author | xlu |
Wed, 24 Dec 2008 13:06:09 -0800 | |
changeset 1888 | bbf498fb4354 |
parent 1500 | bea9a90f3e8f |
child 2148 | 09c7f703773b |
permissions | -rw-r--r-- |
1 | 1 |
/* |
670 | 2 |
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 |
* have any questions. |
|
22 |
* |
|
23 |
*/ |
|
24 |
||
25 |
class BiasedLockingCounters; |
|
26 |
||
27 |
// Contains all the definitions needed for x86 assembly code generation. |
|
28 |
||
29 |
// Calling convention |
|
30 |
class Argument VALUE_OBJ_CLASS_SPEC { |
|
31 |
public: |
|
32 |
enum { |
|
33 |
#ifdef _LP64 |
|
34 |
#ifdef _WIN64 |
|
35 |
n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) |
|
36 |
n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... ) |
|
37 |
#else |
|
38 |
n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) |
|
39 |
n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... ) |
|
40 |
#endif // _WIN64 |
|
41 |
n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ... |
|
42 |
n_float_register_parameters_j = 8 // j_farg0, j_farg1, ... |
|
43 |
#else |
|
44 |
n_register_parameters = 0 // 0 registers used to pass arguments |
|
45 |
#endif // _LP64 |
|
46 |
}; |
|
47 |
}; |
|
48 |
||
49 |
||
50 |
#ifdef _LP64 |
|
51 |
// Symbolically name the register arguments used by the c calling convention. |
|
52 |
// Windows is different from linux/solaris. So much for standards... |
|
53 |
||
54 |
#ifdef _WIN64 |
|
55 |
||
56 |
REGISTER_DECLARATION(Register, c_rarg0, rcx); |
|
57 |
REGISTER_DECLARATION(Register, c_rarg1, rdx); |
|
58 |
REGISTER_DECLARATION(Register, c_rarg2, r8); |
|
59 |
REGISTER_DECLARATION(Register, c_rarg3, r9); |
|
60 |
||
1066 | 61 |
REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0); |
62 |
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1); |
|
63 |
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2); |
|
64 |
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3); |
|
1 | 65 |
|
66 |
#else |
|
67 |
||
68 |
REGISTER_DECLARATION(Register, c_rarg0, rdi); |
|
69 |
REGISTER_DECLARATION(Register, c_rarg1, rsi); |
|
70 |
REGISTER_DECLARATION(Register, c_rarg2, rdx); |
|
71 |
REGISTER_DECLARATION(Register, c_rarg3, rcx); |
|
72 |
REGISTER_DECLARATION(Register, c_rarg4, r8); |
|
73 |
REGISTER_DECLARATION(Register, c_rarg5, r9); |
|
74 |
||
1066 | 75 |
REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0); |
76 |
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1); |
|
77 |
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2); |
|
78 |
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3); |
|
79 |
REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4); |
|
80 |
REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5); |
|
81 |
REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6); |
|
82 |
REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7); |
|
1 | 83 |
|
84 |
#endif // _WIN64 |
|
85 |
||
86 |
// Symbolically name the register arguments used by the Java calling convention. |
|
87 |
// We have control over the convention for java so we can do what we please. |
|
88 |
// What pleases us is to offset the java calling convention so that when |
|
89 |
// we call a suitable jni method the arguments are lined up and we don't |
|
90 |
// have to do little shuffling. A suitable jni method is non-static and a |
|
91 |
// small number of arguments (two fewer args on windows) |
|
92 |
// |
|
93 |
// |-------------------------------------------------------| |
|
94 |
// | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 | |
|
95 |
// |-------------------------------------------------------| |
|
96 |
// | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg) |
|
97 |
// | rdi rsi rdx rcx r8 r9 | solaris/linux |
|
98 |
// |-------------------------------------------------------| |
|
99 |
// | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 | |
|
100 |
// |-------------------------------------------------------| |
|
101 |
||
102 |
REGISTER_DECLARATION(Register, j_rarg0, c_rarg1); |
|
103 |
REGISTER_DECLARATION(Register, j_rarg1, c_rarg2); |
|
104 |
REGISTER_DECLARATION(Register, j_rarg2, c_rarg3); |
|
105 |
// Windows runs out of register args here |
|
106 |
#ifdef _WIN64 |
|
107 |
REGISTER_DECLARATION(Register, j_rarg3, rdi); |
|
108 |
REGISTER_DECLARATION(Register, j_rarg4, rsi); |
|
109 |
#else |
|
110 |
REGISTER_DECLARATION(Register, j_rarg3, c_rarg4); |
|
111 |
REGISTER_DECLARATION(Register, j_rarg4, c_rarg5); |
|
112 |
#endif /* _WIN64 */ |
|
113 |
REGISTER_DECLARATION(Register, j_rarg5, c_rarg0); |
|
114 |
||
1066 | 115 |
REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0); |
116 |
REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1); |
|
117 |
REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2); |
|
118 |
REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3); |
|
119 |
REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4); |
|
120 |
REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5); |
|
121 |
REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6); |
|
122 |
REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7); |
|
1 | 123 |
|
124 |
REGISTER_DECLARATION(Register, rscratch1, r10); // volatile |
|
125 |
REGISTER_DECLARATION(Register, rscratch2, r11); // volatile |
|
126 |
||
1066 | 127 |
REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved |
1 | 128 |
REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved |
129 |
||
1066 | 130 |
#else |
131 |
// rscratch1 will apear in 32bit code that is dead but of course must compile |
|
132 |
// Using noreg ensures if the dead code is incorrectly live and executed it |
|
133 |
// will cause an assertion failure |
|
134 |
#define rscratch1 noreg |
|
135 |
||
1 | 136 |
#endif // _LP64 |
137 |
||
138 |
// Address is an abstraction used to represent a memory location |
|
139 |
// using any of the amd64 addressing modes with one object. |
|
140 |
// |
|
141 |
// Note: A register location is represented via a Register, not |
|
142 |
// via an address for efficiency & simplicity reasons. |
|
143 |
||
144 |
class ArrayAddress; |
|
145 |
||
146 |
class Address VALUE_OBJ_CLASS_SPEC { |
|
147 |
public: |
|
148 |
enum ScaleFactor { |
|
149 |
no_scale = -1, |
|
150 |
times_1 = 0, |
|
151 |
times_2 = 1, |
|
152 |
times_4 = 2, |
|
1066 | 153 |
times_8 = 3, |
154 |
times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4) |
|
1 | 155 |
}; |
156 |
||
157 |
private: |
|
158 |
Register _base; |
|
159 |
Register _index; |
|
160 |
ScaleFactor _scale; |
|
161 |
int _disp; |
|
162 |
RelocationHolder _rspec; |
|
163 |
||
1066 | 164 |
// Easily misused constructors make them private |
165 |
// %%% can we make these go away? |
|
166 |
NOT_LP64(Address(address loc, RelocationHolder spec);) |
|
167 |
Address(int disp, address loc, relocInfo::relocType rtype); |
|
168 |
Address(int disp, address loc, RelocationHolder spec); |
|
1 | 169 |
|
170 |
public: |
|
1066 | 171 |
|
172 |
int disp() { return _disp; } |
|
1 | 173 |
// creation |
174 |
Address() |
|
175 |
: _base(noreg), |
|
176 |
_index(noreg), |
|
177 |
_scale(no_scale), |
|
178 |
_disp(0) { |
|
179 |
} |
|
180 |
||
181 |
// No default displacement otherwise Register can be implicitly |
|
182 |
// converted to 0(Register) which is quite a different animal. |
|
183 |
||
184 |
Address(Register base, int disp) |
|
185 |
: _base(base), |
|
186 |
_index(noreg), |
|
187 |
_scale(no_scale), |
|
188 |
_disp(disp) { |
|
189 |
} |
|
190 |
||
191 |
Address(Register base, Register index, ScaleFactor scale, int disp = 0) |
|
192 |
: _base (base), |
|
193 |
_index(index), |
|
194 |
_scale(scale), |
|
195 |
_disp (disp) { |
|
196 |
assert(!index->is_valid() == (scale == Address::no_scale), |
|
197 |
"inconsistent address"); |
|
198 |
} |
|
199 |
||
200 |
// The following two overloads are used in connection with the |
|
201 |
// ByteSize type (see sizes.hpp). They simplify the use of |
|
202 |
// ByteSize'd arguments in assembly code. Note that their equivalent |
|
203 |
// for the optimized build are the member functions with int disp |
|
204 |
// argument since ByteSize is mapped to an int type in that case. |
|
205 |
// |
|
206 |
// Note: DO NOT introduce similar overloaded functions for WordSize |
|
207 |
// arguments as in the optimized mode, both ByteSize and WordSize |
|
208 |
// are mapped to the same type and thus the compiler cannot make a |
|
209 |
// distinction anymore (=> compiler errors). |
|
210 |
||
211 |
#ifdef ASSERT |
|
212 |
Address(Register base, ByteSize disp) |
|
213 |
: _base(base), |
|
214 |
_index(noreg), |
|
215 |
_scale(no_scale), |
|
216 |
_disp(in_bytes(disp)) { |
|
217 |
} |
|
218 |
||
219 |
Address(Register base, Register index, ScaleFactor scale, ByteSize disp) |
|
220 |
: _base(base), |
|
221 |
_index(index), |
|
222 |
_scale(scale), |
|
223 |
_disp(in_bytes(disp)) { |
|
224 |
assert(!index->is_valid() == (scale == Address::no_scale), |
|
225 |
"inconsistent address"); |
|
226 |
} |
|
227 |
#endif // ASSERT |
|
228 |
||
229 |
// accessors |
|
1374
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
244
diff
changeset
|
230 |
bool uses(Register reg) const { return _base == reg || _index == reg; } |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
244
diff
changeset
|
231 |
Register base() const { return _base; } |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
244
diff
changeset
|
232 |
Register index() const { return _index; } |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
244
diff
changeset
|
233 |
ScaleFactor scale() const { return _scale; } |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
244
diff
changeset
|
234 |
int disp() const { return _disp; } |
1 | 235 |
|
236 |
// Convert the raw encoding form into the form expected by the constructor for |
|
237 |
// Address. An index of 4 (rsp) corresponds to having no index, so convert |
|
238 |
// that to noreg for the Address constructor. |
|
239 |
static Address make_raw(int base, int index, int scale, int disp); |
|
240 |
||
241 |
static Address make_array(ArrayAddress); |
|
242 |
||
243 |
||
244 |
private: |
|
245 |
bool base_needs_rex() const { |
|
246 |
return _base != noreg && _base->encoding() >= 8; |
|
247 |
} |
|
248 |
||
249 |
bool index_needs_rex() const { |
|
250 |
return _index != noreg &&_index->encoding() >= 8; |
|
251 |
} |
|
252 |
||
253 |
relocInfo::relocType reloc() const { return _rspec.type(); } |
|
254 |
||
255 |
friend class Assembler; |
|
256 |
friend class MacroAssembler; |
|
257 |
friend class LIR_Assembler; // base/index/scale/disp |
|
258 |
}; |
|
259 |
||
260 |
// |
|
261 |
// AddressLiteral has been split out from Address because operands of this type |
|
262 |
// need to be treated specially on 32bit vs. 64bit platforms. By splitting it out |
|
263 |
// the few instructions that need to deal with address literals are unique and the |
|
264 |
// MacroAssembler does not have to implement every instruction in the Assembler |
|
265 |
// in order to search for address literals that may need special handling depending |
|
266 |
// on the instruction and the platform. As small step on the way to merging i486/amd64 |
|
267 |
// directories. |
|
268 |
// |
|
269 |
class AddressLiteral VALUE_OBJ_CLASS_SPEC { |
|
270 |
friend class ArrayAddress; |
|
271 |
RelocationHolder _rspec; |
|
272 |
// Typically we use AddressLiterals we want to use their rval |
|
273 |
// However in some situations we want the lval (effect address) of the item. |
|
274 |
// We provide a special factory for making those lvals. |
|
275 |
bool _is_lval; |
|
276 |
||
277 |
// If the target is far we'll need to load the ea of this to |
|
278 |
// a register to reach it. Otherwise if near we can do rip |
|
279 |
// relative addressing. |
|
280 |
||
281 |
address _target; |
|
282 |
||
283 |
protected: |
|
284 |
// creation |
|
285 |
AddressLiteral() |
|
286 |
: _is_lval(false), |
|
287 |
_target(NULL) |
|
288 |
{} |
|
289 |
||
290 |
public: |
|
291 |
||
292 |
||
293 |
AddressLiteral(address target, relocInfo::relocType rtype); |
|
294 |
||
295 |
AddressLiteral(address target, RelocationHolder const& rspec) |
|
296 |
: _rspec(rspec), |
|
297 |
_is_lval(false), |
|
298 |
_target(target) |
|
299 |
{} |
|
300 |
||
301 |
AddressLiteral addr() { |
|
302 |
AddressLiteral ret = *this; |
|
303 |
ret._is_lval = true; |
|
304 |
return ret; |
|
305 |
} |
|
306 |
||
307 |
||
308 |
private: |
|
309 |
||
310 |
address target() { return _target; } |
|
311 |
bool is_lval() { return _is_lval; } |
|
312 |
||
313 |
relocInfo::relocType reloc() const { return _rspec.type(); } |
|
314 |
const RelocationHolder& rspec() const { return _rspec; } |
|
315 |
||
316 |
friend class Assembler; |
|
317 |
friend class MacroAssembler; |
|
318 |
friend class Address; |
|
319 |
friend class LIR_Assembler; |
|
320 |
}; |
|
321 |
||
322 |
// Convience classes |
|
323 |
class RuntimeAddress: public AddressLiteral { |
|
324 |
||
325 |
public: |
|
326 |
||
327 |
RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {} |
|
328 |
||
329 |
}; |
|
330 |
||
331 |
class OopAddress: public AddressLiteral { |
|
332 |
||
333 |
public: |
|
334 |
||
335 |
OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){} |
|
336 |
||
337 |
}; |
|
338 |
||
339 |
class ExternalAddress: public AddressLiteral { |
|
340 |
||
341 |
public: |
|
342 |
||
343 |
ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){} |
|
344 |
||
345 |
}; |
|
346 |
||
347 |
class InternalAddress: public AddressLiteral { |
|
348 |
||
349 |
public: |
|
350 |
||
351 |
InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {} |
|
352 |
||
353 |
}; |
|
354 |
||
355 |
// x86 can do array addressing as a single operation since disp can be an absolute |
|
356 |
// address amd64 can't. We create a class that expresses the concept but does extra |
|
357 |
// magic on amd64 to get the final result |
|
358 |
||
359 |
class ArrayAddress VALUE_OBJ_CLASS_SPEC { |
|
360 |
private: |
|
361 |
||
362 |
AddressLiteral _base; |
|
363 |
Address _index; |
|
364 |
||
365 |
public: |
|
366 |
||
367 |
ArrayAddress() {}; |
|
368 |
ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {}; |
|
369 |
AddressLiteral base() { return _base; } |
|
370 |
Address index() { return _index; } |
|
371 |
||
372 |
}; |
|
373 |
||
1066 | 374 |
const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize); |
1 | 375 |
|
376 |
// The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction |
|
377 |
// level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write |
|
378 |
// is what you get. The Assembler is generating code into a CodeBuffer. |
|
379 |
||
380 |
class Assembler : public AbstractAssembler { |
|
381 |
friend class AbstractAssembler; // for the non-virtual hack |
|
382 |
friend class LIR_Assembler; // as_Address() |
|
1066 | 383 |
friend class StubGenerator; |
1 | 384 |
|
385 |
public: |
|
386 |
enum Condition { // The x86 condition codes used for conditional jumps/moves. |
|
387 |
zero = 0x4, |
|
388 |
notZero = 0x5, |
|
389 |
equal = 0x4, |
|
390 |
notEqual = 0x5, |
|
391 |
less = 0xc, |
|
392 |
lessEqual = 0xe, |
|
393 |
greater = 0xf, |
|
394 |
greaterEqual = 0xd, |
|
395 |
below = 0x2, |
|
396 |
belowEqual = 0x6, |
|
397 |
above = 0x7, |
|
398 |
aboveEqual = 0x3, |
|
399 |
overflow = 0x0, |
|
400 |
noOverflow = 0x1, |
|
401 |
carrySet = 0x2, |
|
402 |
carryClear = 0x3, |
|
403 |
negative = 0x8, |
|
404 |
positive = 0x9, |
|
405 |
parity = 0xa, |
|
406 |
noParity = 0xb |
|
407 |
}; |
|
408 |
||
409 |
enum Prefix { |
|
410 |
// segment overrides |
|
411 |
CS_segment = 0x2e, |
|
412 |
SS_segment = 0x36, |
|
413 |
DS_segment = 0x3e, |
|
414 |
ES_segment = 0x26, |
|
415 |
FS_segment = 0x64, |
|
416 |
GS_segment = 0x65, |
|
417 |
||
418 |
REX = 0x40, |
|
419 |
||
420 |
REX_B = 0x41, |
|
421 |
REX_X = 0x42, |
|
422 |
REX_XB = 0x43, |
|
423 |
REX_R = 0x44, |
|
424 |
REX_RB = 0x45, |
|
425 |
REX_RX = 0x46, |
|
426 |
REX_RXB = 0x47, |
|
427 |
||
428 |
REX_W = 0x48, |
|
429 |
||
430 |
REX_WB = 0x49, |
|
431 |
REX_WX = 0x4A, |
|
432 |
REX_WXB = 0x4B, |
|
433 |
REX_WR = 0x4C, |
|
434 |
REX_WRB = 0x4D, |
|
435 |
REX_WRX = 0x4E, |
|
436 |
REX_WRXB = 0x4F |
|
437 |
}; |
|
438 |
||
439 |
enum WhichOperand { |
|
440 |
// input to locate_operand, and format code for relocations |
|
1066 | 441 |
imm_operand = 0, // embedded 32-bit|64-bit immediate operand |
1 | 442 |
disp32_operand = 1, // embedded 32-bit displacement or address |
443 |
call32_operand = 2, // embedded 32-bit self-relative displacement |
|
1066 | 444 |
#ifndef _LP64 |
1 | 445 |
_WhichOperand_limit = 3 |
1066 | 446 |
#else |
447 |
narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop |
|
448 |
_WhichOperand_limit = 4 |
|
449 |
#endif |
|
1 | 450 |
}; |
451 |
||
1066 | 452 |
|
453 |
||
454 |
// NOTE: The general philopsophy of the declarations here is that 64bit versions |
|
455 |
// of instructions are freely declared without the need for wrapping them an ifdef. |
|
456 |
// (Some dangerous instructions are ifdef's out of inappropriate jvm's.) |
|
457 |
// In the .cpp file the implementations are wrapped so that they are dropped out |
|
458 |
// of the resulting jvm. This is done mostly to keep the footprint of KERNEL |
|
459 |
// to the size it was prior to merging up the 32bit and 64bit assemblers. |
|
460 |
// |
|
461 |
// This does mean you'll get a linker/runtime error if you use a 64bit only instruction |
|
462 |
// in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down. |
|
463 |
||
464 |
private: |
|
465 |
||
466 |
||
467 |
// 64bit prefixes |
|
468 |
int prefix_and_encode(int reg_enc, bool byteinst = false); |
|
469 |
int prefixq_and_encode(int reg_enc); |
|
470 |
||
471 |
int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false); |
|
472 |
int prefixq_and_encode(int dst_enc, int src_enc); |
|
473 |
||
474 |
void prefix(Register reg); |
|
475 |
void prefix(Address adr); |
|
476 |
void prefixq(Address adr); |
|
477 |
||
478 |
void prefix(Address adr, Register reg, bool byteinst = false); |
|
479 |
void prefixq(Address adr, Register reg); |
|
480 |
||
481 |
void prefix(Address adr, XMMRegister reg); |
|
482 |
||
483 |
void prefetch_prefix(Address src); |
|
484 |
||
485 |
// Helper functions for groups of instructions |
|
486 |
void emit_arith_b(int op1, int op2, Register dst, int imm8); |
|
487 |
||
488 |
void emit_arith(int op1, int op2, Register dst, int32_t imm32); |
|
489 |
// only 32bit?? |
|
490 |
void emit_arith(int op1, int op2, Register dst, jobject obj); |
|
491 |
void emit_arith(int op1, int op2, Register dst, Register src); |
|
492 |
||
493 |
void emit_operand(Register reg, |
|
494 |
Register base, Register index, Address::ScaleFactor scale, |
|
495 |
int disp, |
|
496 |
RelocationHolder const& rspec, |
|
497 |
int rip_relative_correction = 0); |
|
498 |
||
499 |
void emit_operand(Register reg, Address adr, int rip_relative_correction = 0); |
|
500 |
||
501 |
// operands that only take the original 32bit registers |
|
502 |
void emit_operand32(Register reg, Address adr); |
|
503 |
||
504 |
void emit_operand(XMMRegister reg, |
|
505 |
Register base, Register index, Address::ScaleFactor scale, |
|
506 |
int disp, |
|
507 |
RelocationHolder const& rspec); |
|
508 |
||
509 |
void emit_operand(XMMRegister reg, Address adr); |
|
510 |
||
511 |
void emit_operand(MMXRegister reg, Address adr); |
|
512 |
||
513 |
// workaround gcc (3.2.1-7) bug |
|
514 |
void emit_operand(Address adr, MMXRegister reg); |
|
515 |
||
516 |
||
517 |
// Immediate-to-memory forms |
|
518 |
void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32); |
|
519 |
||
520 |
void emit_farith(int b1, int b2, int i); |
|
521 |
||
522 |
||
523 |
protected: |
|
524 |
#ifdef ASSERT |
|
525 |
void check_relocation(RelocationHolder const& rspec, int format); |
|
526 |
#endif |
|
527 |
||
528 |
inline void emit_long64(jlong x); |
|
529 |
||
530 |
void emit_data(jint data, relocInfo::relocType rtype, int format); |
|
531 |
void emit_data(jint data, RelocationHolder const& rspec, int format); |
|
532 |
void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0); |
|
533 |
void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0); |
|
534 |
||
535 |
||
536 |
bool reachable(AddressLiteral adr) NOT_LP64({ return true;}); |
|
537 |
||
538 |
// These are all easily abused and hence protected |
|
539 |
||
540 |
void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec, int format = 0); |
|
541 |
||
542 |
// 32BIT ONLY SECTION |
|
543 |
#ifndef _LP64 |
|
544 |
// Make these disappear in 64bit mode since they would never be correct |
|
545 |
void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY |
|
546 |
void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY |
|
547 |
||
548 |
void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY |
|
549 |
||
550 |
void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY |
|
551 |
#else |
|
552 |
// 64BIT ONLY SECTION |
|
553 |
void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY |
|
554 |
#endif // _LP64 |
|
555 |
||
556 |
// These are unique in that we are ensured by the caller that the 32bit |
|
557 |
// relative in these instructions will always be able to reach the potentially |
|
558 |
// 64bit address described by entry. Since they can take a 64bit address they |
|
559 |
// don't have the 32 suffix like the other instructions in this class. |
|
560 |
||
561 |
void call_literal(address entry, RelocationHolder const& rspec); |
|
562 |
void jmp_literal(address entry, RelocationHolder const& rspec); |
|
563 |
||
564 |
// Avoid using directly section |
|
565 |
// Instructions in this section are actually usable by anyone without danger |
|
566 |
// of failure but have performance issues that are addressed my enhanced |
|
567 |
// instructions which will do the proper thing base on the particular cpu. |
|
568 |
// We protect them because we don't trust you... |
|
569 |
||
570 |
// Don't use next inc() and dec() methods directly. INC & DEC instructions |
|
571 |
// could cause a partial flag stall since they don't set CF flag. |
|
572 |
// Use MacroAssembler::decrement() & MacroAssembler::increment() methods |
|
573 |
// which call inc() & dec() or add() & sub() in accordance with |
|
574 |
// the product flag UseIncDec value. |
|
575 |
||
576 |
void decl(Register dst); |
|
577 |
void decl(Address dst); |
|
578 |
void decq(Register dst); |
|
579 |
void decq(Address dst); |
|
580 |
||
581 |
void incl(Register dst); |
|
582 |
void incl(Address dst); |
|
583 |
void incq(Register dst); |
|
584 |
void incq(Address dst); |
|
585 |
||
586 |
// New cpus require use of movsd and movss to avoid partial register stall |
|
587 |
// when loading from memory. But for old Opteron use movlpd instead of movsd. |
|
588 |
// The selection is done in MacroAssembler::movdbl() and movflt(). |
|
589 |
||
590 |
// Move Scalar Single-Precision Floating-Point Values |
|
591 |
void movss(XMMRegister dst, Address src); |
|
592 |
void movss(XMMRegister dst, XMMRegister src); |
|
593 |
void movss(Address dst, XMMRegister src); |
|
594 |
||
595 |
// Move Scalar Double-Precision Floating-Point Values |
|
596 |
void movsd(XMMRegister dst, Address src); |
|
597 |
void movsd(XMMRegister dst, XMMRegister src); |
|
598 |
void movsd(Address dst, XMMRegister src); |
|
599 |
void movlpd(XMMRegister dst, Address src); |
|
600 |
||
601 |
// New cpus require use of movaps and movapd to avoid partial register stall |
|
602 |
// when moving between registers. |
|
603 |
void movaps(XMMRegister dst, XMMRegister src); |
|
604 |
void movapd(XMMRegister dst, XMMRegister src); |
|
605 |
||
606 |
// End avoid using directly |
|
607 |
||
608 |
||
609 |
// Instruction prefixes |
|
610 |
void prefix(Prefix p); |
|
611 |
||
1 | 612 |
public: |
613 |
||
614 |
// Creation |
|
615 |
Assembler(CodeBuffer* code) : AbstractAssembler(code) {} |
|
616 |
||
617 |
// Decoding |
|
618 |
static address locate_operand(address inst, WhichOperand which); |
|
619 |
static address locate_next_instruction(address inst); |
|
620 |
||
1066 | 621 |
// Utilities |
622 |
||
623 |
#ifdef _LP64 |
|
624 |
static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) ) <= x && x < ( CONST64(1) << (nbits-1) ); } |
|
625 |
static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; } |
|
626 |
#else |
|
627 |
static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) ) <= x && x < ( 1 << (nbits-1) ); } |
|
628 |
static bool is_simm32(int32_t x) { return true; } |
|
629 |
#endif // LP64 |
|
630 |
||
631 |
// Generic instructions |
|
632 |
// Does 32bit or 64bit as needed for the platform. In some sense these |
|
633 |
// belong in macro assembler but there is no need for both varieties to exist |
|
634 |
||
635 |
void lea(Register dst, Address src); |
|
636 |
||
637 |
void mov(Register dst, Register src); |
|
638 |
||
639 |
void pusha(); |
|
640 |
void popa(); |
|
641 |
||
642 |
void pushf(); |
|
643 |
void popf(); |
|
644 |
||
645 |
void push(int32_t imm32); |
|
646 |
||
647 |
void push(Register src); |
|
648 |
||
649 |
void pop(Register dst); |
|
650 |
||
651 |
// These are dummies to prevent surprise implicit conversions to Register |
|
652 |
void push(void* v); |
|
653 |
void pop(void* v); |
|
654 |
||
655 |
||
656 |
// These do register sized moves/scans |
|
657 |
void rep_mov(); |
|
658 |
void rep_set(); |
|
659 |
void repne_scan(); |
|
660 |
#ifdef _LP64 |
|
661 |
void repne_scanl(); |
|
662 |
#endif |
|
663 |
||
664 |
// Vanilla instructions in lexical order |
|
665 |
||
666 |
void adcl(Register dst, int32_t imm32); |
|
1 | 667 |
void adcl(Register dst, Address src); |
668 |
void adcl(Register dst, Register src); |
|
669 |
||
1066 | 670 |
void adcq(Register dst, int32_t imm32); |
671 |
void adcq(Register dst, Address src); |
|
672 |
void adcq(Register dst, Register src); |
|
673 |
||
674 |
||
675 |
void addl(Address dst, int32_t imm32); |
|
1 | 676 |
void addl(Address dst, Register src); |
1066 | 677 |
void addl(Register dst, int32_t imm32); |
1 | 678 |
void addl(Register dst, Address src); |
679 |
void addl(Register dst, Register src); |
|
680 |
||
1066 | 681 |
void addq(Address dst, int32_t imm32); |
682 |
void addq(Address dst, Register src); |
|
683 |
void addq(Register dst, int32_t imm32); |
|
684 |
void addq(Register dst, Address src); |
|
685 |
void addq(Register dst, Register src); |
|
686 |
||
687 |
||
1 | 688 |
void addr_nop_4(); |
689 |
void addr_nop_5(); |
|
690 |
void addr_nop_7(); |
|
691 |
void addr_nop_8(); |
|
692 |
||
1066 | 693 |
// Add Scalar Double-Precision Floating-Point Values |
694 |
void addsd(XMMRegister dst, Address src); |
|
695 |
void addsd(XMMRegister dst, XMMRegister src); |
|
696 |
||
697 |
// Add Scalar Single-Precision Floating-Point Values |
|
698 |
void addss(XMMRegister dst, Address src); |
|
699 |
void addss(XMMRegister dst, XMMRegister src); |
|
700 |
||
701 |
void andl(Register dst, int32_t imm32); |
|
702 |
void andl(Register dst, Address src); |
|
703 |
void andl(Register dst, Register src); |
|
704 |
||
705 |
void andq(Register dst, int32_t imm32); |
|
706 |
void andq(Register dst, Address src); |
|
707 |
void andq(Register dst, Register src); |
|
708 |
||
709 |
||
710 |
// Bitwise Logical AND of Packed Double-Precision Floating-Point Values |
|
711 |
void andpd(XMMRegister dst, Address src); |
|
712 |
void andpd(XMMRegister dst, XMMRegister src); |
|
713 |
||
714 |
void bswapl(Register reg); |
|
715 |
||
716 |
void bswapq(Register reg); |
|
717 |
||
1 | 718 |
void call(Label& L, relocInfo::relocType rtype); |
719 |
void call(Register reg); // push pc; pc <- reg |
|
720 |
void call(Address adr); // push pc; pc <- adr |
|
721 |
||
1066 | 722 |
void cdql(); |
723 |
||
724 |
void cdqq(); |
|
725 |
||
726 |
void cld() { emit_byte(0xfc); } |
|
727 |
||
728 |
void clflush(Address adr); |
|
729 |
||
730 |
void cmovl(Condition cc, Register dst, Register src); |
|
731 |
void cmovl(Condition cc, Register dst, Address src); |
|
732 |
||
733 |
void cmovq(Condition cc, Register dst, Register src); |
|
734 |
void cmovq(Condition cc, Register dst, Address src); |
|
735 |
||
736 |
||
737 |
void cmpb(Address dst, int imm8); |
|
738 |
||
739 |
void cmpl(Address dst, int32_t imm32); |
|
740 |
||
741 |
void cmpl(Register dst, int32_t imm32); |
|
742 |
void cmpl(Register dst, Register src); |
|
743 |
void cmpl(Register dst, Address src); |
|
744 |
||
745 |
void cmpq(Address dst, int32_t imm32); |
|
746 |
void cmpq(Address dst, Register src); |
|
747 |
||
748 |
void cmpq(Register dst, int32_t imm32); |
|
749 |
void cmpq(Register dst, Register src); |
|
750 |
void cmpq(Register dst, Address src); |
|
751 |
||
752 |
// these are dummies used to catch attempting to convert NULL to Register |
|
753 |
void cmpl(Register dst, void* junk); // dummy |
|
754 |
void cmpq(Register dst, void* junk); // dummy |
|
755 |
||
756 |
void cmpw(Address dst, int imm16); |
|
757 |
||
758 |
void cmpxchg8 (Address adr); |
|
759 |
||
760 |
void cmpxchgl(Register reg, Address adr); |
|
761 |
||
762 |
void cmpxchgq(Register reg, Address adr); |
|
763 |
||
764 |
// Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS |
|
765 |
void comisd(XMMRegister dst, Address src); |
|
766 |
||
767 |
// Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS |
|
768 |
void comiss(XMMRegister dst, Address src); |
|
769 |
||
770 |
// Identify processor type and features |
|
771 |
void cpuid() { |
|
772 |
emit_byte(0x0F); |
|
773 |
emit_byte(0xA2); |
|
774 |
} |
|
775 |
||
776 |
// Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value |
|
777 |
void cvtsd2ss(XMMRegister dst, XMMRegister src); |
|
778 |
||
779 |
// Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value |
|
780 |
void cvtsi2sdl(XMMRegister dst, Register src); |
|
781 |
void cvtsi2sdq(XMMRegister dst, Register src); |
|
782 |
||
783 |
// Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value |
|
784 |
void cvtsi2ssl(XMMRegister dst, Register src); |
|
785 |
void cvtsi2ssq(XMMRegister dst, Register src); |
|
786 |
||
787 |
// Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value |
|
788 |
void cvtdq2pd(XMMRegister dst, XMMRegister src); |
|
789 |
||
790 |
// Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value |
|
791 |
void cvtdq2ps(XMMRegister dst, XMMRegister src); |
|
792 |
||
793 |
// Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value |
|
794 |
void cvtss2sd(XMMRegister dst, XMMRegister src); |
|
795 |
||
796 |
// Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer |
|
797 |
void cvttsd2sil(Register dst, Address src); |
|
798 |
void cvttsd2sil(Register dst, XMMRegister src); |
|
799 |
void cvttsd2siq(Register dst, XMMRegister src); |
|
800 |
||
801 |
// Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer |
|
802 |
void cvttss2sil(Register dst, XMMRegister src); |
|
803 |
void cvttss2siq(Register dst, XMMRegister src); |
|
804 |
||
805 |
// Divide Scalar Double-Precision Floating-Point Values |
|
806 |
void divsd(XMMRegister dst, Address src); |
|
807 |
void divsd(XMMRegister dst, XMMRegister src); |
|
808 |
||
809 |
// Divide Scalar Single-Precision Floating-Point Values |
|
810 |
void divss(XMMRegister dst, Address src); |
|
811 |
void divss(XMMRegister dst, XMMRegister src); |
|
812 |
||
813 |
void emms(); |
|
814 |
||
815 |
void fabs(); |
|
816 |
||
817 |
void fadd(int i); |
|
818 |
||
819 |
void fadd_d(Address src); |
|
820 |
void fadd_s(Address src); |
|
821 |
||
822 |
// "Alternate" versions of x87 instructions place result down in FPU |
|
823 |
// stack instead of on TOS |
|
824 |
||
825 |
void fadda(int i); // "alternate" fadd |
|
826 |
void faddp(int i = 1); |
|
827 |
||
828 |
void fchs(); |
|
829 |
||
830 |
void fcom(int i); |
|
831 |
||
832 |
void fcomp(int i = 1); |
|
833 |
void fcomp_d(Address src); |
|
834 |
void fcomp_s(Address src); |
|
835 |
||
836 |
void fcompp(); |
|
837 |
||
838 |
void fcos(); |
|
839 |
||
840 |
void fdecstp(); |
|
841 |
||
842 |
void fdiv(int i); |
|
843 |
void fdiv_d(Address src); |
|
844 |
void fdivr_s(Address src); |
|
845 |
void fdiva(int i); // "alternate" fdiv |
|
846 |
void fdivp(int i = 1); |
|
847 |
||
848 |
void fdivr(int i); |
|
849 |
void fdivr_d(Address src); |
|
850 |
void fdiv_s(Address src); |
|
851 |
||
852 |
void fdivra(int i); // "alternate" reversed fdiv |
|
853 |
||
854 |
void fdivrp(int i = 1); |
|
855 |
||
856 |
void ffree(int i = 0); |
|
857 |
||
858 |
void fild_d(Address adr); |
|
859 |
void fild_s(Address adr); |
|
860 |
||
861 |
void fincstp(); |
|
862 |
||
863 |
void finit(); |
|
864 |
||
865 |
void fist_s (Address adr); |
|
866 |
void fistp_d(Address adr); |
|
867 |
void fistp_s(Address adr); |
|
868 |
||
869 |
void fld1(); |
|
870 |
||
871 |
void fld_d(Address adr); |
|
872 |
void fld_s(Address adr); |
|
873 |
void fld_s(int index); |
|
874 |
void fld_x(Address adr); // extended-precision (80-bit) format |
|
875 |
||
876 |
void fldcw(Address src); |
|
877 |
||
878 |
void fldenv(Address src); |
|
879 |
||
880 |
void fldlg2(); |
|
881 |
||
882 |
void fldln2(); |
|
883 |
||
884 |
void fldz(); |
|
885 |
||
886 |
void flog(); |
|
887 |
void flog10(); |
|
888 |
||
889 |
void fmul(int i); |
|
890 |
||
891 |
void fmul_d(Address src); |
|
892 |
void fmul_s(Address src); |
|
893 |
||
894 |
void fmula(int i); // "alternate" fmul |
|
895 |
||
896 |
void fmulp(int i = 1); |
|
897 |
||
898 |
void fnsave(Address dst); |
|
899 |
||
900 |
void fnstcw(Address src); |
|
901 |
||
902 |
void fnstsw_ax(); |
|
903 |
||
904 |
void fprem(); |
|
905 |
void fprem1(); |
|
906 |
||
907 |
void frstor(Address src); |
|
908 |
||
909 |
void fsin(); |
|
910 |
||
911 |
void fsqrt(); |
|
912 |
||
913 |
void fst_d(Address adr); |
|
914 |
void fst_s(Address adr); |
|
915 |
||
916 |
void fstp_d(Address adr); |
|
917 |
void fstp_d(int index); |
|
918 |
void fstp_s(Address adr); |
|
919 |
void fstp_x(Address adr); // extended-precision (80-bit) format |
|
920 |
||
921 |
void fsub(int i); |
|
922 |
void fsub_d(Address src); |
|
923 |
void fsub_s(Address src); |
|
924 |
||
925 |
void fsuba(int i); // "alternate" fsub |
|
926 |
||
927 |
void fsubp(int i = 1); |
|
928 |
||
929 |
void fsubr(int i); |
|
930 |
void fsubr_d(Address src); |
|
931 |
void fsubr_s(Address src); |
|
932 |
||
933 |
void fsubra(int i); // "alternate" reversed fsub |
|
934 |
||
935 |
void fsubrp(int i = 1); |
|
936 |
||
937 |
void ftan(); |
|
938 |
||
939 |
void ftst(); |
|
940 |
||
941 |
void fucomi(int i = 1); |
|
942 |
void fucomip(int i = 1); |
|
943 |
||
944 |
void fwait(); |
|
945 |
||
946 |
void fxch(int i = 1); |
|
947 |
||
948 |
void fxrstor(Address src); |
|
949 |
||
950 |
void fxsave(Address dst); |
|
951 |
||
952 |
void fyl2x(); |
|
953 |
||
954 |
void hlt(); |
|
955 |
||
956 |
void idivl(Register src); |
|
957 |
||
958 |
void idivq(Register src); |
|
959 |
||
960 |
void imull(Register dst, Register src); |
|
961 |
void imull(Register dst, Register src, int value); |
|
962 |
||
963 |
void imulq(Register dst, Register src); |
|
964 |
void imulq(Register dst, Register src, int value); |
|
965 |
||
1 | 966 |
|
967 |
// jcc is the generic conditional branch generator to run- |
|
968 |
// time routines, jcc is used for branches to labels. jcc |
|
969 |
// takes a branch opcode (cc) and a label (L) and generates |
|
970 |
// either a backward branch or a forward branch and links it |
|
971 |
// to the label fixup chain. Usage: |
|
972 |
// |
|
973 |
// Label L; // unbound label |
|
974 |
// jcc(cc, L); // forward branch to unbound label |
|
975 |
// bind(L); // bind label to the current pc |
|
976 |
// jcc(cc, L); // backward branch to bound label |
|
977 |
// bind(L); // illegal: a label may be bound only once |
|
978 |
// |
|
979 |
// Note: The same Label can be used for forward and backward branches |
|
980 |
// but it may be bound only once. |
|
981 |
||
982 |
void jcc(Condition cc, Label& L, |
|
983 |
relocInfo::relocType rtype = relocInfo::none); |
|
984 |
||
985 |
// Conditional jump to a 8-bit offset to L. |
|
986 |
// WARNING: be very careful using this for forward jumps. If the label is |
|
987 |
// not bound within an 8-bit offset of this instruction, a run-time error |
|
988 |
// will occur. |
|
989 |
void jccb(Condition cc, Label& L); |
|
990 |
||
1066 | 991 |
void jmp(Address entry); // pc <- entry |
992 |
||
993 |
// Label operations & relative jumps (PPUM Appendix D) |
|
994 |
void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none); // unconditional jump to L |
|
995 |
||
996 |
void jmp(Register entry); // pc <- entry |
|
997 |
||
998 |
// Unconditional 8-bit offset jump to L. |
|
999 |
// WARNING: be very careful using this for forward jumps. If the label is |
|
1000 |
// not bound within an 8-bit offset of this instruction, a run-time error |
|
1001 |
// will occur. |
|
1002 |
void jmpb(Label& L); |
|
1003 |
||
1004 |
void ldmxcsr( Address src ); |
|
1005 |
||
1006 |
void leal(Register dst, Address src); |
|
1007 |
||
1008 |
void leaq(Register dst, Address src); |
|
1009 |
||
1010 |
void lfence() { |
|
1011 |
emit_byte(0x0F); |
|
1012 |
emit_byte(0xAE); |
|
1013 |
emit_byte(0xE8); |
|
1014 |
} |
|
1015 |
||
1016 |
void lock(); |
|
1017 |
||
1018 |
enum Membar_mask_bits { |
|
1019 |
StoreStore = 1 << 3, |
|
1020 |
LoadStore = 1 << 2, |
|
1021 |
StoreLoad = 1 << 1, |
|
1022 |
LoadLoad = 1 << 0 |
|
1023 |
}; |
|
1024 |
||
1025 |
// Serializes memory. |
|
1026 |
void membar(Membar_mask_bits order_constraint) { |
|
1027 |
// We only have to handle StoreLoad and LoadLoad |
|
1028 |
if (order_constraint & StoreLoad) { |
|
1029 |
// MFENCE subsumes LFENCE |
|
1030 |
mfence(); |
|
1031 |
} /* [jk] not needed currently: else if (order_constraint & LoadLoad) { |
|
1032 |
lfence(); |
|
1033 |
} */ |
|
1034 |
} |
|
1035 |
||
1036 |
void mfence(); |
|
1037 |
||
1038 |
// Moves |
|
1039 |
||
1040 |
void mov64(Register dst, int64_t imm64); |
|
1041 |
||
1042 |
void movb(Address dst, Register src); |
|
1043 |
void movb(Address dst, int imm8); |
|
1044 |
void movb(Register dst, Address src); |
|
1045 |
||
1046 |
void movdl(XMMRegister dst, Register src); |
|
1047 |
void movdl(Register dst, XMMRegister src); |
|
1048 |
||
1049 |
// Move Double Quadword |
|
1050 |
void movdq(XMMRegister dst, Register src); |
|
1051 |
void movdq(Register dst, XMMRegister src); |
|
1052 |
||
1053 |
// Move Aligned Double Quadword |
|
1054 |
void movdqa(Address dst, XMMRegister src); |
|
1055 |
void movdqa(XMMRegister dst, Address src); |
|
1056 |
void movdqa(XMMRegister dst, XMMRegister src); |
|
1057 |
||
1437 | 1058 |
// Move Unaligned Double Quadword |
1059 |
void movdqu(Address dst, XMMRegister src); |
|
1060 |
void movdqu(XMMRegister dst, Address src); |
|
1061 |
void movdqu(XMMRegister dst, XMMRegister src); |
|
1062 |
||
1066 | 1063 |
void movl(Register dst, int32_t imm32); |
1064 |
void movl(Address dst, int32_t imm32); |
|
1065 |
void movl(Register dst, Register src); |
|
1066 |
void movl(Register dst, Address src); |
|
1067 |
void movl(Address dst, Register src); |
|
1068 |
||
1069 |
// These dummies prevent using movl from converting a zero (like NULL) into Register |
|
1070 |
// by giving the compiler two choices it can't resolve |
|
1071 |
||
1072 |
void movl(Address dst, void* junk); |
|
1073 |
void movl(Register dst, void* junk); |
|
1074 |
||
1075 |
#ifdef _LP64 |
|
1076 |
void movq(Register dst, Register src); |
|
1077 |
void movq(Register dst, Address src); |
|
1078 |
void movq(Address dst, Register src); |
|
1079 |
#endif |
|
1080 |
||
1081 |
void movq(Address dst, MMXRegister src ); |
|
1082 |
void movq(MMXRegister dst, Address src ); |
|
1083 |
||
1084 |
#ifdef _LP64 |
|
1085 |
// These dummies prevent using movq from converting a zero (like NULL) into Register |
|
1086 |
// by giving the compiler two choices it can't resolve |
|
1087 |
||
1088 |
void movq(Address dst, void* dummy); |
|
1089 |
void movq(Register dst, void* dummy); |
|
1090 |
#endif |
|
1091 |
||
1092 |
// Move Quadword |
|
1093 |
void movq(Address dst, XMMRegister src); |
|
1094 |
void movq(XMMRegister dst, Address src); |
|
1095 |
||
1096 |
void movsbl(Register dst, Address src); |
|
1097 |
void movsbl(Register dst, Register src); |
|
1098 |
||
1099 |
#ifdef _LP64 |
|
1100 |
// Move signed 32bit immediate to 64bit extending sign |
|
1101 |
void movslq(Address dst, int32_t imm64); |
|
1102 |
void movslq(Register dst, int32_t imm64); |
|
1103 |
||
1104 |
void movslq(Register dst, Address src); |
|
1105 |
void movslq(Register dst, Register src); |
|
1106 |
void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous |
|
1107 |
#endif |
|
1108 |
||
1109 |
void movswl(Register dst, Address src); |
|
1110 |
void movswl(Register dst, Register src); |
|
1111 |
||
1112 |
void movw(Address dst, int imm16); |
|
1113 |
void movw(Register dst, Address src); |
|
1114 |
void movw(Address dst, Register src); |
|
1115 |
||
1116 |
void movzbl(Register dst, Address src); |
|
1117 |
void movzbl(Register dst, Register src); |
|
1118 |
||
1119 |
void movzwl(Register dst, Address src); |
|
1120 |
void movzwl(Register dst, Register src); |
|
1121 |
||
1122 |
void mull(Address src); |
|
1123 |
void mull(Register src); |
|
1124 |
||
1125 |
// Multiply Scalar Double-Precision Floating-Point Values |
|
1126 |
void mulsd(XMMRegister dst, Address src); |
|
1127 |
void mulsd(XMMRegister dst, XMMRegister src); |
|
1128 |
||
1129 |
// Multiply Scalar Single-Precision Floating-Point Values |
|
1130 |
void mulss(XMMRegister dst, Address src); |
|
1131 |
void mulss(XMMRegister dst, XMMRegister src); |
|
1132 |
||
1133 |
void negl(Register dst); |
|
1134 |
||
1135 |
#ifdef _LP64 |
|
1136 |
void negq(Register dst); |
|
1137 |
#endif |
|
1138 |
||
1139 |
void nop(int i = 1); |
|
1140 |
||
1141 |
void notl(Register dst); |
|
1142 |
||
1143 |
#ifdef _LP64 |
|
1144 |
void notq(Register dst); |
|
1145 |
#endif |
|
1146 |
||
1147 |
void orl(Address dst, int32_t imm32); |
|
1148 |
void orl(Register dst, int32_t imm32); |
|
1149 |
void orl(Register dst, Address src); |
|
1150 |
void orl(Register dst, Register src); |
|
1151 |
||
1152 |
void orq(Address dst, int32_t imm32); |
|
1153 |
void orq(Register dst, int32_t imm32); |
|
1154 |
void orq(Register dst, Address src); |
|
1155 |
void orq(Register dst, Register src); |
|
1156 |
||
1157 |
void popl(Address dst); |
|
1158 |
||
1159 |
#ifdef _LP64 |
|
1160 |
void popq(Address dst); |
|
1161 |
#endif |
|
1162 |
||
1163 |
// Prefetches (SSE, SSE2, 3DNOW only) |
|
1164 |
||
1165 |
void prefetchnta(Address src); |
|
1166 |
void prefetchr(Address src); |
|
1167 |
void prefetcht0(Address src); |
|
1168 |
void prefetcht1(Address src); |
|
1169 |
void prefetcht2(Address src); |
|
1170 |
void prefetchw(Address src); |
|
1171 |
||
1172 |
// Shuffle Packed Doublewords |
|
1173 |
void pshufd(XMMRegister dst, XMMRegister src, int mode); |
|
1174 |
void pshufd(XMMRegister dst, Address src, int mode); |
|
1175 |
||
1176 |
// Shuffle Packed Low Words |
|
1177 |
void pshuflw(XMMRegister dst, XMMRegister src, int mode); |
|
1178 |
void pshuflw(XMMRegister dst, Address src, int mode); |
|
1179 |
||
1180 |
// Shift Right Logical Quadword Immediate |
|
1181 |
void psrlq(XMMRegister dst, int shift); |
|
1182 |
||
1183 |
// Interleave Low Bytes |
|
1184 |
void punpcklbw(XMMRegister dst, XMMRegister src); |
|
1185 |
||
1186 |
void pushl(Address src); |
|
1187 |
||
1188 |
void pushq(Address src); |
|
1189 |
||
1190 |
// Xor Packed Byte Integer Values |
|
1191 |
void pxor(XMMRegister dst, Address src); |
|
1192 |
void pxor(XMMRegister dst, XMMRegister src); |
|
1193 |
||
1194 |
void rcll(Register dst, int imm8); |
|
1195 |
||
1196 |
void rclq(Register dst, int imm8); |
|
1197 |
||
1198 |
void ret(int imm16); |
|
1 | 1199 |
|
1200 |
void sahf(); |
|
1201 |
||
1066 | 1202 |
void sarl(Register dst, int imm8); |
1203 |
void sarl(Register dst); |
|
1204 |
||
1205 |
void sarq(Register dst, int imm8); |
|
1206 |
void sarq(Register dst); |
|
1207 |
||
1208 |
void sbbl(Address dst, int32_t imm32); |
|
1209 |
void sbbl(Register dst, int32_t imm32); |
|
1210 |
void sbbl(Register dst, Address src); |
|
1211 |
void sbbl(Register dst, Register src); |
|
1212 |
||
1213 |
void sbbq(Address dst, int32_t imm32); |
|
1214 |
void sbbq(Register dst, int32_t imm32); |
|
1215 |
void sbbq(Register dst, Address src); |
|
1216 |
void sbbq(Register dst, Register src); |
|
1217 |
||
1218 |
void setb(Condition cc, Register dst); |
|
1219 |
||
1220 |
void shldl(Register dst, Register src); |
|
1221 |
||
1222 |
void shll(Register dst, int imm8); |
|
1223 |
void shll(Register dst); |
|
1224 |
||
1225 |
void shlq(Register dst, int imm8); |
|
1226 |
void shlq(Register dst); |
|
1227 |
||
1228 |
void shrdl(Register dst, Register src); |
|
1229 |
||
1230 |
void shrl(Register dst, int imm8); |
|
1231 |
void shrl(Register dst); |
|
1232 |
||
1233 |
void shrq(Register dst, int imm8); |
|
1234 |
void shrq(Register dst); |
|
1235 |
||
1236 |
void smovl(); // QQQ generic? |
|
1237 |
||
1238 |
// Compute Square Root of Scalar Double-Precision Floating-Point Value |
|
1239 |
void sqrtsd(XMMRegister dst, Address src); |
|
1240 |
void sqrtsd(XMMRegister dst, XMMRegister src); |
|
1241 |
||
1242 |
void std() { emit_byte(0xfd); } |
|
1243 |
||
1244 |
void stmxcsr( Address dst ); |
|
1245 |
||
1246 |
void subl(Address dst, int32_t imm32); |
|
1247 |
void subl(Address dst, Register src); |
|
1248 |
void subl(Register dst, int32_t imm32); |
|
1249 |
void subl(Register dst, Address src); |
|
1250 |
void subl(Register dst, Register src); |
|
1251 |
||
1252 |
void subq(Address dst, int32_t imm32); |
|
1253 |
void subq(Address dst, Register src); |
|
1254 |
void subq(Register dst, int32_t imm32); |
|
1255 |
void subq(Register dst, Address src); |
|
1256 |
void subq(Register dst, Register src); |
|
1257 |
||
1258 |
||
1259 |
// Subtract Scalar Double-Precision Floating-Point Values |
|
1260 |
void subsd(XMMRegister dst, Address src); |
|
1 | 1261 |
void subsd(XMMRegister dst, XMMRegister src); |
1262 |
||
1066 | 1263 |
// Subtract Scalar Single-Precision Floating-Point Values |
1264 |
void subss(XMMRegister dst, Address src); |
|
1265 |
void subss(XMMRegister dst, XMMRegister src); |
|
1266 |
||
1267 |
void testb(Register dst, int imm8); |
|
1268 |
||
1269 |
void testl(Register dst, int32_t imm32); |
|
1270 |
void testl(Register dst, Register src); |
|
1271 |
void testl(Register dst, Address src); |
|
1272 |
||
1273 |
void testq(Register dst, int32_t imm32); |
|
1274 |
void testq(Register dst, Register src); |
|
1275 |
||
1276 |
||
1277 |
// Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS |
|
1278 |
void ucomisd(XMMRegister dst, Address src); |
|
1 | 1279 |
void ucomisd(XMMRegister dst, XMMRegister src); |
1280 |
||
1066 | 1281 |
// Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS |
1282 |
void ucomiss(XMMRegister dst, Address src); |
|
1283 |
void ucomiss(XMMRegister dst, XMMRegister src); |
|
1284 |
||
1285 |
void xaddl(Address dst, Register src); |
|
1286 |
||
1287 |
void xaddq(Address dst, Register src); |
|
1288 |
||
1289 |
void xchgl(Register reg, Address adr); |
|
1290 |
void xchgl(Register dst, Register src); |
|
1291 |
||
1292 |
void xchgq(Register reg, Address adr); |
|
1293 |
void xchgq(Register dst, Register src); |
|
1294 |
||
1295 |
void xorl(Register dst, int32_t imm32); |
|
1296 |
void xorl(Register dst, Address src); |
|
1297 |
void xorl(Register dst, Register src); |
|
1298 |
||
1299 |
void xorq(Register dst, Address src); |
|
1300 |
void xorq(Register dst, Register src); |
|
1301 |
||
1302 |
// Bitwise Logical XOR of Packed Double-Precision Floating-Point Values |
|
1303 |
void xorpd(XMMRegister dst, Address src); |
|
1304 |
void xorpd(XMMRegister dst, XMMRegister src); |
|
1305 |
||
1306 |
// Bitwise Logical XOR of Packed Single-Precision Floating-Point Values |
|
1307 |
void xorps(XMMRegister dst, Address src); |
|
1 | 1308 |
void xorps(XMMRegister dst, XMMRegister src); |
1066 | 1309 |
|
1310 |
void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0 |
|
1 | 1311 |
}; |
1312 |
||
1313 |
||
1314 |
// MacroAssembler extends Assembler by frequently used macros. |
|
1315 |
// |
|
1316 |
// Instructions for which a 'better' code sequence exists depending |
|
1317 |
// on arguments should also go in here. |
|
1318 |
||
1319 |
class MacroAssembler: public Assembler { |
|
1374
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
244
diff
changeset
|
1320 |
friend class LIR_Assembler; |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
244
diff
changeset
|
1321 |
friend class Runtime1; // as_Address() |
1 | 1322 |
protected: |
1323 |
||
1324 |
Address as_Address(AddressLiteral adr); |
|
1325 |
Address as_Address(ArrayAddress adr); |
|
1326 |
||
1327 |
// Support for VM calls |
|
1328 |
// |
|
1329 |
// This is the base routine called by the different versions of call_VM_leaf. The interpreter |
|
1330 |
// may customize this version by overriding it for its purposes (e.g., to save/restore |
|
1331 |
// additional registers when doing a VM call). |
|
1332 |
#ifdef CC_INTERP |
|
1333 |
// c++ interpreter never wants to use interp_masm version of call_VM |
|
1334 |
#define VIRTUAL |
|
1335 |
#else |
|
1336 |
#define VIRTUAL virtual |
|
1337 |
#endif |
|
1338 |
||
1339 |
VIRTUAL void call_VM_leaf_base( |
|
1340 |
address entry_point, // the entry point |
|
1341 |
int number_of_arguments // the number of arguments to pop after the call |
|
1342 |
); |
|
1343 |
||
1344 |
// This is the base routine called by the different versions of call_VM. The interpreter |
|
1345 |
// may customize this version by overriding it for its purposes (e.g., to save/restore |
|
1346 |
// additional registers when doing a VM call). |
|
1347 |
// |
|
1348 |
// If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base |
|
1349 |
// returns the register which contains the thread upon return. If a thread register has been |
|
1350 |
// specified, the return value will correspond to that register. If no last_java_sp is specified |
|
1351 |
// (noreg) than rsp will be used instead. |
|
1352 |
VIRTUAL void call_VM_base( // returns the register containing the thread upon return |
|
1353 |
Register oop_result, // where an oop-result ends up if any; use noreg otherwise |
|
1354 |
Register java_thread, // the thread if computed before ; use noreg otherwise |
|
1355 |
Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise |
|
1356 |
address entry_point, // the entry point |
|
1357 |
int number_of_arguments, // the number of arguments (w/o thread) to pop after the call |
|
1358 |
bool check_exceptions // whether to check for pending exceptions after return |
|
1359 |
); |
|
1360 |
||
1361 |
// These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. |
|
1362 |
// The implementation is only non-empty for the InterpreterMacroAssembler, |
|
1363 |
// as only the interpreter handles PopFrame and ForceEarlyReturn requests. |
|
1364 |
virtual void check_and_handle_popframe(Register java_thread); |
|
1365 |
virtual void check_and_handle_earlyret(Register java_thread); |
|
1366 |
||
1367 |
void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); |
|
1368 |
||
1369 |
// helpers for FPU flag access |
|
1370 |
// tmp is a temporary register, if none is available use noreg |
|
1371 |
void save_rax (Register tmp); |
|
1372 |
void restore_rax(Register tmp); |
|
1373 |
||
1374 |
public: |
|
1375 |
MacroAssembler(CodeBuffer* code) : Assembler(code) {} |
|
1376 |
||
1377 |
// Support for NULL-checks |
|
1378 |
// |
|
1379 |
// Generates code that causes a NULL OS exception if the content of reg is NULL. |
|
1380 |
// If the accessed location is M[reg + offset] and the offset is known, provide the |
|
1381 |
// offset. No explicit code generation is needed if the offset is within a certain |
|
1382 |
// range (0 <= offset <= page_size). |
|
1383 |
||
1384 |
void null_check(Register reg, int offset = -1); |
|
594
9f4474e5dbaf
6705887: Compressed Oops: generate x64 addressing and implicit null checks with narrow oops
kvn
parents:
244
diff
changeset
|
1385 |
static bool needs_explicit_null_check(intptr_t offset); |
1 | 1386 |
|
1387 |
// Required platform-specific helpers for Label::patch_instructions. |
|
1388 |
// They _shadow_ the declarations in AbstractAssembler, which are undefined. |
|
1389 |
void pd_patch_instruction(address branch, address target); |
|
1390 |
#ifndef PRODUCT |
|
1391 |
static void pd_print_patched_instruction(address branch); |
|
1392 |
#endif |
|
1393 |
||
1394 |
// The following 4 methods return the offset of the appropriate move instruction |
|
1395 |
||
1396 |
// Support for fast byte/word loading with zero extension (depending on particular CPU) |
|
1397 |
int load_unsigned_byte(Register dst, Address src); |
|
1398 |
int load_unsigned_word(Register dst, Address src); |
|
1399 |
||
1400 |
// Support for fast byte/word loading with sign extension (depending on particular CPU) |
|
1401 |
int load_signed_byte(Register dst, Address src); |
|
1402 |
int load_signed_word(Register dst, Address src); |
|
1403 |
||
1404 |
// Support for sign-extension (hi:lo = extend_sign(lo)) |
|
1405 |
void extend_sign(Register hi, Register lo); |
|
1406 |
||
1407 |
// Support for inc/dec with optimal instruction selection depending on value |
|
1066 | 1408 |
|
1409 |
void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; } |
|
1410 |
void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; } |
|
1411 |
||
1412 |
void decrementl(Address dst, int value = 1); |
|
1413 |
void decrementl(Register reg, int value = 1); |
|
1414 |
||
1415 |
void decrementq(Register reg, int value = 1); |
|
1416 |
void decrementq(Address dst, int value = 1); |
|
1417 |
||
1418 |
void incrementl(Address dst, int value = 1); |
|
1419 |
void incrementl(Register reg, int value = 1); |
|
1420 |
||
1421 |
void incrementq(Register reg, int value = 1); |
|
1422 |
void incrementq(Address dst, int value = 1); |
|
1423 |
||
1 | 1424 |
|
1425 |
// Support optimal SSE move instructions. |
|
1426 |
void movflt(XMMRegister dst, XMMRegister src) { |
|
1427 |
if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; } |
|
1428 |
else { movss (dst, src); return; } |
|
1429 |
} |
|
1430 |
void movflt(XMMRegister dst, Address src) { movss(dst, src); } |
|
1431 |
void movflt(XMMRegister dst, AddressLiteral src); |
|
1432 |
void movflt(Address dst, XMMRegister src) { movss(dst, src); } |
|
1433 |
||
1434 |
void movdbl(XMMRegister dst, XMMRegister src) { |
|
1435 |
if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; } |
|
1436 |
else { movsd (dst, src); return; } |
|
1437 |
} |
|
1438 |
||
1439 |
void movdbl(XMMRegister dst, AddressLiteral src); |
|
1440 |
||
1441 |
void movdbl(XMMRegister dst, Address src) { |
|
1442 |
if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; } |
|
1443 |
else { movlpd(dst, src); return; } |
|
1444 |
} |
|
1445 |
void movdbl(Address dst, XMMRegister src) { movsd(dst, src); } |
|
1446 |
||
1066 | 1447 |
void incrementl(AddressLiteral dst); |
1448 |
void incrementl(ArrayAddress dst); |
|
1 | 1449 |
|
1450 |
// Alignment |
|
1451 |
void align(int modulus); |
|
1452 |
||
1453 |
// Misc |
|
1454 |
void fat_nop(); // 5 byte nop |
|
1455 |
||
1456 |
// Stack frame creation/removal |
|
1457 |
void enter(); |
|
1458 |
void leave(); |
|
1459 |
||
1460 |
// Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) |
|
1461 |
// The pointer will be loaded into the thread register. |
|
1462 |
void get_thread(Register thread); |
|
1463 |
||
1394 | 1464 |
|
1 | 1465 |
// Support for VM calls |
1466 |
// |
|
1467 |
// It is imperative that all calls into the VM are handled via the call_VM macros. |
|
1468 |
// They make sure that the stack linkage is setup correctly. call_VM's correspond |
|
1469 |
// to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. |
|
1470 |
||
1066 | 1471 |
|
1472 |
void call_VM(Register oop_result, |
|
1473 |
address entry_point, |
|
1474 |
bool check_exceptions = true); |
|
1475 |
void call_VM(Register oop_result, |
|
1476 |
address entry_point, |
|
1477 |
Register arg_1, |
|
1478 |
bool check_exceptions = true); |
|
1479 |
void call_VM(Register oop_result, |
|
1480 |
address entry_point, |
|
1481 |
Register arg_1, Register arg_2, |
|
1482 |
bool check_exceptions = true); |
|
1483 |
void call_VM(Register oop_result, |
|
1484 |
address entry_point, |
|
1485 |
Register arg_1, Register arg_2, Register arg_3, |
|
1486 |
bool check_exceptions = true); |
|
1487 |
||
1488 |
// Overloadings with last_Java_sp |
|
1489 |
void call_VM(Register oop_result, |
|
1490 |
Register last_java_sp, |
|
1491 |
address entry_point, |
|
1492 |
int number_of_arguments = 0, |
|
1493 |
bool check_exceptions = true); |
|
1494 |
void call_VM(Register oop_result, |
|
1495 |
Register last_java_sp, |
|
1496 |
address entry_point, |
|
1497 |
Register arg_1, bool |
|
1498 |
check_exceptions = true); |
|
1499 |
void call_VM(Register oop_result, |
|
1500 |
Register last_java_sp, |
|
1501 |
address entry_point, |
|
1502 |
Register arg_1, Register arg_2, |
|
1503 |
bool check_exceptions = true); |
|
1504 |
void call_VM(Register oop_result, |
|
1505 |
Register last_java_sp, |
|
1506 |
address entry_point, |
|
1507 |
Register arg_1, Register arg_2, Register arg_3, |
|
1508 |
bool check_exceptions = true); |
|
1509 |
||
1510 |
void call_VM_leaf(address entry_point, |
|
1511 |
int number_of_arguments = 0); |
|
1512 |
void call_VM_leaf(address entry_point, |
|
1513 |
Register arg_1); |
|
1514 |
void call_VM_leaf(address entry_point, |
|
1515 |
Register arg_1, Register arg_2); |
|
1516 |
void call_VM_leaf(address entry_point, |
|
1517 |
Register arg_1, Register arg_2, Register arg_3); |
|
1 | 1518 |
|
1519 |
// last Java Frame (fills frame anchor) |
|
1066 | 1520 |
void set_last_Java_frame(Register thread, |
1521 |
Register last_java_sp, |
|
1522 |
Register last_java_fp, |
|
1523 |
address last_java_pc); |
|
1524 |
||
1525 |
// thread in the default location (r15_thread on 64bit) |
|
1526 |
void set_last_Java_frame(Register last_java_sp, |
|
1527 |
Register last_java_fp, |
|
1528 |
address last_java_pc); |
|
1529 |
||
1 | 1530 |
void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc); |
1531 |
||
1066 | 1532 |
// thread in the default location (r15_thread on 64bit) |
1533 |
void reset_last_Java_frame(bool clear_fp, bool clear_pc); |
|
1534 |
||
1 | 1535 |
// Stores |
1536 |
void store_check(Register obj); // store check for obj - register is destroyed afterwards |
|
1537 |
void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) |
|
1538 |
||
1394 | 1539 |
void g1_write_barrier_pre(Register obj, |
1540 |
#ifndef _LP64 |
|
1541 |
Register thread, |
|
1542 |
#endif |
|
1543 |
Register tmp, |
|
1544 |
Register tmp2, |
|
1545 |
bool tosca_live); |
|
1546 |
void g1_write_barrier_post(Register store_addr, |
|
1547 |
Register new_val, |
|
1548 |
#ifndef _LP64 |
|
1549 |
Register thread, |
|
1550 |
#endif |
|
1551 |
Register tmp, |
|
1552 |
Register tmp2); |
|
1374
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
244
diff
changeset
|
1553 |
|
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
244
diff
changeset
|
1554 |
|
1 | 1555 |
// split store_check(Register obj) to enhance instruction interleaving |
1556 |
void store_check_part_1(Register obj); |
|
1557 |
void store_check_part_2(Register obj); |
|
1558 |
||
1559 |
// C 'boolean' to Java boolean: x == 0 ? 0 : 1 |
|
1560 |
void c2bool(Register x); |
|
1561 |
||
1562 |
// C++ bool manipulation |
|
1563 |
||
1564 |
void movbool(Register dst, Address src); |
|
1565 |
void movbool(Address dst, bool boolconst); |
|
1566 |
void movbool(Address dst, Register src); |
|
1567 |
void testbool(Register dst); |
|
1568 |
||
1066 | 1569 |
// oop manipulations |
1570 |
void load_klass(Register dst, Register src); |
|
1571 |
void store_klass(Register dst, Register src); |
|
1572 |
||
1573 |
void load_prototype_header(Register dst, Register src); |
|
1574 |
||
1575 |
#ifdef _LP64 |
|
1576 |
void store_klass_gap(Register dst, Register src); |
|
1577 |
||
1578 |
void load_heap_oop(Register dst, Address src); |
|
1579 |
void store_heap_oop(Address dst, Register src); |
|
1580 |
void encode_heap_oop(Register r); |
|
1581 |
void decode_heap_oop(Register r); |
|
1582 |
void encode_heap_oop_not_null(Register r); |
|
1583 |
void decode_heap_oop_not_null(Register r); |
|
1584 |
void encode_heap_oop_not_null(Register dst, Register src); |
|
1585 |
void decode_heap_oop_not_null(Register dst, Register src); |
|
1586 |
||
1587 |
void set_narrow_oop(Register dst, jobject obj); |
|
1588 |
||
1589 |
// if heap base register is used - reinit it with the correct value |
|
1590 |
void reinit_heapbase(); |
|
1591 |
#endif // _LP64 |
|
1592 |
||
1593 |
// Int division/remainder for Java |
|
1 | 1594 |
// (as idivl, but checks for special case as described in JVM spec.) |
1595 |
// returns idivl instruction offset for implicit exception handling |
|
1596 |
int corrected_idivl(Register reg); |
|
1597 |
||
1066 | 1598 |
// Long division/remainder for Java |
1599 |
// (as idivq, but checks for special case as described in JVM spec.) |
|
1600 |
// returns idivq instruction offset for implicit exception handling |
|
1601 |
int corrected_idivq(Register reg); |
|
1602 |
||
1 | 1603 |
void int3(); |
1604 |
||
1066 | 1605 |
// Long operation macros for a 32bit cpu |
1 | 1606 |
// Long negation for Java |
1607 |
void lneg(Register hi, Register lo); |
|
1608 |
||
1609 |
// Long multiplication for Java |
|
1066 | 1610 |
// (destroys contents of eax, ebx, ecx and edx) |
1 | 1611 |
void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y |
1612 |
||
1613 |
// Long shifts for Java |
|
1614 |
// (semantics as described in JVM spec.) |
|
1615 |
void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f) |
|
1616 |
void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f) |
|
1617 |
||
1618 |
// Long compare for Java |
|
1619 |
// (semantics as described in JVM spec.) |
|
1620 |
void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y) |
|
1621 |
||
1066 | 1622 |
|
1623 |
// misc |
|
1624 |
||
1625 |
// Sign extension |
|
1626 |
void sign_extend_short(Register reg); |
|
1627 |
void sign_extend_byte(Register reg); |
|
1628 |
||
1629 |
// Division by power of 2, rounding towards 0 |
|
1630 |
void division_with_shift(Register reg, int shift_value); |
|
1631 |
||
1 | 1632 |
// Compares the top-most stack entries on the FPU stack and sets the eflags as follows: |
1633 |
// |
|
1634 |
// CF (corresponds to C0) if x < y |
|
1635 |
// PF (corresponds to C2) if unordered |
|
1636 |
// ZF (corresponds to C3) if x = y |
|
1637 |
// |
|
1638 |
// The arguments are in reversed order on the stack (i.e., top of stack is first argument). |
|
1639 |
// tmp is a temporary register, if none is available use noreg (only matters for non-P6 code) |
|
1640 |
void fcmp(Register tmp); |
|
1641 |
// Variant of the above which allows y to be further down the stack |
|
1642 |
// and which only pops x and y if specified. If pop_right is |
|
1643 |
// specified then pop_left must also be specified. |
|
1644 |
void fcmp(Register tmp, int index, bool pop_left, bool pop_right); |
|
1645 |
||
1646 |
// Floating-point comparison for Java |
|
1647 |
// Compares the top-most stack entries on the FPU stack and stores the result in dst. |
|
1648 |
// The arguments are in reversed order on the stack (i.e., top of stack is first argument). |
|
1649 |
// (semantics as described in JVM spec.) |
|
1650 |
void fcmp2int(Register dst, bool unordered_is_less); |
|
1651 |
// Variant of the above which allows y to be further down the stack |
|
1652 |
// and which only pops x and y if specified. If pop_right is |
|
1653 |
// specified then pop_left must also be specified. |
|
1654 |
void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right); |
|
1655 |
||
1656 |
// Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards) |
|
1657 |
// tmp is a temporary register, if none is available use noreg |
|
1658 |
void fremr(Register tmp); |
|
1659 |
||
1660 |
||
1661 |
// same as fcmp2int, but using SSE2 |
|
1662 |
void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less); |
|
1663 |
void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less); |
|
1664 |
||
1665 |
// Inlined sin/cos generator for Java; must not use CPU instruction |
|
1666 |
// directly on Intel as it does not have high enough precision |
|
1667 |
// outside of the range [-pi/4, pi/4]. Extra argument indicate the |
|
1668 |
// number of FPU stack slots in use; all but the topmost will |
|
1669 |
// require saving if a slow case is necessary. Assumes argument is |
|
1670 |
// on FP TOS; result is on FP TOS. No cpu registers are changed by |
|
1671 |
// this code. |
|
1672 |
void trigfunc(char trig, int num_fpu_regs_in_use = 1); |
|
1673 |
||
1674 |
// branch to L if FPU flag C2 is set/not set |
|
1675 |
// tmp is a temporary register, if none is available use noreg |
|
1676 |
void jC2 (Register tmp, Label& L); |
|
1677 |
void jnC2(Register tmp, Label& L); |
|
1678 |
||
1679 |
// Pop ST (ffree & fincstp combined) |
|
1680 |
void fpop(); |
|
1681 |
||
1682 |
// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack |
|
1683 |
void push_fTOS(); |
|
1684 |
||
1685 |
// pops double TOS element from CPU stack and pushes on FPU stack |
|
1686 |
void pop_fTOS(); |
|
1687 |
||
1688 |
void empty_FPU_stack(); |
|
1689 |
||
1690 |
void push_IU_state(); |
|
1691 |
void pop_IU_state(); |
|
1692 |
||
1693 |
void push_FPU_state(); |
|
1694 |
void pop_FPU_state(); |
|
1695 |
||
1696 |
void push_CPU_state(); |
|
1697 |
void pop_CPU_state(); |
|
1698 |
||
1699 |
// Round up to a power of two |
|
1700 |
void round_to(Register reg, int modulus); |
|
1701 |
||
1702 |
// Callee saved registers handling |
|
1703 |
void push_callee_saved_registers(); |
|
1704 |
void pop_callee_saved_registers(); |
|
1705 |
||
1706 |
// allocation |
|
1707 |
void eden_allocate( |
|
1708 |
Register obj, // result: pointer to object after successful allocation |
|
1709 |
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise |
|
1710 |
int con_size_in_bytes, // object size in bytes if known at compile time |
|
1711 |
Register t1, // temp register |
|
1712 |
Label& slow_case // continuation point if fast allocation fails |
|
1713 |
); |
|
1714 |
void tlab_allocate( |
|
1715 |
Register obj, // result: pointer to object after successful allocation |
|
1716 |
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise |
|
1717 |
int con_size_in_bytes, // object size in bytes if known at compile time |
|
1718 |
Register t1, // temp register |
|
1719 |
Register t2, // temp register |
|
1720 |
Label& slow_case // continuation point if fast allocation fails |
|
1721 |
); |
|
1722 |
void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); |
|
1723 |
||
1724 |
//---- |
|
1725 |
void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0 |
|
1726 |
||
1727 |
// Debugging |
|
1066 | 1728 |
|
1729 |
// only if +VerifyOops |
|
1730 |
void verify_oop(Register reg, const char* s = "broken oop"); |
|
1 | 1731 |
void verify_oop_addr(Address addr, const char * s = "broken oop addr"); |
1732 |
||
1066 | 1733 |
// only if +VerifyFPU |
1734 |
void verify_FPU(int stack_depth, const char* s = "illegal FPU state"); |
|
1735 |
||
1736 |
// prints msg, dumps registers and stops execution |
|
1737 |
void stop(const char* msg); |
|
1738 |
||
1739 |
// prints msg and continues |
|
1740 |
void warn(const char* msg); |
|
1741 |
||
1742 |
static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg); |
|
1743 |
static void debug64(char* msg, int64_t pc, int64_t regs[]); |
|
1744 |
||
1 | 1745 |
void os_breakpoint(); |
1066 | 1746 |
|
1 | 1747 |
void untested() { stop("untested"); } |
1066 | 1748 |
|
1 | 1749 |
void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, sizeof(b), "unimplemented: %s", what); stop(b); } |
1066 | 1750 |
|
1 | 1751 |
void should_not_reach_here() { stop("should not reach here"); } |
1066 | 1752 |
|
1 | 1753 |
void print_CPU_state(); |
1754 |
||
1755 |
// Stack overflow checking |
|
1756 |
void bang_stack_with_offset(int offset) { |
|
1757 |
// stack grows down, caller passes positive offset |
|
1758 |
assert(offset > 0, "must bang with negative offset"); |
|
1759 |
movl(Address(rsp, (-offset)), rax); |
|
1760 |
} |
|
1761 |
||
1762 |
// Writes to stack successive pages until offset reached to check for |
|
1763 |
// stack overflow + shadow pages. Also, clobbers tmp |
|
1764 |
void bang_stack_size(Register size, Register tmp); |
|
1765 |
||
1766 |
// Support for serializing memory accesses between threads |
|
1767 |
void serialize_memory(Register thread, Register tmp); |
|
1768 |
||
1769 |
void verify_tlab(); |
|
1770 |
||
1771 |
// Biased locking support |
|
1772 |
// lock_reg and obj_reg must be loaded up with the appropriate values. |
|
1773 |
// swap_reg must be rax, and is killed. |
|
1774 |
// tmp_reg is optional. If it is supplied (i.e., != noreg) it will |
|
1775 |
// be killed; if not supplied, push/pop will be used internally to |
|
1776 |
// allocate a temporary (inefficient, avoid if possible). |
|
1777 |
// Optional slow case is for implementations (interpreter and C1) which branch to |
|
1778 |
// slow case directly. Leaves condition codes set for C2's Fast_Lock node. |
|
1779 |
// Returns offset of first potentially-faulting instruction for null |
|
1780 |
// check info (currently consumed only by C1). If |
|
1781 |
// swap_reg_contains_mark is true then returns -1 as it is assumed |
|
1782 |
// the calling code has already passed any potential faults. |
|
1500
bea9a90f3e8f
6462850: generate biased locking code in C2 ideal graph
kvn
parents:
1437
diff
changeset
|
1783 |
int biased_locking_enter(Register lock_reg, Register obj_reg, |
bea9a90f3e8f
6462850: generate biased locking code in C2 ideal graph
kvn
parents:
1437
diff
changeset
|
1784 |
Register swap_reg, Register tmp_reg, |
1 | 1785 |
bool swap_reg_contains_mark, |
1786 |
Label& done, Label* slow_case = NULL, |
|
1787 |
BiasedLockingCounters* counters = NULL); |
|
1788 |
void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done); |
|
1789 |
||
1790 |
||
1791 |
Condition negate_condition(Condition cond); |
|
1792 |
||
1793 |
// Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit |
|
1794 |
// operands. In general the names are modified to avoid hiding the instruction in Assembler |
|
1795 |
// so that we don't need to implement all the varieties in the Assembler with trivial wrappers |
|
1796 |
// here in MacroAssembler. The major exception to this rule is call |
|
1797 |
||
1798 |
// Arithmetics |
|
1799 |
||
1066 | 1800 |
|
1801 |
void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; } |
|
1802 |
void addptr(Address dst, Register src); |
|
1803 |
||
1804 |
void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); } |
|
1805 |
void addptr(Register dst, int32_t src); |
|
1806 |
void addptr(Register dst, Register src); |
|
1807 |
||
1808 |
void andptr(Register dst, int32_t src); |
|
1809 |
void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; } |
|
1810 |
||
1811 |
void cmp8(AddressLiteral src1, int imm); |
|
1812 |
||
1813 |
// renamed to drag out the casting of address to int32_t/intptr_t |
|
1 | 1814 |
void cmp32(Register src1, int32_t imm); |
1815 |
||
1816 |
void cmp32(AddressLiteral src1, int32_t imm); |
|
1817 |
// compare reg - mem, or reg - &mem |
|
1818 |
void cmp32(Register src1, AddressLiteral src2); |
|
1819 |
||
1820 |
void cmp32(Register src1, Address src2); |
|
1821 |
||
1066 | 1822 |
#ifndef _LP64 |
1823 |
void cmpoop(Address dst, jobject obj); |
|
1824 |
void cmpoop(Register dst, jobject obj); |
|
1825 |
#endif // _LP64 |
|
1826 |
||
1 | 1827 |
// NOTE src2 must be the lval. This is NOT an mem-mem compare |
1828 |
void cmpptr(Address src1, AddressLiteral src2); |
|
1829 |
||
1830 |
void cmpptr(Register src1, AddressLiteral src2); |
|
1831 |
||
1066 | 1832 |
void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } |
1833 |
void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } |
|
1834 |
// void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } |
|
1835 |
||
1836 |
void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } |
|
1837 |
void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } |
|
1838 |
||
1839 |
// cmp64 to avoild hiding cmpq |
|
1840 |
void cmp64(Register src1, AddressLiteral src); |
|
1841 |
||
1842 |
void cmpxchgptr(Register reg, Address adr); |
|
1843 |
||
1844 |
void locked_cmpxchgptr(Register reg, AddressLiteral adr); |
|
1845 |
||
1846 |
||
1847 |
void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); } |
|
1848 |
||
1849 |
||
1850 |
void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); } |
|
1851 |
||
1852 |
void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); } |
|
1853 |
||
1854 |
void shlptr(Register dst, int32_t shift); |
|
1855 |
void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); } |
|
1856 |
||
1857 |
void shrptr(Register dst, int32_t shift); |
|
1858 |
void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); } |
|
1859 |
||
1860 |
void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); } |
|
1861 |
void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); } |
|
1862 |
||
1863 |
void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); } |
|
1864 |
||
1865 |
void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); } |
|
1866 |
void subptr(Register dst, int32_t src); |
|
1867 |
void subptr(Register dst, Register src); |
|
1868 |
||
1869 |
||
1870 |
void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); } |
|
1871 |
void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); } |
|
1872 |
||
1873 |
void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; } |
|
1874 |
void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; } |
|
1875 |
||
1876 |
void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; } |
|
1877 |
||
1878 |
||
1 | 1879 |
|
1880 |
// Helper functions for statistics gathering. |
|
1881 |
// Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes. |
|
1882 |
void cond_inc32(Condition cond, AddressLiteral counter_addr); |
|
1883 |
// Unconditional atomic increment. |
|
1884 |
void atomic_incl(AddressLiteral counter_addr); |
|
1885 |
||
1886 |
void lea(Register dst, AddressLiteral adr); |
|
1887 |
void lea(Address dst, AddressLiteral adr); |
|
1066 | 1888 |
void lea(Register dst, Address adr) { Assembler::lea(dst, adr); } |
1889 |
||
1890 |
void leal32(Register dst, Address src) { leal(dst, src); } |
|
1891 |
||
1892 |
void test32(Register src1, AddressLiteral src2); |
|
1893 |
||
1894 |
void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); } |
|
1895 |
void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); } |
|
1896 |
void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); } |
|
1897 |
||
1898 |
void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); } |
|
1899 |
void testptr(Register src1, Register src2); |
|
1900 |
||
1901 |
void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); } |
|
1902 |
void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); } |
|
1 | 1903 |
|
1904 |
// Calls |
|
1905 |
||
1906 |
void call(Label& L, relocInfo::relocType rtype); |
|
1907 |
void call(Register entry); |
|
1908 |
||
1909 |
// NOTE: this call tranfers to the effective address of entry NOT |
|
1910 |
// the address contained by entry. This is because this is more natural |
|
1911 |
// for jumps/calls. |
|
1912 |
void call(AddressLiteral entry); |
|
1913 |
||
1914 |
// Jumps |
|
1915 |
||
1916 |
// NOTE: these jumps tranfer to the effective address of dst NOT |
|
1917 |
// the address contained by dst. This is because this is more natural |
|
1918 |
// for jumps/calls. |
|
1919 |
void jump(AddressLiteral dst); |
|
1920 |
void jump_cc(Condition cc, AddressLiteral dst); |
|
1921 |
||
1922 |
// 32bit can do a case table jump in one instruction but we no longer allow the base |
|
1923 |
// to be installed in the Address class. This jump will tranfers to the address |
|
1924 |
// contained in the location described by entry (not the address of entry) |
|
1925 |
void jump(ArrayAddress entry); |
|
1926 |
||
1927 |
// Floating |
|
1928 |
||
1929 |
void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); } |
|
1930 |
void andpd(XMMRegister dst, AddressLiteral src); |
|
1931 |
||
1932 |
void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); } |
|
1933 |
void comiss(XMMRegister dst, AddressLiteral src); |
|
1934 |
||
1935 |
void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); } |
|
1936 |
void comisd(XMMRegister dst, AddressLiteral src); |
|
1937 |
||
1938 |
void fldcw(Address src) { Assembler::fldcw(src); } |
|
1939 |
void fldcw(AddressLiteral src); |
|
1940 |
||
1941 |
void fld_s(int index) { Assembler::fld_s(index); } |
|
1942 |
void fld_s(Address src) { Assembler::fld_s(src); } |
|
1943 |
void fld_s(AddressLiteral src); |
|
1944 |
||
1945 |
void fld_d(Address src) { Assembler::fld_d(src); } |
|
1946 |
void fld_d(AddressLiteral src); |
|
1947 |
||
1948 |
void fld_x(Address src) { Assembler::fld_x(src); } |
|
1949 |
void fld_x(AddressLiteral src); |
|
1950 |
||
1951 |
void ldmxcsr(Address src) { Assembler::ldmxcsr(src); } |
|
1952 |
void ldmxcsr(AddressLiteral src); |
|
1953 |
||
1066 | 1954 |
private: |
1955 |
// these are private because users should be doing movflt/movdbl |
|
1956 |
||
1 | 1957 |
void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); } |
1958 |
void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); } |
|
1959 |
void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); } |
|
1960 |
void movss(XMMRegister dst, AddressLiteral src); |
|
1961 |
||
1066 | 1962 |
void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); } |
1963 |
void movlpd(XMMRegister dst, AddressLiteral src); |
|
1964 |
||
1965 |
public: |
|
1966 |
||
1 | 1967 |
void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); } |
1968 |
void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); } |
|
1969 |
void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); } |
|
1970 |
void movsd(XMMRegister dst, AddressLiteral src); |
|
1971 |
||
1972 |
void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); } |
|
1973 |
void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); } |
|
1974 |
void ucomiss(XMMRegister dst, AddressLiteral src); |
|
1975 |
||
1976 |
void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); } |
|
1977 |
void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); } |
|
1978 |
void ucomisd(XMMRegister dst, AddressLiteral src); |
|
1979 |
||
1980 |
// Bitwise Logical XOR of Packed Double-Precision Floating-Point Values |
|
1981 |
void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); } |
|
1982 |
void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); } |
|
1983 |
void xorpd(XMMRegister dst, AddressLiteral src); |
|
1984 |
||
1985 |
// Bitwise Logical XOR of Packed Single-Precision Floating-Point Values |
|
1986 |
void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); } |
|
1987 |
void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); } |
|
1988 |
void xorps(XMMRegister dst, AddressLiteral src); |
|
1989 |
||
1990 |
// Data |
|
1991 |
||
1066 | 1992 |
void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); } |
1993 |
||
1994 |
void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); } |
|
1995 |
void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); } |
|
1996 |
||
1 | 1997 |
void movoop(Register dst, jobject obj); |
1998 |
void movoop(Address dst, jobject obj); |
|
1999 |
||
2000 |
void movptr(ArrayAddress dst, Register src); |
|
2001 |
// can this do an lea? |
|
2002 |
void movptr(Register dst, ArrayAddress src); |
|
2003 |
||
1066 | 2004 |
void movptr(Register dst, Address src); |
2005 |
||
1 | 2006 |
void movptr(Register dst, AddressLiteral src); |
2007 |
||
1066 | 2008 |
void movptr(Register dst, intptr_t src); |
2009 |
void movptr(Register dst, Register src); |
|
2010 |
void movptr(Address dst, intptr_t src); |
|
2011 |
||
2012 |
void movptr(Address dst, Register src); |
|
2013 |
||
2014 |
#ifdef _LP64 |
|
2015 |
// Generally the next two are only used for moving NULL |
|
2016 |
// Although there are situations in initializing the mark word where |
|
2017 |
// they could be used. They are dangerous. |
|
2018 |
||
2019 |
// They only exist on LP64 so that int32_t and intptr_t are not the same |
|
2020 |
// and we have ambiguous declarations. |
|
2021 |
||
2022 |
void movptr(Address dst, int32_t imm32); |
|
2023 |
void movptr(Register dst, int32_t imm32); |
|
2024 |
#endif // _LP64 |
|
2025 |
||
1 | 2026 |
// to avoid hiding movl |
2027 |
void mov32(AddressLiteral dst, Register src); |
|
2028 |
void mov32(Register dst, AddressLiteral src); |
|
1066 | 2029 |
|
1 | 2030 |
// to avoid hiding movb |
2031 |
void movbyte(ArrayAddress dst, int src); |
|
2032 |
||
2033 |
// Can push value or effective address |
|
2034 |
void pushptr(AddressLiteral src); |
|
2035 |
||
1066 | 2036 |
void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); } |
2037 |
void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); } |
|
2038 |
||
2039 |
void pushoop(jobject obj); |
|
2040 |
||
2041 |
// sign extend as need a l to ptr sized element |
|
2042 |
void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); } |
|
2043 |
void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); } |
|
2044 |
||
2045 |
||
1 | 2046 |
#undef VIRTUAL |
2047 |
||
2048 |
}; |
|
2049 |
||
2050 |
/** |
|
2051 |
* class SkipIfEqual: |
|
2052 |
* |
|
2053 |
* Instantiating this class will result in assembly code being output that will |
|
2054 |
* jump around any code emitted between the creation of the instance and it's |
|
2055 |
* automatic destruction at the end of a scope block, depending on the value of |
|
2056 |
* the flag passed to the constructor, which will be checked at run-time. |
|
2057 |
*/ |
|
2058 |
class SkipIfEqual { |
|
2059 |
private: |
|
2060 |
MacroAssembler* _masm; |
|
2061 |
Label _label; |
|
2062 |
||
2063 |
public: |
|
2064 |
SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value); |
|
2065 |
~SkipIfEqual(); |
|
2066 |
}; |
|
2067 |
||
2068 |
#ifdef ASSERT |
|
2069 |
inline bool AbstractAssembler::pd_check_instruction_mark() { return true; } |
|
2070 |
#endif |