hotspot/src/cpu/x86/vm/assembler_x86_32.hpp
changeset 1 489c9b5090e2
child 244 c8ad6f221400
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/x86/vm/assembler_x86_32.hpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1504 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+class BiasedLockingCounters;
+
+// Contains all the definitions needed for x86 assembly code generation.
+
+// Calling convention
+class Argument VALUE_OBJ_CLASS_SPEC {
+ public:
+  enum {
+#ifdef _LP64
+#ifdef _WIN64
+    n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
+    n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
+#else
+    n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
+    n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
+#endif // _WIN64
+    n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
+    n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
+#else
+    n_register_parameters = 0   // 0 registers used to pass arguments
+#endif // _LP64
+  };
+};
+
+
+#ifdef _LP64
+// Symbolically name the register arguments used by the c calling convention.
+// Windows is different from linux/solaris. So much for standards...
+
+#ifdef _WIN64
+
+REGISTER_DECLARATION(Register, c_rarg0, rcx);
+REGISTER_DECLARATION(Register, c_rarg1, rdx);
+REGISTER_DECLARATION(Register, c_rarg2, r8);
+REGISTER_DECLARATION(Register, c_rarg3, r9);
+
+REGISTER_DECLARATION(FloatRegister, c_farg0, xmm0);
+REGISTER_DECLARATION(FloatRegister, c_farg1, xmm1);
+REGISTER_DECLARATION(FloatRegister, c_farg2, xmm2);
+REGISTER_DECLARATION(FloatRegister, c_farg3, xmm3);
+
+#else
+
+REGISTER_DECLARATION(Register, c_rarg0, rdi);
+REGISTER_DECLARATION(Register, c_rarg1, rsi);
+REGISTER_DECLARATION(Register, c_rarg2, rdx);
+REGISTER_DECLARATION(Register, c_rarg3, rcx);
+REGISTER_DECLARATION(Register, c_rarg4, r8);
+REGISTER_DECLARATION(Register, c_rarg5, r9);
+
+REGISTER_DECLARATION(FloatRegister, c_farg0, xmm0);
+REGISTER_DECLARATION(FloatRegister, c_farg1, xmm1);
+REGISTER_DECLARATION(FloatRegister, c_farg2, xmm2);
+REGISTER_DECLARATION(FloatRegister, c_farg3, xmm3);
+REGISTER_DECLARATION(FloatRegister, c_farg4, xmm4);
+REGISTER_DECLARATION(FloatRegister, c_farg5, xmm5);
+REGISTER_DECLARATION(FloatRegister, c_farg6, xmm6);
+REGISTER_DECLARATION(FloatRegister, c_farg7, xmm7);
+
+#endif // _WIN64
+
+// Symbolically name the register arguments used by the Java calling convention.
+// We have control over the convention for java so we can do what we please.
+// What pleases us is to offset the java calling convention so that when
+// we call a suitable jni method the arguments are lined up and we don't
+// have to do little shuffling. A suitable jni method is non-static and a
+// small number of arguments (two fewer args on windows)
+//
+//        |-------------------------------------------------------|
+//        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
+//        |-------------------------------------------------------|
+//        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
+//        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
+//        |-------------------------------------------------------|
+//        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
+//        |-------------------------------------------------------|
+
+REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
+REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
+REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
+// Windows runs out of register args here
+#ifdef _WIN64
+REGISTER_DECLARATION(Register, j_rarg3, rdi);
+REGISTER_DECLARATION(Register, j_rarg4, rsi);
+#else
+REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
+REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
+#endif /* _WIN64 */
+REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
+
+REGISTER_DECLARATION(FloatRegister, j_farg0, xmm0);
+REGISTER_DECLARATION(FloatRegister, j_farg1, xmm1);
+REGISTER_DECLARATION(FloatRegister, j_farg2, xmm2);
+REGISTER_DECLARATION(FloatRegister, j_farg3, xmm3);
+REGISTER_DECLARATION(FloatRegister, j_farg4, xmm4);
+REGISTER_DECLARATION(FloatRegister, j_farg5, xmm5);
+REGISTER_DECLARATION(FloatRegister, j_farg6, xmm6);
+REGISTER_DECLARATION(FloatRegister, j_farg7, xmm7);
+
+REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
+REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
+
+REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
+
+#endif // _LP64
+
+// Address is an abstraction used to represent a memory location
+// using any of the amd64 addressing modes with one object.
+//
+// Note: A register location is represented via a Register, not
+//       via an address for efficiency & simplicity reasons.
+
+class ArrayAddress;
+
+class Address VALUE_OBJ_CLASS_SPEC {
+ public:
+  enum ScaleFactor {
+    no_scale = -1,
+    times_1  =  0,
+    times_2  =  1,
+    times_4  =  2,
+    times_8  =  3
+  };
+
+ private:
+  Register         _base;
+  Register         _index;
+  ScaleFactor      _scale;
+  int              _disp;
+  RelocationHolder _rspec;
+
+  // Easily misused constructor make them private
+#ifndef _LP64
+  Address(address loc, RelocationHolder spec);
+#endif // _LP64
+
+ public:
+  // creation
+  Address()
+    : _base(noreg),
+      _index(noreg),
+      _scale(no_scale),
+      _disp(0) {
+  }
+
+  // No default displacement otherwise Register can be implicitly
+  // converted to 0(Register) which is quite a different animal.
+
+  Address(Register base, int disp)
+    : _base(base),
+      _index(noreg),
+      _scale(no_scale),
+      _disp(disp) {
+  }
+
+  Address(Register base, Register index, ScaleFactor scale, int disp = 0)
+    : _base (base),
+      _index(index),
+      _scale(scale),
+      _disp (disp) {
+    assert(!index->is_valid() == (scale == Address::no_scale),
+           "inconsistent address");
+  }
+
+  // The following two overloads are used in connection with the
+  // ByteSize type (see sizes.hpp).  They simplify the use of
+  // ByteSize'd arguments in assembly code. Note that their equivalent
+  // for the optimized build are the member functions with int disp
+  // argument since ByteSize is mapped to an int type in that case.
+  //
+  // Note: DO NOT introduce similar overloaded functions for WordSize
+  // arguments as in the optimized mode, both ByteSize and WordSize
+  // are mapped to the same type and thus the compiler cannot make a
+  // distinction anymore (=> compiler errors).
+
+#ifdef ASSERT
+  Address(Register base, ByteSize disp)
+    : _base(base),
+      _index(noreg),
+      _scale(no_scale),
+      _disp(in_bytes(disp)) {
+  }
+
+  Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
+    : _base(base),
+      _index(index),
+      _scale(scale),
+      _disp(in_bytes(disp)) {
+    assert(!index->is_valid() == (scale == Address::no_scale),
+           "inconsistent address");
+  }
+#endif // ASSERT
+
+  // accessors
+  bool uses(Register reg) const {
+    return _base == reg || _index == reg;
+  }
+
+  // Convert the raw encoding form into the form expected by the constructor for
+  // Address.  An index of 4 (rsp) corresponds to having no index, so convert
+  // that to noreg for the Address constructor.
+  static Address make_raw(int base, int index, int scale, int disp);
+
+  static Address make_array(ArrayAddress);
+
+
+ private:
+  bool base_needs_rex() const {
+    return _base != noreg && _base->encoding() >= 8;
+  }
+
+  bool index_needs_rex() const {
+    return _index != noreg &&_index->encoding() >= 8;
+  }
+
+  relocInfo::relocType reloc() const { return _rspec.type(); }
+
+  friend class Assembler;
+  friend class MacroAssembler;
+  friend class LIR_Assembler; // base/index/scale/disp
+};
+
+//
+// AddressLiteral has been split out from Address because operands of this type
+// need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
+// the few instructions that need to deal with address literals are unique and the
+// MacroAssembler does not have to implement every instruction in the Assembler
+// in order to search for address literals that may need special handling depending
+// on the instruction and the platform. As small step on the way to merging i486/amd64
+// directories.
+//
+class AddressLiteral VALUE_OBJ_CLASS_SPEC {
+  friend class ArrayAddress;
+  RelocationHolder _rspec;
+  // Typically we use AddressLiterals we want to use their rval
+  // However in some situations we want the lval (effect address) of the item.
+  // We provide a special factory for making those lvals.
+  bool _is_lval;
+
+  // If the target is far we'll need to load the ea of this to
+  // a register to reach it. Otherwise if near we can do rip
+  // relative addressing.
+
+  address          _target;
+
+ protected:
+  // creation
+  AddressLiteral()
+    : _is_lval(false),
+      _target(NULL)
+  {}
+
+  public:
+
+
+  AddressLiteral(address target, relocInfo::relocType rtype);
+
+  AddressLiteral(address target, RelocationHolder const& rspec)
+    : _rspec(rspec),
+      _is_lval(false),
+      _target(target)
+  {}
+
+  AddressLiteral addr() {
+    AddressLiteral ret = *this;
+    ret._is_lval = true;
+    return ret;
+  }
+
+
+ private:
+
+  address target() { return _target; }
+  bool is_lval() { return _is_lval; }
+
+  relocInfo::relocType reloc() const { return _rspec.type(); }
+  const RelocationHolder& rspec() const { return _rspec; }
+
+  friend class Assembler;
+  friend class MacroAssembler;
+  friend class Address;
+  friend class LIR_Assembler;
+};
+
+// Convience classes
+class RuntimeAddress: public AddressLiteral {
+
+  public:
+
+  RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
+
+};
+
+class OopAddress: public AddressLiteral {
+
+  public:
+
+  OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
+
+};
+
+class ExternalAddress: public AddressLiteral {
+
+  public:
+
+  ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
+
+};
+
+class InternalAddress: public AddressLiteral {
+
+  public:
+
+  InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
+
+};
+
+// x86 can do array addressing as a single operation since disp can be an absolute
+// address amd64 can't. We create a class that expresses the concept but does extra
+// magic on amd64 to get the final result
+
+class ArrayAddress VALUE_OBJ_CLASS_SPEC {
+  private:
+
+  AddressLiteral _base;
+  Address        _index;
+
+  public:
+
+  ArrayAddress() {};
+  ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
+  AddressLiteral base() { return _base; }
+  Address index() { return _index; }
+
+};
+
+#ifndef _LP64
+const int FPUStateSizeInWords = 27;
+#else
+const int FPUStateSizeInWords = 512 / wordSize;
+#endif // _LP64
+
+// The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
+// level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
+// is what you get. The Assembler is generating code into a CodeBuffer.
+
+class Assembler : public AbstractAssembler  {
+  friend class AbstractAssembler; // for the non-virtual hack
+  friend class LIR_Assembler; // as_Address()
+
+ protected:
+  #ifdef ASSERT
+  void check_relocation(RelocationHolder const& rspec, int format);
+  #endif
+
+  inline void emit_long64(jlong x);
+
+  void emit_data(jint data, relocInfo::relocType    rtype, int format /* = 0 */);
+  void emit_data(jint data, RelocationHolder const& rspec, int format /* = 0 */);
+  void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
+  void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
+
+  // Helper functions for groups of instructions
+  void emit_arith_b(int op1, int op2, Register dst, int imm8);
+
+  void emit_arith(int op1, int op2, Register dst, int imm32);
+  // only x86??
+  void emit_arith(int op1, int op2, Register dst, jobject obj);
+  void emit_arith(int op1, int op2, Register dst, Register src);
+
+  void emit_operand(Register reg,
+                    Register base, Register index, Address::ScaleFactor scale,
+                    int disp,
+                    RelocationHolder const& rspec);
+  void emit_operand(Register reg, Address adr);
+
+  // Immediate-to-memory forms
+  void emit_arith_operand(int op1, Register rm, Address adr, int imm32);
+
+  void emit_farith(int b1, int b2, int i);
+
+  // macroassembler?? QQQ
+  bool reachable(AddressLiteral adr) { return true; }
+
+  // These are all easily abused and hence protected
+
+  // Make these disappear in 64bit mode since they would never be correct
+#ifndef _LP64
+  void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);
+  void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);
+
+  void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);
+  void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);
+
+  void push_literal32(int32_t imm32, RelocationHolder const& rspec);
+#endif // _LP64
+
+  // These are unique in that we are ensured by the caller that the 32bit
+  // relative in these instructions will always be able to reach the potentially
+  // 64bit address described by entry. Since they can take a 64bit address they
+  // don't have the 32 suffix like the other instructions in this class.
+
+  void call_literal(address entry, RelocationHolder const& rspec);
+  void jmp_literal(address entry, RelocationHolder const& rspec);
+
+
+ public:
+  enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
+    zero          = 0x4,
+    notZero       = 0x5,
+    equal         = 0x4,
+    notEqual      = 0x5,
+    less          = 0xc,
+    lessEqual     = 0xe,
+    greater       = 0xf,
+    greaterEqual  = 0xd,
+    below         = 0x2,
+    belowEqual    = 0x6,
+    above         = 0x7,
+    aboveEqual    = 0x3,
+    overflow      = 0x0,
+    noOverflow    = 0x1,
+    carrySet      = 0x2,
+    carryClear    = 0x3,
+    negative      = 0x8,
+    positive      = 0x9,
+    parity        = 0xa,
+    noParity      = 0xb
+  };
+
+  enum Prefix {
+    // segment overrides
+    CS_segment = 0x2e,
+    SS_segment = 0x36,
+    DS_segment = 0x3e,
+    ES_segment = 0x26,
+    FS_segment = 0x64,
+    GS_segment = 0x65,
+
+    REX        = 0x40,
+
+    REX_B      = 0x41,
+    REX_X      = 0x42,
+    REX_XB     = 0x43,
+    REX_R      = 0x44,
+    REX_RB     = 0x45,
+    REX_RX     = 0x46,
+    REX_RXB    = 0x47,
+
+    REX_W      = 0x48,
+
+    REX_WB     = 0x49,
+    REX_WX     = 0x4A,
+    REX_WXB    = 0x4B,
+    REX_WR     = 0x4C,
+    REX_WRB    = 0x4D,
+    REX_WRX    = 0x4E,
+    REX_WRXB   = 0x4F
+  };
+
+  enum WhichOperand {
+    // input to locate_operand, and format code for relocations
+    imm32_operand  = 0,          // embedded 32-bit immediate operand
+    disp32_operand = 1,          // embedded 32-bit displacement or address
+    call32_operand = 2,          // embedded 32-bit self-relative displacement
+    _WhichOperand_limit = 3
+  };
+
+  public:
+
+  // Creation
+  Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
+
+  // Decoding
+  static address locate_operand(address inst, WhichOperand which);
+  static address locate_next_instruction(address inst);
+
+  // Stack
+  void pushad();
+  void popad();
+
+  void pushfd();
+  void popfd();
+
+  void pushl(int imm32);
+  void pushoop(jobject obj);
+
+  void pushl(Register src);
+  void pushl(Address src);
+  // void pushl(Label& L, relocInfo::relocType rtype); ? needed?
+
+  // dummy to prevent NULL being converted to Register
+  void pushl(void* dummy);
+
+  void popl(Register dst);
+  void popl(Address dst);
+
+  // Instruction prefixes
+  void prefix(Prefix p);
+
+  // Moves
+  void movb(Register dst, Address src);
+  void movb(Address dst, int imm8);
+  void movb(Address dst, Register src);
+
+  void movw(Address dst, int imm16);
+  void movw(Register dst, Address src);
+  void movw(Address dst, Register src);
+
+  // these are dummies used to catch attempting to convert NULL to Register
+  void movl(Register dst, void* junk);
+  void movl(Address dst, void* junk);
+
+  void movl(Register dst, int imm32);
+  void movl(Address dst, int imm32);
+  void movl(Register dst, Register src);
+  void movl(Register dst, Address src);
+  void movl(Address dst, Register src);
+
+  void movsxb(Register dst, Address src);
+  void movsxb(Register dst, Register src);
+
+  void movsxw(Register dst, Address src);
+  void movsxw(Register dst, Register src);
+
+  void movzxb(Register dst, Address src);
+  void movzxb(Register dst, Register src);
+
+  void movzxw(Register dst, Address src);
+  void movzxw(Register dst, Register src);
+
+  // Conditional moves (P6 only)
+  void cmovl(Condition cc, Register dst, Register src);
+  void cmovl(Condition cc, Register dst, Address src);
+
+  // Prefetches (SSE, SSE2, 3DNOW only)
+  void prefetcht0(Address src);
+  void prefetcht1(Address src);
+  void prefetcht2(Address src);
+  void prefetchnta(Address src);
+  void prefetchw(Address src);
+  void prefetchr(Address src);
+
+  // Arithmetics
+  void adcl(Register dst, int imm32);
+  void adcl(Register dst, Address src);
+  void adcl(Register dst, Register src);
+
+  void addl(Address dst, int imm32);
+  void addl(Address dst, Register src);
+  void addl(Register dst, int imm32);
+  void addl(Register dst, Address src);
+  void addl(Register dst, Register src);
+
+  void andl(Register dst, int imm32);
+  void andl(Register dst, Address src);
+  void andl(Register dst, Register src);
+
+  void cmpb(Address dst, int imm8);
+  void cmpw(Address dst, int imm16);
+  void cmpl(Address dst, int imm32);
+  void cmpl(Register dst, int imm32);
+  void cmpl(Register dst, Register src);
+  void cmpl(Register dst, Address src);
+
+  // this is a dummy used to catch attempting to convert NULL to Register
+  void cmpl(Register dst, void* junk);
+
+ protected:
+  // Don't use next inc() and dec() methods directly. INC & DEC instructions
+  // could cause a partial flag stall since they don't set CF flag.
+  // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
+  // which call inc() & dec() or add() & sub() in accordance with
+  // the product flag UseIncDec value.
+
+  void decl(Register dst);
+  void decl(Address dst);
+
+  void incl(Register dst);
+  void incl(Address dst);
+
+ public:
+  void idivl(Register src);
+  void cdql();
+
+  void imull(Register dst, Register src);
+  void imull(Register dst, Register src, int value);
+
+  void leal(Register dst, Address src);
+
+  void mull(Address src);
+  void mull(Register src);
+
+  void negl(Register dst);
+
+  void notl(Register dst);
+
+  void orl(Address dst, int imm32);
+  void orl(Register dst, int imm32);
+  void orl(Register dst, Address src);
+  void orl(Register dst, Register src);
+
+  void rcll(Register dst, int imm8);
+
+  void sarl(Register dst, int imm8);
+  void sarl(Register dst);
+
+  void sbbl(Address dst, int imm32);
+  void sbbl(Register dst, int imm32);
+  void sbbl(Register dst, Address src);
+  void sbbl(Register dst, Register src);
+
+  void shldl(Register dst, Register src);
+
+  void shll(Register dst, int imm8);
+  void shll(Register dst);
+
+  void shrdl(Register dst, Register src);
+
+  void shrl(Register dst, int imm8);
+  void shrl(Register dst);
+
+  void subl(Address dst, int imm32);
+  void subl(Address dst, Register src);
+  void subl(Register dst, int imm32);
+  void subl(Register dst, Address src);
+  void subl(Register dst, Register src);
+
+  void testb(Register dst, int imm8);
+  void testl(Register dst, int imm32);
+  void testl(Register dst, Address src);
+  void testl(Register dst, Register src);
+
+  void xaddl(Address dst, Register src);
+
+  void xorl(Register dst, int imm32);
+  void xorl(Register dst, Address src);
+  void xorl(Register dst, Register src);
+
+  // Miscellaneous
+  void bswap(Register reg);
+  void lock();
+
+  void xchg (Register reg, Address adr);
+  void xchgl(Register dst, Register src);
+
+  void cmpxchg (Register reg, Address adr);
+  void cmpxchg8 (Address adr);
+
+  void nop(int i = 1);
+  void addr_nop_4();
+  void addr_nop_5();
+  void addr_nop_7();
+  void addr_nop_8();
+
+  void hlt();
+  void ret(int imm16);
+  void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
+  void smovl();
+  void rep_movl();
+  void rep_set();
+  void repne_scan();
+  void setb(Condition cc, Register dst);
+  void membar();                // Serializing memory-fence
+  void cpuid();
+  void cld();
+  void std();
+
+  void emit_raw (unsigned char);
+
+  // Calls
+  void call(Label& L, relocInfo::relocType rtype);
+  void call(Register reg);  // push pc; pc <- reg
+  void call(Address adr);   // push pc; pc <- adr
+
+  // Jumps
+  void jmp(Address entry);    // pc <- entry
+  void jmp(Register entry); // pc <- entry
+
+  // Label operations & relative jumps (PPUM Appendix D)
+  void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
+
+  // Force an 8-bit jump offset
+  // void jmpb(address entry);
+
+  // Unconditional 8-bit offset jump to L.
+  // WARNING: be very careful using this for forward jumps.  If the label is
+  // not bound within an 8-bit offset of this instruction, a run-time error
+  // will occur.
+  void jmpb(Label& L);
+
+  // jcc is the generic conditional branch generator to run-
+  // time routines, jcc is used for branches to labels. jcc
+  // takes a branch opcode (cc) and a label (L) and generates
+  // either a backward branch or a forward branch and links it
+  // to the label fixup chain. Usage:
+  //
+  // Label L;      // unbound label
+  // jcc(cc, L);   // forward branch to unbound label
+  // bind(L);      // bind label to the current pc
+  // jcc(cc, L);   // backward branch to bound label
+  // bind(L);      // illegal: a label may be bound only once
+  //
+  // Note: The same Label can be used for forward and backward branches
+  // but it may be bound only once.
+
+  void jcc(Condition cc, Label& L,
+           relocInfo::relocType rtype = relocInfo::none);
+
+  // Conditional jump to a 8-bit offset to L.
+  // WARNING: be very careful using this for forward jumps.  If the label is
+  // not bound within an 8-bit offset of this instruction, a run-time error
+  // will occur.
+  void jccb(Condition cc, Label& L);
+
+  // Floating-point operations
+  void fld1();
+  void fldz();
+
+  void fld_s(Address adr);
+  void fld_s(int index);
+  void fld_d(Address adr);
+  void fld_x(Address adr);  // extended-precision (80-bit) format
+
+  void fst_s(Address adr);
+  void fst_d(Address adr);
+
+  void fstp_s(Address adr);
+  void fstp_d(Address adr);
+  void fstp_d(int index);
+  void fstp_x(Address adr); // extended-precision (80-bit) format
+
+  void fild_s(Address adr);
+  void fild_d(Address adr);
+
+  void fist_s (Address adr);
+  void fistp_s(Address adr);
+  void fistp_d(Address adr);
+
+  void fabs();
+  void fchs();
+
+  void flog();
+  void flog10();
+
+  void fldln2();
+  void fyl2x();
+  void fldlg2();
+
+  void fcos();
+  void fsin();
+  void ftan();
+  void fsqrt();
+
+  // "Alternate" versions of instructions place result down in FPU
+  // stack instead of on TOS
+  void fadd_s(Address src);
+  void fadd_d(Address src);
+  void fadd(int i);
+  void fadda(int i); // "alternate" fadd
+
+  void fsub_s(Address src);
+  void fsub_d(Address src);
+  void fsubr_s(Address src);
+  void fsubr_d(Address src);
+
+  void fmul_s(Address src);
+  void fmul_d(Address src);
+  void fmul(int i);
+  void fmula(int i);  // "alternate" fmul
+
+  void fdiv_s(Address src);
+  void fdiv_d(Address src);
+  void fdivr_s(Address src);
+  void fdivr_d(Address src);
+
+  void fsub(int i);
+  void fsuba(int i);  // "alternate" fsub
+  void fsubr(int i);
+  void fsubra(int i); // "alternate" reversed fsub
+  void fdiv(int i);
+  void fdiva(int i);  // "alternate" fdiv
+  void fdivr(int i);
+  void fdivra(int i); // "alternate" reversed fdiv
+
+  void faddp(int i = 1);
+  void fsubp(int i = 1);
+  void fsubrp(int i = 1);
+  void fmulp(int i = 1);
+  void fdivp(int i = 1);
+  void fdivrp(int i = 1);
+  void fprem();
+  void fprem1();
+
+  void fxch(int i = 1);
+  void fincstp();
+  void fdecstp();
+  void ffree(int i = 0);
+
+  void fcomp_s(Address src);
+  void fcomp_d(Address src);
+  void fcom(int i);
+  void fcomp(int i = 1);
+  void fcompp();
+
+  void fucomi(int i = 1);
+  void fucomip(int i = 1);
+
+  void ftst();
+  void fnstsw_ax();
+  void fwait();
+  void finit();
+  void fldcw(Address src);
+  void fnstcw(Address src);
+
+  void fnsave(Address dst);
+  void frstor(Address src);
+  void fldenv(Address src);
+
+  void sahf();
+
+ protected:
+  void emit_sse_operand(XMMRegister reg, Address adr);
+  void emit_sse_operand(Register reg, Address adr);
+  void emit_sse_operand(XMMRegister dst, XMMRegister src);
+  void emit_sse_operand(XMMRegister dst, Register src);
+  void emit_sse_operand(Register dst, XMMRegister src);
+
+  void emit_operand(MMXRegister reg, Address adr);
+
+ public:
+  // mmx operations
+  void movq( MMXRegister dst, Address src );
+  void movq( Address dst, MMXRegister src );
+  void emms();
+
+  // xmm operations
+  void addss(XMMRegister dst, Address src);      // Add Scalar Single-Precision Floating-Point Values
+  void addss(XMMRegister dst, XMMRegister src);
+  void addsd(XMMRegister dst, Address src);      // Add Scalar Double-Precision Floating-Point Values
+  void addsd(XMMRegister dst, XMMRegister src);
+
+  void subss(XMMRegister dst, Address src);      // Subtract Scalar Single-Precision Floating-Point Values
+  void subss(XMMRegister dst, XMMRegister src);
+  void subsd(XMMRegister dst, Address src);      // Subtract Scalar Double-Precision Floating-Point Values
+  void subsd(XMMRegister dst, XMMRegister src);
+
+  void mulss(XMMRegister dst, Address src);      // Multiply Scalar Single-Precision Floating-Point Values
+  void mulss(XMMRegister dst, XMMRegister src);
+  void mulsd(XMMRegister dst, Address src);      // Multiply Scalar Double-Precision Floating-Point Values
+  void mulsd(XMMRegister dst, XMMRegister src);
+
+  void divss(XMMRegister dst, Address src);      // Divide Scalar Single-Precision Floating-Point Values
+  void divss(XMMRegister dst, XMMRegister src);
+  void divsd(XMMRegister dst, Address src);      // Divide Scalar Double-Precision Floating-Point Values
+  void divsd(XMMRegister dst, XMMRegister src);
+
+  void sqrtss(XMMRegister dst, Address src);     // Compute Square Root of Scalar Single-Precision Floating-Point Value
+  void sqrtss(XMMRegister dst, XMMRegister src);
+  void sqrtsd(XMMRegister dst, Address src);     // Compute Square Root of Scalar Double-Precision Floating-Point Value
+  void sqrtsd(XMMRegister dst, XMMRegister src);
+
+  void pxor(XMMRegister dst, Address src);       // Xor Packed Byte Integer Values
+  void pxor(XMMRegister dst, XMMRegister src);   // Xor Packed Byte Integer Values
+
+  void comiss(XMMRegister dst, Address src);     // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
+  void comiss(XMMRegister dst, XMMRegister src);
+  void comisd(XMMRegister dst, Address src);     // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
+  void comisd(XMMRegister dst, XMMRegister src);
+
+  void ucomiss(XMMRegister dst, Address src);    // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
+  void ucomiss(XMMRegister dst, XMMRegister src);
+  void ucomisd(XMMRegister dst, Address src);    // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
+  void ucomisd(XMMRegister dst, XMMRegister src);
+
+  void cvtss2sd(XMMRegister dst, Address src);   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
+  void cvtss2sd(XMMRegister dst, XMMRegister src);
+  void cvtsd2ss(XMMRegister dst, Address src);   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
+  void cvtsd2ss(XMMRegister dst, XMMRegister src);
+
+  void cvtsi2ss(XMMRegister dst, Address src);   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
+  void cvtsi2ss(XMMRegister dst, Register src);
+  void cvtsi2sd(XMMRegister dst, Address src);   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
+  void cvtsi2sd(XMMRegister dst, Register src);
+
+  void cvtss2si(Register dst, Address src);      // Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer
+  void cvtss2si(Register dst, XMMRegister src);
+  void cvtsd2si(Register dst, Address src);      // Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
+  void cvtsd2si(Register dst, XMMRegister src);
+
+  void cvttss2si(Register dst, Address src);     // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
+  void cvttss2si(Register dst, XMMRegister src);
+  void cvttsd2si(Register dst, Address src);     // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
+  void cvttsd2si(Register dst, XMMRegister src);
+
+ protected: // Avoid using the next instructions directly.
+  // New cpus require use of movsd and movss to avoid partial register stall
+  // when loading from memory. But for old Opteron use movlpd instead of movsd.
+  // The selection is done in MacroAssembler::movdbl() and movflt().
+  void movss(XMMRegister dst, Address src);      // Move Scalar Single-Precision Floating-Point Values
+  void movss(XMMRegister dst, XMMRegister src);
+  void movss(Address dst, XMMRegister src);
+  void movsd(XMMRegister dst, Address src);      // Move Scalar Double-Precision Floating-Point Values
+  void movsd(XMMRegister dst, XMMRegister src);
+  void movsd(Address dst, XMMRegister src);
+  void movlpd(XMMRegister dst, Address src);
+  // New cpus require use of movaps and movapd to avoid partial register stall
+  // when moving between registers.
+  void movaps(XMMRegister dst, XMMRegister src);
+  void movapd(XMMRegister dst, XMMRegister src);
+ public:
+
+  void andps(XMMRegister dst, Address src);      // Bitwise Logical AND of Packed Single-Precision Floating-Point Values
+  void andps(XMMRegister dst, XMMRegister src);
+  void andpd(XMMRegister dst, Address src);      // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
+  void andpd(XMMRegister dst, XMMRegister src);
+
+  void andnps(XMMRegister dst, Address src);     // Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values
+  void andnps(XMMRegister dst, XMMRegister src);
+  void andnpd(XMMRegister dst, Address src);     // Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
+  void andnpd(XMMRegister dst, XMMRegister src);
+
+  void orps(XMMRegister dst, Address src);       // Bitwise Logical OR of Packed Single-Precision Floating-Point Values
+  void orps(XMMRegister dst, XMMRegister src);
+  void orpd(XMMRegister dst, Address src);       // Bitwise Logical OR of Packed Double-Precision Floating-Point Values
+  void orpd(XMMRegister dst, XMMRegister src);
+
+  void xorps(XMMRegister dst, Address src);      // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
+  void xorps(XMMRegister dst, XMMRegister src);
+  void xorpd(XMMRegister dst, Address src);      // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
+  void xorpd(XMMRegister dst, XMMRegister src);
+
+  void movq(XMMRegister dst, Address src);       // Move Quadword
+  void movq(XMMRegister dst, XMMRegister src);
+  void movq(Address dst, XMMRegister src);
+
+  void movd(XMMRegister dst, Address src);       // Move Doubleword
+  void movd(XMMRegister dst, Register src);
+  void movd(Register dst, XMMRegister src);
+  void movd(Address dst, XMMRegister src);
+
+  void movdqa(XMMRegister dst, Address src);     // Move Aligned Double Quadword
+  void movdqa(XMMRegister dst, XMMRegister src);
+  void movdqa(Address     dst, XMMRegister src);
+
+  void pshufd(XMMRegister dst, XMMRegister src, int mode); // Shuffle Packed Doublewords
+  void pshufd(XMMRegister dst, Address src,     int mode);
+  void pshuflw(XMMRegister dst, XMMRegister src, int mode); // Shuffle Packed Low Words
+  void pshuflw(XMMRegister dst, Address src,     int mode);
+
+  void psrlq(XMMRegister dst, int shift); // Shift Right Logical Quadword Immediate
+
+  void punpcklbw(XMMRegister dst, XMMRegister src); // Interleave Low Bytes
+  void punpcklbw(XMMRegister dst, Address src);
+
+  void ldmxcsr( Address src );
+  void stmxcsr( Address dst );
+};
+
+
+// MacroAssembler extends Assembler by frequently used macros.
+//
+// Instructions for which a 'better' code sequence exists depending
+// on arguments should also go in here.
+
+class MacroAssembler: public Assembler {
+ friend class LIR_Assembler;
+ protected:
+
+  Address as_Address(AddressLiteral adr);
+  Address as_Address(ArrayAddress adr);
+
+  // Support for VM calls
+  //
+  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
+  // may customize this version by overriding it for its purposes (e.g., to save/restore
+  // additional registers when doing a VM call).
+#ifdef CC_INTERP
+  // c++ interpreter never wants to use interp_masm version of call_VM
+  #define VIRTUAL
+#else
+  #define VIRTUAL virtual
+#endif
+
+  VIRTUAL void call_VM_leaf_base(
+    address entry_point,               // the entry point
+    int     number_of_arguments        // the number of arguments to pop after the call
+  );
+
+  // This is the base routine called by the different versions of call_VM. The interpreter
+  // may customize this version by overriding it for its purposes (e.g., to save/restore
+  // additional registers when doing a VM call).
+  //
+  // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
+  // returns the register which contains the thread upon return. If a thread register has been
+  // specified, the return value will correspond to that register. If no last_java_sp is specified
+  // (noreg) than rsp will be used instead.
+  VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
+    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
+    Register java_thread,              // the thread if computed before     ; use noreg otherwise
+    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
+    address  entry_point,              // the entry point
+    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
+    bool     check_exceptions          // whether to check for pending exceptions after return
+  );
+
+  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
+  // The implementation is only non-empty for the InterpreterMacroAssembler,
+  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
+  virtual void check_and_handle_popframe(Register java_thread);
+  virtual void check_and_handle_earlyret(Register java_thread);
+
+  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
+
+  // helpers for FPU flag access
+  // tmp is a temporary register, if none is available use noreg
+  void save_rax   (Register tmp);
+  void restore_rax(Register tmp);
+
+ public:
+  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
+
+  // Support for NULL-checks
+  //
+  // Generates code that causes a NULL OS exception if the content of reg is NULL.
+  // If the accessed location is M[reg + offset] and the offset is known, provide the
+  // offset. No explicit code generation is needed if the offset is within a certain
+  // range (0 <= offset <= page_size).
+
+  void null_check(Register reg, int offset = -1);
+  static bool needs_explicit_null_check(int offset);
+
+  // Required platform-specific helpers for Label::patch_instructions.
+  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
+  void pd_patch_instruction(address branch, address target);
+#ifndef PRODUCT
+  static void pd_print_patched_instruction(address branch);
+#endif
+
+  // The following 4 methods return the offset of the appropriate move instruction
+
+  // Support for fast byte/word loading with zero extension (depending on particular CPU)
+  int load_unsigned_byte(Register dst, Address src);
+  int load_unsigned_word(Register dst, Address src);
+
+  // Support for fast byte/word loading with sign extension (depending on particular CPU)
+  int load_signed_byte(Register dst, Address src);
+  int load_signed_word(Register dst, Address src);
+
+  // Support for sign-extension (hi:lo = extend_sign(lo))
+  void extend_sign(Register hi, Register lo);
+
+  // Support for inc/dec with optimal instruction selection depending on value
+  void increment(Register reg, int value = 1);
+  void decrement(Register reg, int value = 1);
+  void increment(Address  dst, int value = 1);
+  void decrement(Address  dst, int value = 1);
+
+  // Support optimal SSE move instructions.
+  void movflt(XMMRegister dst, XMMRegister src) {
+    if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
+    else                       { movss (dst, src); return; }
+  }
+  void movflt(XMMRegister dst, Address src) { movss(dst, src); }
+  void movflt(XMMRegister dst, AddressLiteral src);
+  void movflt(Address dst, XMMRegister src) { movss(dst, src); }
+
+  void movdbl(XMMRegister dst, XMMRegister src) {
+    if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
+    else                       { movsd (dst, src); return; }
+  }
+
+  void movdbl(XMMRegister dst, AddressLiteral src);
+
+  void movdbl(XMMRegister dst, Address src) {
+    if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
+    else                         { movlpd(dst, src); return; }
+  }
+  void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
+
+  void increment(AddressLiteral dst);
+  void increment(ArrayAddress dst);
+
+
+  // Alignment
+  void align(int modulus);
+
+  // Misc
+  void fat_nop(); // 5 byte nop
+
+  // Stack frame creation/removal
+  void enter();
+  void leave();
+
+  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
+  // The pointer will be loaded into the thread register.
+  void get_thread(Register thread);
+
+  // Support for VM calls
+  //
+  // It is imperative that all calls into the VM are handled via the call_VM macros.
+  // They make sure that the stack linkage is setup correctly. call_VM's correspond
+  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
+
+  void call_VM(Register oop_result, address entry_point, bool check_exceptions = true);
+  void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
+  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
+  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
+
+  void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
+  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
+  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
+  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
+
+  void call_VM_leaf(address entry_point, int number_of_arguments = 0);
+  void call_VM_leaf(address entry_point, Register arg_1);
+  void call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
+  void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
+
+  // last Java Frame (fills frame anchor)
+  void set_last_Java_frame(Register thread, Register last_java_sp, Register last_java_fp, address last_java_pc);
+  void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
+
+  // Stores
+  void store_check(Register obj);                // store check for obj - register is destroyed afterwards
+  void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
+
+  // split store_check(Register obj) to enhance instruction interleaving
+  void store_check_part_1(Register obj);
+  void store_check_part_2(Register obj);
+
+  // C 'boolean' to Java boolean: x == 0 ? 0 : 1
+  void c2bool(Register x);
+
+  // C++ bool manipulation
+
+  void movbool(Register dst, Address src);
+  void movbool(Address dst, bool boolconst);
+  void movbool(Address dst, Register src);
+  void testbool(Register dst);
+
+  // Int division/reminder for Java
+  // (as idivl, but checks for special case as described in JVM spec.)
+  // returns idivl instruction offset for implicit exception handling
+  int corrected_idivl(Register reg);
+
+  void int3();
+
+  // Long negation for Java
+  void lneg(Register hi, Register lo);
+
+  // Long multiplication for Java
+  // (destroys contents of rax, rbx, rcx and rdx)
+  void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
+
+  // Long shifts for Java
+  // (semantics as described in JVM spec.)
+  void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
+  void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
+
+  // Long compare for Java
+  // (semantics as described in JVM spec.)
+  void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
+
+  // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
+  //
+  // CF (corresponds to C0) if x < y
+  // PF (corresponds to C2) if unordered
+  // ZF (corresponds to C3) if x = y
+  //
+  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
+  // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
+  void fcmp(Register tmp);
+  // Variant of the above which allows y to be further down the stack
+  // and which only pops x and y if specified. If pop_right is
+  // specified then pop_left must also be specified.
+  void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
+
+  // Floating-point comparison for Java
+  // Compares the top-most stack entries on the FPU stack and stores the result in dst.
+  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
+  // (semantics as described in JVM spec.)
+  void fcmp2int(Register dst, bool unordered_is_less);
+  // Variant of the above which allows y to be further down the stack
+  // and which only pops x and y if specified. If pop_right is
+  // specified then pop_left must also be specified.
+  void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
+
+  // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
+  // tmp is a temporary register, if none is available use noreg
+  void fremr(Register tmp);
+
+
+  // same as fcmp2int, but using SSE2
+  void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
+  void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
+
+  // Inlined sin/cos generator for Java; must not use CPU instruction
+  // directly on Intel as it does not have high enough precision
+  // outside of the range [-pi/4, pi/4]. Extra argument indicate the
+  // number of FPU stack slots in use; all but the topmost will
+  // require saving if a slow case is necessary. Assumes argument is
+  // on FP TOS; result is on FP TOS.  No cpu registers are changed by
+  // this code.
+  void trigfunc(char trig, int num_fpu_regs_in_use = 1);
+
+  // branch to L if FPU flag C2 is set/not set
+  // tmp is a temporary register, if none is available use noreg
+  void jC2 (Register tmp, Label& L);
+  void jnC2(Register tmp, Label& L);
+
+  // Pop ST (ffree & fincstp combined)
+  void fpop();
+
+  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
+  void push_fTOS();
+
+  // pops double TOS element from CPU stack and pushes on FPU stack
+  void pop_fTOS();
+
+  void empty_FPU_stack();
+
+  void push_IU_state();
+  void pop_IU_state();
+
+  void push_FPU_state();
+  void pop_FPU_state();
+
+  void push_CPU_state();
+  void pop_CPU_state();
+
+  // Sign extension
+  void sign_extend_short(Register reg);
+  void sign_extend_byte(Register reg);
+
+  // Division by power of 2, rounding towards 0
+  void division_with_shift(Register reg, int shift_value);
+
+  // Round up to a power of two
+  void round_to(Register reg, int modulus);
+
+  // Callee saved registers handling
+  void push_callee_saved_registers();
+  void pop_callee_saved_registers();
+
+  // allocation
+  void eden_allocate(
+    Register obj,                      // result: pointer to object after successful allocation
+    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
+    int      con_size_in_bytes,        // object size in bytes if   known at compile time
+    Register t1,                       // temp register
+    Label&   slow_case                 // continuation point if fast allocation fails
+  );
+  void tlab_allocate(
+    Register obj,                      // result: pointer to object after successful allocation
+    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
+    int      con_size_in_bytes,        // object size in bytes if   known at compile time
+    Register t1,                       // temp register
+    Register t2,                       // temp register
+    Label&   slow_case                 // continuation point if fast allocation fails
+  );
+  void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
+
+  //----
+  void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
+
+  // Debugging
+  void verify_oop(Register reg, const char* s = "broken oop");             // only if +VerifyOops
+  void verify_oop_addr(Address addr, const char * s = "broken oop addr");
+
+  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");   // only if +VerifyFPU
+  void stop(const char* msg);                    // prints msg, dumps registers and stops execution
+  void warn(const char* msg);                    // prints msg and continues
+  static void debug(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
+  void os_breakpoint();
+  void untested()                                { stop("untested"); }
+  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, sizeof(b), "unimplemented: %s", what);  stop(b); }
+  void should_not_reach_here()                   { stop("should not reach here"); }
+  void print_CPU_state();
+
+  // Stack overflow checking
+  void bang_stack_with_offset(int offset) {
+    // stack grows down, caller passes positive offset
+    assert(offset > 0, "must bang with negative offset");
+    movl(Address(rsp, (-offset)), rax);
+  }
+
+  // Writes to stack successive pages until offset reached to check for
+  // stack overflow + shadow pages.  Also, clobbers tmp
+  void bang_stack_size(Register size, Register tmp);
+
+  // Support for serializing memory accesses between threads
+  void serialize_memory(Register thread, Register tmp);
+
+  void verify_tlab();
+
+  // Biased locking support
+  // lock_reg and obj_reg must be loaded up with the appropriate values.
+  // swap_reg must be rax, and is killed.
+  // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
+  // be killed; if not supplied, push/pop will be used internally to
+  // allocate a temporary (inefficient, avoid if possible).
+  // Optional slow case is for implementations (interpreter and C1) which branch to
+  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
+  // Returns offset of first potentially-faulting instruction for null
+  // check info (currently consumed only by C1). If
+  // swap_reg_contains_mark is true then returns -1 as it is assumed
+  // the calling code has already passed any potential faults.
+  int biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
+                           bool swap_reg_contains_mark,
+                           Label& done, Label* slow_case = NULL,
+                           BiasedLockingCounters* counters = NULL);
+  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
+
+
+  Condition negate_condition(Condition cond);
+
+  // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
+  // operands. In general the names are modified to avoid hiding the instruction in Assembler
+  // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
+  // here in MacroAssembler. The major exception to this rule is call
+
+  // Arithmetics
+
+  void cmp8(AddressLiteral src1, int8_t imm);
+
+  // QQQ renamed to drag out the casting of address to int32_t/intptr_t
+  void cmp32(Register src1, int32_t imm);
+
+  void cmp32(AddressLiteral src1, int32_t imm);
+  // compare reg - mem, or reg - &mem
+  void cmp32(Register src1, AddressLiteral src2);
+
+  void cmp32(Register src1, Address src2);
+
+  // NOTE src2 must be the lval. This is NOT an mem-mem compare
+  void cmpptr(Address src1, AddressLiteral src2);
+
+  void cmpptr(Register src1, AddressLiteral src2);
+
+  void cmpoop(Address dst, jobject obj);
+  void cmpoop(Register dst, jobject obj);
+
+
+  void cmpxchgptr(Register reg, AddressLiteral adr);
+
+  // Helper functions for statistics gathering.
+  // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
+  void cond_inc32(Condition cond, AddressLiteral counter_addr);
+  // Unconditional atomic increment.
+  void atomic_incl(AddressLiteral counter_addr);
+
+  void lea(Register dst, AddressLiteral adr);
+  void lea(Address dst, AddressLiteral adr);
+
+  void test32(Register dst, AddressLiteral src);
+
+  // Calls
+
+  void call(Label& L, relocInfo::relocType rtype);
+  void call(Register entry);
+
+  // NOTE: this call tranfers to the effective address of entry NOT
+  // the address contained by entry. This is because this is more natural
+  // for jumps/calls.
+  void call(AddressLiteral entry);
+
+  // Jumps
+
+  // NOTE: these jumps tranfer to the effective address of dst NOT
+  // the address contained by dst. This is because this is more natural
+  // for jumps/calls.
+  void jump(AddressLiteral dst);
+  void jump_cc(Condition cc, AddressLiteral dst);
+
+  // 32bit can do a case table jump in one instruction but we no longer allow the base
+  // to be installed in the Address class. This jump will tranfers to the address
+  // contained in the location described by entry (not the address of entry)
+  void jump(ArrayAddress entry);
+
+  // Floating
+
+  void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
+  void andpd(XMMRegister dst, AddressLiteral src);
+
+  void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
+  void comiss(XMMRegister dst, AddressLiteral src);
+
+  void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
+  void comisd(XMMRegister dst, AddressLiteral src);
+
+  void fldcw(Address src) { Assembler::fldcw(src); }
+  void fldcw(AddressLiteral src);
+
+  void fld_s(int index)   { Assembler::fld_s(index); }
+  void fld_s(Address src) { Assembler::fld_s(src); }
+  void fld_s(AddressLiteral src);
+
+  void fld_d(Address src) { Assembler::fld_d(src); }
+  void fld_d(AddressLiteral src);
+
+  void fld_x(Address src) { Assembler::fld_x(src); }
+  void fld_x(AddressLiteral src);
+
+  void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
+  void ldmxcsr(AddressLiteral src);
+
+  void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
+  void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
+  void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
+  void movss(XMMRegister dst, AddressLiteral src);
+
+  void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
+  void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
+  void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
+  void movsd(XMMRegister dst, AddressLiteral src);
+
+  void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
+  void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
+  void ucomiss(XMMRegister dst, AddressLiteral src);
+
+  void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
+  void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
+  void ucomisd(XMMRegister dst, AddressLiteral src);
+
+  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
+  void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
+  void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
+  void xorpd(XMMRegister dst, AddressLiteral src);
+
+  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
+  void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
+  void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
+  void xorps(XMMRegister dst, AddressLiteral src);
+
+  // Data
+
+  void movoop(Register dst, jobject obj);
+  void movoop(Address dst, jobject obj);
+
+  void movptr(ArrayAddress dst, Register src);
+  // can this do an lea?
+  void movptr(Register dst, ArrayAddress src);
+
+  void movptr(Register dst, AddressLiteral src);
+
+  // to avoid hiding movl
+  void mov32(AddressLiteral dst, Register src);
+  void mov32(Register dst, AddressLiteral src);
+  // to avoid hiding movb
+  void movbyte(ArrayAddress dst, int src);
+
+  // Can push value or effective address
+  void pushptr(AddressLiteral src);
+
+#undef VIRTUAL
+
+};
+
+/**
+ * class SkipIfEqual:
+ *
+ * Instantiating this class will result in assembly code being output that will
+ * jump around any code emitted between the creation of the instance and it's
+ * automatic destruction at the end of a scope block, depending on the value of
+ * the flag passed to the constructor, which will be checked at run-time.
+ */
+class SkipIfEqual {
+ private:
+  MacroAssembler* _masm;
+  Label _label;
+
+ public:
+   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
+   ~SkipIfEqual();
+};
+
+#ifdef ASSERT
+inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
+#endif