jdk/src/java.desktop/share/classes/sun/java2d/marlin/DHelpers.java
changeset 47126 188ef162f019
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/DHelpers.java	Wed May 17 22:05:11 2017 +0200
@@ -0,0 +1,436 @@
+/*
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import static java.lang.Math.PI;
+import static java.lang.Math.cos;
+import static java.lang.Math.sqrt;
+import static java.lang.Math.cbrt;
+import static java.lang.Math.acos;
+
+final class DHelpers implements MarlinConst {
+
+    private DHelpers() {
+        throw new Error("This is a non instantiable class");
+    }
+
+    static boolean within(final double x, final double y, final double err) {
+        final double d = y - x;
+        return (d <= err && d >= -err);
+    }
+
+    static int quadraticRoots(final double a, final double b,
+                              final double c, double[] zeroes, final int off)
+    {
+        int ret = off;
+        double t;
+        if (a != 0.0d) {
+            final double dis = b*b - 4*a*c;
+            if (dis > 0.0d) {
+                final double sqrtDis = Math.sqrt(dis);
+                // depending on the sign of b we use a slightly different
+                // algorithm than the traditional one to find one of the roots
+                // so we can avoid adding numbers of different signs (which
+                // might result in loss of precision).
+                if (b >= 0.0d) {
+                    zeroes[ret++] = (2.0d * c) / (-b - sqrtDis);
+                    zeroes[ret++] = (-b - sqrtDis) / (2.0d * a);
+                } else {
+                    zeroes[ret++] = (-b + sqrtDis) / (2.0d * a);
+                    zeroes[ret++] = (2.0d * c) / (-b + sqrtDis);
+                }
+            } else if (dis == 0.0d) {
+                t = (-b) / (2.0d * a);
+                zeroes[ret++] = t;
+            }
+        } else {
+            if (b != 0.0d) {
+                t = (-c) / b;
+                zeroes[ret++] = t;
+            }
+        }
+        return ret - off;
+    }
+
+    // find the roots of g(t) = d*t^3 + a*t^2 + b*t + c in [A,B)
+    static int cubicRootsInAB(double d, double a, double b, double c,
+                              double[] pts, final int off,
+                              final double A, final double B)
+    {
+        if (d == 0.0d) {
+            int num = quadraticRoots(a, b, c, pts, off);
+            return filterOutNotInAB(pts, off, num, A, B) - off;
+        }
+        // From Graphics Gems:
+        // http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
+        // (also from awt.geom.CubicCurve2D. But here we don't need as
+        // much accuracy and we don't want to create arrays so we use
+        // our own customized version).
+
+        // normal form: x^3 + ax^2 + bx + c = 0
+        a /= d;
+        b /= d;
+        c /= d;
+
+        //  substitute x = y - A/3 to eliminate quadratic term:
+        //     x^3 +Px + Q = 0
+        //
+        // Since we actually need P/3 and Q/2 for all of the
+        // calculations that follow, we will calculate
+        // p = P/3
+        // q = Q/2
+        // instead and use those values for simplicity of the code.
+        double sq_A = a * a;
+        double p = (1.0d/3.0d) * ((-1.0d/3.0d) * sq_A + b);
+        double q = (1.0d/2.0d) * ((2.0d/27.0d) * a * sq_A - (1.0d/3.0d) * a * b + c);
+
+        // use Cardano's formula
+
+        double cb_p = p * p * p;
+        double D = q * q + cb_p;
+
+        int num;
+        if (D < 0.0d) {
+            // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
+            final double phi = (1.0d/3.0d) * acos(-q / sqrt(-cb_p));
+            final double t = 2.0d * sqrt(-p);
+
+            pts[ off+0 ] = ( t * cos(phi));
+            pts[ off+1 ] = (-t * cos(phi + (PI / 3.0d)));
+            pts[ off+2 ] = (-t * cos(phi - (PI / 3.0d)));
+            num = 3;
+        } else {
+            final double sqrt_D = sqrt(D);
+            final double u = cbrt(sqrt_D - q);
+            final double v = - cbrt(sqrt_D + q);
+
+            pts[ off ] = (u + v);
+            num = 1;
+
+            if (within(D, 0.0d, 1e-8d)) {
+                pts[off+1] = -(pts[off] / 2.0d);
+                num = 2;
+            }
+        }
+
+        final double sub = (1.0d/3.0d) * a;
+
+        for (int i = 0; i < num; ++i) {
+            pts[ off+i ] -= sub;
+        }
+
+        return filterOutNotInAB(pts, off, num, A, B) - off;
+    }
+
+    static double evalCubic(final double a, final double b,
+                           final double c, final double d,
+                           final double t)
+    {
+        return t * (t * (t * a + b) + c) + d;
+    }
+
+    static double evalQuad(final double a, final double b,
+                          final double c, final double t)
+    {
+        return t * (t * a + b) + c;
+    }
+
+    // returns the index 1 past the last valid element remaining after filtering
+    static int filterOutNotInAB(double[] nums, final int off, final int len,
+                                final double a, final double b)
+    {
+        int ret = off;
+        for (int i = off, end = off + len; i < end; i++) {
+            if (nums[i] >= a && nums[i] < b) {
+                nums[ret++] = nums[i];
+            }
+        }
+        return ret;
+    }
+
+    static double polyLineLength(double[] poly, final int off, final int nCoords) {
+        assert nCoords % 2 == 0 && poly.length >= off + nCoords : "";
+        double acc = 0.0d;
+        for (int i = off + 2; i < off + nCoords; i += 2) {
+            acc += linelen(poly[i], poly[i+1], poly[i-2], poly[i-1]);
+        }
+        return acc;
+    }
+
+    static double linelen(double x1, double y1, double x2, double y2) {
+        final double dx = x2 - x1;
+        final double dy = y2 - y1;
+        return Math.sqrt(dx*dx + dy*dy);
+    }
+
+    static void subdivide(double[] src, int srcoff, double[] left, int leftoff,
+                          double[] right, int rightoff, int type)
+    {
+        switch(type) {
+        case 6:
+            DHelpers.subdivideQuad(src, srcoff, left, leftoff, right, rightoff);
+            return;
+        case 8:
+            DHelpers.subdivideCubic(src, srcoff, left, leftoff, right, rightoff);
+            return;
+        default:
+            throw new InternalError("Unsupported curve type");
+        }
+    }
+
+    static void isort(double[] a, int off, int len) {
+        for (int i = off + 1, end = off + len; i < end; i++) {
+            double ai = a[i];
+            int j = i - 1;
+            for (; j >= off && a[j] > ai; j--) {
+                a[j+1] = a[j];
+            }
+            a[j+1] = ai;
+        }
+    }
+
+    // Most of these are copied from classes in java.awt.geom because we need
+    // both single and double precision variants of these functions, and Line2D,
+    // CubicCurve2D, QuadCurve2D don't provide them.
+    /**
+     * Subdivides the cubic curve specified by the coordinates
+     * stored in the <code>src</code> array at indices <code>srcoff</code>
+     * through (<code>srcoff</code>&nbsp;+&nbsp;7) and stores the
+     * resulting two subdivided curves into the two result arrays at the
+     * corresponding indices.
+     * Either or both of the <code>left</code> and <code>right</code>
+     * arrays may be <code>null</code> or a reference to the same array
+     * as the <code>src</code> array.
+     * Note that the last point in the first subdivided curve is the
+     * same as the first point in the second subdivided curve. Thus,
+     * it is possible to pass the same array for <code>left</code>
+     * and <code>right</code> and to use offsets, such as <code>rightoff</code>
+     * equals (<code>leftoff</code> + 6), in order
+     * to avoid allocating extra storage for this common point.
+     * @param src the array holding the coordinates for the source curve
+     * @param srcoff the offset into the array of the beginning of the
+     * the 6 source coordinates
+     * @param left the array for storing the coordinates for the first
+     * half of the subdivided curve
+     * @param leftoff the offset into the array of the beginning of the
+     * the 6 left coordinates
+     * @param right the array for storing the coordinates for the second
+     * half of the subdivided curve
+     * @param rightoff the offset into the array of the beginning of the
+     * the 6 right coordinates
+     * @since 1.7
+     */
+    static void subdivideCubic(double[] src, int srcoff,
+                               double[] left, int leftoff,
+                               double[] right, int rightoff)
+    {
+        double x1 = src[srcoff + 0];
+        double y1 = src[srcoff + 1];
+        double ctrlx1 = src[srcoff + 2];
+        double ctrly1 = src[srcoff + 3];
+        double ctrlx2 = src[srcoff + 4];
+        double ctrly2 = src[srcoff + 5];
+        double x2 = src[srcoff + 6];
+        double y2 = src[srcoff + 7];
+        if (left != null) {
+            left[leftoff + 0] = x1;
+            left[leftoff + 1] = y1;
+        }
+        if (right != null) {
+            right[rightoff + 6] = x2;
+            right[rightoff + 7] = y2;
+        }
+        x1 = (x1 + ctrlx1) / 2.0d;
+        y1 = (y1 + ctrly1) / 2.0d;
+        x2 = (x2 + ctrlx2) / 2.0d;
+        y2 = (y2 + ctrly2) / 2.0d;
+        double centerx = (ctrlx1 + ctrlx2) / 2.0d;
+        double centery = (ctrly1 + ctrly2) / 2.0d;
+        ctrlx1 = (x1 + centerx) / 2.0d;
+        ctrly1 = (y1 + centery) / 2.0d;
+        ctrlx2 = (x2 + centerx) / 2.0d;
+        ctrly2 = (y2 + centery) / 2.0d;
+        centerx = (ctrlx1 + ctrlx2) / 2.0d;
+        centery = (ctrly1 + ctrly2) / 2.0d;
+        if (left != null) {
+            left[leftoff + 2] = x1;
+            left[leftoff + 3] = y1;
+            left[leftoff + 4] = ctrlx1;
+            left[leftoff + 5] = ctrly1;
+            left[leftoff + 6] = centerx;
+            left[leftoff + 7] = centery;
+        }
+        if (right != null) {
+            right[rightoff + 0] = centerx;
+            right[rightoff + 1] = centery;
+            right[rightoff + 2] = ctrlx2;
+            right[rightoff + 3] = ctrly2;
+            right[rightoff + 4] = x2;
+            right[rightoff + 5] = y2;
+        }
+    }
+
+
+    static void subdivideCubicAt(double t, double[] src, int srcoff,
+                                 double[] left, int leftoff,
+                                 double[] right, int rightoff)
+    {
+        double x1 = src[srcoff + 0];
+        double y1 = src[srcoff + 1];
+        double ctrlx1 = src[srcoff + 2];
+        double ctrly1 = src[srcoff + 3];
+        double ctrlx2 = src[srcoff + 4];
+        double ctrly2 = src[srcoff + 5];
+        double x2 = src[srcoff + 6];
+        double y2 = src[srcoff + 7];
+        if (left != null) {
+            left[leftoff + 0] = x1;
+            left[leftoff + 1] = y1;
+        }
+        if (right != null) {
+            right[rightoff + 6] = x2;
+            right[rightoff + 7] = y2;
+        }
+        x1 = x1 + t * (ctrlx1 - x1);
+        y1 = y1 + t * (ctrly1 - y1);
+        x2 = ctrlx2 + t * (x2 - ctrlx2);
+        y2 = ctrly2 + t * (y2 - ctrly2);
+        double centerx = ctrlx1 + t * (ctrlx2 - ctrlx1);
+        double centery = ctrly1 + t * (ctrly2 - ctrly1);
+        ctrlx1 = x1 + t * (centerx - x1);
+        ctrly1 = y1 + t * (centery - y1);
+        ctrlx2 = centerx + t * (x2 - centerx);
+        ctrly2 = centery + t * (y2 - centery);
+        centerx = ctrlx1 + t * (ctrlx2 - ctrlx1);
+        centery = ctrly1 + t * (ctrly2 - ctrly1);
+        if (left != null) {
+            left[leftoff + 2] = x1;
+            left[leftoff + 3] = y1;
+            left[leftoff + 4] = ctrlx1;
+            left[leftoff + 5] = ctrly1;
+            left[leftoff + 6] = centerx;
+            left[leftoff + 7] = centery;
+        }
+        if (right != null) {
+            right[rightoff + 0] = centerx;
+            right[rightoff + 1] = centery;
+            right[rightoff + 2] = ctrlx2;
+            right[rightoff + 3] = ctrly2;
+            right[rightoff + 4] = x2;
+            right[rightoff + 5] = y2;
+        }
+    }
+
+    static void subdivideQuad(double[] src, int srcoff,
+                              double[] left, int leftoff,
+                              double[] right, int rightoff)
+    {
+        double x1 = src[srcoff + 0];
+        double y1 = src[srcoff + 1];
+        double ctrlx = src[srcoff + 2];
+        double ctrly = src[srcoff + 3];
+        double x2 = src[srcoff + 4];
+        double y2 = src[srcoff + 5];
+        if (left != null) {
+            left[leftoff + 0] = x1;
+            left[leftoff + 1] = y1;
+        }
+        if (right != null) {
+            right[rightoff + 4] = x2;
+            right[rightoff + 5] = y2;
+        }
+        x1 = (x1 + ctrlx) / 2.0d;
+        y1 = (y1 + ctrly) / 2.0d;
+        x2 = (x2 + ctrlx) / 2.0d;
+        y2 = (y2 + ctrly) / 2.0d;
+        ctrlx = (x1 + x2) / 2.0d;
+        ctrly = (y1 + y2) / 2.0d;
+        if (left != null) {
+            left[leftoff + 2] = x1;
+            left[leftoff + 3] = y1;
+            left[leftoff + 4] = ctrlx;
+            left[leftoff + 5] = ctrly;
+        }
+        if (right != null) {
+            right[rightoff + 0] = ctrlx;
+            right[rightoff + 1] = ctrly;
+            right[rightoff + 2] = x2;
+            right[rightoff + 3] = y2;
+        }
+    }
+
+    static void subdivideQuadAt(double t, double[] src, int srcoff,
+                                double[] left, int leftoff,
+                                double[] right, int rightoff)
+    {
+        double x1 = src[srcoff + 0];
+        double y1 = src[srcoff + 1];
+        double ctrlx = src[srcoff + 2];
+        double ctrly = src[srcoff + 3];
+        double x2 = src[srcoff + 4];
+        double y2 = src[srcoff + 5];
+        if (left != null) {
+            left[leftoff + 0] = x1;
+            left[leftoff + 1] = y1;
+        }
+        if (right != null) {
+            right[rightoff + 4] = x2;
+            right[rightoff + 5] = y2;
+        }
+        x1 = x1 + t * (ctrlx - x1);
+        y1 = y1 + t * (ctrly - y1);
+        x2 = ctrlx + t * (x2 - ctrlx);
+        y2 = ctrly + t * (y2 - ctrly);
+        ctrlx = x1 + t * (x2 - x1);
+        ctrly = y1 + t * (y2 - y1);
+        if (left != null) {
+            left[leftoff + 2] = x1;
+            left[leftoff + 3] = y1;
+            left[leftoff + 4] = ctrlx;
+            left[leftoff + 5] = ctrly;
+        }
+        if (right != null) {
+            right[rightoff + 0] = ctrlx;
+            right[rightoff + 1] = ctrly;
+            right[rightoff + 2] = x2;
+            right[rightoff + 3] = y2;
+        }
+    }
+
+    static void subdivideAt(double t, double[] src, int srcoff,
+                            double[] left, int leftoff,
+                            double[] right, int rightoff, int size)
+    {
+        switch(size) {
+        case 8:
+            subdivideCubicAt(t, src, srcoff, left, leftoff, right, rightoff);
+            return;
+        case 6:
+            subdivideQuadAt(t, src, srcoff, left, leftoff, right, rightoff);
+            return;
+        }
+    }
+}