author | ohair |
Tue, 25 May 2010 15:58:33 -0700 | |
changeset 5506 | 202f599c92aa |
parent 4839 | 6b3edc448285 |
child 7509 | bc7eaae38fff |
permissions | -rw-r--r-- |
2 | 1 |
/* |
5506 | 2 |
* Copyright (c) 1996, 2005, Oracle and/or its affiliates. All rights reserved. |
2 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
5506 | 7 |
* published by the Free Software Foundation. Oracle designates this |
2 | 8 |
* particular file as subject to the "Classpath" exception as provided |
5506 | 9 |
* by Oracle in the LICENSE file that accompanied this code. |
2 | 10 |
* |
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
15 |
* accompanied this code). |
|
16 |
* |
|
17 |
* You should have received a copy of the GNU General Public License version |
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 |
* |
|
5506 | 21 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 |
* or visit www.oracle.com if you need additional information or have any |
|
23 |
* questions. |
|
2 | 24 |
*/ |
25 |
||
26 |
/* |
|
27 |
* (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved |
|
28 |
* (C) Copyright IBM Corp. 1996-1998 - All Rights Reserved |
|
29 |
* |
|
30 |
* The original version of this source code and documentation is copyrighted |
|
31 |
* and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These |
|
32 |
* materials are provided under terms of a License Agreement between Taligent |
|
33 |
* and Sun. This technology is protected by multiple US and International |
|
34 |
* patents. This notice and attribution to Taligent may not be removed. |
|
35 |
* Taligent is a registered trademark of Taligent, Inc. |
|
36 |
* |
|
37 |
*/ |
|
38 |
||
39 |
package java.text; |
|
40 |
||
41 |
import java.lang.Character; |
|
42 |
import java.util.Vector; |
|
43 |
import sun.text.CollatorUtilities; |
|
44 |
import sun.text.normalizer.NormalizerBase; |
|
45 |
||
46 |
/** |
|
47 |
* The <code>CollationElementIterator</code> class is used as an iterator |
|
48 |
* to walk through each character of an international string. Use the iterator |
|
49 |
* to return the ordering priority of the positioned character. The ordering |
|
50 |
* priority of a character, which we refer to as a key, defines how a character |
|
51 |
* is collated in the given collation object. |
|
52 |
* |
|
53 |
* <p> |
|
54 |
* For example, consider the following in Spanish: |
|
55 |
* <blockquote> |
|
56 |
* <pre> |
|
57 |
* "ca" -> the first key is key('c') and second key is key('a'). |
|
58 |
* "cha" -> the first key is key('ch') and second key is key('a'). |
|
59 |
* </pre> |
|
60 |
* </blockquote> |
|
61 |
* And in German, |
|
62 |
* <blockquote> |
|
63 |
* <pre> |
|
64 |
* "\u00e4b"-> the first key is key('a'), the second key is key('e'), and |
|
65 |
* the third key is key('b'). |
|
66 |
* </pre> |
|
67 |
* </blockquote> |
|
68 |
* The key of a character is an integer composed of primary order(short), |
|
69 |
* secondary order(byte), and tertiary order(byte). Java strictly defines |
|
70 |
* the size and signedness of its primitive data types. Therefore, the static |
|
71 |
* functions <code>primaryOrder</code>, <code>secondaryOrder</code>, and |
|
72 |
* <code>tertiaryOrder</code> return <code>int</code>, <code>short</code>, |
|
73 |
* and <code>short</code> respectively to ensure the correctness of the key |
|
74 |
* value. |
|
75 |
* |
|
76 |
* <p> |
|
77 |
* Example of the iterator usage, |
|
78 |
* <blockquote> |
|
79 |
* <pre> |
|
80 |
* |
|
81 |
* String testString = "This is a test"; |
|
82 |
* RuleBasedCollator ruleBasedCollator = (RuleBasedCollator)Collator.getInstance(); |
|
83 |
* CollationElementIterator collationElementIterator = ruleBasedCollator.getCollationElementIterator(testString); |
|
84 |
* int primaryOrder = CollationElementIterator.primaryOrder(collationElementIterator.next()); |
|
85 |
* </pre> |
|
86 |
* </blockquote> |
|
87 |
* |
|
88 |
* <p> |
|
89 |
* <code>CollationElementIterator.next</code> returns the collation order |
|
90 |
* of the next character. A collation order consists of primary order, |
|
91 |
* secondary order and tertiary order. The data type of the collation |
|
92 |
* order is <strong>int</strong>. The first 16 bits of a collation order |
|
93 |
* is its primary order; the next 8 bits is the secondary order and the |
|
94 |
* last 8 bits is the tertiary order. |
|
95 |
* |
|
96 |
* @see Collator |
|
97 |
* @see RuleBasedCollator |
|
98 |
* @author Helena Shih, Laura Werner, Richard Gillam |
|
99 |
*/ |
|
100 |
public final class CollationElementIterator |
|
101 |
{ |
|
102 |
/** |
|
103 |
* Null order which indicates the end of string is reached by the |
|
104 |
* cursor. |
|
105 |
*/ |
|
106 |
public final static int NULLORDER = 0xffffffff; |
|
107 |
||
108 |
/** |
|
109 |
* CollationElementIterator constructor. This takes the source string and |
|
110 |
* the collation object. The cursor will walk thru the source string based |
|
111 |
* on the predefined collation rules. If the source string is empty, |
|
112 |
* NULLORDER will be returned on the calls to next(). |
|
113 |
* @param sourceText the source string. |
|
114 |
* @param order the collation object. |
|
115 |
*/ |
|
116 |
CollationElementIterator(String sourceText, RuleBasedCollator owner) { |
|
117 |
this.owner = owner; |
|
118 |
ordering = owner.getTables(); |
|
119 |
if ( sourceText.length() != 0 ) { |
|
120 |
NormalizerBase.Mode mode = |
|
121 |
CollatorUtilities.toNormalizerMode(owner.getDecomposition()); |
|
122 |
text = new NormalizerBase(sourceText, mode); |
|
123 |
} |
|
124 |
} |
|
125 |
||
126 |
/** |
|
127 |
* CollationElementIterator constructor. This takes the source string and |
|
128 |
* the collation object. The cursor will walk thru the source string based |
|
129 |
* on the predefined collation rules. If the source string is empty, |
|
130 |
* NULLORDER will be returned on the calls to next(). |
|
131 |
* @param sourceText the source string. |
|
132 |
* @param order the collation object. |
|
133 |
*/ |
|
134 |
CollationElementIterator(CharacterIterator sourceText, RuleBasedCollator owner) { |
|
135 |
this.owner = owner; |
|
136 |
ordering = owner.getTables(); |
|
137 |
NormalizerBase.Mode mode = |
|
138 |
CollatorUtilities.toNormalizerMode(owner.getDecomposition()); |
|
139 |
text = new NormalizerBase(sourceText, mode); |
|
140 |
} |
|
141 |
||
142 |
/** |
|
143 |
* Resets the cursor to the beginning of the string. The next call |
|
144 |
* to next() will return the first collation element in the string. |
|
145 |
*/ |
|
146 |
public void reset() |
|
147 |
{ |
|
148 |
if (text != null) { |
|
149 |
text.reset(); |
|
150 |
NormalizerBase.Mode mode = |
|
151 |
CollatorUtilities.toNormalizerMode(owner.getDecomposition()); |
|
152 |
text.setMode(mode); |
|
153 |
} |
|
154 |
buffer = null; |
|
155 |
expIndex = 0; |
|
156 |
swapOrder = 0; |
|
157 |
} |
|
158 |
||
159 |
/** |
|
160 |
* Get the next collation element in the string. <p>This iterator iterates |
|
161 |
* over a sequence of collation elements that were built from the string. |
|
162 |
* Because there isn't necessarily a one-to-one mapping from characters to |
|
163 |
* collation elements, this doesn't mean the same thing as "return the |
|
164 |
* collation element [or ordering priority] of the next character in the |
|
165 |
* string".</p> |
|
166 |
* <p>This function returns the collation element that the iterator is currently |
|
167 |
* pointing to and then updates the internal pointer to point to the next element. |
|
168 |
* previous() updates the pointer first and then returns the element. This |
|
169 |
* means that when you change direction while iterating (i.e., call next() and |
|
170 |
* then call previous(), or call previous() and then call next()), you'll get |
|
171 |
* back the same element twice.</p> |
|
172 |
*/ |
|
173 |
public int next() |
|
174 |
{ |
|
175 |
if (text == null) { |
|
176 |
return NULLORDER; |
|
177 |
} |
|
178 |
NormalizerBase.Mode textMode = text.getMode(); |
|
179 |
// convert the owner's mode to something the Normalizer understands |
|
180 |
NormalizerBase.Mode ownerMode = |
|
181 |
CollatorUtilities.toNormalizerMode(owner.getDecomposition()); |
|
182 |
if (textMode != ownerMode) { |
|
183 |
text.setMode(ownerMode); |
|
184 |
} |
|
185 |
||
186 |
// if buffer contains any decomposed char values |
|
187 |
// return their strength orders before continuing in |
|
188 |
// the Normalizer's CharacterIterator. |
|
189 |
if (buffer != null) { |
|
190 |
if (expIndex < buffer.length) { |
|
191 |
return strengthOrder(buffer[expIndex++]); |
|
192 |
} else { |
|
193 |
buffer = null; |
|
194 |
expIndex = 0; |
|
195 |
} |
|
196 |
} else if (swapOrder != 0) { |
|
197 |
if (Character.isSupplementaryCodePoint(swapOrder)) { |
|
198 |
char[] chars = Character.toChars(swapOrder); |
|
199 |
swapOrder = chars[1]; |
|
200 |
return chars[0] << 16; |
|
201 |
} |
|
202 |
int order = swapOrder << 16; |
|
203 |
swapOrder = 0; |
|
204 |
return order; |
|
205 |
} |
|
206 |
int ch = text.next(); |
|
207 |
||
208 |
// are we at the end of Normalizer's text? |
|
209 |
if (ch == NormalizerBase.DONE) { |
|
210 |
return NULLORDER; |
|
211 |
} |
|
212 |
||
213 |
int value = ordering.getUnicodeOrder(ch); |
|
214 |
if (value == RuleBasedCollator.UNMAPPED) { |
|
215 |
swapOrder = ch; |
|
216 |
return UNMAPPEDCHARVALUE; |
|
217 |
} |
|
218 |
else if (value >= RuleBasedCollator.CONTRACTCHARINDEX) { |
|
219 |
value = nextContractChar(ch); |
|
220 |
} |
|
221 |
if (value >= RuleBasedCollator.EXPANDCHARINDEX) { |
|
222 |
buffer = ordering.getExpandValueList(value); |
|
223 |
expIndex = 0; |
|
224 |
value = buffer[expIndex++]; |
|
225 |
} |
|
226 |
||
227 |
if (ordering.isSEAsianSwapping()) { |
|
228 |
int consonant; |
|
229 |
if (isThaiPreVowel(ch)) { |
|
230 |
consonant = text.next(); |
|
231 |
if (isThaiBaseConsonant(consonant)) { |
|
232 |
buffer = makeReorderedBuffer(consonant, value, buffer, true); |
|
233 |
value = buffer[0]; |
|
234 |
expIndex = 1; |
|
4839
6b3edc448285
5047314: [Col] Collator.compare() runs indefinitely for a certain set of Thai strings
peytoia
parents:
2
diff
changeset
|
235 |
} else if (consonant != NormalizerBase.DONE) { |
2 | 236 |
text.previous(); |
237 |
} |
|
238 |
} |
|
239 |
if (isLaoPreVowel(ch)) { |
|
240 |
consonant = text.next(); |
|
241 |
if (isLaoBaseConsonant(consonant)) { |
|
242 |
buffer = makeReorderedBuffer(consonant, value, buffer, true); |
|
243 |
value = buffer[0]; |
|
244 |
expIndex = 1; |
|
4839
6b3edc448285
5047314: [Col] Collator.compare() runs indefinitely for a certain set of Thai strings
peytoia
parents:
2
diff
changeset
|
245 |
} else if (consonant != NormalizerBase.DONE) { |
2 | 246 |
text.previous(); |
247 |
} |
|
248 |
} |
|
249 |
} |
|
250 |
||
251 |
return strengthOrder(value); |
|
252 |
} |
|
253 |
||
254 |
/** |
|
255 |
* Get the previous collation element in the string. <p>This iterator iterates |
|
256 |
* over a sequence of collation elements that were built from the string. |
|
257 |
* Because there isn't necessarily a one-to-one mapping from characters to |
|
258 |
* collation elements, this doesn't mean the same thing as "return the |
|
259 |
* collation element [or ordering priority] of the previous character in the |
|
260 |
* string".</p> |
|
261 |
* <p>This function updates the iterator's internal pointer to point to the |
|
262 |
* collation element preceding the one it's currently pointing to and then |
|
263 |
* returns that element, while next() returns the current element and then |
|
264 |
* updates the pointer. This means that when you change direction while |
|
265 |
* iterating (i.e., call next() and then call previous(), or call previous() |
|
266 |
* and then call next()), you'll get back the same element twice.</p> |
|
267 |
* @since 1.2 |
|
268 |
*/ |
|
269 |
public int previous() |
|
270 |
{ |
|
271 |
if (text == null) { |
|
272 |
return NULLORDER; |
|
273 |
} |
|
274 |
NormalizerBase.Mode textMode = text.getMode(); |
|
275 |
// convert the owner's mode to something the Normalizer understands |
|
276 |
NormalizerBase.Mode ownerMode = |
|
277 |
CollatorUtilities.toNormalizerMode(owner.getDecomposition()); |
|
278 |
if (textMode != ownerMode) { |
|
279 |
text.setMode(ownerMode); |
|
280 |
} |
|
281 |
if (buffer != null) { |
|
282 |
if (expIndex > 0) { |
|
283 |
return strengthOrder(buffer[--expIndex]); |
|
284 |
} else { |
|
285 |
buffer = null; |
|
286 |
expIndex = 0; |
|
287 |
} |
|
288 |
} else if (swapOrder != 0) { |
|
289 |
if (Character.isSupplementaryCodePoint(swapOrder)) { |
|
290 |
char[] chars = Character.toChars(swapOrder); |
|
291 |
swapOrder = chars[1]; |
|
292 |
return chars[0] << 16; |
|
293 |
} |
|
294 |
int order = swapOrder << 16; |
|
295 |
swapOrder = 0; |
|
296 |
return order; |
|
297 |
} |
|
298 |
int ch = text.previous(); |
|
299 |
if (ch == NormalizerBase.DONE) { |
|
300 |
return NULLORDER; |
|
301 |
} |
|
302 |
||
303 |
int value = ordering.getUnicodeOrder(ch); |
|
304 |
||
305 |
if (value == RuleBasedCollator.UNMAPPED) { |
|
306 |
swapOrder = UNMAPPEDCHARVALUE; |
|
307 |
return ch; |
|
308 |
} else if (value >= RuleBasedCollator.CONTRACTCHARINDEX) { |
|
309 |
value = prevContractChar(ch); |
|
310 |
} |
|
311 |
if (value >= RuleBasedCollator.EXPANDCHARINDEX) { |
|
312 |
buffer = ordering.getExpandValueList(value); |
|
313 |
expIndex = buffer.length; |
|
314 |
value = buffer[--expIndex]; |
|
315 |
} |
|
316 |
||
317 |
if (ordering.isSEAsianSwapping()) { |
|
318 |
int vowel; |
|
319 |
if (isThaiBaseConsonant(ch)) { |
|
320 |
vowel = text.previous(); |
|
321 |
if (isThaiPreVowel(vowel)) { |
|
322 |
buffer = makeReorderedBuffer(vowel, value, buffer, false); |
|
323 |
expIndex = buffer.length - 1; |
|
324 |
value = buffer[expIndex]; |
|
325 |
} else { |
|
326 |
text.next(); |
|
327 |
} |
|
328 |
} |
|
329 |
if (isLaoBaseConsonant(ch)) { |
|
330 |
vowel = text.previous(); |
|
331 |
if (isLaoPreVowel(vowel)) { |
|
332 |
buffer = makeReorderedBuffer(vowel, value, buffer, false); |
|
333 |
expIndex = buffer.length - 1; |
|
334 |
value = buffer[expIndex]; |
|
335 |
} else { |
|
336 |
text.next(); |
|
337 |
} |
|
338 |
} |
|
339 |
} |
|
340 |
||
341 |
return strengthOrder(value); |
|
342 |
} |
|
343 |
||
344 |
/** |
|
345 |
* Return the primary component of a collation element. |
|
346 |
* @param order the collation element |
|
347 |
* @return the element's primary component |
|
348 |
*/ |
|
349 |
public final static int primaryOrder(int order) |
|
350 |
{ |
|
351 |
order &= RBCollationTables.PRIMARYORDERMASK; |
|
352 |
return (order >>> RBCollationTables.PRIMARYORDERSHIFT); |
|
353 |
} |
|
354 |
/** |
|
355 |
* Return the secondary component of a collation element. |
|
356 |
* @param order the collation element |
|
357 |
* @return the element's secondary component |
|
358 |
*/ |
|
359 |
public final static short secondaryOrder(int order) |
|
360 |
{ |
|
361 |
order = order & RBCollationTables.SECONDARYORDERMASK; |
|
362 |
return ((short)(order >> RBCollationTables.SECONDARYORDERSHIFT)); |
|
363 |
} |
|
364 |
/** |
|
365 |
* Return the tertiary component of a collation element. |
|
366 |
* @param order the collation element |
|
367 |
* @return the element's tertiary component |
|
368 |
*/ |
|
369 |
public final static short tertiaryOrder(int order) |
|
370 |
{ |
|
371 |
return ((short)(order &= RBCollationTables.TERTIARYORDERMASK)); |
|
372 |
} |
|
373 |
||
374 |
/** |
|
375 |
* Get the comparison order in the desired strength. Ignore the other |
|
376 |
* differences. |
|
377 |
* @param order The order value |
|
378 |
*/ |
|
379 |
final int strengthOrder(int order) |
|
380 |
{ |
|
381 |
int s = owner.getStrength(); |
|
382 |
if (s == Collator.PRIMARY) |
|
383 |
{ |
|
384 |
order &= RBCollationTables.PRIMARYDIFFERENCEONLY; |
|
385 |
} else if (s == Collator.SECONDARY) |
|
386 |
{ |
|
387 |
order &= RBCollationTables.SECONDARYDIFFERENCEONLY; |
|
388 |
} |
|
389 |
return order; |
|
390 |
} |
|
391 |
||
392 |
/** |
|
393 |
* Sets the iterator to point to the collation element corresponding to |
|
394 |
* the specified character (the parameter is a CHARACTER offset in the |
|
395 |
* original string, not an offset into its corresponding sequence of |
|
396 |
* collation elements). The value returned by the next call to next() |
|
397 |
* will be the collation element corresponding to the specified position |
|
398 |
* in the text. If that position is in the middle of a contracting |
|
399 |
* character sequence, the result of the next call to next() is the |
|
400 |
* collation element for that sequence. This means that getOffset() |
|
401 |
* is not guaranteed to return the same value as was passed to a preceding |
|
402 |
* call to setOffset(). |
|
403 |
* |
|
404 |
* @param newOffset The new character offset into the original text. |
|
405 |
* @since 1.2 |
|
406 |
*/ |
|
407 |
public void setOffset(int newOffset) |
|
408 |
{ |
|
409 |
if (text != null) { |
|
410 |
if (newOffset < text.getBeginIndex() |
|
411 |
|| newOffset >= text.getEndIndex()) { |
|
412 |
text.setIndexOnly(newOffset); |
|
413 |
} else { |
|
414 |
int c = text.setIndex(newOffset); |
|
415 |
||
416 |
// if the desired character isn't used in a contracting character |
|
417 |
// sequence, bypass all the backing-up logic-- we're sitting on |
|
418 |
// the right character already |
|
419 |
if (ordering.usedInContractSeq(c)) { |
|
420 |
// walk backwards through the string until we see a character |
|
421 |
// that DOESN'T participate in a contracting character sequence |
|
422 |
while (ordering.usedInContractSeq(c)) { |
|
423 |
c = text.previous(); |
|
424 |
} |
|
425 |
// now walk forward using this object's next() method until |
|
426 |
// we pass the starting point and set our current position |
|
427 |
// to the beginning of the last "character" before or at |
|
428 |
// our starting position |
|
429 |
int last = text.getIndex(); |
|
430 |
while (text.getIndex() <= newOffset) { |
|
431 |
last = text.getIndex(); |
|
432 |
next(); |
|
433 |
} |
|
434 |
text.setIndexOnly(last); |
|
435 |
// we don't need this, since last is the last index |
|
436 |
// that is the starting of the contraction which encompass |
|
437 |
// newOffset |
|
438 |
// text.previous(); |
|
439 |
} |
|
440 |
} |
|
441 |
} |
|
442 |
buffer = null; |
|
443 |
expIndex = 0; |
|
444 |
swapOrder = 0; |
|
445 |
} |
|
446 |
||
447 |
/** |
|
448 |
* Returns the character offset in the original text corresponding to the next |
|
449 |
* collation element. (That is, getOffset() returns the position in the text |
|
450 |
* corresponding to the collation element that will be returned by the next |
|
451 |
* call to next().) This value will always be the index of the FIRST character |
|
452 |
* corresponding to the collation element (a contracting character sequence is |
|
453 |
* when two or more characters all correspond to the same collation element). |
|
454 |
* This means if you do setOffset(x) followed immediately by getOffset(), getOffset() |
|
455 |
* won't necessarily return x. |
|
456 |
* |
|
457 |
* @return The character offset in the original text corresponding to the collation |
|
458 |
* element that will be returned by the next call to next(). |
|
459 |
* @since 1.2 |
|
460 |
*/ |
|
461 |
public int getOffset() |
|
462 |
{ |
|
463 |
return (text != null) ? text.getIndex() : 0; |
|
464 |
} |
|
465 |
||
466 |
||
467 |
/** |
|
468 |
* Return the maximum length of any expansion sequences that end |
|
469 |
* with the specified comparison order. |
|
470 |
* @param order a collation order returned by previous or next. |
|
471 |
* @return the maximum length of any expansion sequences ending |
|
472 |
* with the specified order. |
|
473 |
* @since 1.2 |
|
474 |
*/ |
|
475 |
public int getMaxExpansion(int order) |
|
476 |
{ |
|
477 |
return ordering.getMaxExpansion(order); |
|
478 |
} |
|
479 |
||
480 |
/** |
|
481 |
* Set a new string over which to iterate. |
|
482 |
* |
|
483 |
* @param source the new source text |
|
484 |
* @since 1.2 |
|
485 |
*/ |
|
486 |
public void setText(String source) |
|
487 |
{ |
|
488 |
buffer = null; |
|
489 |
swapOrder = 0; |
|
490 |
expIndex = 0; |
|
491 |
NormalizerBase.Mode mode = |
|
492 |
CollatorUtilities.toNormalizerMode(owner.getDecomposition()); |
|
493 |
if (text == null) { |
|
494 |
text = new NormalizerBase(source, mode); |
|
495 |
} else { |
|
496 |
text.setMode(mode); |
|
497 |
text.setText(source); |
|
498 |
} |
|
499 |
} |
|
500 |
||
501 |
/** |
|
502 |
* Set a new string over which to iterate. |
|
503 |
* |
|
504 |
* @param source the new source text. |
|
505 |
* @since 1.2 |
|
506 |
*/ |
|
507 |
public void setText(CharacterIterator source) |
|
508 |
{ |
|
509 |
buffer = null; |
|
510 |
swapOrder = 0; |
|
511 |
expIndex = 0; |
|
512 |
NormalizerBase.Mode mode = |
|
513 |
CollatorUtilities.toNormalizerMode(owner.getDecomposition()); |
|
514 |
if (text == null) { |
|
515 |
text = new NormalizerBase(source, mode); |
|
516 |
} else { |
|
517 |
text.setMode(mode); |
|
518 |
text.setText(source); |
|
519 |
} |
|
520 |
} |
|
521 |
||
522 |
//============================================================ |
|
523 |
// privates |
|
524 |
//============================================================ |
|
525 |
||
526 |
/** |
|
527 |
* Determine if a character is a Thai vowel (which sorts after |
|
528 |
* its base consonant). |
|
529 |
*/ |
|
530 |
private final static boolean isThaiPreVowel(int ch) { |
|
531 |
return (ch >= 0x0e40) && (ch <= 0x0e44); |
|
532 |
} |
|
533 |
||
534 |
/** |
|
535 |
* Determine if a character is a Thai base consonant |
|
536 |
*/ |
|
537 |
private final static boolean isThaiBaseConsonant(int ch) { |
|
538 |
return (ch >= 0x0e01) && (ch <= 0x0e2e); |
|
539 |
} |
|
540 |
||
541 |
/** |
|
542 |
* Determine if a character is a Lao vowel (which sorts after |
|
543 |
* its base consonant). |
|
544 |
*/ |
|
545 |
private final static boolean isLaoPreVowel(int ch) { |
|
546 |
return (ch >= 0x0ec0) && (ch <= 0x0ec4); |
|
547 |
} |
|
548 |
||
549 |
/** |
|
550 |
* Determine if a character is a Lao base consonant |
|
551 |
*/ |
|
552 |
private final static boolean isLaoBaseConsonant(int ch) { |
|
553 |
return (ch >= 0x0e81) && (ch <= 0x0eae); |
|
554 |
} |
|
555 |
||
556 |
/** |
|
557 |
* This method produces a buffer which contains the collation |
|
558 |
* elements for the two characters, with colFirst's values preceding |
|
559 |
* another character's. Presumably, the other character precedes colFirst |
|
560 |
* in logical order (otherwise you wouldn't need this method would you?). |
|
561 |
* The assumption is that the other char's value(s) have already been |
|
562 |
* computed. If this char has a single element it is passed to this |
|
563 |
* method as lastValue, and lastExpansion is null. If it has an |
|
564 |
* expansion it is passed in lastExpansion, and colLastValue is ignored. |
|
565 |
*/ |
|
566 |
private int[] makeReorderedBuffer(int colFirst, |
|
567 |
int lastValue, |
|
568 |
int[] lastExpansion, |
|
569 |
boolean forward) { |
|
570 |
||
571 |
int[] result; |
|
572 |
||
573 |
int firstValue = ordering.getUnicodeOrder(colFirst); |
|
574 |
if (firstValue >= RuleBasedCollator.CONTRACTCHARINDEX) { |
|
575 |
firstValue = forward? nextContractChar(colFirst) : prevContractChar(colFirst); |
|
576 |
} |
|
577 |
||
578 |
int[] firstExpansion = null; |
|
579 |
if (firstValue >= RuleBasedCollator.EXPANDCHARINDEX) { |
|
580 |
firstExpansion = ordering.getExpandValueList(firstValue); |
|
581 |
} |
|
582 |
||
583 |
if (!forward) { |
|
584 |
int temp1 = firstValue; |
|
585 |
firstValue = lastValue; |
|
586 |
lastValue = temp1; |
|
587 |
int[] temp2 = firstExpansion; |
|
588 |
firstExpansion = lastExpansion; |
|
589 |
lastExpansion = temp2; |
|
590 |
} |
|
591 |
||
592 |
if (firstExpansion == null && lastExpansion == null) { |
|
593 |
result = new int [2]; |
|
594 |
result[0] = firstValue; |
|
595 |
result[1] = lastValue; |
|
596 |
} |
|
597 |
else { |
|
598 |
int firstLength = firstExpansion==null? 1 : firstExpansion.length; |
|
599 |
int lastLength = lastExpansion==null? 1 : lastExpansion.length; |
|
600 |
result = new int[firstLength + lastLength]; |
|
601 |
||
602 |
if (firstExpansion == null) { |
|
603 |
result[0] = firstValue; |
|
604 |
} |
|
605 |
else { |
|
606 |
System.arraycopy(firstExpansion, 0, result, 0, firstLength); |
|
607 |
} |
|
608 |
||
609 |
if (lastExpansion == null) { |
|
610 |
result[firstLength] = lastValue; |
|
611 |
} |
|
612 |
else { |
|
613 |
System.arraycopy(lastExpansion, 0, result, firstLength, lastLength); |
|
614 |
} |
|
615 |
} |
|
616 |
||
617 |
return result; |
|
618 |
} |
|
619 |
||
620 |
/** |
|
621 |
* Check if a comparison order is ignorable. |
|
622 |
* @return true if a character is ignorable, false otherwise. |
|
623 |
*/ |
|
624 |
final static boolean isIgnorable(int order) |
|
625 |
{ |
|
626 |
return ((primaryOrder(order) == 0) ? true : false); |
|
627 |
} |
|
628 |
||
629 |
/** |
|
630 |
* Get the ordering priority of the next contracting character in the |
|
631 |
* string. |
|
632 |
* @param ch the starting character of a contracting character token |
|
633 |
* @return the next contracting character's ordering. Returns NULLORDER |
|
634 |
* if the end of string is reached. |
|
635 |
*/ |
|
636 |
private int nextContractChar(int ch) |
|
637 |
{ |
|
638 |
// First get the ordering of this single character, |
|
639 |
// which is always the first element in the list |
|
640 |
Vector list = ordering.getContractValues(ch); |
|
641 |
EntryPair pair = (EntryPair)list.firstElement(); |
|
642 |
int order = pair.value; |
|
643 |
||
644 |
// find out the length of the longest contracting character sequence in the list. |
|
645 |
// There's logic in the builder code to make sure the longest sequence is always |
|
646 |
// the last. |
|
647 |
pair = (EntryPair)list.lastElement(); |
|
648 |
int maxLength = pair.entryName.length(); |
|
649 |
||
650 |
// (the Normalizer is cloned here so that the seeking we do in the next loop |
|
651 |
// won't affect our real position in the text) |
|
652 |
NormalizerBase tempText = (NormalizerBase)text.clone(); |
|
653 |
||
654 |
// extract the next maxLength characters in the string (we have to do this using the |
|
655 |
// Normalizer to ensure that our offsets correspond to those the rest of the |
|
656 |
// iterator is using) and store it in "fragment". |
|
657 |
tempText.previous(); |
|
658 |
key.setLength(0); |
|
659 |
int c = tempText.next(); |
|
660 |
while (maxLength > 0 && c != NormalizerBase.DONE) { |
|
661 |
if (Character.isSupplementaryCodePoint(c)) { |
|
662 |
key.append(Character.toChars(c)); |
|
663 |
maxLength -= 2; |
|
664 |
} else { |
|
665 |
key.append((char)c); |
|
666 |
--maxLength; |
|
667 |
} |
|
668 |
c = tempText.next(); |
|
669 |
} |
|
670 |
String fragment = key.toString(); |
|
671 |
// now that we have that fragment, iterate through this list looking for the |
|
672 |
// longest sequence that matches the characters in the actual text. (maxLength |
|
673 |
// is used here to keep track of the length of the longest sequence) |
|
674 |
// Upon exit from this loop, maxLength will contain the length of the matching |
|
675 |
// sequence and order will contain the collation-element value corresponding |
|
676 |
// to this sequence |
|
677 |
maxLength = 1; |
|
678 |
for (int i = list.size() - 1; i > 0; i--) { |
|
679 |
pair = (EntryPair)list.elementAt(i); |
|
680 |
if (!pair.fwd) |
|
681 |
continue; |
|
682 |
||
683 |
if (fragment.startsWith(pair.entryName) && pair.entryName.length() |
|
684 |
> maxLength) { |
|
685 |
maxLength = pair.entryName.length(); |
|
686 |
order = pair.value; |
|
687 |
} |
|
688 |
} |
|
689 |
||
690 |
// seek our current iteration position to the end of the matching sequence |
|
691 |
// and return the appropriate collation-element value (if there was no matching |
|
692 |
// sequence, we're already seeked to the right position and order already contains |
|
693 |
// the correct collation-element value for the single character) |
|
694 |
while (maxLength > 1) { |
|
695 |
c = text.next(); |
|
696 |
maxLength -= Character.charCount(c); |
|
697 |
} |
|
698 |
return order; |
|
699 |
} |
|
700 |
||
701 |
/** |
|
702 |
* Get the ordering priority of the previous contracting character in the |
|
703 |
* string. |
|
704 |
* @param ch the starting character of a contracting character token |
|
705 |
* @return the next contracting character's ordering. Returns NULLORDER |
|
706 |
* if the end of string is reached. |
|
707 |
*/ |
|
708 |
private int prevContractChar(int ch) |
|
709 |
{ |
|
710 |
// This function is identical to nextContractChar(), except that we've |
|
711 |
// switched things so that the next() and previous() calls on the Normalizer |
|
712 |
// are switched and so that we skip entry pairs with the fwd flag turned on |
|
713 |
// rather than off. Notice that we still use append() and startsWith() when |
|
714 |
// working on the fragment. This is because the entry pairs that are used |
|
715 |
// in reverse iteration have their names reversed already. |
|
716 |
Vector list = ordering.getContractValues(ch); |
|
717 |
EntryPair pair = (EntryPair)list.firstElement(); |
|
718 |
int order = pair.value; |
|
719 |
||
720 |
pair = (EntryPair)list.lastElement(); |
|
721 |
int maxLength = pair.entryName.length(); |
|
722 |
||
723 |
NormalizerBase tempText = (NormalizerBase)text.clone(); |
|
724 |
||
725 |
tempText.next(); |
|
726 |
key.setLength(0); |
|
727 |
int c = tempText.previous(); |
|
728 |
while (maxLength > 0 && c != NormalizerBase.DONE) { |
|
729 |
if (Character.isSupplementaryCodePoint(c)) { |
|
730 |
key.append(Character.toChars(c)); |
|
731 |
maxLength -= 2; |
|
732 |
} else { |
|
733 |
key.append((char)c); |
|
734 |
--maxLength; |
|
735 |
} |
|
736 |
c = tempText.previous(); |
|
737 |
} |
|
738 |
String fragment = key.toString(); |
|
739 |
||
740 |
maxLength = 1; |
|
741 |
for (int i = list.size() - 1; i > 0; i--) { |
|
742 |
pair = (EntryPair)list.elementAt(i); |
|
743 |
if (pair.fwd) |
|
744 |
continue; |
|
745 |
||
746 |
if (fragment.startsWith(pair.entryName) && pair.entryName.length() |
|
747 |
> maxLength) { |
|
748 |
maxLength = pair.entryName.length(); |
|
749 |
order = pair.value; |
|
750 |
} |
|
751 |
} |
|
752 |
||
753 |
while (maxLength > 1) { |
|
754 |
c = text.previous(); |
|
755 |
maxLength -= Character.charCount(c); |
|
756 |
} |
|
757 |
return order; |
|
758 |
} |
|
759 |
||
760 |
final static int UNMAPPEDCHARVALUE = 0x7FFF0000; |
|
761 |
||
762 |
private NormalizerBase text = null; |
|
763 |
private int[] buffer = null; |
|
764 |
private int expIndex = 0; |
|
765 |
private StringBuffer key = new StringBuffer(5); |
|
766 |
private int swapOrder = 0; |
|
767 |
private RBCollationTables ordering; |
|
768 |
private RuleBasedCollator owner; |
|
769 |
} |