--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/c1/c1_Runtime1.cpp Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1194 @@
+/*
+ * Copyright 1999-2007 Sun Microsystems, Inc. All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_c1_Runtime1.cpp.incl"
+
+
+// Implementation of StubAssembler
+
+StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
+ _name = name;
+ _must_gc_arguments = false;
+ _frame_size = no_frame_size;
+ _num_rt_args = 0;
+ _stub_id = stub_id;
+}
+
+
+void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
+ _name = name;
+ _must_gc_arguments = must_gc_arguments;
+}
+
+
+void StubAssembler::set_frame_size(int size) {
+ if (_frame_size == no_frame_size) {
+ _frame_size = size;
+ }
+ assert(_frame_size == size, "can't change the frame size");
+}
+
+
+void StubAssembler::set_num_rt_args(int args) {
+ if (_num_rt_args == 0) {
+ _num_rt_args = args;
+ }
+ assert(_num_rt_args == args, "can't change the number of args");
+}
+
+// Implementation of Runtime1
+
+bool Runtime1::_is_initialized = false;
+CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
+const char *Runtime1::_blob_names[] = {
+ RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
+};
+
+#ifndef PRODUCT
+// statistics
+int Runtime1::_generic_arraycopy_cnt = 0;
+int Runtime1::_primitive_arraycopy_cnt = 0;
+int Runtime1::_oop_arraycopy_cnt = 0;
+int Runtime1::_arraycopy_slowcase_cnt = 0;
+int Runtime1::_new_type_array_slowcase_cnt = 0;
+int Runtime1::_new_object_array_slowcase_cnt = 0;
+int Runtime1::_new_instance_slowcase_cnt = 0;
+int Runtime1::_new_multi_array_slowcase_cnt = 0;
+int Runtime1::_monitorenter_slowcase_cnt = 0;
+int Runtime1::_monitorexit_slowcase_cnt = 0;
+int Runtime1::_patch_code_slowcase_cnt = 0;
+int Runtime1::_throw_range_check_exception_count = 0;
+int Runtime1::_throw_index_exception_count = 0;
+int Runtime1::_throw_div0_exception_count = 0;
+int Runtime1::_throw_null_pointer_exception_count = 0;
+int Runtime1::_throw_class_cast_exception_count = 0;
+int Runtime1::_throw_incompatible_class_change_error_count = 0;
+int Runtime1::_throw_array_store_exception_count = 0;
+int Runtime1::_throw_count = 0;
+#endif
+
+BufferBlob* Runtime1::_buffer_blob = NULL;
+
+// Simple helper to see if the caller of a runtime stub which
+// entered the VM has been deoptimized
+
+static bool caller_is_deopted() {
+ JavaThread* thread = JavaThread::current();
+ RegisterMap reg_map(thread, false);
+ frame runtime_frame = thread->last_frame();
+ frame caller_frame = runtime_frame.sender(®_map);
+ assert(caller_frame.is_compiled_frame(), "must be compiled");
+ return caller_frame.is_deoptimized_frame();
+}
+
+// Stress deoptimization
+static void deopt_caller() {
+ if ( !caller_is_deopted()) {
+ JavaThread* thread = JavaThread::current();
+ RegisterMap reg_map(thread, false);
+ frame runtime_frame = thread->last_frame();
+ frame caller_frame = runtime_frame.sender(®_map);
+ VM_DeoptimizeFrame deopt(thread, caller_frame.id());
+ VMThread::execute(&deopt);
+ assert(caller_is_deopted(), "Must be deoptimized");
+ }
+}
+
+
+BufferBlob* Runtime1::get_buffer_blob() {
+ // Allocate code buffer space only once
+ BufferBlob* blob = _buffer_blob;
+ if (blob == NULL) {
+ // setup CodeBuffer. Preallocate a BufferBlob of size
+ // NMethodSizeLimit plus some extra space for constants.
+ int code_buffer_size = desired_max_code_buffer_size() + desired_max_constant_size();
+ blob = BufferBlob::create("Compiler1 temporary CodeBuffer",
+ code_buffer_size);
+ guarantee(blob != NULL, "must create initial code buffer");
+ _buffer_blob = blob;
+ }
+ return _buffer_blob;
+}
+
+void Runtime1::setup_code_buffer(CodeBuffer* code, int call_stub_estimate) {
+ // Preinitialize the consts section to some large size:
+ int locs_buffer_size = 20 * (relocInfo::length_limit + sizeof(relocInfo));
+ char* locs_buffer = NEW_RESOURCE_ARRAY(char, locs_buffer_size);
+ code->insts()->initialize_shared_locs((relocInfo*)locs_buffer,
+ locs_buffer_size / sizeof(relocInfo));
+ code->initialize_consts_size(desired_max_constant_size());
+ // Call stubs + deopt/exception handler
+ code->initialize_stubs_size((call_stub_estimate * LIR_Assembler::call_stub_size) +
+ LIR_Assembler::exception_handler_size +
+ LIR_Assembler::deopt_handler_size);
+}
+
+
+void Runtime1::generate_blob_for(StubID id) {
+ assert(0 <= id && id < number_of_ids, "illegal stub id");
+ ResourceMark rm;
+ // create code buffer for code storage
+ CodeBuffer code(get_buffer_blob()->instructions_begin(),
+ get_buffer_blob()->instructions_size());
+
+ setup_code_buffer(&code, 0);
+
+ // create assembler for code generation
+ StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
+ // generate code for runtime stub
+ OopMapSet* oop_maps;
+ oop_maps = generate_code_for(id, sasm);
+ assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
+ "if stub has an oop map it must have a valid frame size");
+
+#ifdef ASSERT
+ // Make sure that stubs that need oopmaps have them
+ switch (id) {
+ // These stubs don't need to have an oopmap
+ case dtrace_object_alloc_id:
+ case slow_subtype_check_id:
+ case fpu2long_stub_id:
+ case unwind_exception_id:
+#ifndef TIERED
+ case counter_overflow_id: // Not generated outside the tiered world
+#endif
+#ifdef SPARC
+ case handle_exception_nofpu_id: // Unused on sparc
+#endif
+ break;
+
+ // All other stubs should have oopmaps
+ default:
+ assert(oop_maps != NULL, "must have an oopmap");
+ }
+#endif
+
+ // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
+ sasm->align(BytesPerWord);
+ // make sure all code is in code buffer
+ sasm->flush();
+ // create blob - distinguish a few special cases
+ CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
+ &code,
+ CodeOffsets::frame_never_safe,
+ sasm->frame_size(),
+ oop_maps,
+ sasm->must_gc_arguments());
+ // install blob
+ assert(blob != NULL, "blob must exist");
+ _blobs[id] = blob;
+}
+
+
+void Runtime1::initialize() {
+ // Warning: If we have more than one compilation running in parallel, we
+ // need a lock here with the current setup (lazy initialization).
+ if (!is_initialized()) {
+ _is_initialized = true;
+
+ // platform-dependent initialization
+ initialize_pd();
+ // generate stubs
+ for (int id = 0; id < number_of_ids; id++) generate_blob_for((StubID)id);
+ // printing
+#ifndef PRODUCT
+ if (PrintSimpleStubs) {
+ ResourceMark rm;
+ for (int id = 0; id < number_of_ids; id++) {
+ _blobs[id]->print();
+ if (_blobs[id]->oop_maps() != NULL) {
+ _blobs[id]->oop_maps()->print();
+ }
+ }
+ }
+#endif
+ }
+}
+
+
+CodeBlob* Runtime1::blob_for(StubID id) {
+ assert(0 <= id && id < number_of_ids, "illegal stub id");
+ if (!is_initialized()) initialize();
+ return _blobs[id];
+}
+
+
+const char* Runtime1::name_for(StubID id) {
+ assert(0 <= id && id < number_of_ids, "illegal stub id");
+ return _blob_names[id];
+}
+
+const char* Runtime1::name_for_address(address entry) {
+ for (int id = 0; id < number_of_ids; id++) {
+ if (entry == entry_for((StubID)id)) return name_for((StubID)id);
+ }
+
+#define FUNCTION_CASE(a, f) \
+ if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f
+
+ FUNCTION_CASE(entry, os::javaTimeMillis);
+ FUNCTION_CASE(entry, os::javaTimeNanos);
+ FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
+ FUNCTION_CASE(entry, SharedRuntime::d2f);
+ FUNCTION_CASE(entry, SharedRuntime::d2i);
+ FUNCTION_CASE(entry, SharedRuntime::d2l);
+ FUNCTION_CASE(entry, SharedRuntime::dcos);
+ FUNCTION_CASE(entry, SharedRuntime::dexp);
+ FUNCTION_CASE(entry, SharedRuntime::dlog);
+ FUNCTION_CASE(entry, SharedRuntime::dlog10);
+ FUNCTION_CASE(entry, SharedRuntime::dpow);
+ FUNCTION_CASE(entry, SharedRuntime::drem);
+ FUNCTION_CASE(entry, SharedRuntime::dsin);
+ FUNCTION_CASE(entry, SharedRuntime::dtan);
+ FUNCTION_CASE(entry, SharedRuntime::f2i);
+ FUNCTION_CASE(entry, SharedRuntime::f2l);
+ FUNCTION_CASE(entry, SharedRuntime::frem);
+ FUNCTION_CASE(entry, SharedRuntime::l2d);
+ FUNCTION_CASE(entry, SharedRuntime::l2f);
+ FUNCTION_CASE(entry, SharedRuntime::ldiv);
+ FUNCTION_CASE(entry, SharedRuntime::lmul);
+ FUNCTION_CASE(entry, SharedRuntime::lrem);
+ FUNCTION_CASE(entry, SharedRuntime::lrem);
+ FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
+ FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
+ FUNCTION_CASE(entry, trace_block_entry);
+
+#undef FUNCTION_CASE
+
+ return "<unknown function>";
+}
+
+
+JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
+ NOT_PRODUCT(_new_instance_slowcase_cnt++;)
+
+ assert(oop(klass)->is_klass(), "not a class");
+ instanceKlassHandle h(thread, klass);
+ h->check_valid_for_instantiation(true, CHECK);
+ // make sure klass is initialized
+ h->initialize(CHECK);
+ // allocate instance and return via TLS
+ oop obj = h->allocate_instance(CHECK);
+ thread->set_vm_result(obj);
+JRT_END
+
+
+JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
+ NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
+ // Note: no handle for klass needed since they are not used
+ // anymore after new_typeArray() and no GC can happen before.
+ // (This may have to change if this code changes!)
+ assert(oop(klass)->is_klass(), "not a class");
+ BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
+ oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
+ thread->set_vm_result(obj);
+ // This is pretty rare but this runtime patch is stressful to deoptimization
+ // if we deoptimize here so force a deopt to stress the path.
+ if (DeoptimizeALot) {
+ deopt_caller();
+ }
+
+JRT_END
+
+
+JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
+ NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
+
+ // Note: no handle for klass needed since they are not used
+ // anymore after new_objArray() and no GC can happen before.
+ // (This may have to change if this code changes!)
+ assert(oop(array_klass)->is_klass(), "not a class");
+ klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
+ objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
+ thread->set_vm_result(obj);
+ // This is pretty rare but this runtime patch is stressful to deoptimization
+ // if we deoptimize here so force a deopt to stress the path.
+ if (DeoptimizeALot) {
+ deopt_caller();
+ }
+JRT_END
+
+
+JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
+ NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
+
+ assert(oop(klass)->is_klass(), "not a class");
+ assert(rank >= 1, "rank must be nonzero");
+#ifdef _LP64
+// In 64 bit mode, the sizes are stored in the top 32 bits
+// of each 64 bit stack entry.
+// dims is actually an intptr_t * because the arguments
+// are pushed onto a 64 bit stack.
+// We must create an array of jints to pass to multi_allocate.
+// We reuse the current stack because it will be popped
+// after this bytecode is completed.
+ if ( rank > 1 ) {
+ int index;
+ for ( index = 1; index < rank; index++ ) { // First size is ok
+ dims[index] = dims[index*2];
+ }
+ }
+#endif
+ oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
+ thread->set_vm_result(obj);
+JRT_END
+
+
+JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
+ tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
+JRT_END
+
+
+JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread))
+ THROW(vmSymbolHandles::java_lang_ArrayStoreException());
+JRT_END
+
+
+JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
+ if (JvmtiExport::can_post_exceptions()) {
+ vframeStream vfst(thread, true);
+ address bcp = vfst.method()->bcp_from(vfst.bci());
+ JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
+ }
+JRT_END
+
+#ifdef TIERED
+JRT_ENTRY(void, Runtime1::counter_overflow(JavaThread* thread, int bci))
+ RegisterMap map(thread, false);
+ frame fr = thread->last_frame().sender(&map);
+ nmethod* nm = (nmethod*) fr.cb();
+ assert(nm!= NULL && nm->is_nmethod(), "what?");
+ methodHandle method(thread, nm->method());
+ if (bci == 0) {
+ // invocation counter overflow
+ if (!Tier1CountOnly) {
+ CompilationPolicy::policy()->method_invocation_event(method, CHECK);
+ } else {
+ method()->invocation_counter()->reset();
+ }
+ } else {
+ if (!Tier1CountOnly) {
+ // Twe have a bci but not the destination bci and besides a backedge
+ // event is more for OSR which we don't want here.
+ CompilationPolicy::policy()->method_invocation_event(method, CHECK);
+ } else {
+ method()->backedge_counter()->reset();
+ }
+ }
+JRT_END
+#endif // TIERED
+
+extern void vm_exit(int code);
+
+// Enter this method from compiled code handler below. This is where we transition
+// to VM mode. This is done as a helper routine so that the method called directly
+// from compiled code does not have to transition to VM. This allows the entry
+// method to see if the nmethod that we have just looked up a handler for has
+// been deoptimized while we were in the vm. This simplifies the assembly code
+// cpu directories.
+//
+// We are entering here from exception stub (via the entry method below)
+// If there is a compiled exception handler in this method, we will continue there;
+// otherwise we will unwind the stack and continue at the caller of top frame method
+// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
+// control the area where we can allow a safepoint. After we exit the safepoint area we can
+// check to see if the handler we are going to return is now in a nmethod that has
+// been deoptimized. If that is the case we return the deopt blob
+// unpack_with_exception entry instead. This makes life for the exception blob easier
+// because making that same check and diverting is painful from assembly language.
+//
+
+
+JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
+
+ Handle exception(thread, ex);
+ nm = CodeCache::find_nmethod(pc);
+ assert(nm != NULL, "this is not an nmethod");
+ // Adjust the pc as needed/
+ if (nm->is_deopt_pc(pc)) {
+ RegisterMap map(thread, false);
+ frame exception_frame = thread->last_frame().sender(&map);
+ // if the frame isn't deopted then pc must not correspond to the caller of last_frame
+ assert(exception_frame.is_deoptimized_frame(), "must be deopted");
+ pc = exception_frame.pc();
+ }
+#ifdef ASSERT
+ assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
+ assert(exception->is_oop(), "just checking");
+ // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
+ if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
+ if (ExitVMOnVerifyError) vm_exit(-1);
+ ShouldNotReachHere();
+ }
+#endif
+
+ // Check the stack guard pages and reenable them if necessary and there is
+ // enough space on the stack to do so. Use fast exceptions only if the guard
+ // pages are enabled.
+ bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
+ if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
+
+ if (JvmtiExport::can_post_exceptions()) {
+ // To ensure correct notification of exception catches and throws
+ // we have to deoptimize here. If we attempted to notify the
+ // catches and throws during this exception lookup it's possible
+ // we could deoptimize on the way out of the VM and end back in
+ // the interpreter at the throw site. This would result in double
+ // notifications since the interpreter would also notify about
+ // these same catches and throws as it unwound the frame.
+
+ RegisterMap reg_map(thread);
+ frame stub_frame = thread->last_frame();
+ frame caller_frame = stub_frame.sender(®_map);
+
+ // We don't really want to deoptimize the nmethod itself since we
+ // can actually continue in the exception handler ourselves but I
+ // don't see an easy way to have the desired effect.
+ VM_DeoptimizeFrame deopt(thread, caller_frame.id());
+ VMThread::execute(&deopt);
+
+ return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
+ }
+
+ // ExceptionCache is used only for exceptions at call and not for implicit exceptions
+ if (guard_pages_enabled) {
+ address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
+ if (fast_continuation != NULL) {
+ if (fast_continuation == ExceptionCache::unwind_handler()) fast_continuation = NULL;
+ return fast_continuation;
+ }
+ }
+
+ // If the stack guard pages are enabled, check whether there is a handler in
+ // the current method. Otherwise (guard pages disabled), force an unwind and
+ // skip the exception cache update (i.e., just leave continuation==NULL).
+ address continuation = NULL;
+ if (guard_pages_enabled) {
+
+ // New exception handling mechanism can support inlined methods
+ // with exception handlers since the mappings are from PC to PC
+
+ // debugging support
+ // tracing
+ if (TraceExceptions) {
+ ttyLocker ttyl;
+ ResourceMark rm;
+ tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
+ exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
+ }
+ // for AbortVMOnException flag
+ NOT_PRODUCT(Exceptions::debug_check_abort(exception));
+
+ // Clear out the exception oop and pc since looking up an
+ // exception handler can cause class loading, which might throw an
+ // exception and those fields are expected to be clear during
+ // normal bytecode execution.
+ thread->set_exception_oop(NULL);
+ thread->set_exception_pc(NULL);
+
+ continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
+ // If an exception was thrown during exception dispatch, the exception oop may have changed
+ thread->set_exception_oop(exception());
+ thread->set_exception_pc(pc);
+
+ // the exception cache is used only by non-implicit exceptions
+ if (continuation == NULL) {
+ nm->add_handler_for_exception_and_pc(exception, pc, ExceptionCache::unwind_handler());
+ } else {
+ nm->add_handler_for_exception_and_pc(exception, pc, continuation);
+ }
+ }
+
+ thread->set_vm_result(exception());
+
+ if (TraceExceptions) {
+ ttyLocker ttyl;
+ ResourceMark rm;
+ tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
+ thread, continuation, pc);
+ }
+
+ return continuation;
+JRT_END
+
+// Enter this method from compiled code only if there is a Java exception handler
+// in the method handling the exception
+// We are entering here from exception stub. We don't do a normal VM transition here.
+// We do it in a helper. This is so we can check to see if the nmethod we have just
+// searched for an exception handler has been deoptimized in the meantime.
+address Runtime1::exception_handler_for_pc(JavaThread* thread) {
+ oop exception = thread->exception_oop();
+ address pc = thread->exception_pc();
+ // Still in Java mode
+ debug_only(ResetNoHandleMark rnhm);
+ nmethod* nm = NULL;
+ address continuation = NULL;
+ {
+ // Enter VM mode by calling the helper
+
+ ResetNoHandleMark rnhm;
+ continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
+ }
+ // Back in JAVA, use no oops DON'T safepoint
+
+ // Now check to see if the nmethod we were called from is now deoptimized.
+ // If so we must return to the deopt blob and deoptimize the nmethod
+
+ if (nm != NULL && caller_is_deopted()) {
+ continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
+ }
+
+ return continuation;
+}
+
+
+JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
+ NOT_PRODUCT(_throw_range_check_exception_count++;)
+ Events::log("throw_range_check");
+ char message[jintAsStringSize];
+ sprintf(message, "%d", index);
+ SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
+JRT_END
+
+
+JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
+ NOT_PRODUCT(_throw_index_exception_count++;)
+ Events::log("throw_index");
+ char message[16];
+ sprintf(message, "%d", index);
+ SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
+JRT_END
+
+
+JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
+ NOT_PRODUCT(_throw_div0_exception_count++;)
+ SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
+JRT_END
+
+
+JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
+ NOT_PRODUCT(_throw_null_pointer_exception_count++;)
+ SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
+JRT_END
+
+
+JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
+ NOT_PRODUCT(_throw_class_cast_exception_count++;)
+ ResourceMark rm(thread);
+ char* message = SharedRuntime::generate_class_cast_message(
+ thread, Klass::cast(object->klass())->external_name());
+ SharedRuntime::throw_and_post_jvmti_exception(
+ thread, vmSymbols::java_lang_ClassCastException(), message);
+JRT_END
+
+
+JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
+ NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
+ ResourceMark rm(thread);
+ SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
+JRT_END
+
+
+JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
+ NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
+ if (PrintBiasedLockingStatistics) {
+ Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
+ }
+ Handle h_obj(thread, obj);
+ assert(h_obj()->is_oop(), "must be NULL or an object");
+ if (UseBiasedLocking) {
+ // Retry fast entry if bias is revoked to avoid unnecessary inflation
+ ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
+ } else {
+ if (UseFastLocking) {
+ // When using fast locking, the compiled code has already tried the fast case
+ assert(obj == lock->obj(), "must match");
+ ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
+ } else {
+ lock->set_obj(obj);
+ ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
+ }
+ }
+JRT_END
+
+
+JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
+ NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
+ assert(thread == JavaThread::current(), "threads must correspond");
+ assert(thread->last_Java_sp(), "last_Java_sp must be set");
+ // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
+ EXCEPTION_MARK;
+
+ oop obj = lock->obj();
+ assert(obj->is_oop(), "must be NULL or an object");
+ if (UseFastLocking) {
+ // When using fast locking, the compiled code has already tried the fast case
+ ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
+ } else {
+ ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
+ }
+JRT_END
+
+
+static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
+ Bytecode_field* field_access = Bytecode_field_at(caller(), caller->bcp_from(bci));
+ // This can be static or non-static field access
+ Bytecodes::Code code = field_access->code();
+
+ // We must load class, initialize class and resolvethe field
+ FieldAccessInfo result; // initialize class if needed
+ constantPoolHandle constants(THREAD, caller->constants());
+ LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK_NULL);
+ return result.klass()();
+}
+
+
+//
+// This routine patches sites where a class wasn't loaded or
+// initialized at the time the code was generated. It handles
+// references to classes, fields and forcing of initialization. Most
+// of the cases are straightforward and involving simply forcing
+// resolution of a class, rewriting the instruction stream with the
+// needed constant and replacing the call in this function with the
+// patched code. The case for static field is more complicated since
+// the thread which is in the process of initializing a class can
+// access it's static fields but other threads can't so the code
+// either has to deoptimize when this case is detected or execute a
+// check that the current thread is the initializing thread. The
+// current
+//
+// Patches basically look like this:
+//
+//
+// patch_site: jmp patch stub ;; will be patched
+// continue: ...
+// ...
+// ...
+// ...
+//
+// They have a stub which looks like this:
+//
+// ;; patch body
+// movl <const>, reg (for class constants)
+// <or> movl [reg1 + <const>], reg (for field offsets)
+// <or> movl reg, [reg1 + <const>] (for field offsets)
+// <being_init offset> <bytes to copy> <bytes to skip>
+// patch_stub: call Runtime1::patch_code (through a runtime stub)
+// jmp patch_site
+//
+//
+// A normal patch is done by rewriting the patch body, usually a move,
+// and then copying it into place over top of the jmp instruction
+// being careful to flush caches and doing it in an MP-safe way. The
+// constants following the patch body are used to find various pieces
+// of the patch relative to the call site for Runtime1::patch_code.
+// The case for getstatic and putstatic is more complicated because
+// getstatic and putstatic have special semantics when executing while
+// the class is being initialized. getstatic/putstatic on a class
+// which is being_initialized may be executed by the initializing
+// thread but other threads have to block when they execute it. This
+// is accomplished in compiled code by executing a test of the current
+// thread against the initializing thread of the class. It's emitted
+// as boilerplate in their stub which allows the patched code to be
+// executed before it's copied back into the main body of the nmethod.
+//
+// being_init: get_thread(<tmp reg>
+// cmpl [reg1 + <init_thread_offset>], <tmp reg>
+// jne patch_stub
+// movl [reg1 + <const>], reg (for field offsets) <or>
+// movl reg, [reg1 + <const>] (for field offsets)
+// jmp continue
+// <being_init offset> <bytes to copy> <bytes to skip>
+// patch_stub: jmp Runtim1::patch_code (through a runtime stub)
+// jmp patch_site
+//
+// If the class is being initialized the patch body is rewritten and
+// the patch site is rewritten to jump to being_init, instead of
+// patch_stub. Whenever this code is executed it checks the current
+// thread against the intializing thread so other threads will enter
+// the runtime and end up blocked waiting the class to finish
+// initializing inside the calls to resolve_field below. The
+// initializing class will continue on it's way. Once the class is
+// fully_initialized, the intializing_thread of the class becomes
+// NULL, so the next thread to execute this code will fail the test,
+// call into patch_code and complete the patching process by copying
+// the patch body back into the main part of the nmethod and resume
+// executing.
+//
+//
+
+JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
+ NOT_PRODUCT(_patch_code_slowcase_cnt++;)
+
+ ResourceMark rm(thread);
+ RegisterMap reg_map(thread, false);
+ frame runtime_frame = thread->last_frame();
+ frame caller_frame = runtime_frame.sender(®_map);
+
+ // last java frame on stack
+ vframeStream vfst(thread, true);
+ assert(!vfst.at_end(), "Java frame must exist");
+
+ methodHandle caller_method(THREAD, vfst.method());
+ // Note that caller_method->code() may not be same as caller_code because of OSR's
+ // Note also that in the presence of inlining it is not guaranteed
+ // that caller_method() == caller_code->method()
+
+
+ int bci = vfst.bci();
+
+ Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
+
+ Bytecodes::Code code = Bytecode_at(caller_method->bcp_from(bci))->java_code();
+
+#ifndef PRODUCT
+ // this is used by assertions in the access_field_patching_id
+ BasicType patch_field_type = T_ILLEGAL;
+#endif // PRODUCT
+ bool deoptimize_for_volatile = false;
+ int patch_field_offset = -1;
+ KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
+ Handle load_klass(THREAD, NULL); // oop needed by load_klass_patching code
+ if (stub_id == Runtime1::access_field_patching_id) {
+
+ Bytecode_field* field_access = Bytecode_field_at(caller_method(), caller_method->bcp_from(bci));
+ FieldAccessInfo result; // initialize class if needed
+ Bytecodes::Code code = field_access->code();
+ constantPoolHandle constants(THREAD, caller_method->constants());
+ LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK);
+ patch_field_offset = result.field_offset();
+
+ // If we're patching a field which is volatile then at compile it
+ // must not have been know to be volatile, so the generated code
+ // isn't correct for a volatile reference. The nmethod has to be
+ // deoptimized so that the code can be regenerated correctly.
+ // This check is only needed for access_field_patching since this
+ // is the path for patching field offsets. load_klass is only
+ // used for patching references to oops which don't need special
+ // handling in the volatile case.
+ deoptimize_for_volatile = result.access_flags().is_volatile();
+
+#ifndef PRODUCT
+ patch_field_type = result.field_type();
+#endif
+ } else if (stub_id == Runtime1::load_klass_patching_id) {
+ oop k;
+ switch (code) {
+ case Bytecodes::_putstatic:
+ case Bytecodes::_getstatic:
+ { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
+ // Save a reference to the class that has to be checked for initialization
+ init_klass = KlassHandle(THREAD, klass);
+ k = klass;
+ }
+ break;
+ case Bytecodes::_new:
+ { Bytecode_new* bnew = Bytecode_new_at(caller_method->bcp_from(bci));
+ k = caller_method->constants()->klass_at(bnew->index(), CHECK);
+ }
+ break;
+ case Bytecodes::_multianewarray:
+ { Bytecode_multianewarray* mna = Bytecode_multianewarray_at(caller_method->bcp_from(bci));
+ k = caller_method->constants()->klass_at(mna->index(), CHECK);
+ }
+ break;
+ case Bytecodes::_instanceof:
+ { Bytecode_instanceof* io = Bytecode_instanceof_at(caller_method->bcp_from(bci));
+ k = caller_method->constants()->klass_at(io->index(), CHECK);
+ }
+ break;
+ case Bytecodes::_checkcast:
+ { Bytecode_checkcast* cc = Bytecode_checkcast_at(caller_method->bcp_from(bci));
+ k = caller_method->constants()->klass_at(cc->index(), CHECK);
+ }
+ break;
+ case Bytecodes::_anewarray:
+ { Bytecode_anewarray* anew = Bytecode_anewarray_at(caller_method->bcp_from(bci));
+ klassOop ek = caller_method->constants()->klass_at(anew->index(), CHECK);
+ k = Klass::cast(ek)->array_klass(CHECK);
+ }
+ break;
+ case Bytecodes::_ldc:
+ case Bytecodes::_ldc_w:
+ {
+ Bytecode_loadconstant* cc = Bytecode_loadconstant_at(caller_method(),
+ caller_method->bcp_from(bci));
+ klassOop resolved = caller_method->constants()->klass_at(cc->index(), CHECK);
+ // ldc wants the java mirror.
+ k = resolved->klass_part()->java_mirror();
+ }
+ break;
+ default: Unimplemented();
+ }
+ // convert to handle
+ load_klass = Handle(THREAD, k);
+ } else {
+ ShouldNotReachHere();
+ }
+
+ if (deoptimize_for_volatile) {
+ // At compile time we assumed the field wasn't volatile but after
+ // loading it turns out it was volatile so we have to throw the
+ // compiled code out and let it be regenerated.
+ if (TracePatching) {
+ tty->print_cr("Deoptimizing for patching volatile field reference");
+ }
+ VM_DeoptimizeFrame deopt(thread, caller_frame.id());
+ VMThread::execute(&deopt);
+
+ // Return to the now deoptimized frame.
+ }
+
+
+ // Now copy code back
+
+ {
+ MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
+ //
+ // Deoptimization may have happened while we waited for the lock.
+ // In that case we don't bother to do any patching we just return
+ // and let the deopt happen
+ if (!caller_is_deopted()) {
+ NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
+ address instr_pc = jump->jump_destination();
+ NativeInstruction* ni = nativeInstruction_at(instr_pc);
+ if (ni->is_jump() ) {
+ // the jump has not been patched yet
+ // The jump destination is slow case and therefore not part of the stubs
+ // (stubs are only for StaticCalls)
+
+ // format of buffer
+ // ....
+ // instr byte 0 <-- copy_buff
+ // instr byte 1
+ // ..
+ // instr byte n-1
+ // n
+ // .... <-- call destination
+
+ address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
+ unsigned char* byte_count = (unsigned char*) (stub_location - 1);
+ unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
+ unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
+ address copy_buff = stub_location - *byte_skip - *byte_count;
+ address being_initialized_entry = stub_location - *being_initialized_entry_offset;
+ if (TracePatching) {
+ tty->print_cr(" Patching %s at bci %d at address 0x%x (%s)", Bytecodes::name(code), bci,
+ instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
+ nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
+ assert(caller_code != NULL, "nmethod not found");
+
+ // NOTE we use pc() not original_pc() because we already know they are
+ // identical otherwise we'd have never entered this block of code
+
+ OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
+ assert(map != NULL, "null check");
+ map->print();
+ tty->cr();
+
+ Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
+ }
+ // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
+ bool do_patch = true;
+ if (stub_id == Runtime1::access_field_patching_id) {
+ // The offset may not be correct if the class was not loaded at code generation time.
+ // Set it now.
+ NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
+ assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
+ assert(patch_field_offset >= 0, "illegal offset");
+ n_move->add_offset_in_bytes(patch_field_offset);
+ } else if (stub_id == Runtime1::load_klass_patching_id) {
+ // If a getstatic or putstatic is referencing a klass which
+ // isn't fully initialized, the patch body isn't copied into
+ // place until initialization is complete. In this case the
+ // patch site is setup so that any threads besides the
+ // initializing thread are forced to come into the VM and
+ // block.
+ do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
+ instanceKlass::cast(init_klass())->is_initialized();
+ NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
+ if (jump->jump_destination() == being_initialized_entry) {
+ assert(do_patch == true, "initialization must be complete at this point");
+ } else {
+ // patch the instruction <move reg, klass>
+ NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
+ assert(n_copy->data() == 0, "illegal init value");
+ assert(load_klass() != NULL, "klass not set");
+ n_copy->set_data((intx) (load_klass()));
+
+ if (TracePatching) {
+ Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
+ }
+
+#ifdef SPARC
+ // Update the oop location in the nmethod with the proper
+ // oop. When the code was generated, a NULL was stuffed
+ // in the oop table and that table needs to be update to
+ // have the right value. On intel the value is kept
+ // directly in the instruction instead of in the oop
+ // table, so set_data above effectively updated the value.
+ nmethod* nm = CodeCache::find_nmethod(instr_pc);
+ assert(nm != NULL, "invalid nmethod_pc");
+ RelocIterator oops(nm, copy_buff, copy_buff + 1);
+ bool found = false;
+ while (oops.next() && !found) {
+ if (oops.type() == relocInfo::oop_type) {
+ oop_Relocation* r = oops.oop_reloc();
+ oop* oop_adr = r->oop_addr();
+ *oop_adr = load_klass();
+ r->fix_oop_relocation();
+ found = true;
+ }
+ }
+ assert(found, "the oop must exist!");
+#endif
+
+ }
+ } else {
+ ShouldNotReachHere();
+ }
+ if (do_patch) {
+ // replace instructions
+ // first replace the tail, then the call
+ for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
+ address ptr = copy_buff + i;
+ int a_byte = (*ptr) & 0xFF;
+ address dst = instr_pc + i;
+ *(unsigned char*)dst = (unsigned char) a_byte;
+ }
+ ICache::invalidate_range(instr_pc, *byte_count);
+ NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
+
+ if (stub_id == Runtime1::load_klass_patching_id) {
+ // update relocInfo to oop
+ nmethod* nm = CodeCache::find_nmethod(instr_pc);
+ assert(nm != NULL, "invalid nmethod_pc");
+
+ // The old patch site is now a move instruction so update
+ // the reloc info so that it will get updated during
+ // future GCs.
+ RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
+ relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
+ relocInfo::none, relocInfo::oop_type);
+#ifdef SPARC
+ // Sparc takes two relocations for an oop so update the second one.
+ address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
+ RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
+ relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
+ relocInfo::none, relocInfo::oop_type);
+#endif
+ }
+
+ } else {
+ ICache::invalidate_range(copy_buff, *byte_count);
+ NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
+ }
+ }
+ }
+ }
+JRT_END
+
+//
+// Entry point for compiled code. We want to patch a nmethod.
+// We don't do a normal VM transition here because we want to
+// know after the patching is complete and any safepoint(s) are taken
+// if the calling nmethod was deoptimized. We do this by calling a
+// helper method which does the normal VM transition and when it
+// completes we can check for deoptimization. This simplifies the
+// assembly code in the cpu directories.
+//
+int Runtime1::move_klass_patching(JavaThread* thread) {
+//
+// NOTE: we are still in Java
+//
+ Thread* THREAD = thread;
+ debug_only(NoHandleMark nhm;)
+ {
+ // Enter VM mode
+
+ ResetNoHandleMark rnhm;
+ patch_code(thread, load_klass_patching_id);
+ }
+ // Back in JAVA, use no oops DON'T safepoint
+
+ // Return true if calling code is deoptimized
+
+ return caller_is_deopted();
+}
+
+//
+// Entry point for compiled code. We want to patch a nmethod.
+// We don't do a normal VM transition here because we want to
+// know after the patching is complete and any safepoint(s) are taken
+// if the calling nmethod was deoptimized. We do this by calling a
+// helper method which does the normal VM transition and when it
+// completes we can check for deoptimization. This simplifies the
+// assembly code in the cpu directories.
+//
+
+int Runtime1::access_field_patching(JavaThread* thread) {
+//
+// NOTE: we are still in Java
+//
+ Thread* THREAD = thread;
+ debug_only(NoHandleMark nhm;)
+ {
+ // Enter VM mode
+
+ ResetNoHandleMark rnhm;
+ patch_code(thread, access_field_patching_id);
+ }
+ // Back in JAVA, use no oops DON'T safepoint
+
+ // Return true if calling code is deoptimized
+
+ return caller_is_deopted();
+JRT_END
+
+
+JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
+ // for now we just print out the block id
+ tty->print("%d ", block_id);
+JRT_END
+
+
+// fast and direct copy of arrays; returning -1, means that an exception may be thrown
+// and we did not copy anything
+JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
+#ifndef PRODUCT
+ _generic_arraycopy_cnt++; // Slow-path oop array copy
+#endif
+
+ enum {
+ ac_failed = -1, // arraycopy failed
+ ac_ok = 0 // arraycopy succeeded
+ };
+
+ if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
+ if (!dst->is_array() || !src->is_array()) return ac_failed;
+ if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
+ if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
+
+ if (length == 0) return ac_ok;
+ if (src->is_typeArray()) {
+ const klassOop klass_oop = src->klass();
+ if (klass_oop != dst->klass()) return ac_failed;
+ typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
+ const int l2es = klass->log2_element_size();
+ const int ihs = klass->array_header_in_bytes() / wordSize;
+ char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
+ char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
+ // Potential problem: memmove is not guaranteed to be word atomic
+ // Revisit in Merlin
+ memmove(dst_addr, src_addr, length << l2es);
+ return ac_ok;
+ } else if (src->is_objArray() && dst->is_objArray()) {
+ oop* src_addr = objArrayOop(src)->obj_at_addr(src_pos);
+ oop* dst_addr = objArrayOop(dst)->obj_at_addr(dst_pos);
+ // For performance reasons, we assume we are using a card marking write
+ // barrier. The assert will fail if this is not the case.
+ // Note that we use the non-virtual inlineable variant of write_ref_array.
+ BarrierSet* bs = Universe::heap()->barrier_set();
+ assert(bs->has_write_ref_array_opt(),
+ "Barrier set must have ref array opt");
+ if (src == dst) {
+ // same object, no check
+ Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
+ bs->write_ref_array(MemRegion((HeapWord*)dst_addr,
+ (HeapWord*)(dst_addr + length)));
+ return ac_ok;
+ } else {
+ klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
+ klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
+ if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
+ // Elements are guaranteed to be subtypes, so no check necessary
+ Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
+ bs->write_ref_array(MemRegion((HeapWord*)dst_addr,
+ (HeapWord*)(dst_addr + length)));
+ return ac_ok;
+ }
+ }
+ }
+ return ac_failed;
+JRT_END
+
+
+JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
+#ifndef PRODUCT
+ _primitive_arraycopy_cnt++;
+#endif
+
+ if (length == 0) return;
+ // Not guaranteed to be word atomic, but that doesn't matter
+ // for anything but an oop array, which is covered by oop_arraycopy.
+ Copy::conjoint_bytes(src, dst, length);
+JRT_END
+
+JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
+#ifndef PRODUCT
+ _oop_arraycopy_cnt++;
+#endif
+
+ if (num == 0) return;
+ Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
+ BarrierSet* bs = Universe::heap()->barrier_set();
+ bs->write_ref_array(MemRegion(dst, dst + num));
+JRT_END
+
+
+#ifndef PRODUCT
+void Runtime1::print_statistics() {
+ tty->print_cr("C1 Runtime statistics:");
+ tty->print_cr(" _resolve_invoke_virtual_cnt: %d", SharedRuntime::_resolve_virtual_ctr);
+ tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
+ tty->print_cr(" _resolve_invoke_static_cnt: %d", SharedRuntime::_resolve_static_ctr);
+ tty->print_cr(" _handle_wrong_method_cnt: %d", SharedRuntime::_wrong_method_ctr);
+ tty->print_cr(" _ic_miss_cnt: %d", SharedRuntime::_ic_miss_ctr);
+ tty->print_cr(" _generic_arraycopy_cnt: %d", _generic_arraycopy_cnt);
+ tty->print_cr(" _primitive_arraycopy_cnt: %d", _primitive_arraycopy_cnt);
+ tty->print_cr(" _oop_arraycopy_cnt: %d", _oop_arraycopy_cnt);
+ tty->print_cr(" _arraycopy_slowcase_cnt: %d", _arraycopy_slowcase_cnt);
+
+ tty->print_cr(" _new_type_array_slowcase_cnt: %d", _new_type_array_slowcase_cnt);
+ tty->print_cr(" _new_object_array_slowcase_cnt: %d", _new_object_array_slowcase_cnt);
+ tty->print_cr(" _new_instance_slowcase_cnt: %d", _new_instance_slowcase_cnt);
+ tty->print_cr(" _new_multi_array_slowcase_cnt: %d", _new_multi_array_slowcase_cnt);
+ tty->print_cr(" _monitorenter_slowcase_cnt: %d", _monitorenter_slowcase_cnt);
+ tty->print_cr(" _monitorexit_slowcase_cnt: %d", _monitorexit_slowcase_cnt);
+ tty->print_cr(" _patch_code_slowcase_cnt: %d", _patch_code_slowcase_cnt);
+
+ tty->print_cr(" _throw_range_check_exception_count: %d:", _throw_range_check_exception_count);
+ tty->print_cr(" _throw_index_exception_count: %d:", _throw_index_exception_count);
+ tty->print_cr(" _throw_div0_exception_count: %d:", _throw_div0_exception_count);
+ tty->print_cr(" _throw_null_pointer_exception_count: %d:", _throw_null_pointer_exception_count);
+ tty->print_cr(" _throw_class_cast_exception_count: %d:", _throw_class_cast_exception_count);
+ tty->print_cr(" _throw_incompatible_class_change_error_count: %d:", _throw_incompatible_class_change_error_count);
+ tty->print_cr(" _throw_array_store_exception_count: %d:", _throw_array_store_exception_count);
+ tty->print_cr(" _throw_count: %d:", _throw_count);
+
+ SharedRuntime::print_ic_miss_histogram();
+ tty->cr();
+}
+#endif // PRODUCT