;
+            while (lenAtNextT < targetLength) {
+                if (done) {
+                    lastSegLen = lenAtNextT - lenAtLastSplit;
+                    return 1.0d;
+                }
+                goToNextLeaf();
+            }
+            lenAtLastSplit = targetLength;
+            final double leaflen = lenAtNextT - lenAtLastT;
+            double t = (targetLength - lenAtLastT) / leaflen;
+
+            // cubicRootsInAB is a fairly expensive call, so we just don't do it
+            // if the acceleration in this section of the curve is small enough.
+            if (!haveLowAcceleration(0.05d)) {
+                // We flatten the current leaf along the x axis, so that we're
+                // left with a, b, c which define a 1D Bezier curve. We then
+                // solve this to get the parameter of the original leaf that
+                // gives us the desired length.
+                final double[] _flatLeafCoefCache = flatLeafCoefCache;
+
+                if (_flatLeafCoefCache[2] < 0.0d) {
+                    double x =     curLeafCtrlPolyLengths[0],
+                          y = x + curLeafCtrlPolyLengths[1];
+                    if (curveType == 8) {
+                        double z = y + curLeafCtrlPolyLengths[2];
+                        _flatLeafCoefCache[0] = 3.0d * (x - y) + z;
+                        _flatLeafCoefCache[1] = 3.0d * (y - 2.0d * x);
+                        _flatLeafCoefCache[2] = 3.0d * x;
+                        _flatLeafCoefCache[3] = -z;
+                    } else if (curveType == 6) {
+                        _flatLeafCoefCache[0] = 0.0d;
+                        _flatLeafCoefCache[1] = y - 2.0d * x;
+                        _flatLeafCoefCache[2] = 2.0d * x;
+                        _flatLeafCoefCache[3] = -y;
+                    }
+                }
+                double a = _flatLeafCoefCache[0];
+                double b = _flatLeafCoefCache[1];
+                double c = _flatLeafCoefCache[2];
+                double d = t * _flatLeafCoefCache[3];
+
+                // we use cubicRootsInAB here, because we want only roots in 0, 1,
+                // and our quadratic root finder doesn't filter, so it's just a
+                // matter of convenience.
+                int n = DHelpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0.0d, 1.0d);
+                if (n == 1 && !Double.isNaN(nextRoots[0])) {
+                    t = nextRoots[0];
+                }
+            }
+            // t is relative to the current leaf, so we must make it a valid parameter
+            // of the original curve.
+            t = t * (nextT - lastT) + lastT;
+            if (t >= 1.0d) {
+                t = 1.0d;
+                done = true;
+            }
+            // even if done = true, if we're here, that means targetLength
+            // is equal to, or very, very close to the total length of the
+            // curve, so lastSegLen won't be too high. In cases where len
+            // overshoots the curve, this method will exit in the while
+            // loop, and lastSegLen will still be set to the right value.
+            lastSegLen = len;
+            return t;
+        }
+
+        double lastSegLen() {
+            return lastSegLen;
+        }
+
+        // go to the next leaf (in an inorder traversal) in the recursion tree
+        // preconditions: must be on a leaf, and that leaf must not be the root.
+        private void goToNextLeaf() {
+            // We must go to the first ancestor node that has an unvisited
+            // right child.
+            int _recLevel = recLevel;
+            final Side[] _sides = sides;
+
+            _recLevel--;
+            while(_sides[_recLevel] == Side.RIGHT) {
+                if (_recLevel == 0) {
+                    recLevel = 0;
+                    done = true;
+                    return;
+                }
+                _recLevel--;
+            }
+
+            _sides[_recLevel] = Side.RIGHT;
+            // optimize arraycopy (8 values faster than 6 = type):
+            System.arraycopy(recCurveStack[_recLevel], 0,
+                             recCurveStack[_recLevel+1], 0, 8);
+            _recLevel++;
+
+            recLevel = _recLevel;
+            goLeft();
+        }
+
+        // go to the leftmost node from the current node. Return its length.
+        private void goLeft() {
+            double len = onLeaf();
+            if (len >= 0.0d) {
+                lastT = nextT;
+                lenAtLastT = lenAtNextT;
+                nextT += (1 << (REC_LIMIT - recLevel)) * MIN_T_INC;
+                lenAtNextT += len;
+                // invalidate caches
+                flatLeafCoefCache[2] = -1.0d;
+                cachedHaveLowAcceleration = -1;
+            } else {
+                DHelpers.subdivide(recCurveStack[recLevel], 0,
+                                  recCurveStack[recLevel+1], 0,
+                                  recCurveStack[recLevel], 0, curveType);
+                sides[recLevel] = Side.LEFT;
+                recLevel++;
+                goLeft();
+            }
+        }
+
+        // this is a bit of a hack. It returns -1 if we're not on a leaf, and
+        // the length of the leaf if we are on a leaf.
+        private double onLeaf() {
+            double[] curve = recCurveStack[recLevel];
+            double polyLen = 0.0d;
+
+            double x0 = curve[0], y0 = curve[1];
+            for (int i = 2; i < curveType; i += 2) {
+                final double x1 = curve[i], y1 = curve[i+1];
+                final double len = DHelpers.linelen(x0, y0, x1, y1);
+                polyLen += len;
+                curLeafCtrlPolyLengths[i/2 - 1] = len;
+                x0 = x1;
+                y0 = y1;
+            }
+
+            final double lineLen = DHelpers.linelen(curve[0], curve[1],
+                                                  curve[curveType-2],
+                                                  curve[curveType-1]);
+            if ((polyLen - lineLen) < ERR || recLevel == REC_LIMIT) {
+                return (polyLen + lineLen) / 2.0d;
+            }
+            return -1.0d;
+        }
+    }
+
+    @Override
+    public void curveTo(double x1, double y1,
+                        double x2, double y2,
+                        double x3, double y3)
+    {
+        final double[] _curCurvepts = curCurvepts;
+        _curCurvepts[0] = x0;        _curCurvepts[1] = y0;
+        _curCurvepts[2] = x1;        _curCurvepts[3] = y1;
+        _curCurvepts[4] = x2;        _curCurvepts[5] = y2;
+        _curCurvepts[6] = x3;        _curCurvepts[7] = y3;
+        somethingTo(8);
+    }
+
+    @Override
+    public void quadTo(double x1, double y1, double x2, double y2) {
+        final double[] _curCurvepts = curCurvepts;
+        _curCurvepts[0] = x0;        _curCurvepts[1] = y0;
+        _curCurvepts[2] = x1;        _curCurvepts[3] = y1;
+        _curCurvepts[4] = x2;        _curCurvepts[5] = y2;
+        somethingTo(6);
+    }
+
+    @Override
+    public void closePath() {
+        lineTo(sx, sy);
+        if (firstSegidx > 0) {
+            if (!dashOn || needsMoveTo) {
+                out.moveTo(sx, sy);
+            }
+            emitFirstSegments();
+        }
+        moveTo(sx, sy);
+    }
+
+    @Override
+    public void pathDone() {
+        if (firstSegidx > 0) {
+            out.moveTo(sx, sy);
+            emitFirstSegments();
+        }
+        out.pathDone();
+
+        // Dispose this instance:
+        dispose();
+    }
+
+    @Override
+    public long getNativeConsumer() {
+        throw new InternalError("DDasher does not use a native consumer");
+    }
+}
+