1
|
1 |
/*
|
|
2 |
* Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
# include "incls/_precompiled.incl"
|
|
26 |
# include "incls/_bitMap.cpp.incl"
|
|
27 |
|
|
28 |
|
|
29 |
BitMap::BitMap(idx_t* map, idx_t size_in_bits) {
|
|
30 |
assert(size_in_bits >= 0, "just checking");
|
|
31 |
_map = map;
|
|
32 |
_size = size_in_bits;
|
|
33 |
}
|
|
34 |
|
|
35 |
|
|
36 |
BitMap::BitMap(idx_t size_in_bits) {
|
|
37 |
assert(size_in_bits >= 0, "just checking");
|
|
38 |
_size = size_in_bits;
|
|
39 |
_map = NEW_RESOURCE_ARRAY(idx_t, size_in_words());
|
|
40 |
}
|
|
41 |
|
|
42 |
|
|
43 |
void BitMap::resize(idx_t size_in_bits) {
|
|
44 |
assert(size_in_bits >= 0, "just checking");
|
|
45 |
size_t old_size_in_words = size_in_words();
|
|
46 |
uintptr_t* old_map = map();
|
|
47 |
_size = size_in_bits;
|
|
48 |
size_t new_size_in_words = size_in_words();
|
|
49 |
_map = NEW_RESOURCE_ARRAY(idx_t, new_size_in_words);
|
|
50 |
Copy::disjoint_words((HeapWord*) old_map, (HeapWord*) _map, MIN2(old_size_in_words, new_size_in_words));
|
|
51 |
if (new_size_in_words > old_size_in_words) {
|
|
52 |
clear_range_of_words(old_size_in_words, size_in_words());
|
|
53 |
}
|
|
54 |
}
|
|
55 |
|
|
56 |
// Returns a bit mask for a range of bits [beg, end) within a single word. Each
|
|
57 |
// bit in the mask is 0 if the bit is in the range, 1 if not in the range. The
|
|
58 |
// returned mask can be used directly to clear the range, or inverted to set the
|
|
59 |
// range. Note: end must not be 0.
|
|
60 |
inline BitMap::idx_t
|
|
61 |
BitMap::inverted_bit_mask_for_range(idx_t beg, idx_t end) const {
|
|
62 |
assert(end != 0, "does not work when end == 0");
|
|
63 |
assert(beg == end || word_index(beg) == word_index(end - 1),
|
|
64 |
"must be a single-word range");
|
|
65 |
idx_t mask = bit_mask(beg) - 1; // low (right) bits
|
|
66 |
if (bit_in_word(end) != 0) {
|
|
67 |
mask |= ~(bit_mask(end) - 1); // high (left) bits
|
|
68 |
}
|
|
69 |
return mask;
|
|
70 |
}
|
|
71 |
|
|
72 |
void BitMap::set_range_within_word(idx_t beg, idx_t end) {
|
|
73 |
// With a valid range (beg <= end), this test ensures that end != 0, as
|
|
74 |
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write.
|
|
75 |
if (beg != end) {
|
|
76 |
idx_t mask = inverted_bit_mask_for_range(beg, end);
|
|
77 |
*word_addr(beg) |= ~mask;
|
|
78 |
}
|
|
79 |
}
|
|
80 |
|
|
81 |
void BitMap::clear_range_within_word(idx_t beg, idx_t end) {
|
|
82 |
// With a valid range (beg <= end), this test ensures that end != 0, as
|
|
83 |
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write.
|
|
84 |
if (beg != end) {
|
|
85 |
idx_t mask = inverted_bit_mask_for_range(beg, end);
|
|
86 |
*word_addr(beg) &= mask;
|
|
87 |
}
|
|
88 |
}
|
|
89 |
|
|
90 |
void BitMap::par_put_range_within_word(idx_t beg, idx_t end, bool value) {
|
|
91 |
assert(value == 0 || value == 1, "0 for clear, 1 for set");
|
|
92 |
// With a valid range (beg <= end), this test ensures that end != 0, as
|
|
93 |
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write.
|
|
94 |
if (beg != end) {
|
|
95 |
intptr_t* pw = (intptr_t*)word_addr(beg);
|
|
96 |
intptr_t w = *pw;
|
|
97 |
intptr_t mr = (intptr_t)inverted_bit_mask_for_range(beg, end);
|
|
98 |
intptr_t nw = value ? (w | ~mr) : (w & mr);
|
|
99 |
while (true) {
|
|
100 |
intptr_t res = Atomic::cmpxchg_ptr(nw, pw, w);
|
|
101 |
if (res == w) break;
|
|
102 |
w = *pw;
|
|
103 |
nw = value ? (w | ~mr) : (w & mr);
|
|
104 |
}
|
|
105 |
}
|
|
106 |
}
|
|
107 |
|
|
108 |
inline void BitMap::set_large_range_of_words(idx_t beg, idx_t end) {
|
|
109 |
memset(_map + beg, ~(unsigned char)0, (end - beg) * sizeof(uintptr_t));
|
|
110 |
}
|
|
111 |
|
|
112 |
inline void BitMap::clear_large_range_of_words(idx_t beg, idx_t end) {
|
|
113 |
memset(_map + beg, 0, (end - beg) * sizeof(uintptr_t));
|
|
114 |
}
|
|
115 |
|
|
116 |
inline BitMap::idx_t BitMap::word_index_round_up(idx_t bit) const {
|
|
117 |
idx_t bit_rounded_up = bit + (BitsPerWord - 1);
|
|
118 |
// Check for integer arithmetic overflow.
|
|
119 |
return bit_rounded_up > bit ? word_index(bit_rounded_up) : size_in_words();
|
|
120 |
}
|
|
121 |
|
|
122 |
void BitMap::set_range(idx_t beg, idx_t end) {
|
|
123 |
verify_range(beg, end);
|
|
124 |
|
|
125 |
idx_t beg_full_word = word_index_round_up(beg);
|
|
126 |
idx_t end_full_word = word_index(end);
|
|
127 |
|
|
128 |
if (beg_full_word < end_full_word) {
|
|
129 |
// The range includes at least one full word.
|
|
130 |
set_range_within_word(beg, bit_index(beg_full_word));
|
|
131 |
set_range_of_words(beg_full_word, end_full_word);
|
|
132 |
set_range_within_word(bit_index(end_full_word), end);
|
|
133 |
} else {
|
|
134 |
// The range spans at most 2 partial words.
|
|
135 |
idx_t boundary = MIN2(bit_index(beg_full_word), end);
|
|
136 |
set_range_within_word(beg, boundary);
|
|
137 |
set_range_within_word(boundary, end);
|
|
138 |
}
|
|
139 |
}
|
|
140 |
|
|
141 |
void BitMap::clear_range(idx_t beg, idx_t end) {
|
|
142 |
verify_range(beg, end);
|
|
143 |
|
|
144 |
idx_t beg_full_word = word_index_round_up(beg);
|
|
145 |
idx_t end_full_word = word_index(end);
|
|
146 |
|
|
147 |
if (beg_full_word < end_full_word) {
|
|
148 |
// The range includes at least one full word.
|
|
149 |
clear_range_within_word(beg, bit_index(beg_full_word));
|
|
150 |
clear_range_of_words(beg_full_word, end_full_word);
|
|
151 |
clear_range_within_word(bit_index(end_full_word), end);
|
|
152 |
} else {
|
|
153 |
// The range spans at most 2 partial words.
|
|
154 |
idx_t boundary = MIN2(bit_index(beg_full_word), end);
|
|
155 |
clear_range_within_word(beg, boundary);
|
|
156 |
clear_range_within_word(boundary, end);
|
|
157 |
}
|
|
158 |
}
|
|
159 |
|
|
160 |
void BitMap::set_large_range(idx_t beg, idx_t end) {
|
|
161 |
verify_range(beg, end);
|
|
162 |
|
|
163 |
idx_t beg_full_word = word_index_round_up(beg);
|
|
164 |
idx_t end_full_word = word_index(end);
|
|
165 |
|
|
166 |
assert(end_full_word - beg_full_word >= 32,
|
|
167 |
"the range must include at least 32 bytes");
|
|
168 |
|
|
169 |
// The range includes at least one full word.
|
|
170 |
set_range_within_word(beg, bit_index(beg_full_word));
|
|
171 |
set_large_range_of_words(beg_full_word, end_full_word);
|
|
172 |
set_range_within_word(bit_index(end_full_word), end);
|
|
173 |
}
|
|
174 |
|
|
175 |
void BitMap::clear_large_range(idx_t beg, idx_t end) {
|
|
176 |
verify_range(beg, end);
|
|
177 |
|
|
178 |
idx_t beg_full_word = word_index_round_up(beg);
|
|
179 |
idx_t end_full_word = word_index(end);
|
|
180 |
|
|
181 |
assert(end_full_word - beg_full_word >= 32,
|
|
182 |
"the range must include at least 32 bytes");
|
|
183 |
|
|
184 |
// The range includes at least one full word.
|
|
185 |
clear_range_within_word(beg, bit_index(beg_full_word));
|
|
186 |
clear_large_range_of_words(beg_full_word, end_full_word);
|
|
187 |
clear_range_within_word(bit_index(end_full_word), end);
|
|
188 |
}
|
|
189 |
|
|
190 |
void BitMap::at_put(idx_t offset, bool value) {
|
|
191 |
if (value) {
|
|
192 |
set_bit(offset);
|
|
193 |
} else {
|
|
194 |
clear_bit(offset);
|
|
195 |
}
|
|
196 |
}
|
|
197 |
|
|
198 |
// Return true to indicate that this thread changed
|
|
199 |
// the bit, false to indicate that someone else did.
|
|
200 |
// In either case, the requested bit is in the
|
|
201 |
// requested state some time during the period that
|
|
202 |
// this thread is executing this call. More importantly,
|
|
203 |
// if no other thread is executing an action to
|
|
204 |
// change the requested bit to a state other than
|
|
205 |
// the one that this thread is trying to set it to,
|
|
206 |
// then the the bit is in the expected state
|
|
207 |
// at exit from this method. However, rather than
|
|
208 |
// make such a strong assertion here, based on
|
|
209 |
// assuming such constrained use (which though true
|
|
210 |
// today, could change in the future to service some
|
|
211 |
// funky parallel algorithm), we encourage callers
|
|
212 |
// to do such verification, as and when appropriate.
|
|
213 |
bool BitMap::par_at_put(idx_t bit, bool value) {
|
|
214 |
return value ? par_set_bit(bit) : par_clear_bit(bit);
|
|
215 |
}
|
|
216 |
|
|
217 |
void BitMap::at_put_grow(idx_t offset, bool value) {
|
|
218 |
if (offset >= size()) {
|
|
219 |
resize(2 * MAX2(size(), offset));
|
|
220 |
}
|
|
221 |
at_put(offset, value);
|
|
222 |
}
|
|
223 |
|
|
224 |
void BitMap::at_put_range(idx_t start_offset, idx_t end_offset, bool value) {
|
|
225 |
if (value) {
|
|
226 |
set_range(start_offset, end_offset);
|
|
227 |
} else {
|
|
228 |
clear_range(start_offset, end_offset);
|
|
229 |
}
|
|
230 |
}
|
|
231 |
|
|
232 |
void BitMap::par_at_put_range(idx_t beg, idx_t end, bool value) {
|
|
233 |
verify_range(beg, end);
|
|
234 |
|
|
235 |
idx_t beg_full_word = word_index_round_up(beg);
|
|
236 |
idx_t end_full_word = word_index(end);
|
|
237 |
|
|
238 |
if (beg_full_word < end_full_word) {
|
|
239 |
// The range includes at least one full word.
|
|
240 |
par_put_range_within_word(beg, bit_index(beg_full_word), value);
|
|
241 |
if (value) {
|
|
242 |
set_range_of_words(beg_full_word, end_full_word);
|
|
243 |
} else {
|
|
244 |
clear_range_of_words(beg_full_word, end_full_word);
|
|
245 |
}
|
|
246 |
par_put_range_within_word(bit_index(end_full_word), end, value);
|
|
247 |
} else {
|
|
248 |
// The range spans at most 2 partial words.
|
|
249 |
idx_t boundary = MIN2(bit_index(beg_full_word), end);
|
|
250 |
par_put_range_within_word(beg, boundary, value);
|
|
251 |
par_put_range_within_word(boundary, end, value);
|
|
252 |
}
|
|
253 |
|
|
254 |
}
|
|
255 |
|
|
256 |
void BitMap::at_put_large_range(idx_t beg, idx_t end, bool value) {
|
|
257 |
if (value) {
|
|
258 |
set_large_range(beg, end);
|
|
259 |
} else {
|
|
260 |
clear_large_range(beg, end);
|
|
261 |
}
|
|
262 |
}
|
|
263 |
|
|
264 |
void BitMap::par_at_put_large_range(idx_t beg, idx_t end, bool value) {
|
|
265 |
verify_range(beg, end);
|
|
266 |
|
|
267 |
idx_t beg_full_word = word_index_round_up(beg);
|
|
268 |
idx_t end_full_word = word_index(end);
|
|
269 |
|
|
270 |
assert(end_full_word - beg_full_word >= 32,
|
|
271 |
"the range must include at least 32 bytes");
|
|
272 |
|
|
273 |
// The range includes at least one full word.
|
|
274 |
par_put_range_within_word(beg, bit_index(beg_full_word), value);
|
|
275 |
if (value) {
|
|
276 |
set_large_range_of_words(beg_full_word, end_full_word);
|
|
277 |
} else {
|
|
278 |
clear_large_range_of_words(beg_full_word, end_full_word);
|
|
279 |
}
|
|
280 |
par_put_range_within_word(bit_index(end_full_word), end, value);
|
|
281 |
}
|
|
282 |
|
|
283 |
bool BitMap::contains(const BitMap other) const {
|
|
284 |
assert(size() == other.size(), "must have same size");
|
|
285 |
uintptr_t* dest_map = map();
|
|
286 |
uintptr_t* other_map = other.map();
|
|
287 |
idx_t size = size_in_words();
|
|
288 |
for (idx_t index = 0; index < size_in_words(); index++) {
|
|
289 |
uintptr_t word_union = dest_map[index] | other_map[index];
|
|
290 |
// If this has more bits set than dest_map[index], then other is not a
|
|
291 |
// subset.
|
|
292 |
if (word_union != dest_map[index]) return false;
|
|
293 |
}
|
|
294 |
return true;
|
|
295 |
}
|
|
296 |
|
|
297 |
bool BitMap::intersects(const BitMap other) const {
|
|
298 |
assert(size() == other.size(), "must have same size");
|
|
299 |
uintptr_t* dest_map = map();
|
|
300 |
uintptr_t* other_map = other.map();
|
|
301 |
idx_t size = size_in_words();
|
|
302 |
for (idx_t index = 0; index < size_in_words(); index++) {
|
|
303 |
if ((dest_map[index] & other_map[index]) != 0) return true;
|
|
304 |
}
|
|
305 |
// Otherwise, no intersection.
|
|
306 |
return false;
|
|
307 |
}
|
|
308 |
|
|
309 |
void BitMap::set_union(BitMap other) {
|
|
310 |
assert(size() == other.size(), "must have same size");
|
|
311 |
idx_t* dest_map = map();
|
|
312 |
idx_t* other_map = other.map();
|
|
313 |
idx_t size = size_in_words();
|
|
314 |
for (idx_t index = 0; index < size_in_words(); index++) {
|
|
315 |
dest_map[index] = dest_map[index] | other_map[index];
|
|
316 |
}
|
|
317 |
}
|
|
318 |
|
|
319 |
|
|
320 |
void BitMap::set_difference(BitMap other) {
|
|
321 |
assert(size() == other.size(), "must have same size");
|
|
322 |
idx_t* dest_map = map();
|
|
323 |
idx_t* other_map = other.map();
|
|
324 |
idx_t size = size_in_words();
|
|
325 |
for (idx_t index = 0; index < size_in_words(); index++) {
|
|
326 |
dest_map[index] = dest_map[index] & ~(other_map[index]);
|
|
327 |
}
|
|
328 |
}
|
|
329 |
|
|
330 |
|
|
331 |
void BitMap::set_intersection(BitMap other) {
|
|
332 |
assert(size() == other.size(), "must have same size");
|
|
333 |
idx_t* dest_map = map();
|
|
334 |
idx_t* other_map = other.map();
|
|
335 |
idx_t size = size_in_words();
|
|
336 |
for (idx_t index = 0; index < size; index++) {
|
|
337 |
dest_map[index] = dest_map[index] & other_map[index];
|
|
338 |
}
|
|
339 |
}
|
|
340 |
|
|
341 |
|
|
342 |
bool BitMap::set_union_with_result(BitMap other) {
|
|
343 |
assert(size() == other.size(), "must have same size");
|
|
344 |
bool changed = false;
|
|
345 |
idx_t* dest_map = map();
|
|
346 |
idx_t* other_map = other.map();
|
|
347 |
idx_t size = size_in_words();
|
|
348 |
for (idx_t index = 0; index < size; index++) {
|
|
349 |
idx_t temp = map(index) | other_map[index];
|
|
350 |
changed = changed || (temp != map(index));
|
|
351 |
map()[index] = temp;
|
|
352 |
}
|
|
353 |
return changed;
|
|
354 |
}
|
|
355 |
|
|
356 |
|
|
357 |
bool BitMap::set_difference_with_result(BitMap other) {
|
|
358 |
assert(size() == other.size(), "must have same size");
|
|
359 |
bool changed = false;
|
|
360 |
idx_t* dest_map = map();
|
|
361 |
idx_t* other_map = other.map();
|
|
362 |
idx_t size = size_in_words();
|
|
363 |
for (idx_t index = 0; index < size; index++) {
|
|
364 |
idx_t temp = dest_map[index] & ~(other_map[index]);
|
|
365 |
changed = changed || (temp != dest_map[index]);
|
|
366 |
dest_map[index] = temp;
|
|
367 |
}
|
|
368 |
return changed;
|
|
369 |
}
|
|
370 |
|
|
371 |
|
|
372 |
bool BitMap::set_intersection_with_result(BitMap other) {
|
|
373 |
assert(size() == other.size(), "must have same size");
|
|
374 |
bool changed = false;
|
|
375 |
idx_t* dest_map = map();
|
|
376 |
idx_t* other_map = other.map();
|
|
377 |
idx_t size = size_in_words();
|
|
378 |
for (idx_t index = 0; index < size; index++) {
|
|
379 |
idx_t orig = dest_map[index];
|
|
380 |
idx_t temp = orig & other_map[index];
|
|
381 |
changed = changed || (temp != orig);
|
|
382 |
dest_map[index] = temp;
|
|
383 |
}
|
|
384 |
return changed;
|
|
385 |
}
|
|
386 |
|
|
387 |
|
|
388 |
void BitMap::set_from(BitMap other) {
|
|
389 |
assert(size() == other.size(), "must have same size");
|
|
390 |
idx_t* dest_map = map();
|
|
391 |
idx_t* other_map = other.map();
|
|
392 |
idx_t size = size_in_words();
|
|
393 |
for (idx_t index = 0; index < size; index++) {
|
|
394 |
dest_map[index] = other_map[index];
|
|
395 |
}
|
|
396 |
}
|
|
397 |
|
|
398 |
|
|
399 |
bool BitMap::is_same(BitMap other) {
|
|
400 |
assert(size() == other.size(), "must have same size");
|
|
401 |
idx_t* dest_map = map();
|
|
402 |
idx_t* other_map = other.map();
|
|
403 |
idx_t size = size_in_words();
|
|
404 |
for (idx_t index = 0; index < size; index++) {
|
|
405 |
if (dest_map[index] != other_map[index]) return false;
|
|
406 |
}
|
|
407 |
return true;
|
|
408 |
}
|
|
409 |
|
|
410 |
bool BitMap::is_full() const {
|
|
411 |
uintptr_t* word = map();
|
|
412 |
idx_t rest = size();
|
|
413 |
for (; rest >= (idx_t) BitsPerWord; rest -= BitsPerWord) {
|
|
414 |
if (*word != (uintptr_t) AllBits) return false;
|
|
415 |
word++;
|
|
416 |
}
|
|
417 |
return rest == 0 || (*word | ~right_n_bits((int)rest)) == (uintptr_t) AllBits;
|
|
418 |
}
|
|
419 |
|
|
420 |
|
|
421 |
bool BitMap::is_empty() const {
|
|
422 |
uintptr_t* word = map();
|
|
423 |
idx_t rest = size();
|
|
424 |
for (; rest >= (idx_t) BitsPerWord; rest -= BitsPerWord) {
|
|
425 |
if (*word != (uintptr_t) NoBits) return false;
|
|
426 |
word++;
|
|
427 |
}
|
|
428 |
return rest == 0 || (*word & right_n_bits((int)rest)) == (uintptr_t) NoBits;
|
|
429 |
}
|
|
430 |
|
|
431 |
void BitMap::clear_large() {
|
|
432 |
clear_large_range_of_words(0, size_in_words());
|
|
433 |
}
|
|
434 |
|
|
435 |
// Note that if the closure itself modifies the bitmap
|
|
436 |
// then modifications in and to the left of the _bit_ being
|
|
437 |
// currently sampled will not be seen. Note also that the
|
|
438 |
// interval [leftOffset, rightOffset) is right open.
|
|
439 |
void BitMap::iterate(BitMapClosure* blk, idx_t leftOffset, idx_t rightOffset) {
|
|
440 |
verify_range(leftOffset, rightOffset);
|
|
441 |
|
|
442 |
idx_t startIndex = word_index(leftOffset);
|
|
443 |
idx_t endIndex = MIN2(word_index(rightOffset) + 1, size_in_words());
|
|
444 |
for (idx_t index = startIndex, offset = leftOffset;
|
|
445 |
offset < rightOffset && index < endIndex;
|
|
446 |
offset = (++index) << LogBitsPerWord) {
|
|
447 |
idx_t rest = map(index) >> (offset & (BitsPerWord - 1));
|
|
448 |
for (; offset < rightOffset && rest != (uintptr_t)NoBits; offset++) {
|
|
449 |
if (rest & 1) {
|
|
450 |
blk->do_bit(offset);
|
|
451 |
// resample at each closure application
|
|
452 |
// (see, for instance, CMS bug 4525989)
|
|
453 |
rest = map(index) >> (offset & (BitsPerWord -1));
|
|
454 |
// XXX debugging: remove
|
|
455 |
// The following assertion assumes that closure application
|
|
456 |
// doesn't clear bits (may not be true in general, e.g. G1).
|
|
457 |
assert(rest & 1,
|
|
458 |
"incorrect shift or closure application can clear bits?");
|
|
459 |
}
|
|
460 |
rest = rest >> 1;
|
|
461 |
}
|
|
462 |
}
|
|
463 |
}
|
|
464 |
|
|
465 |
BitMap::idx_t BitMap::get_next_one_offset(idx_t l_offset,
|
|
466 |
idx_t r_offset) const {
|
|
467 |
assert(l_offset <= size(), "BitMap index out of bounds");
|
|
468 |
assert(r_offset <= size(), "BitMap index out of bounds");
|
|
469 |
assert(l_offset <= r_offset, "l_offset > r_offset ?");
|
|
470 |
|
|
471 |
if (l_offset == r_offset) {
|
|
472 |
return l_offset;
|
|
473 |
}
|
|
474 |
idx_t index = word_index(l_offset);
|
|
475 |
idx_t r_index = word_index(r_offset-1) + 1;
|
|
476 |
idx_t res_offset = l_offset;
|
|
477 |
|
|
478 |
// check bits including and to the _left_ of offset's position
|
|
479 |
idx_t pos = bit_in_word(res_offset);
|
|
480 |
idx_t res = map(index) >> pos;
|
|
481 |
if (res != (uintptr_t)NoBits) {
|
|
482 |
// find the position of the 1-bit
|
|
483 |
for (; !(res & 1); res_offset++) {
|
|
484 |
res = res >> 1;
|
|
485 |
}
|
|
486 |
assert(res_offset >= l_offset, "just checking");
|
|
487 |
return MIN2(res_offset, r_offset);
|
|
488 |
}
|
|
489 |
// skip over all word length 0-bit runs
|
|
490 |
for (index++; index < r_index; index++) {
|
|
491 |
res = map(index);
|
|
492 |
if (res != (uintptr_t)NoBits) {
|
|
493 |
// found a 1, return the offset
|
|
494 |
for (res_offset = index << LogBitsPerWord; !(res & 1);
|
|
495 |
res_offset++) {
|
|
496 |
res = res >> 1;
|
|
497 |
}
|
|
498 |
assert(res & 1, "tautology; see loop condition");
|
|
499 |
assert(res_offset >= l_offset, "just checking");
|
|
500 |
return MIN2(res_offset, r_offset);
|
|
501 |
}
|
|
502 |
}
|
|
503 |
return r_offset;
|
|
504 |
}
|
|
505 |
|
|
506 |
BitMap::idx_t BitMap::get_next_zero_offset(idx_t l_offset,
|
|
507 |
idx_t r_offset) const {
|
|
508 |
assert(l_offset <= size(), "BitMap index out of bounds");
|
|
509 |
assert(r_offset <= size(), "BitMap index out of bounds");
|
|
510 |
assert(l_offset <= r_offset, "l_offset > r_offset ?");
|
|
511 |
|
|
512 |
if (l_offset == r_offset) {
|
|
513 |
return l_offset;
|
|
514 |
}
|
|
515 |
idx_t index = word_index(l_offset);
|
|
516 |
idx_t r_index = word_index(r_offset-1) + 1;
|
|
517 |
idx_t res_offset = l_offset;
|
|
518 |
|
|
519 |
// check bits including and to the _left_ of offset's position
|
|
520 |
idx_t pos = res_offset & (BitsPerWord - 1);
|
|
521 |
idx_t res = (map(index) >> pos) | left_n_bits((int)pos);
|
|
522 |
|
|
523 |
if (res != (uintptr_t)AllBits) {
|
|
524 |
// find the position of the 0-bit
|
|
525 |
for (; res & 1; res_offset++) {
|
|
526 |
res = res >> 1;
|
|
527 |
}
|
|
528 |
assert(res_offset >= l_offset, "just checking");
|
|
529 |
return MIN2(res_offset, r_offset);
|
|
530 |
}
|
|
531 |
// skip over all word length 1-bit runs
|
|
532 |
for (index++; index < r_index; index++) {
|
|
533 |
res = map(index);
|
|
534 |
if (res != (uintptr_t)AllBits) {
|
|
535 |
// found a 0, return the offset
|
|
536 |
for (res_offset = index << LogBitsPerWord; res & 1;
|
|
537 |
res_offset++) {
|
|
538 |
res = res >> 1;
|
|
539 |
}
|
|
540 |
assert(!(res & 1), "tautology; see loop condition");
|
|
541 |
assert(res_offset >= l_offset, "just checking");
|
|
542 |
return MIN2(res_offset, r_offset);
|
|
543 |
}
|
|
544 |
}
|
|
545 |
return r_offset;
|
|
546 |
}
|
|
547 |
|
|
548 |
#ifndef PRODUCT
|
|
549 |
|
|
550 |
void BitMap::print_on(outputStream* st) const {
|
|
551 |
tty->print("Bitmap(%d):", size());
|
|
552 |
for (idx_t index = 0; index < size(); index++) {
|
|
553 |
tty->print("%c", at(index) ? '1' : '0');
|
|
554 |
}
|
|
555 |
tty->cr();
|
|
556 |
}
|
|
557 |
|
|
558 |
#endif
|
|
559 |
|
|
560 |
|
|
561 |
BitMap2D::BitMap2D(uintptr_t* map, idx_t size_in_slots, idx_t bits_per_slot)
|
|
562 |
: _bits_per_slot(bits_per_slot)
|
|
563 |
, _map(map, size_in_slots * bits_per_slot)
|
|
564 |
{
|
|
565 |
}
|
|
566 |
|
|
567 |
|
|
568 |
BitMap2D::BitMap2D(idx_t size_in_slots, idx_t bits_per_slot)
|
|
569 |
: _bits_per_slot(bits_per_slot)
|
|
570 |
, _map(size_in_slots * bits_per_slot)
|
|
571 |
{
|
|
572 |
}
|