jdk/src/java.desktop/share/classes/sun/java2d/marlin/DHelpers.java
changeset 47126 188ef162f019
equal deleted inserted replaced
45093:c42dc7b58b4d 47126:188ef162f019
       
     1 /*
       
     2  * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.  Oracle designates this
       
     8  * particular file as subject to the "Classpath" exception as provided
       
     9  * by Oracle in the LICENSE file that accompanied this code.
       
    10  *
       
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    14  * version 2 for more details (a copy is included in the LICENSE file that
       
    15  * accompanied this code).
       
    16  *
       
    17  * You should have received a copy of the GNU General Public License version
       
    18  * 2 along with this work; if not, write to the Free Software Foundation,
       
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    20  *
       
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    22  * or visit www.oracle.com if you need additional information or have any
       
    23  * questions.
       
    24  */
       
    25 
       
    26 package sun.java2d.marlin;
       
    27 
       
    28 import static java.lang.Math.PI;
       
    29 import static java.lang.Math.cos;
       
    30 import static java.lang.Math.sqrt;
       
    31 import static java.lang.Math.cbrt;
       
    32 import static java.lang.Math.acos;
       
    33 
       
    34 final class DHelpers implements MarlinConst {
       
    35 
       
    36     private DHelpers() {
       
    37         throw new Error("This is a non instantiable class");
       
    38     }
       
    39 
       
    40     static boolean within(final double x, final double y, final double err) {
       
    41         final double d = y - x;
       
    42         return (d <= err && d >= -err);
       
    43     }
       
    44 
       
    45     static int quadraticRoots(final double a, final double b,
       
    46                               final double c, double[] zeroes, final int off)
       
    47     {
       
    48         int ret = off;
       
    49         double t;
       
    50         if (a != 0.0d) {
       
    51             final double dis = b*b - 4*a*c;
       
    52             if (dis > 0.0d) {
       
    53                 final double sqrtDis = Math.sqrt(dis);
       
    54                 // depending on the sign of b we use a slightly different
       
    55                 // algorithm than the traditional one to find one of the roots
       
    56                 // so we can avoid adding numbers of different signs (which
       
    57                 // might result in loss of precision).
       
    58                 if (b >= 0.0d) {
       
    59                     zeroes[ret++] = (2.0d * c) / (-b - sqrtDis);
       
    60                     zeroes[ret++] = (-b - sqrtDis) / (2.0d * a);
       
    61                 } else {
       
    62                     zeroes[ret++] = (-b + sqrtDis) / (2.0d * a);
       
    63                     zeroes[ret++] = (2.0d * c) / (-b + sqrtDis);
       
    64                 }
       
    65             } else if (dis == 0.0d) {
       
    66                 t = (-b) / (2.0d * a);
       
    67                 zeroes[ret++] = t;
       
    68             }
       
    69         } else {
       
    70             if (b != 0.0d) {
       
    71                 t = (-c) / b;
       
    72                 zeroes[ret++] = t;
       
    73             }
       
    74         }
       
    75         return ret - off;
       
    76     }
       
    77 
       
    78     // find the roots of g(t) = d*t^3 + a*t^2 + b*t + c in [A,B)
       
    79     static int cubicRootsInAB(double d, double a, double b, double c,
       
    80                               double[] pts, final int off,
       
    81                               final double A, final double B)
       
    82     {
       
    83         if (d == 0.0d) {
       
    84             int num = quadraticRoots(a, b, c, pts, off);
       
    85             return filterOutNotInAB(pts, off, num, A, B) - off;
       
    86         }
       
    87         // From Graphics Gems:
       
    88         // http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
       
    89         // (also from awt.geom.CubicCurve2D. But here we don't need as
       
    90         // much accuracy and we don't want to create arrays so we use
       
    91         // our own customized version).
       
    92 
       
    93         // normal form: x^3 + ax^2 + bx + c = 0
       
    94         a /= d;
       
    95         b /= d;
       
    96         c /= d;
       
    97 
       
    98         //  substitute x = y - A/3 to eliminate quadratic term:
       
    99         //     x^3 +Px + Q = 0
       
   100         //
       
   101         // Since we actually need P/3 and Q/2 for all of the
       
   102         // calculations that follow, we will calculate
       
   103         // p = P/3
       
   104         // q = Q/2
       
   105         // instead and use those values for simplicity of the code.
       
   106         double sq_A = a * a;
       
   107         double p = (1.0d/3.0d) * ((-1.0d/3.0d) * sq_A + b);
       
   108         double q = (1.0d/2.0d) * ((2.0d/27.0d) * a * sq_A - (1.0d/3.0d) * a * b + c);
       
   109 
       
   110         // use Cardano's formula
       
   111 
       
   112         double cb_p = p * p * p;
       
   113         double D = q * q + cb_p;
       
   114 
       
   115         int num;
       
   116         if (D < 0.0d) {
       
   117             // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
       
   118             final double phi = (1.0d/3.0d) * acos(-q / sqrt(-cb_p));
       
   119             final double t = 2.0d * sqrt(-p);
       
   120 
       
   121             pts[ off+0 ] = ( t * cos(phi));
       
   122             pts[ off+1 ] = (-t * cos(phi + (PI / 3.0d)));
       
   123             pts[ off+2 ] = (-t * cos(phi - (PI / 3.0d)));
       
   124             num = 3;
       
   125         } else {
       
   126             final double sqrt_D = sqrt(D);
       
   127             final double u = cbrt(sqrt_D - q);
       
   128             final double v = - cbrt(sqrt_D + q);
       
   129 
       
   130             pts[ off ] = (u + v);
       
   131             num = 1;
       
   132 
       
   133             if (within(D, 0.0d, 1e-8d)) {
       
   134                 pts[off+1] = -(pts[off] / 2.0d);
       
   135                 num = 2;
       
   136             }
       
   137         }
       
   138 
       
   139         final double sub = (1.0d/3.0d) * a;
       
   140 
       
   141         for (int i = 0; i < num; ++i) {
       
   142             pts[ off+i ] -= sub;
       
   143         }
       
   144 
       
   145         return filterOutNotInAB(pts, off, num, A, B) - off;
       
   146     }
       
   147 
       
   148     static double evalCubic(final double a, final double b,
       
   149                            final double c, final double d,
       
   150                            final double t)
       
   151     {
       
   152         return t * (t * (t * a + b) + c) + d;
       
   153     }
       
   154 
       
   155     static double evalQuad(final double a, final double b,
       
   156                           final double c, final double t)
       
   157     {
       
   158         return t * (t * a + b) + c;
       
   159     }
       
   160 
       
   161     // returns the index 1 past the last valid element remaining after filtering
       
   162     static int filterOutNotInAB(double[] nums, final int off, final int len,
       
   163                                 final double a, final double b)
       
   164     {
       
   165         int ret = off;
       
   166         for (int i = off, end = off + len; i < end; i++) {
       
   167             if (nums[i] >= a && nums[i] < b) {
       
   168                 nums[ret++] = nums[i];
       
   169             }
       
   170         }
       
   171         return ret;
       
   172     }
       
   173 
       
   174     static double polyLineLength(double[] poly, final int off, final int nCoords) {
       
   175         assert nCoords % 2 == 0 && poly.length >= off + nCoords : "";
       
   176         double acc = 0.0d;
       
   177         for (int i = off + 2; i < off + nCoords; i += 2) {
       
   178             acc += linelen(poly[i], poly[i+1], poly[i-2], poly[i-1]);
       
   179         }
       
   180         return acc;
       
   181     }
       
   182 
       
   183     static double linelen(double x1, double y1, double x2, double y2) {
       
   184         final double dx = x2 - x1;
       
   185         final double dy = y2 - y1;
       
   186         return Math.sqrt(dx*dx + dy*dy);
       
   187     }
       
   188 
       
   189     static void subdivide(double[] src, int srcoff, double[] left, int leftoff,
       
   190                           double[] right, int rightoff, int type)
       
   191     {
       
   192         switch(type) {
       
   193         case 6:
       
   194             DHelpers.subdivideQuad(src, srcoff, left, leftoff, right, rightoff);
       
   195             return;
       
   196         case 8:
       
   197             DHelpers.subdivideCubic(src, srcoff, left, leftoff, right, rightoff);
       
   198             return;
       
   199         default:
       
   200             throw new InternalError("Unsupported curve type");
       
   201         }
       
   202     }
       
   203 
       
   204     static void isort(double[] a, int off, int len) {
       
   205         for (int i = off + 1, end = off + len; i < end; i++) {
       
   206             double ai = a[i];
       
   207             int j = i - 1;
       
   208             for (; j >= off && a[j] > ai; j--) {
       
   209                 a[j+1] = a[j];
       
   210             }
       
   211             a[j+1] = ai;
       
   212         }
       
   213     }
       
   214 
       
   215     // Most of these are copied from classes in java.awt.geom because we need
       
   216     // both single and double precision variants of these functions, and Line2D,
       
   217     // CubicCurve2D, QuadCurve2D don't provide them.
       
   218     /**
       
   219      * Subdivides the cubic curve specified by the coordinates
       
   220      * stored in the <code>src</code> array at indices <code>srcoff</code>
       
   221      * through (<code>srcoff</code>&nbsp;+&nbsp;7) and stores the
       
   222      * resulting two subdivided curves into the two result arrays at the
       
   223      * corresponding indices.
       
   224      * Either or both of the <code>left</code> and <code>right</code>
       
   225      * arrays may be <code>null</code> or a reference to the same array
       
   226      * as the <code>src</code> array.
       
   227      * Note that the last point in the first subdivided curve is the
       
   228      * same as the first point in the second subdivided curve. Thus,
       
   229      * it is possible to pass the same array for <code>left</code>
       
   230      * and <code>right</code> and to use offsets, such as <code>rightoff</code>
       
   231      * equals (<code>leftoff</code> + 6), in order
       
   232      * to avoid allocating extra storage for this common point.
       
   233      * @param src the array holding the coordinates for the source curve
       
   234      * @param srcoff the offset into the array of the beginning of the
       
   235      * the 6 source coordinates
       
   236      * @param left the array for storing the coordinates for the first
       
   237      * half of the subdivided curve
       
   238      * @param leftoff the offset into the array of the beginning of the
       
   239      * the 6 left coordinates
       
   240      * @param right the array for storing the coordinates for the second
       
   241      * half of the subdivided curve
       
   242      * @param rightoff the offset into the array of the beginning of the
       
   243      * the 6 right coordinates
       
   244      * @since 1.7
       
   245      */
       
   246     static void subdivideCubic(double[] src, int srcoff,
       
   247                                double[] left, int leftoff,
       
   248                                double[] right, int rightoff)
       
   249     {
       
   250         double x1 = src[srcoff + 0];
       
   251         double y1 = src[srcoff + 1];
       
   252         double ctrlx1 = src[srcoff + 2];
       
   253         double ctrly1 = src[srcoff + 3];
       
   254         double ctrlx2 = src[srcoff + 4];
       
   255         double ctrly2 = src[srcoff + 5];
       
   256         double x2 = src[srcoff + 6];
       
   257         double y2 = src[srcoff + 7];
       
   258         if (left != null) {
       
   259             left[leftoff + 0] = x1;
       
   260             left[leftoff + 1] = y1;
       
   261         }
       
   262         if (right != null) {
       
   263             right[rightoff + 6] = x2;
       
   264             right[rightoff + 7] = y2;
       
   265         }
       
   266         x1 = (x1 + ctrlx1) / 2.0d;
       
   267         y1 = (y1 + ctrly1) / 2.0d;
       
   268         x2 = (x2 + ctrlx2) / 2.0d;
       
   269         y2 = (y2 + ctrly2) / 2.0d;
       
   270         double centerx = (ctrlx1 + ctrlx2) / 2.0d;
       
   271         double centery = (ctrly1 + ctrly2) / 2.0d;
       
   272         ctrlx1 = (x1 + centerx) / 2.0d;
       
   273         ctrly1 = (y1 + centery) / 2.0d;
       
   274         ctrlx2 = (x2 + centerx) / 2.0d;
       
   275         ctrly2 = (y2 + centery) / 2.0d;
       
   276         centerx = (ctrlx1 + ctrlx2) / 2.0d;
       
   277         centery = (ctrly1 + ctrly2) / 2.0d;
       
   278         if (left != null) {
       
   279             left[leftoff + 2] = x1;
       
   280             left[leftoff + 3] = y1;
       
   281             left[leftoff + 4] = ctrlx1;
       
   282             left[leftoff + 5] = ctrly1;
       
   283             left[leftoff + 6] = centerx;
       
   284             left[leftoff + 7] = centery;
       
   285         }
       
   286         if (right != null) {
       
   287             right[rightoff + 0] = centerx;
       
   288             right[rightoff + 1] = centery;
       
   289             right[rightoff + 2] = ctrlx2;
       
   290             right[rightoff + 3] = ctrly2;
       
   291             right[rightoff + 4] = x2;
       
   292             right[rightoff + 5] = y2;
       
   293         }
       
   294     }
       
   295 
       
   296 
       
   297     static void subdivideCubicAt(double t, double[] src, int srcoff,
       
   298                                  double[] left, int leftoff,
       
   299                                  double[] right, int rightoff)
       
   300     {
       
   301         double x1 = src[srcoff + 0];
       
   302         double y1 = src[srcoff + 1];
       
   303         double ctrlx1 = src[srcoff + 2];
       
   304         double ctrly1 = src[srcoff + 3];
       
   305         double ctrlx2 = src[srcoff + 4];
       
   306         double ctrly2 = src[srcoff + 5];
       
   307         double x2 = src[srcoff + 6];
       
   308         double y2 = src[srcoff + 7];
       
   309         if (left != null) {
       
   310             left[leftoff + 0] = x1;
       
   311             left[leftoff + 1] = y1;
       
   312         }
       
   313         if (right != null) {
       
   314             right[rightoff + 6] = x2;
       
   315             right[rightoff + 7] = y2;
       
   316         }
       
   317         x1 = x1 + t * (ctrlx1 - x1);
       
   318         y1 = y1 + t * (ctrly1 - y1);
       
   319         x2 = ctrlx2 + t * (x2 - ctrlx2);
       
   320         y2 = ctrly2 + t * (y2 - ctrly2);
       
   321         double centerx = ctrlx1 + t * (ctrlx2 - ctrlx1);
       
   322         double centery = ctrly1 + t * (ctrly2 - ctrly1);
       
   323         ctrlx1 = x1 + t * (centerx - x1);
       
   324         ctrly1 = y1 + t * (centery - y1);
       
   325         ctrlx2 = centerx + t * (x2 - centerx);
       
   326         ctrly2 = centery + t * (y2 - centery);
       
   327         centerx = ctrlx1 + t * (ctrlx2 - ctrlx1);
       
   328         centery = ctrly1 + t * (ctrly2 - ctrly1);
       
   329         if (left != null) {
       
   330             left[leftoff + 2] = x1;
       
   331             left[leftoff + 3] = y1;
       
   332             left[leftoff + 4] = ctrlx1;
       
   333             left[leftoff + 5] = ctrly1;
       
   334             left[leftoff + 6] = centerx;
       
   335             left[leftoff + 7] = centery;
       
   336         }
       
   337         if (right != null) {
       
   338             right[rightoff + 0] = centerx;
       
   339             right[rightoff + 1] = centery;
       
   340             right[rightoff + 2] = ctrlx2;
       
   341             right[rightoff + 3] = ctrly2;
       
   342             right[rightoff + 4] = x2;
       
   343             right[rightoff + 5] = y2;
       
   344         }
       
   345     }
       
   346 
       
   347     static void subdivideQuad(double[] src, int srcoff,
       
   348                               double[] left, int leftoff,
       
   349                               double[] right, int rightoff)
       
   350     {
       
   351         double x1 = src[srcoff + 0];
       
   352         double y1 = src[srcoff + 1];
       
   353         double ctrlx = src[srcoff + 2];
       
   354         double ctrly = src[srcoff + 3];
       
   355         double x2 = src[srcoff + 4];
       
   356         double y2 = src[srcoff + 5];
       
   357         if (left != null) {
       
   358             left[leftoff + 0] = x1;
       
   359             left[leftoff + 1] = y1;
       
   360         }
       
   361         if (right != null) {
       
   362             right[rightoff + 4] = x2;
       
   363             right[rightoff + 5] = y2;
       
   364         }
       
   365         x1 = (x1 + ctrlx) / 2.0d;
       
   366         y1 = (y1 + ctrly) / 2.0d;
       
   367         x2 = (x2 + ctrlx) / 2.0d;
       
   368         y2 = (y2 + ctrly) / 2.0d;
       
   369         ctrlx = (x1 + x2) / 2.0d;
       
   370         ctrly = (y1 + y2) / 2.0d;
       
   371         if (left != null) {
       
   372             left[leftoff + 2] = x1;
       
   373             left[leftoff + 3] = y1;
       
   374             left[leftoff + 4] = ctrlx;
       
   375             left[leftoff + 5] = ctrly;
       
   376         }
       
   377         if (right != null) {
       
   378             right[rightoff + 0] = ctrlx;
       
   379             right[rightoff + 1] = ctrly;
       
   380             right[rightoff + 2] = x2;
       
   381             right[rightoff + 3] = y2;
       
   382         }
       
   383     }
       
   384 
       
   385     static void subdivideQuadAt(double t, double[] src, int srcoff,
       
   386                                 double[] left, int leftoff,
       
   387                                 double[] right, int rightoff)
       
   388     {
       
   389         double x1 = src[srcoff + 0];
       
   390         double y1 = src[srcoff + 1];
       
   391         double ctrlx = src[srcoff + 2];
       
   392         double ctrly = src[srcoff + 3];
       
   393         double x2 = src[srcoff + 4];
       
   394         double y2 = src[srcoff + 5];
       
   395         if (left != null) {
       
   396             left[leftoff + 0] = x1;
       
   397             left[leftoff + 1] = y1;
       
   398         }
       
   399         if (right != null) {
       
   400             right[rightoff + 4] = x2;
       
   401             right[rightoff + 5] = y2;
       
   402         }
       
   403         x1 = x1 + t * (ctrlx - x1);
       
   404         y1 = y1 + t * (ctrly - y1);
       
   405         x2 = ctrlx + t * (x2 - ctrlx);
       
   406         y2 = ctrly + t * (y2 - ctrly);
       
   407         ctrlx = x1 + t * (x2 - x1);
       
   408         ctrly = y1 + t * (y2 - y1);
       
   409         if (left != null) {
       
   410             left[leftoff + 2] = x1;
       
   411             left[leftoff + 3] = y1;
       
   412             left[leftoff + 4] = ctrlx;
       
   413             left[leftoff + 5] = ctrly;
       
   414         }
       
   415         if (right != null) {
       
   416             right[rightoff + 0] = ctrlx;
       
   417             right[rightoff + 1] = ctrly;
       
   418             right[rightoff + 2] = x2;
       
   419             right[rightoff + 3] = y2;
       
   420         }
       
   421     }
       
   422 
       
   423     static void subdivideAt(double t, double[] src, int srcoff,
       
   424                             double[] left, int leftoff,
       
   425                             double[] right, int rightoff, int size)
       
   426     {
       
   427         switch(size) {
       
   428         case 8:
       
   429             subdivideCubicAt(t, src, srcoff, left, leftoff, right, rightoff);
       
   430             return;
       
   431         case 6:
       
   432             subdivideQuadAt(t, src, srcoff, left, leftoff, right, rightoff);
       
   433             return;
       
   434         }
       
   435     }
       
   436 }