1
|
1 |
/*
|
|
2 |
* Copyright 1999-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
#include "incls/_precompiled.incl"
|
|
26 |
#include "incls/_c1_Runtime1.cpp.incl"
|
|
27 |
|
|
28 |
|
|
29 |
// Implementation of StubAssembler
|
|
30 |
|
|
31 |
StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
|
|
32 |
_name = name;
|
|
33 |
_must_gc_arguments = false;
|
|
34 |
_frame_size = no_frame_size;
|
|
35 |
_num_rt_args = 0;
|
|
36 |
_stub_id = stub_id;
|
|
37 |
}
|
|
38 |
|
|
39 |
|
|
40 |
void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
|
|
41 |
_name = name;
|
|
42 |
_must_gc_arguments = must_gc_arguments;
|
|
43 |
}
|
|
44 |
|
|
45 |
|
|
46 |
void StubAssembler::set_frame_size(int size) {
|
|
47 |
if (_frame_size == no_frame_size) {
|
|
48 |
_frame_size = size;
|
|
49 |
}
|
|
50 |
assert(_frame_size == size, "can't change the frame size");
|
|
51 |
}
|
|
52 |
|
|
53 |
|
|
54 |
void StubAssembler::set_num_rt_args(int args) {
|
|
55 |
if (_num_rt_args == 0) {
|
|
56 |
_num_rt_args = args;
|
|
57 |
}
|
|
58 |
assert(_num_rt_args == args, "can't change the number of args");
|
|
59 |
}
|
|
60 |
|
|
61 |
// Implementation of Runtime1
|
|
62 |
|
|
63 |
bool Runtime1::_is_initialized = false;
|
|
64 |
CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
|
|
65 |
const char *Runtime1::_blob_names[] = {
|
|
66 |
RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
|
|
67 |
};
|
|
68 |
|
|
69 |
#ifndef PRODUCT
|
|
70 |
// statistics
|
|
71 |
int Runtime1::_generic_arraycopy_cnt = 0;
|
|
72 |
int Runtime1::_primitive_arraycopy_cnt = 0;
|
|
73 |
int Runtime1::_oop_arraycopy_cnt = 0;
|
|
74 |
int Runtime1::_arraycopy_slowcase_cnt = 0;
|
|
75 |
int Runtime1::_new_type_array_slowcase_cnt = 0;
|
|
76 |
int Runtime1::_new_object_array_slowcase_cnt = 0;
|
|
77 |
int Runtime1::_new_instance_slowcase_cnt = 0;
|
|
78 |
int Runtime1::_new_multi_array_slowcase_cnt = 0;
|
|
79 |
int Runtime1::_monitorenter_slowcase_cnt = 0;
|
|
80 |
int Runtime1::_monitorexit_slowcase_cnt = 0;
|
|
81 |
int Runtime1::_patch_code_slowcase_cnt = 0;
|
|
82 |
int Runtime1::_throw_range_check_exception_count = 0;
|
|
83 |
int Runtime1::_throw_index_exception_count = 0;
|
|
84 |
int Runtime1::_throw_div0_exception_count = 0;
|
|
85 |
int Runtime1::_throw_null_pointer_exception_count = 0;
|
|
86 |
int Runtime1::_throw_class_cast_exception_count = 0;
|
|
87 |
int Runtime1::_throw_incompatible_class_change_error_count = 0;
|
|
88 |
int Runtime1::_throw_array_store_exception_count = 0;
|
|
89 |
int Runtime1::_throw_count = 0;
|
|
90 |
#endif
|
|
91 |
|
|
92 |
BufferBlob* Runtime1::_buffer_blob = NULL;
|
|
93 |
|
|
94 |
// Simple helper to see if the caller of a runtime stub which
|
|
95 |
// entered the VM has been deoptimized
|
|
96 |
|
|
97 |
static bool caller_is_deopted() {
|
|
98 |
JavaThread* thread = JavaThread::current();
|
|
99 |
RegisterMap reg_map(thread, false);
|
|
100 |
frame runtime_frame = thread->last_frame();
|
|
101 |
frame caller_frame = runtime_frame.sender(®_map);
|
|
102 |
assert(caller_frame.is_compiled_frame(), "must be compiled");
|
|
103 |
return caller_frame.is_deoptimized_frame();
|
|
104 |
}
|
|
105 |
|
|
106 |
// Stress deoptimization
|
|
107 |
static void deopt_caller() {
|
|
108 |
if ( !caller_is_deopted()) {
|
|
109 |
JavaThread* thread = JavaThread::current();
|
|
110 |
RegisterMap reg_map(thread, false);
|
|
111 |
frame runtime_frame = thread->last_frame();
|
|
112 |
frame caller_frame = runtime_frame.sender(®_map);
|
|
113 |
VM_DeoptimizeFrame deopt(thread, caller_frame.id());
|
|
114 |
VMThread::execute(&deopt);
|
|
115 |
assert(caller_is_deopted(), "Must be deoptimized");
|
|
116 |
}
|
|
117 |
}
|
|
118 |
|
|
119 |
|
|
120 |
BufferBlob* Runtime1::get_buffer_blob() {
|
|
121 |
// Allocate code buffer space only once
|
|
122 |
BufferBlob* blob = _buffer_blob;
|
|
123 |
if (blob == NULL) {
|
|
124 |
// setup CodeBuffer. Preallocate a BufferBlob of size
|
|
125 |
// NMethodSizeLimit plus some extra space for constants.
|
|
126 |
int code_buffer_size = desired_max_code_buffer_size() + desired_max_constant_size();
|
|
127 |
blob = BufferBlob::create("Compiler1 temporary CodeBuffer",
|
|
128 |
code_buffer_size);
|
|
129 |
guarantee(blob != NULL, "must create initial code buffer");
|
|
130 |
_buffer_blob = blob;
|
|
131 |
}
|
|
132 |
return _buffer_blob;
|
|
133 |
}
|
|
134 |
|
|
135 |
void Runtime1::setup_code_buffer(CodeBuffer* code, int call_stub_estimate) {
|
|
136 |
// Preinitialize the consts section to some large size:
|
|
137 |
int locs_buffer_size = 20 * (relocInfo::length_limit + sizeof(relocInfo));
|
|
138 |
char* locs_buffer = NEW_RESOURCE_ARRAY(char, locs_buffer_size);
|
|
139 |
code->insts()->initialize_shared_locs((relocInfo*)locs_buffer,
|
|
140 |
locs_buffer_size / sizeof(relocInfo));
|
|
141 |
code->initialize_consts_size(desired_max_constant_size());
|
|
142 |
// Call stubs + deopt/exception handler
|
|
143 |
code->initialize_stubs_size((call_stub_estimate * LIR_Assembler::call_stub_size) +
|
|
144 |
LIR_Assembler::exception_handler_size +
|
|
145 |
LIR_Assembler::deopt_handler_size);
|
|
146 |
}
|
|
147 |
|
|
148 |
|
|
149 |
void Runtime1::generate_blob_for(StubID id) {
|
|
150 |
assert(0 <= id && id < number_of_ids, "illegal stub id");
|
|
151 |
ResourceMark rm;
|
|
152 |
// create code buffer for code storage
|
|
153 |
CodeBuffer code(get_buffer_blob()->instructions_begin(),
|
|
154 |
get_buffer_blob()->instructions_size());
|
|
155 |
|
|
156 |
setup_code_buffer(&code, 0);
|
|
157 |
|
|
158 |
// create assembler for code generation
|
|
159 |
StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
|
|
160 |
// generate code for runtime stub
|
|
161 |
OopMapSet* oop_maps;
|
|
162 |
oop_maps = generate_code_for(id, sasm);
|
|
163 |
assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
|
|
164 |
"if stub has an oop map it must have a valid frame size");
|
|
165 |
|
|
166 |
#ifdef ASSERT
|
|
167 |
// Make sure that stubs that need oopmaps have them
|
|
168 |
switch (id) {
|
|
169 |
// These stubs don't need to have an oopmap
|
|
170 |
case dtrace_object_alloc_id:
|
|
171 |
case slow_subtype_check_id:
|
|
172 |
case fpu2long_stub_id:
|
|
173 |
case unwind_exception_id:
|
|
174 |
#ifndef TIERED
|
|
175 |
case counter_overflow_id: // Not generated outside the tiered world
|
|
176 |
#endif
|
|
177 |
#ifdef SPARC
|
|
178 |
case handle_exception_nofpu_id: // Unused on sparc
|
|
179 |
#endif
|
|
180 |
break;
|
|
181 |
|
|
182 |
// All other stubs should have oopmaps
|
|
183 |
default:
|
|
184 |
assert(oop_maps != NULL, "must have an oopmap");
|
|
185 |
}
|
|
186 |
#endif
|
|
187 |
|
|
188 |
// align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
|
|
189 |
sasm->align(BytesPerWord);
|
|
190 |
// make sure all code is in code buffer
|
|
191 |
sasm->flush();
|
|
192 |
// create blob - distinguish a few special cases
|
|
193 |
CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
|
|
194 |
&code,
|
|
195 |
CodeOffsets::frame_never_safe,
|
|
196 |
sasm->frame_size(),
|
|
197 |
oop_maps,
|
|
198 |
sasm->must_gc_arguments());
|
|
199 |
// install blob
|
|
200 |
assert(blob != NULL, "blob must exist");
|
|
201 |
_blobs[id] = blob;
|
|
202 |
}
|
|
203 |
|
|
204 |
|
|
205 |
void Runtime1::initialize() {
|
|
206 |
// Warning: If we have more than one compilation running in parallel, we
|
|
207 |
// need a lock here with the current setup (lazy initialization).
|
|
208 |
if (!is_initialized()) {
|
|
209 |
_is_initialized = true;
|
|
210 |
|
|
211 |
// platform-dependent initialization
|
|
212 |
initialize_pd();
|
|
213 |
// generate stubs
|
|
214 |
for (int id = 0; id < number_of_ids; id++) generate_blob_for((StubID)id);
|
|
215 |
// printing
|
|
216 |
#ifndef PRODUCT
|
|
217 |
if (PrintSimpleStubs) {
|
|
218 |
ResourceMark rm;
|
|
219 |
for (int id = 0; id < number_of_ids; id++) {
|
|
220 |
_blobs[id]->print();
|
|
221 |
if (_blobs[id]->oop_maps() != NULL) {
|
|
222 |
_blobs[id]->oop_maps()->print();
|
|
223 |
}
|
|
224 |
}
|
|
225 |
}
|
|
226 |
#endif
|
|
227 |
}
|
|
228 |
}
|
|
229 |
|
|
230 |
|
|
231 |
CodeBlob* Runtime1::blob_for(StubID id) {
|
|
232 |
assert(0 <= id && id < number_of_ids, "illegal stub id");
|
|
233 |
if (!is_initialized()) initialize();
|
|
234 |
return _blobs[id];
|
|
235 |
}
|
|
236 |
|
|
237 |
|
|
238 |
const char* Runtime1::name_for(StubID id) {
|
|
239 |
assert(0 <= id && id < number_of_ids, "illegal stub id");
|
|
240 |
return _blob_names[id];
|
|
241 |
}
|
|
242 |
|
|
243 |
const char* Runtime1::name_for_address(address entry) {
|
|
244 |
for (int id = 0; id < number_of_ids; id++) {
|
|
245 |
if (entry == entry_for((StubID)id)) return name_for((StubID)id);
|
|
246 |
}
|
|
247 |
|
|
248 |
#define FUNCTION_CASE(a, f) \
|
|
249 |
if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f
|
|
250 |
|
|
251 |
FUNCTION_CASE(entry, os::javaTimeMillis);
|
|
252 |
FUNCTION_CASE(entry, os::javaTimeNanos);
|
|
253 |
FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
|
|
254 |
FUNCTION_CASE(entry, SharedRuntime::d2f);
|
|
255 |
FUNCTION_CASE(entry, SharedRuntime::d2i);
|
|
256 |
FUNCTION_CASE(entry, SharedRuntime::d2l);
|
|
257 |
FUNCTION_CASE(entry, SharedRuntime::dcos);
|
|
258 |
FUNCTION_CASE(entry, SharedRuntime::dexp);
|
|
259 |
FUNCTION_CASE(entry, SharedRuntime::dlog);
|
|
260 |
FUNCTION_CASE(entry, SharedRuntime::dlog10);
|
|
261 |
FUNCTION_CASE(entry, SharedRuntime::dpow);
|
|
262 |
FUNCTION_CASE(entry, SharedRuntime::drem);
|
|
263 |
FUNCTION_CASE(entry, SharedRuntime::dsin);
|
|
264 |
FUNCTION_CASE(entry, SharedRuntime::dtan);
|
|
265 |
FUNCTION_CASE(entry, SharedRuntime::f2i);
|
|
266 |
FUNCTION_CASE(entry, SharedRuntime::f2l);
|
|
267 |
FUNCTION_CASE(entry, SharedRuntime::frem);
|
|
268 |
FUNCTION_CASE(entry, SharedRuntime::l2d);
|
|
269 |
FUNCTION_CASE(entry, SharedRuntime::l2f);
|
|
270 |
FUNCTION_CASE(entry, SharedRuntime::ldiv);
|
|
271 |
FUNCTION_CASE(entry, SharedRuntime::lmul);
|
|
272 |
FUNCTION_CASE(entry, SharedRuntime::lrem);
|
|
273 |
FUNCTION_CASE(entry, SharedRuntime::lrem);
|
|
274 |
FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
|
|
275 |
FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
|
|
276 |
FUNCTION_CASE(entry, trace_block_entry);
|
|
277 |
|
|
278 |
#undef FUNCTION_CASE
|
|
279 |
|
|
280 |
return "<unknown function>";
|
|
281 |
}
|
|
282 |
|
|
283 |
|
|
284 |
JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
|
|
285 |
NOT_PRODUCT(_new_instance_slowcase_cnt++;)
|
|
286 |
|
|
287 |
assert(oop(klass)->is_klass(), "not a class");
|
|
288 |
instanceKlassHandle h(thread, klass);
|
|
289 |
h->check_valid_for_instantiation(true, CHECK);
|
|
290 |
// make sure klass is initialized
|
|
291 |
h->initialize(CHECK);
|
|
292 |
// allocate instance and return via TLS
|
|
293 |
oop obj = h->allocate_instance(CHECK);
|
|
294 |
thread->set_vm_result(obj);
|
|
295 |
JRT_END
|
|
296 |
|
|
297 |
|
|
298 |
JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
|
|
299 |
NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
|
|
300 |
// Note: no handle for klass needed since they are not used
|
|
301 |
// anymore after new_typeArray() and no GC can happen before.
|
|
302 |
// (This may have to change if this code changes!)
|
|
303 |
assert(oop(klass)->is_klass(), "not a class");
|
|
304 |
BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
|
|
305 |
oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
|
|
306 |
thread->set_vm_result(obj);
|
|
307 |
// This is pretty rare but this runtime patch is stressful to deoptimization
|
|
308 |
// if we deoptimize here so force a deopt to stress the path.
|
|
309 |
if (DeoptimizeALot) {
|
|
310 |
deopt_caller();
|
|
311 |
}
|
|
312 |
|
|
313 |
JRT_END
|
|
314 |
|
|
315 |
|
|
316 |
JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
|
|
317 |
NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
|
|
318 |
|
|
319 |
// Note: no handle for klass needed since they are not used
|
|
320 |
// anymore after new_objArray() and no GC can happen before.
|
|
321 |
// (This may have to change if this code changes!)
|
|
322 |
assert(oop(array_klass)->is_klass(), "not a class");
|
|
323 |
klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
|
|
324 |
objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
|
|
325 |
thread->set_vm_result(obj);
|
|
326 |
// This is pretty rare but this runtime patch is stressful to deoptimization
|
|
327 |
// if we deoptimize here so force a deopt to stress the path.
|
|
328 |
if (DeoptimizeALot) {
|
|
329 |
deopt_caller();
|
|
330 |
}
|
|
331 |
JRT_END
|
|
332 |
|
|
333 |
|
|
334 |
JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
|
|
335 |
NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
|
|
336 |
|
|
337 |
assert(oop(klass)->is_klass(), "not a class");
|
|
338 |
assert(rank >= 1, "rank must be nonzero");
|
|
339 |
#ifdef _LP64
|
|
340 |
// In 64 bit mode, the sizes are stored in the top 32 bits
|
|
341 |
// of each 64 bit stack entry.
|
|
342 |
// dims is actually an intptr_t * because the arguments
|
|
343 |
// are pushed onto a 64 bit stack.
|
|
344 |
// We must create an array of jints to pass to multi_allocate.
|
|
345 |
// We reuse the current stack because it will be popped
|
|
346 |
// after this bytecode is completed.
|
|
347 |
if ( rank > 1 ) {
|
|
348 |
int index;
|
|
349 |
for ( index = 1; index < rank; index++ ) { // First size is ok
|
|
350 |
dims[index] = dims[index*2];
|
|
351 |
}
|
|
352 |
}
|
|
353 |
#endif
|
|
354 |
oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
|
|
355 |
thread->set_vm_result(obj);
|
|
356 |
JRT_END
|
|
357 |
|
|
358 |
|
|
359 |
JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
|
|
360 |
tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
|
|
361 |
JRT_END
|
|
362 |
|
|
363 |
|
|
364 |
JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread))
|
|
365 |
THROW(vmSymbolHandles::java_lang_ArrayStoreException());
|
|
366 |
JRT_END
|
|
367 |
|
|
368 |
|
|
369 |
JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
|
|
370 |
if (JvmtiExport::can_post_exceptions()) {
|
|
371 |
vframeStream vfst(thread, true);
|
|
372 |
address bcp = vfst.method()->bcp_from(vfst.bci());
|
|
373 |
JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
|
|
374 |
}
|
|
375 |
JRT_END
|
|
376 |
|
|
377 |
#ifdef TIERED
|
|
378 |
JRT_ENTRY(void, Runtime1::counter_overflow(JavaThread* thread, int bci))
|
|
379 |
RegisterMap map(thread, false);
|
|
380 |
frame fr = thread->last_frame().sender(&map);
|
|
381 |
nmethod* nm = (nmethod*) fr.cb();
|
|
382 |
assert(nm!= NULL && nm->is_nmethod(), "what?");
|
|
383 |
methodHandle method(thread, nm->method());
|
|
384 |
if (bci == 0) {
|
|
385 |
// invocation counter overflow
|
|
386 |
if (!Tier1CountOnly) {
|
|
387 |
CompilationPolicy::policy()->method_invocation_event(method, CHECK);
|
|
388 |
} else {
|
|
389 |
method()->invocation_counter()->reset();
|
|
390 |
}
|
|
391 |
} else {
|
|
392 |
if (!Tier1CountOnly) {
|
|
393 |
// Twe have a bci but not the destination bci and besides a backedge
|
|
394 |
// event is more for OSR which we don't want here.
|
|
395 |
CompilationPolicy::policy()->method_invocation_event(method, CHECK);
|
|
396 |
} else {
|
|
397 |
method()->backedge_counter()->reset();
|
|
398 |
}
|
|
399 |
}
|
|
400 |
JRT_END
|
|
401 |
#endif // TIERED
|
|
402 |
|
|
403 |
extern void vm_exit(int code);
|
|
404 |
|
|
405 |
// Enter this method from compiled code handler below. This is where we transition
|
|
406 |
// to VM mode. This is done as a helper routine so that the method called directly
|
|
407 |
// from compiled code does not have to transition to VM. This allows the entry
|
|
408 |
// method to see if the nmethod that we have just looked up a handler for has
|
|
409 |
// been deoptimized while we were in the vm. This simplifies the assembly code
|
|
410 |
// cpu directories.
|
|
411 |
//
|
|
412 |
// We are entering here from exception stub (via the entry method below)
|
|
413 |
// If there is a compiled exception handler in this method, we will continue there;
|
|
414 |
// otherwise we will unwind the stack and continue at the caller of top frame method
|
|
415 |
// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
|
|
416 |
// control the area where we can allow a safepoint. After we exit the safepoint area we can
|
|
417 |
// check to see if the handler we are going to return is now in a nmethod that has
|
|
418 |
// been deoptimized. If that is the case we return the deopt blob
|
|
419 |
// unpack_with_exception entry instead. This makes life for the exception blob easier
|
|
420 |
// because making that same check and diverting is painful from assembly language.
|
|
421 |
//
|
|
422 |
|
|
423 |
|
|
424 |
JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
|
|
425 |
|
|
426 |
Handle exception(thread, ex);
|
|
427 |
nm = CodeCache::find_nmethod(pc);
|
|
428 |
assert(nm != NULL, "this is not an nmethod");
|
|
429 |
// Adjust the pc as needed/
|
|
430 |
if (nm->is_deopt_pc(pc)) {
|
|
431 |
RegisterMap map(thread, false);
|
|
432 |
frame exception_frame = thread->last_frame().sender(&map);
|
|
433 |
// if the frame isn't deopted then pc must not correspond to the caller of last_frame
|
|
434 |
assert(exception_frame.is_deoptimized_frame(), "must be deopted");
|
|
435 |
pc = exception_frame.pc();
|
|
436 |
}
|
|
437 |
#ifdef ASSERT
|
|
438 |
assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
|
|
439 |
assert(exception->is_oop(), "just checking");
|
|
440 |
// Check that exception is a subclass of Throwable, otherwise we have a VerifyError
|
|
441 |
if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
|
|
442 |
if (ExitVMOnVerifyError) vm_exit(-1);
|
|
443 |
ShouldNotReachHere();
|
|
444 |
}
|
|
445 |
#endif
|
|
446 |
|
|
447 |
// Check the stack guard pages and reenable them if necessary and there is
|
|
448 |
// enough space on the stack to do so. Use fast exceptions only if the guard
|
|
449 |
// pages are enabled.
|
|
450 |
bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
|
|
451 |
if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
|
|
452 |
|
|
453 |
if (JvmtiExport::can_post_exceptions()) {
|
|
454 |
// To ensure correct notification of exception catches and throws
|
|
455 |
// we have to deoptimize here. If we attempted to notify the
|
|
456 |
// catches and throws during this exception lookup it's possible
|
|
457 |
// we could deoptimize on the way out of the VM and end back in
|
|
458 |
// the interpreter at the throw site. This would result in double
|
|
459 |
// notifications since the interpreter would also notify about
|
|
460 |
// these same catches and throws as it unwound the frame.
|
|
461 |
|
|
462 |
RegisterMap reg_map(thread);
|
|
463 |
frame stub_frame = thread->last_frame();
|
|
464 |
frame caller_frame = stub_frame.sender(®_map);
|
|
465 |
|
|
466 |
// We don't really want to deoptimize the nmethod itself since we
|
|
467 |
// can actually continue in the exception handler ourselves but I
|
|
468 |
// don't see an easy way to have the desired effect.
|
|
469 |
VM_DeoptimizeFrame deopt(thread, caller_frame.id());
|
|
470 |
VMThread::execute(&deopt);
|
|
471 |
|
|
472 |
return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
|
|
473 |
}
|
|
474 |
|
|
475 |
// ExceptionCache is used only for exceptions at call and not for implicit exceptions
|
|
476 |
if (guard_pages_enabled) {
|
|
477 |
address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
|
|
478 |
if (fast_continuation != NULL) {
|
|
479 |
if (fast_continuation == ExceptionCache::unwind_handler()) fast_continuation = NULL;
|
|
480 |
return fast_continuation;
|
|
481 |
}
|
|
482 |
}
|
|
483 |
|
|
484 |
// If the stack guard pages are enabled, check whether there is a handler in
|
|
485 |
// the current method. Otherwise (guard pages disabled), force an unwind and
|
|
486 |
// skip the exception cache update (i.e., just leave continuation==NULL).
|
|
487 |
address continuation = NULL;
|
|
488 |
if (guard_pages_enabled) {
|
|
489 |
|
|
490 |
// New exception handling mechanism can support inlined methods
|
|
491 |
// with exception handlers since the mappings are from PC to PC
|
|
492 |
|
|
493 |
// debugging support
|
|
494 |
// tracing
|
|
495 |
if (TraceExceptions) {
|
|
496 |
ttyLocker ttyl;
|
|
497 |
ResourceMark rm;
|
|
498 |
tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
|
|
499 |
exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
|
|
500 |
}
|
|
501 |
// for AbortVMOnException flag
|
|
502 |
NOT_PRODUCT(Exceptions::debug_check_abort(exception));
|
|
503 |
|
|
504 |
// Clear out the exception oop and pc since looking up an
|
|
505 |
// exception handler can cause class loading, which might throw an
|
|
506 |
// exception and those fields are expected to be clear during
|
|
507 |
// normal bytecode execution.
|
|
508 |
thread->set_exception_oop(NULL);
|
|
509 |
thread->set_exception_pc(NULL);
|
|
510 |
|
|
511 |
continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
|
|
512 |
// If an exception was thrown during exception dispatch, the exception oop may have changed
|
|
513 |
thread->set_exception_oop(exception());
|
|
514 |
thread->set_exception_pc(pc);
|
|
515 |
|
|
516 |
// the exception cache is used only by non-implicit exceptions
|
|
517 |
if (continuation == NULL) {
|
|
518 |
nm->add_handler_for_exception_and_pc(exception, pc, ExceptionCache::unwind_handler());
|
|
519 |
} else {
|
|
520 |
nm->add_handler_for_exception_and_pc(exception, pc, continuation);
|
|
521 |
}
|
|
522 |
}
|
|
523 |
|
|
524 |
thread->set_vm_result(exception());
|
|
525 |
|
|
526 |
if (TraceExceptions) {
|
|
527 |
ttyLocker ttyl;
|
|
528 |
ResourceMark rm;
|
|
529 |
tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
|
|
530 |
thread, continuation, pc);
|
|
531 |
}
|
|
532 |
|
|
533 |
return continuation;
|
|
534 |
JRT_END
|
|
535 |
|
|
536 |
// Enter this method from compiled code only if there is a Java exception handler
|
|
537 |
// in the method handling the exception
|
|
538 |
// We are entering here from exception stub. We don't do a normal VM transition here.
|
|
539 |
// We do it in a helper. This is so we can check to see if the nmethod we have just
|
|
540 |
// searched for an exception handler has been deoptimized in the meantime.
|
|
541 |
address Runtime1::exception_handler_for_pc(JavaThread* thread) {
|
|
542 |
oop exception = thread->exception_oop();
|
|
543 |
address pc = thread->exception_pc();
|
|
544 |
// Still in Java mode
|
|
545 |
debug_only(ResetNoHandleMark rnhm);
|
|
546 |
nmethod* nm = NULL;
|
|
547 |
address continuation = NULL;
|
|
548 |
{
|
|
549 |
// Enter VM mode by calling the helper
|
|
550 |
|
|
551 |
ResetNoHandleMark rnhm;
|
|
552 |
continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
|
|
553 |
}
|
|
554 |
// Back in JAVA, use no oops DON'T safepoint
|
|
555 |
|
|
556 |
// Now check to see if the nmethod we were called from is now deoptimized.
|
|
557 |
// If so we must return to the deopt blob and deoptimize the nmethod
|
|
558 |
|
|
559 |
if (nm != NULL && caller_is_deopted()) {
|
|
560 |
continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
|
|
561 |
}
|
|
562 |
|
|
563 |
return continuation;
|
|
564 |
}
|
|
565 |
|
|
566 |
|
|
567 |
JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
|
|
568 |
NOT_PRODUCT(_throw_range_check_exception_count++;)
|
|
569 |
Events::log("throw_range_check");
|
|
570 |
char message[jintAsStringSize];
|
|
571 |
sprintf(message, "%d", index);
|
|
572 |
SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
|
|
573 |
JRT_END
|
|
574 |
|
|
575 |
|
|
576 |
JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
|
|
577 |
NOT_PRODUCT(_throw_index_exception_count++;)
|
|
578 |
Events::log("throw_index");
|
|
579 |
char message[16];
|
|
580 |
sprintf(message, "%d", index);
|
|
581 |
SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
|
|
582 |
JRT_END
|
|
583 |
|
|
584 |
|
|
585 |
JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
|
|
586 |
NOT_PRODUCT(_throw_div0_exception_count++;)
|
|
587 |
SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
|
|
588 |
JRT_END
|
|
589 |
|
|
590 |
|
|
591 |
JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
|
|
592 |
NOT_PRODUCT(_throw_null_pointer_exception_count++;)
|
|
593 |
SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
|
|
594 |
JRT_END
|
|
595 |
|
|
596 |
|
|
597 |
JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
|
|
598 |
NOT_PRODUCT(_throw_class_cast_exception_count++;)
|
|
599 |
ResourceMark rm(thread);
|
|
600 |
char* message = SharedRuntime::generate_class_cast_message(
|
|
601 |
thread, Klass::cast(object->klass())->external_name());
|
|
602 |
SharedRuntime::throw_and_post_jvmti_exception(
|
|
603 |
thread, vmSymbols::java_lang_ClassCastException(), message);
|
|
604 |
JRT_END
|
|
605 |
|
|
606 |
|
|
607 |
JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
|
|
608 |
NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
|
|
609 |
ResourceMark rm(thread);
|
|
610 |
SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
|
|
611 |
JRT_END
|
|
612 |
|
|
613 |
|
|
614 |
JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
|
|
615 |
NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
|
|
616 |
if (PrintBiasedLockingStatistics) {
|
|
617 |
Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
|
|
618 |
}
|
|
619 |
Handle h_obj(thread, obj);
|
|
620 |
assert(h_obj()->is_oop(), "must be NULL or an object");
|
|
621 |
if (UseBiasedLocking) {
|
|
622 |
// Retry fast entry if bias is revoked to avoid unnecessary inflation
|
|
623 |
ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
|
|
624 |
} else {
|
|
625 |
if (UseFastLocking) {
|
|
626 |
// When using fast locking, the compiled code has already tried the fast case
|
|
627 |
assert(obj == lock->obj(), "must match");
|
|
628 |
ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
|
|
629 |
} else {
|
|
630 |
lock->set_obj(obj);
|
|
631 |
ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
|
|
632 |
}
|
|
633 |
}
|
|
634 |
JRT_END
|
|
635 |
|
|
636 |
|
|
637 |
JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
|
|
638 |
NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
|
|
639 |
assert(thread == JavaThread::current(), "threads must correspond");
|
|
640 |
assert(thread->last_Java_sp(), "last_Java_sp must be set");
|
|
641 |
// monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
|
|
642 |
EXCEPTION_MARK;
|
|
643 |
|
|
644 |
oop obj = lock->obj();
|
|
645 |
assert(obj->is_oop(), "must be NULL or an object");
|
|
646 |
if (UseFastLocking) {
|
|
647 |
// When using fast locking, the compiled code has already tried the fast case
|
|
648 |
ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
|
|
649 |
} else {
|
|
650 |
ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
|
|
651 |
}
|
|
652 |
JRT_END
|
|
653 |
|
|
654 |
|
|
655 |
static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
|
|
656 |
Bytecode_field* field_access = Bytecode_field_at(caller(), caller->bcp_from(bci));
|
|
657 |
// This can be static or non-static field access
|
|
658 |
Bytecodes::Code code = field_access->code();
|
|
659 |
|
|
660 |
// We must load class, initialize class and resolvethe field
|
|
661 |
FieldAccessInfo result; // initialize class if needed
|
|
662 |
constantPoolHandle constants(THREAD, caller->constants());
|
|
663 |
LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK_NULL);
|
|
664 |
return result.klass()();
|
|
665 |
}
|
|
666 |
|
|
667 |
|
|
668 |
//
|
|
669 |
// This routine patches sites where a class wasn't loaded or
|
|
670 |
// initialized at the time the code was generated. It handles
|
|
671 |
// references to classes, fields and forcing of initialization. Most
|
|
672 |
// of the cases are straightforward and involving simply forcing
|
|
673 |
// resolution of a class, rewriting the instruction stream with the
|
|
674 |
// needed constant and replacing the call in this function with the
|
|
675 |
// patched code. The case for static field is more complicated since
|
|
676 |
// the thread which is in the process of initializing a class can
|
|
677 |
// access it's static fields but other threads can't so the code
|
|
678 |
// either has to deoptimize when this case is detected or execute a
|
|
679 |
// check that the current thread is the initializing thread. The
|
|
680 |
// current
|
|
681 |
//
|
|
682 |
// Patches basically look like this:
|
|
683 |
//
|
|
684 |
//
|
|
685 |
// patch_site: jmp patch stub ;; will be patched
|
|
686 |
// continue: ...
|
|
687 |
// ...
|
|
688 |
// ...
|
|
689 |
// ...
|
|
690 |
//
|
|
691 |
// They have a stub which looks like this:
|
|
692 |
//
|
|
693 |
// ;; patch body
|
|
694 |
// movl <const>, reg (for class constants)
|
|
695 |
// <or> movl [reg1 + <const>], reg (for field offsets)
|
|
696 |
// <or> movl reg, [reg1 + <const>] (for field offsets)
|
|
697 |
// <being_init offset> <bytes to copy> <bytes to skip>
|
|
698 |
// patch_stub: call Runtime1::patch_code (through a runtime stub)
|
|
699 |
// jmp patch_site
|
|
700 |
//
|
|
701 |
//
|
|
702 |
// A normal patch is done by rewriting the patch body, usually a move,
|
|
703 |
// and then copying it into place over top of the jmp instruction
|
|
704 |
// being careful to flush caches and doing it in an MP-safe way. The
|
|
705 |
// constants following the patch body are used to find various pieces
|
|
706 |
// of the patch relative to the call site for Runtime1::patch_code.
|
|
707 |
// The case for getstatic and putstatic is more complicated because
|
|
708 |
// getstatic and putstatic have special semantics when executing while
|
|
709 |
// the class is being initialized. getstatic/putstatic on a class
|
|
710 |
// which is being_initialized may be executed by the initializing
|
|
711 |
// thread but other threads have to block when they execute it. This
|
|
712 |
// is accomplished in compiled code by executing a test of the current
|
|
713 |
// thread against the initializing thread of the class. It's emitted
|
|
714 |
// as boilerplate in their stub which allows the patched code to be
|
|
715 |
// executed before it's copied back into the main body of the nmethod.
|
|
716 |
//
|
|
717 |
// being_init: get_thread(<tmp reg>
|
|
718 |
// cmpl [reg1 + <init_thread_offset>], <tmp reg>
|
|
719 |
// jne patch_stub
|
|
720 |
// movl [reg1 + <const>], reg (for field offsets) <or>
|
|
721 |
// movl reg, [reg1 + <const>] (for field offsets)
|
|
722 |
// jmp continue
|
|
723 |
// <being_init offset> <bytes to copy> <bytes to skip>
|
|
724 |
// patch_stub: jmp Runtim1::patch_code (through a runtime stub)
|
|
725 |
// jmp patch_site
|
|
726 |
//
|
|
727 |
// If the class is being initialized the patch body is rewritten and
|
|
728 |
// the patch site is rewritten to jump to being_init, instead of
|
|
729 |
// patch_stub. Whenever this code is executed it checks the current
|
|
730 |
// thread against the intializing thread so other threads will enter
|
|
731 |
// the runtime and end up blocked waiting the class to finish
|
|
732 |
// initializing inside the calls to resolve_field below. The
|
|
733 |
// initializing class will continue on it's way. Once the class is
|
|
734 |
// fully_initialized, the intializing_thread of the class becomes
|
|
735 |
// NULL, so the next thread to execute this code will fail the test,
|
|
736 |
// call into patch_code and complete the patching process by copying
|
|
737 |
// the patch body back into the main part of the nmethod and resume
|
|
738 |
// executing.
|
|
739 |
//
|
|
740 |
//
|
|
741 |
|
|
742 |
JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
|
|
743 |
NOT_PRODUCT(_patch_code_slowcase_cnt++;)
|
|
744 |
|
|
745 |
ResourceMark rm(thread);
|
|
746 |
RegisterMap reg_map(thread, false);
|
|
747 |
frame runtime_frame = thread->last_frame();
|
|
748 |
frame caller_frame = runtime_frame.sender(®_map);
|
|
749 |
|
|
750 |
// last java frame on stack
|
|
751 |
vframeStream vfst(thread, true);
|
|
752 |
assert(!vfst.at_end(), "Java frame must exist");
|
|
753 |
|
|
754 |
methodHandle caller_method(THREAD, vfst.method());
|
|
755 |
// Note that caller_method->code() may not be same as caller_code because of OSR's
|
|
756 |
// Note also that in the presence of inlining it is not guaranteed
|
|
757 |
// that caller_method() == caller_code->method()
|
|
758 |
|
|
759 |
|
|
760 |
int bci = vfst.bci();
|
|
761 |
|
|
762 |
Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
|
|
763 |
|
|
764 |
Bytecodes::Code code = Bytecode_at(caller_method->bcp_from(bci))->java_code();
|
|
765 |
|
|
766 |
#ifndef PRODUCT
|
|
767 |
// this is used by assertions in the access_field_patching_id
|
|
768 |
BasicType patch_field_type = T_ILLEGAL;
|
|
769 |
#endif // PRODUCT
|
|
770 |
bool deoptimize_for_volatile = false;
|
|
771 |
int patch_field_offset = -1;
|
|
772 |
KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
|
|
773 |
Handle load_klass(THREAD, NULL); // oop needed by load_klass_patching code
|
|
774 |
if (stub_id == Runtime1::access_field_patching_id) {
|
|
775 |
|
|
776 |
Bytecode_field* field_access = Bytecode_field_at(caller_method(), caller_method->bcp_from(bci));
|
|
777 |
FieldAccessInfo result; // initialize class if needed
|
|
778 |
Bytecodes::Code code = field_access->code();
|
|
779 |
constantPoolHandle constants(THREAD, caller_method->constants());
|
|
780 |
LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK);
|
|
781 |
patch_field_offset = result.field_offset();
|
|
782 |
|
|
783 |
// If we're patching a field which is volatile then at compile it
|
|
784 |
// must not have been know to be volatile, so the generated code
|
|
785 |
// isn't correct for a volatile reference. The nmethod has to be
|
|
786 |
// deoptimized so that the code can be regenerated correctly.
|
|
787 |
// This check is only needed for access_field_patching since this
|
|
788 |
// is the path for patching field offsets. load_klass is only
|
|
789 |
// used for patching references to oops which don't need special
|
|
790 |
// handling in the volatile case.
|
|
791 |
deoptimize_for_volatile = result.access_flags().is_volatile();
|
|
792 |
|
|
793 |
#ifndef PRODUCT
|
|
794 |
patch_field_type = result.field_type();
|
|
795 |
#endif
|
|
796 |
} else if (stub_id == Runtime1::load_klass_patching_id) {
|
|
797 |
oop k;
|
|
798 |
switch (code) {
|
|
799 |
case Bytecodes::_putstatic:
|
|
800 |
case Bytecodes::_getstatic:
|
|
801 |
{ klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
|
|
802 |
// Save a reference to the class that has to be checked for initialization
|
|
803 |
init_klass = KlassHandle(THREAD, klass);
|
|
804 |
k = klass;
|
|
805 |
}
|
|
806 |
break;
|
|
807 |
case Bytecodes::_new:
|
|
808 |
{ Bytecode_new* bnew = Bytecode_new_at(caller_method->bcp_from(bci));
|
|
809 |
k = caller_method->constants()->klass_at(bnew->index(), CHECK);
|
|
810 |
}
|
|
811 |
break;
|
|
812 |
case Bytecodes::_multianewarray:
|
|
813 |
{ Bytecode_multianewarray* mna = Bytecode_multianewarray_at(caller_method->bcp_from(bci));
|
|
814 |
k = caller_method->constants()->klass_at(mna->index(), CHECK);
|
|
815 |
}
|
|
816 |
break;
|
|
817 |
case Bytecodes::_instanceof:
|
|
818 |
{ Bytecode_instanceof* io = Bytecode_instanceof_at(caller_method->bcp_from(bci));
|
|
819 |
k = caller_method->constants()->klass_at(io->index(), CHECK);
|
|
820 |
}
|
|
821 |
break;
|
|
822 |
case Bytecodes::_checkcast:
|
|
823 |
{ Bytecode_checkcast* cc = Bytecode_checkcast_at(caller_method->bcp_from(bci));
|
|
824 |
k = caller_method->constants()->klass_at(cc->index(), CHECK);
|
|
825 |
}
|
|
826 |
break;
|
|
827 |
case Bytecodes::_anewarray:
|
|
828 |
{ Bytecode_anewarray* anew = Bytecode_anewarray_at(caller_method->bcp_from(bci));
|
|
829 |
klassOop ek = caller_method->constants()->klass_at(anew->index(), CHECK);
|
|
830 |
k = Klass::cast(ek)->array_klass(CHECK);
|
|
831 |
}
|
|
832 |
break;
|
|
833 |
case Bytecodes::_ldc:
|
|
834 |
case Bytecodes::_ldc_w:
|
|
835 |
{
|
|
836 |
Bytecode_loadconstant* cc = Bytecode_loadconstant_at(caller_method(),
|
|
837 |
caller_method->bcp_from(bci));
|
|
838 |
klassOop resolved = caller_method->constants()->klass_at(cc->index(), CHECK);
|
|
839 |
// ldc wants the java mirror.
|
|
840 |
k = resolved->klass_part()->java_mirror();
|
|
841 |
}
|
|
842 |
break;
|
|
843 |
default: Unimplemented();
|
|
844 |
}
|
|
845 |
// convert to handle
|
|
846 |
load_klass = Handle(THREAD, k);
|
|
847 |
} else {
|
|
848 |
ShouldNotReachHere();
|
|
849 |
}
|
|
850 |
|
|
851 |
if (deoptimize_for_volatile) {
|
|
852 |
// At compile time we assumed the field wasn't volatile but after
|
|
853 |
// loading it turns out it was volatile so we have to throw the
|
|
854 |
// compiled code out and let it be regenerated.
|
|
855 |
if (TracePatching) {
|
|
856 |
tty->print_cr("Deoptimizing for patching volatile field reference");
|
|
857 |
}
|
|
858 |
VM_DeoptimizeFrame deopt(thread, caller_frame.id());
|
|
859 |
VMThread::execute(&deopt);
|
|
860 |
|
|
861 |
// Return to the now deoptimized frame.
|
|
862 |
}
|
|
863 |
|
|
864 |
|
|
865 |
// Now copy code back
|
|
866 |
|
|
867 |
{
|
|
868 |
MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
|
|
869 |
//
|
|
870 |
// Deoptimization may have happened while we waited for the lock.
|
|
871 |
// In that case we don't bother to do any patching we just return
|
|
872 |
// and let the deopt happen
|
|
873 |
if (!caller_is_deopted()) {
|
|
874 |
NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
|
|
875 |
address instr_pc = jump->jump_destination();
|
|
876 |
NativeInstruction* ni = nativeInstruction_at(instr_pc);
|
|
877 |
if (ni->is_jump() ) {
|
|
878 |
// the jump has not been patched yet
|
|
879 |
// The jump destination is slow case and therefore not part of the stubs
|
|
880 |
// (stubs are only for StaticCalls)
|
|
881 |
|
|
882 |
// format of buffer
|
|
883 |
// ....
|
|
884 |
// instr byte 0 <-- copy_buff
|
|
885 |
// instr byte 1
|
|
886 |
// ..
|
|
887 |
// instr byte n-1
|
|
888 |
// n
|
|
889 |
// .... <-- call destination
|
|
890 |
|
|
891 |
address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
|
|
892 |
unsigned char* byte_count = (unsigned char*) (stub_location - 1);
|
|
893 |
unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
|
|
894 |
unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
|
|
895 |
address copy_buff = stub_location - *byte_skip - *byte_count;
|
|
896 |
address being_initialized_entry = stub_location - *being_initialized_entry_offset;
|
|
897 |
if (TracePatching) {
|
|
898 |
tty->print_cr(" Patching %s at bci %d at address 0x%x (%s)", Bytecodes::name(code), bci,
|
|
899 |
instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
|
|
900 |
nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
|
|
901 |
assert(caller_code != NULL, "nmethod not found");
|
|
902 |
|
|
903 |
// NOTE we use pc() not original_pc() because we already know they are
|
|
904 |
// identical otherwise we'd have never entered this block of code
|
|
905 |
|
|
906 |
OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
|
|
907 |
assert(map != NULL, "null check");
|
|
908 |
map->print();
|
|
909 |
tty->cr();
|
|
910 |
|
|
911 |
Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
|
|
912 |
}
|
|
913 |
// depending on the code below, do_patch says whether to copy the patch body back into the nmethod
|
|
914 |
bool do_patch = true;
|
|
915 |
if (stub_id == Runtime1::access_field_patching_id) {
|
|
916 |
// The offset may not be correct if the class was not loaded at code generation time.
|
|
917 |
// Set it now.
|
|
918 |
NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
|
|
919 |
assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
|
|
920 |
assert(patch_field_offset >= 0, "illegal offset");
|
|
921 |
n_move->add_offset_in_bytes(patch_field_offset);
|
|
922 |
} else if (stub_id == Runtime1::load_klass_patching_id) {
|
|
923 |
// If a getstatic or putstatic is referencing a klass which
|
|
924 |
// isn't fully initialized, the patch body isn't copied into
|
|
925 |
// place until initialization is complete. In this case the
|
|
926 |
// patch site is setup so that any threads besides the
|
|
927 |
// initializing thread are forced to come into the VM and
|
|
928 |
// block.
|
|
929 |
do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
|
|
930 |
instanceKlass::cast(init_klass())->is_initialized();
|
|
931 |
NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
|
|
932 |
if (jump->jump_destination() == being_initialized_entry) {
|
|
933 |
assert(do_patch == true, "initialization must be complete at this point");
|
|
934 |
} else {
|
|
935 |
// patch the instruction <move reg, klass>
|
|
936 |
NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
|
|
937 |
assert(n_copy->data() == 0, "illegal init value");
|
|
938 |
assert(load_klass() != NULL, "klass not set");
|
|
939 |
n_copy->set_data((intx) (load_klass()));
|
|
940 |
|
|
941 |
if (TracePatching) {
|
|
942 |
Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
|
|
943 |
}
|
|
944 |
|
|
945 |
#ifdef SPARC
|
|
946 |
// Update the oop location in the nmethod with the proper
|
|
947 |
// oop. When the code was generated, a NULL was stuffed
|
|
948 |
// in the oop table and that table needs to be update to
|
|
949 |
// have the right value. On intel the value is kept
|
|
950 |
// directly in the instruction instead of in the oop
|
|
951 |
// table, so set_data above effectively updated the value.
|
|
952 |
nmethod* nm = CodeCache::find_nmethod(instr_pc);
|
|
953 |
assert(nm != NULL, "invalid nmethod_pc");
|
|
954 |
RelocIterator oops(nm, copy_buff, copy_buff + 1);
|
|
955 |
bool found = false;
|
|
956 |
while (oops.next() && !found) {
|
|
957 |
if (oops.type() == relocInfo::oop_type) {
|
|
958 |
oop_Relocation* r = oops.oop_reloc();
|
|
959 |
oop* oop_adr = r->oop_addr();
|
|
960 |
*oop_adr = load_klass();
|
|
961 |
r->fix_oop_relocation();
|
|
962 |
found = true;
|
|
963 |
}
|
|
964 |
}
|
|
965 |
assert(found, "the oop must exist!");
|
|
966 |
#endif
|
|
967 |
|
|
968 |
}
|
|
969 |
} else {
|
|
970 |
ShouldNotReachHere();
|
|
971 |
}
|
|
972 |
if (do_patch) {
|
|
973 |
// replace instructions
|
|
974 |
// first replace the tail, then the call
|
|
975 |
for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
|
|
976 |
address ptr = copy_buff + i;
|
|
977 |
int a_byte = (*ptr) & 0xFF;
|
|
978 |
address dst = instr_pc + i;
|
|
979 |
*(unsigned char*)dst = (unsigned char) a_byte;
|
|
980 |
}
|
|
981 |
ICache::invalidate_range(instr_pc, *byte_count);
|
|
982 |
NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
|
|
983 |
|
|
984 |
if (stub_id == Runtime1::load_klass_patching_id) {
|
|
985 |
// update relocInfo to oop
|
|
986 |
nmethod* nm = CodeCache::find_nmethod(instr_pc);
|
|
987 |
assert(nm != NULL, "invalid nmethod_pc");
|
|
988 |
|
|
989 |
// The old patch site is now a move instruction so update
|
|
990 |
// the reloc info so that it will get updated during
|
|
991 |
// future GCs.
|
|
992 |
RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
|
|
993 |
relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
|
|
994 |
relocInfo::none, relocInfo::oop_type);
|
|
995 |
#ifdef SPARC
|
|
996 |
// Sparc takes two relocations for an oop so update the second one.
|
|
997 |
address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
|
|
998 |
RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
|
|
999 |
relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
|
|
1000 |
relocInfo::none, relocInfo::oop_type);
|
|
1001 |
#endif
|
|
1002 |
}
|
|
1003 |
|
|
1004 |
} else {
|
|
1005 |
ICache::invalidate_range(copy_buff, *byte_count);
|
|
1006 |
NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
|
|
1007 |
}
|
|
1008 |
}
|
|
1009 |
}
|
|
1010 |
}
|
|
1011 |
JRT_END
|
|
1012 |
|
|
1013 |
//
|
|
1014 |
// Entry point for compiled code. We want to patch a nmethod.
|
|
1015 |
// We don't do a normal VM transition here because we want to
|
|
1016 |
// know after the patching is complete and any safepoint(s) are taken
|
|
1017 |
// if the calling nmethod was deoptimized. We do this by calling a
|
|
1018 |
// helper method which does the normal VM transition and when it
|
|
1019 |
// completes we can check for deoptimization. This simplifies the
|
|
1020 |
// assembly code in the cpu directories.
|
|
1021 |
//
|
|
1022 |
int Runtime1::move_klass_patching(JavaThread* thread) {
|
|
1023 |
//
|
|
1024 |
// NOTE: we are still in Java
|
|
1025 |
//
|
|
1026 |
Thread* THREAD = thread;
|
|
1027 |
debug_only(NoHandleMark nhm;)
|
|
1028 |
{
|
|
1029 |
// Enter VM mode
|
|
1030 |
|
|
1031 |
ResetNoHandleMark rnhm;
|
|
1032 |
patch_code(thread, load_klass_patching_id);
|
|
1033 |
}
|
|
1034 |
// Back in JAVA, use no oops DON'T safepoint
|
|
1035 |
|
|
1036 |
// Return true if calling code is deoptimized
|
|
1037 |
|
|
1038 |
return caller_is_deopted();
|
|
1039 |
}
|
|
1040 |
|
|
1041 |
//
|
|
1042 |
// Entry point for compiled code. We want to patch a nmethod.
|
|
1043 |
// We don't do a normal VM transition here because we want to
|
|
1044 |
// know after the patching is complete and any safepoint(s) are taken
|
|
1045 |
// if the calling nmethod was deoptimized. We do this by calling a
|
|
1046 |
// helper method which does the normal VM transition and when it
|
|
1047 |
// completes we can check for deoptimization. This simplifies the
|
|
1048 |
// assembly code in the cpu directories.
|
|
1049 |
//
|
|
1050 |
|
|
1051 |
int Runtime1::access_field_patching(JavaThread* thread) {
|
|
1052 |
//
|
|
1053 |
// NOTE: we are still in Java
|
|
1054 |
//
|
|
1055 |
Thread* THREAD = thread;
|
|
1056 |
debug_only(NoHandleMark nhm;)
|
|
1057 |
{
|
|
1058 |
// Enter VM mode
|
|
1059 |
|
|
1060 |
ResetNoHandleMark rnhm;
|
|
1061 |
patch_code(thread, access_field_patching_id);
|
|
1062 |
}
|
|
1063 |
// Back in JAVA, use no oops DON'T safepoint
|
|
1064 |
|
|
1065 |
// Return true if calling code is deoptimized
|
|
1066 |
|
|
1067 |
return caller_is_deopted();
|
|
1068 |
JRT_END
|
|
1069 |
|
|
1070 |
|
|
1071 |
JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
|
|
1072 |
// for now we just print out the block id
|
|
1073 |
tty->print("%d ", block_id);
|
|
1074 |
JRT_END
|
|
1075 |
|
|
1076 |
|
|
1077 |
// fast and direct copy of arrays; returning -1, means that an exception may be thrown
|
|
1078 |
// and we did not copy anything
|
|
1079 |
JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
|
|
1080 |
#ifndef PRODUCT
|
|
1081 |
_generic_arraycopy_cnt++; // Slow-path oop array copy
|
|
1082 |
#endif
|
|
1083 |
|
|
1084 |
enum {
|
|
1085 |
ac_failed = -1, // arraycopy failed
|
|
1086 |
ac_ok = 0 // arraycopy succeeded
|
|
1087 |
};
|
|
1088 |
|
|
1089 |
if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
|
|
1090 |
if (!dst->is_array() || !src->is_array()) return ac_failed;
|
|
1091 |
if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
|
|
1092 |
if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
|
|
1093 |
|
|
1094 |
if (length == 0) return ac_ok;
|
|
1095 |
if (src->is_typeArray()) {
|
|
1096 |
const klassOop klass_oop = src->klass();
|
|
1097 |
if (klass_oop != dst->klass()) return ac_failed;
|
|
1098 |
typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
|
|
1099 |
const int l2es = klass->log2_element_size();
|
|
1100 |
const int ihs = klass->array_header_in_bytes() / wordSize;
|
|
1101 |
char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
|
|
1102 |
char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
|
|
1103 |
// Potential problem: memmove is not guaranteed to be word atomic
|
|
1104 |
// Revisit in Merlin
|
|
1105 |
memmove(dst_addr, src_addr, length << l2es);
|
|
1106 |
return ac_ok;
|
|
1107 |
} else if (src->is_objArray() && dst->is_objArray()) {
|
|
1108 |
oop* src_addr = objArrayOop(src)->obj_at_addr(src_pos);
|
|
1109 |
oop* dst_addr = objArrayOop(dst)->obj_at_addr(dst_pos);
|
|
1110 |
// For performance reasons, we assume we are using a card marking write
|
|
1111 |
// barrier. The assert will fail if this is not the case.
|
|
1112 |
// Note that we use the non-virtual inlineable variant of write_ref_array.
|
|
1113 |
BarrierSet* bs = Universe::heap()->barrier_set();
|
|
1114 |
assert(bs->has_write_ref_array_opt(),
|
|
1115 |
"Barrier set must have ref array opt");
|
|
1116 |
if (src == dst) {
|
|
1117 |
// same object, no check
|
|
1118 |
Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
|
|
1119 |
bs->write_ref_array(MemRegion((HeapWord*)dst_addr,
|
|
1120 |
(HeapWord*)(dst_addr + length)));
|
|
1121 |
return ac_ok;
|
|
1122 |
} else {
|
|
1123 |
klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
|
|
1124 |
klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
|
|
1125 |
if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
|
|
1126 |
// Elements are guaranteed to be subtypes, so no check necessary
|
|
1127 |
Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
|
|
1128 |
bs->write_ref_array(MemRegion((HeapWord*)dst_addr,
|
|
1129 |
(HeapWord*)(dst_addr + length)));
|
|
1130 |
return ac_ok;
|
|
1131 |
}
|
|
1132 |
}
|
|
1133 |
}
|
|
1134 |
return ac_failed;
|
|
1135 |
JRT_END
|
|
1136 |
|
|
1137 |
|
|
1138 |
JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
|
|
1139 |
#ifndef PRODUCT
|
|
1140 |
_primitive_arraycopy_cnt++;
|
|
1141 |
#endif
|
|
1142 |
|
|
1143 |
if (length == 0) return;
|
|
1144 |
// Not guaranteed to be word atomic, but that doesn't matter
|
|
1145 |
// for anything but an oop array, which is covered by oop_arraycopy.
|
|
1146 |
Copy::conjoint_bytes(src, dst, length);
|
|
1147 |
JRT_END
|
|
1148 |
|
|
1149 |
JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
|
|
1150 |
#ifndef PRODUCT
|
|
1151 |
_oop_arraycopy_cnt++;
|
|
1152 |
#endif
|
|
1153 |
|
|
1154 |
if (num == 0) return;
|
|
1155 |
Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
|
|
1156 |
BarrierSet* bs = Universe::heap()->barrier_set();
|
|
1157 |
bs->write_ref_array(MemRegion(dst, dst + num));
|
|
1158 |
JRT_END
|
|
1159 |
|
|
1160 |
|
|
1161 |
#ifndef PRODUCT
|
|
1162 |
void Runtime1::print_statistics() {
|
|
1163 |
tty->print_cr("C1 Runtime statistics:");
|
|
1164 |
tty->print_cr(" _resolve_invoke_virtual_cnt: %d", SharedRuntime::_resolve_virtual_ctr);
|
|
1165 |
tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
|
|
1166 |
tty->print_cr(" _resolve_invoke_static_cnt: %d", SharedRuntime::_resolve_static_ctr);
|
|
1167 |
tty->print_cr(" _handle_wrong_method_cnt: %d", SharedRuntime::_wrong_method_ctr);
|
|
1168 |
tty->print_cr(" _ic_miss_cnt: %d", SharedRuntime::_ic_miss_ctr);
|
|
1169 |
tty->print_cr(" _generic_arraycopy_cnt: %d", _generic_arraycopy_cnt);
|
|
1170 |
tty->print_cr(" _primitive_arraycopy_cnt: %d", _primitive_arraycopy_cnt);
|
|
1171 |
tty->print_cr(" _oop_arraycopy_cnt: %d", _oop_arraycopy_cnt);
|
|
1172 |
tty->print_cr(" _arraycopy_slowcase_cnt: %d", _arraycopy_slowcase_cnt);
|
|
1173 |
|
|
1174 |
tty->print_cr(" _new_type_array_slowcase_cnt: %d", _new_type_array_slowcase_cnt);
|
|
1175 |
tty->print_cr(" _new_object_array_slowcase_cnt: %d", _new_object_array_slowcase_cnt);
|
|
1176 |
tty->print_cr(" _new_instance_slowcase_cnt: %d", _new_instance_slowcase_cnt);
|
|
1177 |
tty->print_cr(" _new_multi_array_slowcase_cnt: %d", _new_multi_array_slowcase_cnt);
|
|
1178 |
tty->print_cr(" _monitorenter_slowcase_cnt: %d", _monitorenter_slowcase_cnt);
|
|
1179 |
tty->print_cr(" _monitorexit_slowcase_cnt: %d", _monitorexit_slowcase_cnt);
|
|
1180 |
tty->print_cr(" _patch_code_slowcase_cnt: %d", _patch_code_slowcase_cnt);
|
|
1181 |
|
|
1182 |
tty->print_cr(" _throw_range_check_exception_count: %d:", _throw_range_check_exception_count);
|
|
1183 |
tty->print_cr(" _throw_index_exception_count: %d:", _throw_index_exception_count);
|
|
1184 |
tty->print_cr(" _throw_div0_exception_count: %d:", _throw_div0_exception_count);
|
|
1185 |
tty->print_cr(" _throw_null_pointer_exception_count: %d:", _throw_null_pointer_exception_count);
|
|
1186 |
tty->print_cr(" _throw_class_cast_exception_count: %d:", _throw_class_cast_exception_count);
|
|
1187 |
tty->print_cr(" _throw_incompatible_class_change_error_count: %d:", _throw_incompatible_class_change_error_count);
|
|
1188 |
tty->print_cr(" _throw_array_store_exception_count: %d:", _throw_array_store_exception_count);
|
|
1189 |
tty->print_cr(" _throw_count: %d:", _throw_count);
|
|
1190 |
|
|
1191 |
SharedRuntime::print_ic_miss_histogram();
|
|
1192 |
tty->cr();
|
|
1193 |
}
|
|
1194 |
#endif // PRODUCT
|