author | trims |
Thu, 27 May 2010 19:08:38 -0700 | |
changeset 5547 | f4b087cbb361 |
parent 3261 | c7d5aae8d3f7 |
child 7397 | 5b173b4ca846 |
permissions | -rw-r--r-- |
1 | 1 |
/* |
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3261
diff
changeset
|
2 |
* Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3261
diff
changeset
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3261
diff
changeset
|
20 |
* or visit www.oracle.com if you need additional information or have any |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3261
diff
changeset
|
21 |
* questions. |
1 | 22 |
* |
23 |
*/ |
|
24 |
||
25 |
# include "incls/_precompiled.incl" |
|
26 |
# include "incls/_bitMap.cpp.incl" |
|
27 |
||
28 |
||
1374 | 29 |
BitMap::BitMap(bm_word_t* map, idx_t size_in_bits) : |
30 |
_map(map), _size(size_in_bits) |
|
31 |
{ |
|
32 |
assert(sizeof(bm_word_t) == BytesPerWord, "Implementation assumption."); |
|
1 | 33 |
assert(size_in_bits >= 0, "just checking"); |
34 |
} |
|
35 |
||
36 |
||
1374 | 37 |
BitMap::BitMap(idx_t size_in_bits, bool in_resource_area) : |
38 |
_map(NULL), _size(0) |
|
39 |
{ |
|
40 |
assert(sizeof(bm_word_t) == BytesPerWord, "Implementation assumption."); |
|
41 |
resize(size_in_bits, in_resource_area); |
|
1 | 42 |
} |
43 |
||
1374 | 44 |
void BitMap::resize(idx_t size_in_bits, bool in_resource_area) { |
1 | 45 |
assert(size_in_bits >= 0, "just checking"); |
1374 | 46 |
idx_t old_size_in_words = size_in_words(); |
47 |
bm_word_t* old_map = map(); |
|
48 |
||
1 | 49 |
_size = size_in_bits; |
1374 | 50 |
idx_t new_size_in_words = size_in_words(); |
51 |
if (in_resource_area) { |
|
52 |
_map = NEW_RESOURCE_ARRAY(bm_word_t, new_size_in_words); |
|
53 |
} else { |
|
54 |
if (old_map != NULL) FREE_C_HEAP_ARRAY(bm_word_t, _map); |
|
55 |
_map = NEW_C_HEAP_ARRAY(bm_word_t, new_size_in_words); |
|
56 |
} |
|
57 |
Copy::disjoint_words((HeapWord*)old_map, (HeapWord*) _map, |
|
58 |
MIN2(old_size_in_words, new_size_in_words)); |
|
1 | 59 |
if (new_size_in_words > old_size_in_words) { |
60 |
clear_range_of_words(old_size_in_words, size_in_words()); |
|
61 |
} |
|
62 |
} |
|
63 |
||
64 |
void BitMap::set_range_within_word(idx_t beg, idx_t end) { |
|
65 |
// With a valid range (beg <= end), this test ensures that end != 0, as |
|
66 |
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write. |
|
67 |
if (beg != end) { |
|
1374 | 68 |
bm_word_t mask = inverted_bit_mask_for_range(beg, end); |
1 | 69 |
*word_addr(beg) |= ~mask; |
70 |
} |
|
71 |
} |
|
72 |
||
73 |
void BitMap::clear_range_within_word(idx_t beg, idx_t end) { |
|
74 |
// With a valid range (beg <= end), this test ensures that end != 0, as |
|
75 |
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write. |
|
76 |
if (beg != end) { |
|
1374 | 77 |
bm_word_t mask = inverted_bit_mask_for_range(beg, end); |
1 | 78 |
*word_addr(beg) &= mask; |
79 |
} |
|
80 |
} |
|
81 |
||
82 |
void BitMap::par_put_range_within_word(idx_t beg, idx_t end, bool value) { |
|
83 |
assert(value == 0 || value == 1, "0 for clear, 1 for set"); |
|
84 |
// With a valid range (beg <= end), this test ensures that end != 0, as |
|
85 |
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write. |
|
86 |
if (beg != end) { |
|
87 |
intptr_t* pw = (intptr_t*)word_addr(beg); |
|
88 |
intptr_t w = *pw; |
|
89 |
intptr_t mr = (intptr_t)inverted_bit_mask_for_range(beg, end); |
|
90 |
intptr_t nw = value ? (w | ~mr) : (w & mr); |
|
91 |
while (true) { |
|
92 |
intptr_t res = Atomic::cmpxchg_ptr(nw, pw, w); |
|
93 |
if (res == w) break; |
|
94 |
w = *pw; |
|
95 |
nw = value ? (w | ~mr) : (w & mr); |
|
96 |
} |
|
97 |
} |
|
98 |
} |
|
99 |
||
100 |
void BitMap::set_range(idx_t beg, idx_t end) { |
|
101 |
verify_range(beg, end); |
|
102 |
||
103 |
idx_t beg_full_word = word_index_round_up(beg); |
|
104 |
idx_t end_full_word = word_index(end); |
|
105 |
||
106 |
if (beg_full_word < end_full_word) { |
|
107 |
// The range includes at least one full word. |
|
108 |
set_range_within_word(beg, bit_index(beg_full_word)); |
|
109 |
set_range_of_words(beg_full_word, end_full_word); |
|
110 |
set_range_within_word(bit_index(end_full_word), end); |
|
111 |
} else { |
|
112 |
// The range spans at most 2 partial words. |
|
113 |
idx_t boundary = MIN2(bit_index(beg_full_word), end); |
|
114 |
set_range_within_word(beg, boundary); |
|
115 |
set_range_within_word(boundary, end); |
|
116 |
} |
|
117 |
} |
|
118 |
||
119 |
void BitMap::clear_range(idx_t beg, idx_t end) { |
|
120 |
verify_range(beg, end); |
|
121 |
||
122 |
idx_t beg_full_word = word_index_round_up(beg); |
|
123 |
idx_t end_full_word = word_index(end); |
|
124 |
||
125 |
if (beg_full_word < end_full_word) { |
|
126 |
// The range includes at least one full word. |
|
127 |
clear_range_within_word(beg, bit_index(beg_full_word)); |
|
128 |
clear_range_of_words(beg_full_word, end_full_word); |
|
129 |
clear_range_within_word(bit_index(end_full_word), end); |
|
130 |
} else { |
|
131 |
// The range spans at most 2 partial words. |
|
132 |
idx_t boundary = MIN2(bit_index(beg_full_word), end); |
|
133 |
clear_range_within_word(beg, boundary); |
|
134 |
clear_range_within_word(boundary, end); |
|
135 |
} |
|
136 |
} |
|
137 |
||
138 |
void BitMap::set_large_range(idx_t beg, idx_t end) { |
|
139 |
verify_range(beg, end); |
|
140 |
||
141 |
idx_t beg_full_word = word_index_round_up(beg); |
|
142 |
idx_t end_full_word = word_index(end); |
|
143 |
||
144 |
assert(end_full_word - beg_full_word >= 32, |
|
145 |
"the range must include at least 32 bytes"); |
|
146 |
||
147 |
// The range includes at least one full word. |
|
148 |
set_range_within_word(beg, bit_index(beg_full_word)); |
|
149 |
set_large_range_of_words(beg_full_word, end_full_word); |
|
150 |
set_range_within_word(bit_index(end_full_word), end); |
|
151 |
} |
|
152 |
||
153 |
void BitMap::clear_large_range(idx_t beg, idx_t end) { |
|
154 |
verify_range(beg, end); |
|
155 |
||
156 |
idx_t beg_full_word = word_index_round_up(beg); |
|
157 |
idx_t end_full_word = word_index(end); |
|
158 |
||
159 |
assert(end_full_word - beg_full_word >= 32, |
|
160 |
"the range must include at least 32 bytes"); |
|
161 |
||
162 |
// The range includes at least one full word. |
|
163 |
clear_range_within_word(beg, bit_index(beg_full_word)); |
|
164 |
clear_large_range_of_words(beg_full_word, end_full_word); |
|
165 |
clear_range_within_word(bit_index(end_full_word), end); |
|
166 |
} |
|
167 |
||
1374 | 168 |
void BitMap::mostly_disjoint_range_union(BitMap* from_bitmap, |
169 |
idx_t from_start_index, |
|
170 |
idx_t to_start_index, |
|
171 |
size_t word_num) { |
|
172 |
// Ensure that the parameters are correct. |
|
173 |
// These shouldn't be that expensive to check, hence I left them as |
|
174 |
// guarantees. |
|
175 |
guarantee(from_bitmap->bit_in_word(from_start_index) == 0, |
|
176 |
"it should be aligned on a word boundary"); |
|
177 |
guarantee(bit_in_word(to_start_index) == 0, |
|
178 |
"it should be aligned on a word boundary"); |
|
179 |
guarantee(word_num >= 2, "word_num should be at least 2"); |
|
180 |
||
181 |
intptr_t* from = (intptr_t*) from_bitmap->word_addr(from_start_index); |
|
182 |
intptr_t* to = (intptr_t*) word_addr(to_start_index); |
|
183 |
||
184 |
if (*from != 0) { |
|
185 |
// if it's 0, then there's no point in doing the CAS |
|
186 |
while (true) { |
|
187 |
intptr_t old_value = *to; |
|
188 |
intptr_t new_value = old_value | *from; |
|
189 |
intptr_t res = Atomic::cmpxchg_ptr(new_value, to, old_value); |
|
190 |
if (res == old_value) break; |
|
191 |
} |
|
192 |
} |
|
193 |
++from; |
|
194 |
++to; |
|
195 |
||
196 |
for (size_t i = 0; i < word_num - 2; ++i) { |
|
197 |
if (*from != 0) { |
|
198 |
// if it's 0, then there's no point in doing the CAS |
|
199 |
assert(*to == 0, "nobody else should be writing here"); |
|
200 |
intptr_t new_value = *from; |
|
201 |
*to = new_value; |
|
202 |
} |
|
203 |
||
204 |
++from; |
|
205 |
++to; |
|
206 |
} |
|
207 |
||
208 |
if (*from != 0) { |
|
209 |
// if it's 0, then there's no point in doing the CAS |
|
210 |
while (true) { |
|
211 |
intptr_t old_value = *to; |
|
212 |
intptr_t new_value = old_value | *from; |
|
213 |
intptr_t res = Atomic::cmpxchg_ptr(new_value, to, old_value); |
|
214 |
if (res == old_value) break; |
|
215 |
} |
|
216 |
} |
|
217 |
||
218 |
// the -1 is because we didn't advance them after the final CAS |
|
219 |
assert(from == |
|
220 |
(intptr_t*) from_bitmap->word_addr(from_start_index) + word_num - 1, |
|
221 |
"invariant"); |
|
222 |
assert(to == (intptr_t*) word_addr(to_start_index) + word_num - 1, |
|
223 |
"invariant"); |
|
224 |
} |
|
225 |
||
1 | 226 |
void BitMap::at_put(idx_t offset, bool value) { |
227 |
if (value) { |
|
228 |
set_bit(offset); |
|
229 |
} else { |
|
230 |
clear_bit(offset); |
|
231 |
} |
|
232 |
} |
|
233 |
||
234 |
// Return true to indicate that this thread changed |
|
235 |
// the bit, false to indicate that someone else did. |
|
236 |
// In either case, the requested bit is in the |
|
237 |
// requested state some time during the period that |
|
238 |
// this thread is executing this call. More importantly, |
|
239 |
// if no other thread is executing an action to |
|
240 |
// change the requested bit to a state other than |
|
241 |
// the one that this thread is trying to set it to, |
|
242 |
// then the the bit is in the expected state |
|
243 |
// at exit from this method. However, rather than |
|
244 |
// make such a strong assertion here, based on |
|
245 |
// assuming such constrained use (which though true |
|
246 |
// today, could change in the future to service some |
|
247 |
// funky parallel algorithm), we encourage callers |
|
248 |
// to do such verification, as and when appropriate. |
|
249 |
bool BitMap::par_at_put(idx_t bit, bool value) { |
|
250 |
return value ? par_set_bit(bit) : par_clear_bit(bit); |
|
251 |
} |
|
252 |
||
253 |
void BitMap::at_put_grow(idx_t offset, bool value) { |
|
254 |
if (offset >= size()) { |
|
255 |
resize(2 * MAX2(size(), offset)); |
|
256 |
} |
|
257 |
at_put(offset, value); |
|
258 |
} |
|
259 |
||
260 |
void BitMap::at_put_range(idx_t start_offset, idx_t end_offset, bool value) { |
|
261 |
if (value) { |
|
262 |
set_range(start_offset, end_offset); |
|
263 |
} else { |
|
264 |
clear_range(start_offset, end_offset); |
|
265 |
} |
|
266 |
} |
|
267 |
||
268 |
void BitMap::par_at_put_range(idx_t beg, idx_t end, bool value) { |
|
269 |
verify_range(beg, end); |
|
270 |
||
271 |
idx_t beg_full_word = word_index_round_up(beg); |
|
272 |
idx_t end_full_word = word_index(end); |
|
273 |
||
274 |
if (beg_full_word < end_full_word) { |
|
275 |
// The range includes at least one full word. |
|
276 |
par_put_range_within_word(beg, bit_index(beg_full_word), value); |
|
277 |
if (value) { |
|
278 |
set_range_of_words(beg_full_word, end_full_word); |
|
279 |
} else { |
|
280 |
clear_range_of_words(beg_full_word, end_full_word); |
|
281 |
} |
|
282 |
par_put_range_within_word(bit_index(end_full_word), end, value); |
|
283 |
} else { |
|
284 |
// The range spans at most 2 partial words. |
|
285 |
idx_t boundary = MIN2(bit_index(beg_full_word), end); |
|
286 |
par_put_range_within_word(beg, boundary, value); |
|
287 |
par_put_range_within_word(boundary, end, value); |
|
288 |
} |
|
289 |
||
290 |
} |
|
291 |
||
292 |
void BitMap::at_put_large_range(idx_t beg, idx_t end, bool value) { |
|
293 |
if (value) { |
|
294 |
set_large_range(beg, end); |
|
295 |
} else { |
|
296 |
clear_large_range(beg, end); |
|
297 |
} |
|
298 |
} |
|
299 |
||
300 |
void BitMap::par_at_put_large_range(idx_t beg, idx_t end, bool value) { |
|
301 |
verify_range(beg, end); |
|
302 |
||
303 |
idx_t beg_full_word = word_index_round_up(beg); |
|
304 |
idx_t end_full_word = word_index(end); |
|
305 |
||
306 |
assert(end_full_word - beg_full_word >= 32, |
|
307 |
"the range must include at least 32 bytes"); |
|
308 |
||
309 |
// The range includes at least one full word. |
|
310 |
par_put_range_within_word(beg, bit_index(beg_full_word), value); |
|
311 |
if (value) { |
|
312 |
set_large_range_of_words(beg_full_word, end_full_word); |
|
313 |
} else { |
|
314 |
clear_large_range_of_words(beg_full_word, end_full_word); |
|
315 |
} |
|
316 |
par_put_range_within_word(bit_index(end_full_word), end, value); |
|
317 |
} |
|
318 |
||
319 |
bool BitMap::contains(const BitMap other) const { |
|
320 |
assert(size() == other.size(), "must have same size"); |
|
1374 | 321 |
bm_word_t* dest_map = map(); |
322 |
bm_word_t* other_map = other.map(); |
|
1 | 323 |
idx_t size = size_in_words(); |
324 |
for (idx_t index = 0; index < size_in_words(); index++) { |
|
1374 | 325 |
bm_word_t word_union = dest_map[index] | other_map[index]; |
1 | 326 |
// If this has more bits set than dest_map[index], then other is not a |
327 |
// subset. |
|
328 |
if (word_union != dest_map[index]) return false; |
|
329 |
} |
|
330 |
return true; |
|
331 |
} |
|
332 |
||
333 |
bool BitMap::intersects(const BitMap other) const { |
|
334 |
assert(size() == other.size(), "must have same size"); |
|
1374 | 335 |
bm_word_t* dest_map = map(); |
336 |
bm_word_t* other_map = other.map(); |
|
1 | 337 |
idx_t size = size_in_words(); |
338 |
for (idx_t index = 0; index < size_in_words(); index++) { |
|
339 |
if ((dest_map[index] & other_map[index]) != 0) return true; |
|
340 |
} |
|
341 |
// Otherwise, no intersection. |
|
342 |
return false; |
|
343 |
} |
|
344 |
||
345 |
void BitMap::set_union(BitMap other) { |
|
346 |
assert(size() == other.size(), "must have same size"); |
|
1374 | 347 |
bm_word_t* dest_map = map(); |
348 |
bm_word_t* other_map = other.map(); |
|
1 | 349 |
idx_t size = size_in_words(); |
350 |
for (idx_t index = 0; index < size_in_words(); index++) { |
|
351 |
dest_map[index] = dest_map[index] | other_map[index]; |
|
352 |
} |
|
353 |
} |
|
354 |
||
355 |
||
356 |
void BitMap::set_difference(BitMap other) { |
|
357 |
assert(size() == other.size(), "must have same size"); |
|
1374 | 358 |
bm_word_t* dest_map = map(); |
359 |
bm_word_t* other_map = other.map(); |
|
1 | 360 |
idx_t size = size_in_words(); |
361 |
for (idx_t index = 0; index < size_in_words(); index++) { |
|
362 |
dest_map[index] = dest_map[index] & ~(other_map[index]); |
|
363 |
} |
|
364 |
} |
|
365 |
||
366 |
||
367 |
void BitMap::set_intersection(BitMap other) { |
|
368 |
assert(size() == other.size(), "must have same size"); |
|
1374 | 369 |
bm_word_t* dest_map = map(); |
370 |
bm_word_t* other_map = other.map(); |
|
1 | 371 |
idx_t size = size_in_words(); |
372 |
for (idx_t index = 0; index < size; index++) { |
|
373 |
dest_map[index] = dest_map[index] & other_map[index]; |
|
374 |
} |
|
375 |
} |
|
376 |
||
377 |
||
1374 | 378 |
void BitMap::set_intersection_at_offset(BitMap other, idx_t offset) { |
379 |
assert(other.size() >= offset, "offset not in range"); |
|
380 |
assert(other.size() - offset >= size(), "other not large enough"); |
|
381 |
// XXX Ideally, we would remove this restriction. |
|
382 |
guarantee((offset % (sizeof(bm_word_t) * BitsPerByte)) == 0, |
|
383 |
"Only handle aligned cases so far."); |
|
384 |
bm_word_t* dest_map = map(); |
|
385 |
bm_word_t* other_map = other.map(); |
|
386 |
idx_t offset_word_ind = word_index(offset); |
|
387 |
idx_t size = size_in_words(); |
|
388 |
for (idx_t index = 0; index < size; index++) { |
|
389 |
dest_map[index] = dest_map[index] & other_map[offset_word_ind + index]; |
|
390 |
} |
|
391 |
} |
|
392 |
||
1 | 393 |
bool BitMap::set_union_with_result(BitMap other) { |
394 |
assert(size() == other.size(), "must have same size"); |
|
395 |
bool changed = false; |
|
1374 | 396 |
bm_word_t* dest_map = map(); |
397 |
bm_word_t* other_map = other.map(); |
|
1 | 398 |
idx_t size = size_in_words(); |
399 |
for (idx_t index = 0; index < size; index++) { |
|
400 |
idx_t temp = map(index) | other_map[index]; |
|
401 |
changed = changed || (temp != map(index)); |
|
402 |
map()[index] = temp; |
|
403 |
} |
|
404 |
return changed; |
|
405 |
} |
|
406 |
||
407 |
||
408 |
bool BitMap::set_difference_with_result(BitMap other) { |
|
409 |
assert(size() == other.size(), "must have same size"); |
|
410 |
bool changed = false; |
|
1374 | 411 |
bm_word_t* dest_map = map(); |
412 |
bm_word_t* other_map = other.map(); |
|
1 | 413 |
idx_t size = size_in_words(); |
414 |
for (idx_t index = 0; index < size; index++) { |
|
1374 | 415 |
bm_word_t temp = dest_map[index] & ~(other_map[index]); |
1 | 416 |
changed = changed || (temp != dest_map[index]); |
417 |
dest_map[index] = temp; |
|
418 |
} |
|
419 |
return changed; |
|
420 |
} |
|
421 |
||
422 |
||
423 |
bool BitMap::set_intersection_with_result(BitMap other) { |
|
424 |
assert(size() == other.size(), "must have same size"); |
|
425 |
bool changed = false; |
|
1374 | 426 |
bm_word_t* dest_map = map(); |
427 |
bm_word_t* other_map = other.map(); |
|
1 | 428 |
idx_t size = size_in_words(); |
429 |
for (idx_t index = 0; index < size; index++) { |
|
1374 | 430 |
bm_word_t orig = dest_map[index]; |
431 |
bm_word_t temp = orig & other_map[index]; |
|
1 | 432 |
changed = changed || (temp != orig); |
433 |
dest_map[index] = temp; |
|
434 |
} |
|
435 |
return changed; |
|
436 |
} |
|
437 |
||
438 |
||
439 |
void BitMap::set_from(BitMap other) { |
|
440 |
assert(size() == other.size(), "must have same size"); |
|
1374 | 441 |
bm_word_t* dest_map = map(); |
442 |
bm_word_t* other_map = other.map(); |
|
1 | 443 |
idx_t size = size_in_words(); |
444 |
for (idx_t index = 0; index < size; index++) { |
|
445 |
dest_map[index] = other_map[index]; |
|
446 |
} |
|
447 |
} |
|
448 |
||
449 |
||
450 |
bool BitMap::is_same(BitMap other) { |
|
451 |
assert(size() == other.size(), "must have same size"); |
|
1374 | 452 |
bm_word_t* dest_map = map(); |
453 |
bm_word_t* other_map = other.map(); |
|
1 | 454 |
idx_t size = size_in_words(); |
455 |
for (idx_t index = 0; index < size; index++) { |
|
456 |
if (dest_map[index] != other_map[index]) return false; |
|
457 |
} |
|
458 |
return true; |
|
459 |
} |
|
460 |
||
461 |
bool BitMap::is_full() const { |
|
1374 | 462 |
bm_word_t* word = map(); |
1 | 463 |
idx_t rest = size(); |
464 |
for (; rest >= (idx_t) BitsPerWord; rest -= BitsPerWord) { |
|
1374 | 465 |
if (*word != (bm_word_t) AllBits) return false; |
1 | 466 |
word++; |
467 |
} |
|
1374 | 468 |
return rest == 0 || (*word | ~right_n_bits((int)rest)) == (bm_word_t) AllBits; |
1 | 469 |
} |
470 |
||
471 |
||
472 |
bool BitMap::is_empty() const { |
|
1374 | 473 |
bm_word_t* word = map(); |
1 | 474 |
idx_t rest = size(); |
475 |
for (; rest >= (idx_t) BitsPerWord; rest -= BitsPerWord) { |
|
1374 | 476 |
if (*word != (bm_word_t) NoBits) return false; |
1 | 477 |
word++; |
478 |
} |
|
1374 | 479 |
return rest == 0 || (*word & right_n_bits((int)rest)) == (bm_word_t) NoBits; |
1 | 480 |
} |
481 |
||
482 |
void BitMap::clear_large() { |
|
483 |
clear_large_range_of_words(0, size_in_words()); |
|
484 |
} |
|
485 |
||
486 |
// Note that if the closure itself modifies the bitmap |
|
487 |
// then modifications in and to the left of the _bit_ being |
|
488 |
// currently sampled will not be seen. Note also that the |
|
489 |
// interval [leftOffset, rightOffset) is right open. |
|
1374 | 490 |
bool BitMap::iterate(BitMapClosure* blk, idx_t leftOffset, idx_t rightOffset) { |
1 | 491 |
verify_range(leftOffset, rightOffset); |
492 |
||
493 |
idx_t startIndex = word_index(leftOffset); |
|
494 |
idx_t endIndex = MIN2(word_index(rightOffset) + 1, size_in_words()); |
|
495 |
for (idx_t index = startIndex, offset = leftOffset; |
|
496 |
offset < rightOffset && index < endIndex; |
|
497 |
offset = (++index) << LogBitsPerWord) { |
|
498 |
idx_t rest = map(index) >> (offset & (BitsPerWord - 1)); |
|
1374 | 499 |
for (; offset < rightOffset && rest != (bm_word_t)NoBits; offset++) { |
1 | 500 |
if (rest & 1) { |
1374 | 501 |
if (!blk->do_bit(offset)) return false; |
1 | 502 |
// resample at each closure application |
503 |
// (see, for instance, CMS bug 4525989) |
|
504 |
rest = map(index) >> (offset & (BitsPerWord -1)); |
|
505 |
} |
|
506 |
rest = rest >> 1; |
|
507 |
} |
|
508 |
} |
|
1374 | 509 |
return true; |
510 |
} |
|
511 |
||
512 |
BitMap::idx_t* BitMap::_pop_count_table = NULL; |
|
513 |
||
514 |
void BitMap::init_pop_count_table() { |
|
515 |
if (_pop_count_table == NULL) { |
|
516 |
BitMap::idx_t *table = NEW_C_HEAP_ARRAY(idx_t, 256); |
|
517 |
for (uint i = 0; i < 256; i++) { |
|
518 |
table[i] = num_set_bits(i); |
|
519 |
} |
|
520 |
||
521 |
intptr_t res = Atomic::cmpxchg_ptr((intptr_t) table, |
|
522 |
(intptr_t*) &_pop_count_table, |
|
523 |
(intptr_t) NULL_WORD); |
|
524 |
if (res != NULL_WORD) { |
|
525 |
guarantee( _pop_count_table == (void*) res, "invariant" ); |
|
526 |
FREE_C_HEAP_ARRAY(bm_word_t, table); |
|
527 |
} |
|
528 |
} |
|
1 | 529 |
} |
530 |
||
1374 | 531 |
BitMap::idx_t BitMap::num_set_bits(bm_word_t w) { |
532 |
idx_t bits = 0; |
|
1 | 533 |
|
1374 | 534 |
while (w != 0) { |
535 |
while ((w & 1) == 0) { |
|
536 |
w >>= 1; |
|
1 | 537 |
} |
1374 | 538 |
bits++; |
539 |
w >>= 1; |
|
1 | 540 |
} |
1374 | 541 |
return bits; |
1 | 542 |
} |
543 |
||
1374 | 544 |
BitMap::idx_t BitMap::num_set_bits_from_table(unsigned char c) { |
545 |
assert(_pop_count_table != NULL, "precondition"); |
|
546 |
return _pop_count_table[c]; |
|
547 |
} |
|
1 | 548 |
|
1374 | 549 |
BitMap::idx_t BitMap::count_one_bits() const { |
550 |
init_pop_count_table(); // If necessary. |
|
551 |
idx_t sum = 0; |
|
552 |
typedef unsigned char uchar; |
|
553 |
for (idx_t i = 0; i < size_in_words(); i++) { |
|
554 |
bm_word_t w = map()[i]; |
|
555 |
for (size_t j = 0; j < sizeof(bm_word_t); j++) { |
|
556 |
sum += num_set_bits_from_table(uchar(w & 255)); |
|
557 |
w >>= 8; |
|
1 | 558 |
} |
559 |
} |
|
1374 | 560 |
return sum; |
1 | 561 |
} |
562 |
||
1374 | 563 |
|
1 | 564 |
#ifndef PRODUCT |
565 |
||
566 |
void BitMap::print_on(outputStream* st) const { |
|
567 |
tty->print("Bitmap(%d):", size()); |
|
568 |
for (idx_t index = 0; index < size(); index++) { |
|
569 |
tty->print("%c", at(index) ? '1' : '0'); |
|
570 |
} |
|
571 |
tty->cr(); |
|
572 |
} |
|
573 |
||
574 |
#endif |
|
575 |
||
576 |
||
1374 | 577 |
BitMap2D::BitMap2D(bm_word_t* map, idx_t size_in_slots, idx_t bits_per_slot) |
1 | 578 |
: _bits_per_slot(bits_per_slot) |
579 |
, _map(map, size_in_slots * bits_per_slot) |
|
580 |
{ |
|
581 |
} |
|
582 |
||
583 |
||
584 |
BitMap2D::BitMap2D(idx_t size_in_slots, idx_t bits_per_slot) |
|
585 |
: _bits_per_slot(bits_per_slot) |
|
586 |
, _map(size_in_slots * bits_per_slot) |
|
587 |
{ |
|
588 |
} |