2
|
1 |
/*
|
|
2 |
* Copyright 1996-2005 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation. Sun designates this
|
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
|
9 |
* by Sun in the LICENSE file that accompanied this code.
|
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
|
21 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
22 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
23 |
* have any questions.
|
|
24 |
*/
|
|
25 |
|
|
26 |
/*
|
|
27 |
* (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
|
|
28 |
* (C) Copyright IBM Corp. 1996-1998 - All Rights Reserved
|
|
29 |
*
|
|
30 |
* The original version of this source code and documentation is copyrighted
|
|
31 |
* and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
|
|
32 |
* materials are provided under terms of a License Agreement between Taligent
|
|
33 |
* and Sun. This technology is protected by multiple US and International
|
|
34 |
* patents. This notice and attribution to Taligent may not be removed.
|
|
35 |
* Taligent is a registered trademark of Taligent, Inc.
|
|
36 |
*
|
|
37 |
*/
|
|
38 |
|
|
39 |
package java.text;
|
|
40 |
|
|
41 |
import java.lang.Character;
|
|
42 |
import java.util.Vector;
|
|
43 |
import sun.text.CollatorUtilities;
|
|
44 |
import sun.text.normalizer.NormalizerBase;
|
|
45 |
|
|
46 |
/**
|
|
47 |
* The <code>CollationElementIterator</code> class is used as an iterator
|
|
48 |
* to walk through each character of an international string. Use the iterator
|
|
49 |
* to return the ordering priority of the positioned character. The ordering
|
|
50 |
* priority of a character, which we refer to as a key, defines how a character
|
|
51 |
* is collated in the given collation object.
|
|
52 |
*
|
|
53 |
* <p>
|
|
54 |
* For example, consider the following in Spanish:
|
|
55 |
* <blockquote>
|
|
56 |
* <pre>
|
|
57 |
* "ca" -> the first key is key('c') and second key is key('a').
|
|
58 |
* "cha" -> the first key is key('ch') and second key is key('a').
|
|
59 |
* </pre>
|
|
60 |
* </blockquote>
|
|
61 |
* And in German,
|
|
62 |
* <blockquote>
|
|
63 |
* <pre>
|
|
64 |
* "\u00e4b"-> the first key is key('a'), the second key is key('e'), and
|
|
65 |
* the third key is key('b').
|
|
66 |
* </pre>
|
|
67 |
* </blockquote>
|
|
68 |
* The key of a character is an integer composed of primary order(short),
|
|
69 |
* secondary order(byte), and tertiary order(byte). Java strictly defines
|
|
70 |
* the size and signedness of its primitive data types. Therefore, the static
|
|
71 |
* functions <code>primaryOrder</code>, <code>secondaryOrder</code>, and
|
|
72 |
* <code>tertiaryOrder</code> return <code>int</code>, <code>short</code>,
|
|
73 |
* and <code>short</code> respectively to ensure the correctness of the key
|
|
74 |
* value.
|
|
75 |
*
|
|
76 |
* <p>
|
|
77 |
* Example of the iterator usage,
|
|
78 |
* <blockquote>
|
|
79 |
* <pre>
|
|
80 |
*
|
|
81 |
* String testString = "This is a test";
|
|
82 |
* RuleBasedCollator ruleBasedCollator = (RuleBasedCollator)Collator.getInstance();
|
|
83 |
* CollationElementIterator collationElementIterator = ruleBasedCollator.getCollationElementIterator(testString);
|
|
84 |
* int primaryOrder = CollationElementIterator.primaryOrder(collationElementIterator.next());
|
|
85 |
* </pre>
|
|
86 |
* </blockquote>
|
|
87 |
*
|
|
88 |
* <p>
|
|
89 |
* <code>CollationElementIterator.next</code> returns the collation order
|
|
90 |
* of the next character. A collation order consists of primary order,
|
|
91 |
* secondary order and tertiary order. The data type of the collation
|
|
92 |
* order is <strong>int</strong>. The first 16 bits of a collation order
|
|
93 |
* is its primary order; the next 8 bits is the secondary order and the
|
|
94 |
* last 8 bits is the tertiary order.
|
|
95 |
*
|
|
96 |
* @see Collator
|
|
97 |
* @see RuleBasedCollator
|
|
98 |
* @author Helena Shih, Laura Werner, Richard Gillam
|
|
99 |
*/
|
|
100 |
public final class CollationElementIterator
|
|
101 |
{
|
|
102 |
/**
|
|
103 |
* Null order which indicates the end of string is reached by the
|
|
104 |
* cursor.
|
|
105 |
*/
|
|
106 |
public final static int NULLORDER = 0xffffffff;
|
|
107 |
|
|
108 |
/**
|
|
109 |
* CollationElementIterator constructor. This takes the source string and
|
|
110 |
* the collation object. The cursor will walk thru the source string based
|
|
111 |
* on the predefined collation rules. If the source string is empty,
|
|
112 |
* NULLORDER will be returned on the calls to next().
|
|
113 |
* @param sourceText the source string.
|
|
114 |
* @param order the collation object.
|
|
115 |
*/
|
|
116 |
CollationElementIterator(String sourceText, RuleBasedCollator owner) {
|
|
117 |
this.owner = owner;
|
|
118 |
ordering = owner.getTables();
|
|
119 |
if ( sourceText.length() != 0 ) {
|
|
120 |
NormalizerBase.Mode mode =
|
|
121 |
CollatorUtilities.toNormalizerMode(owner.getDecomposition());
|
|
122 |
text = new NormalizerBase(sourceText, mode);
|
|
123 |
}
|
|
124 |
}
|
|
125 |
|
|
126 |
/**
|
|
127 |
* CollationElementIterator constructor. This takes the source string and
|
|
128 |
* the collation object. The cursor will walk thru the source string based
|
|
129 |
* on the predefined collation rules. If the source string is empty,
|
|
130 |
* NULLORDER will be returned on the calls to next().
|
|
131 |
* @param sourceText the source string.
|
|
132 |
* @param order the collation object.
|
|
133 |
*/
|
|
134 |
CollationElementIterator(CharacterIterator sourceText, RuleBasedCollator owner) {
|
|
135 |
this.owner = owner;
|
|
136 |
ordering = owner.getTables();
|
|
137 |
NormalizerBase.Mode mode =
|
|
138 |
CollatorUtilities.toNormalizerMode(owner.getDecomposition());
|
|
139 |
text = new NormalizerBase(sourceText, mode);
|
|
140 |
}
|
|
141 |
|
|
142 |
/**
|
|
143 |
* Resets the cursor to the beginning of the string. The next call
|
|
144 |
* to next() will return the first collation element in the string.
|
|
145 |
*/
|
|
146 |
public void reset()
|
|
147 |
{
|
|
148 |
if (text != null) {
|
|
149 |
text.reset();
|
|
150 |
NormalizerBase.Mode mode =
|
|
151 |
CollatorUtilities.toNormalizerMode(owner.getDecomposition());
|
|
152 |
text.setMode(mode);
|
|
153 |
}
|
|
154 |
buffer = null;
|
|
155 |
expIndex = 0;
|
|
156 |
swapOrder = 0;
|
|
157 |
}
|
|
158 |
|
|
159 |
/**
|
|
160 |
* Get the next collation element in the string. <p>This iterator iterates
|
|
161 |
* over a sequence of collation elements that were built from the string.
|
|
162 |
* Because there isn't necessarily a one-to-one mapping from characters to
|
|
163 |
* collation elements, this doesn't mean the same thing as "return the
|
|
164 |
* collation element [or ordering priority] of the next character in the
|
|
165 |
* string".</p>
|
|
166 |
* <p>This function returns the collation element that the iterator is currently
|
|
167 |
* pointing to and then updates the internal pointer to point to the next element.
|
|
168 |
* previous() updates the pointer first and then returns the element. This
|
|
169 |
* means that when you change direction while iterating (i.e., call next() and
|
|
170 |
* then call previous(), or call previous() and then call next()), you'll get
|
|
171 |
* back the same element twice.</p>
|
|
172 |
*/
|
|
173 |
public int next()
|
|
174 |
{
|
|
175 |
if (text == null) {
|
|
176 |
return NULLORDER;
|
|
177 |
}
|
|
178 |
NormalizerBase.Mode textMode = text.getMode();
|
|
179 |
// convert the owner's mode to something the Normalizer understands
|
|
180 |
NormalizerBase.Mode ownerMode =
|
|
181 |
CollatorUtilities.toNormalizerMode(owner.getDecomposition());
|
|
182 |
if (textMode != ownerMode) {
|
|
183 |
text.setMode(ownerMode);
|
|
184 |
}
|
|
185 |
|
|
186 |
// if buffer contains any decomposed char values
|
|
187 |
// return their strength orders before continuing in
|
|
188 |
// the Normalizer's CharacterIterator.
|
|
189 |
if (buffer != null) {
|
|
190 |
if (expIndex < buffer.length) {
|
|
191 |
return strengthOrder(buffer[expIndex++]);
|
|
192 |
} else {
|
|
193 |
buffer = null;
|
|
194 |
expIndex = 0;
|
|
195 |
}
|
|
196 |
} else if (swapOrder != 0) {
|
|
197 |
if (Character.isSupplementaryCodePoint(swapOrder)) {
|
|
198 |
char[] chars = Character.toChars(swapOrder);
|
|
199 |
swapOrder = chars[1];
|
|
200 |
return chars[0] << 16;
|
|
201 |
}
|
|
202 |
int order = swapOrder << 16;
|
|
203 |
swapOrder = 0;
|
|
204 |
return order;
|
|
205 |
}
|
|
206 |
int ch = text.next();
|
|
207 |
|
|
208 |
// are we at the end of Normalizer's text?
|
|
209 |
if (ch == NormalizerBase.DONE) {
|
|
210 |
return NULLORDER;
|
|
211 |
}
|
|
212 |
|
|
213 |
int value = ordering.getUnicodeOrder(ch);
|
|
214 |
if (value == RuleBasedCollator.UNMAPPED) {
|
|
215 |
swapOrder = ch;
|
|
216 |
return UNMAPPEDCHARVALUE;
|
|
217 |
}
|
|
218 |
else if (value >= RuleBasedCollator.CONTRACTCHARINDEX) {
|
|
219 |
value = nextContractChar(ch);
|
|
220 |
}
|
|
221 |
if (value >= RuleBasedCollator.EXPANDCHARINDEX) {
|
|
222 |
buffer = ordering.getExpandValueList(value);
|
|
223 |
expIndex = 0;
|
|
224 |
value = buffer[expIndex++];
|
|
225 |
}
|
|
226 |
|
|
227 |
if (ordering.isSEAsianSwapping()) {
|
|
228 |
int consonant;
|
|
229 |
if (isThaiPreVowel(ch)) {
|
|
230 |
consonant = text.next();
|
|
231 |
if (isThaiBaseConsonant(consonant)) {
|
|
232 |
buffer = makeReorderedBuffer(consonant, value, buffer, true);
|
|
233 |
value = buffer[0];
|
|
234 |
expIndex = 1;
|
|
235 |
} else {
|
|
236 |
text.previous();
|
|
237 |
}
|
|
238 |
}
|
|
239 |
if (isLaoPreVowel(ch)) {
|
|
240 |
consonant = text.next();
|
|
241 |
if (isLaoBaseConsonant(consonant)) {
|
|
242 |
buffer = makeReorderedBuffer(consonant, value, buffer, true);
|
|
243 |
value = buffer[0];
|
|
244 |
expIndex = 1;
|
|
245 |
} else {
|
|
246 |
text.previous();
|
|
247 |
}
|
|
248 |
}
|
|
249 |
}
|
|
250 |
|
|
251 |
return strengthOrder(value);
|
|
252 |
}
|
|
253 |
|
|
254 |
/**
|
|
255 |
* Get the previous collation element in the string. <p>This iterator iterates
|
|
256 |
* over a sequence of collation elements that were built from the string.
|
|
257 |
* Because there isn't necessarily a one-to-one mapping from characters to
|
|
258 |
* collation elements, this doesn't mean the same thing as "return the
|
|
259 |
* collation element [or ordering priority] of the previous character in the
|
|
260 |
* string".</p>
|
|
261 |
* <p>This function updates the iterator's internal pointer to point to the
|
|
262 |
* collation element preceding the one it's currently pointing to and then
|
|
263 |
* returns that element, while next() returns the current element and then
|
|
264 |
* updates the pointer. This means that when you change direction while
|
|
265 |
* iterating (i.e., call next() and then call previous(), or call previous()
|
|
266 |
* and then call next()), you'll get back the same element twice.</p>
|
|
267 |
* @since 1.2
|
|
268 |
*/
|
|
269 |
public int previous()
|
|
270 |
{
|
|
271 |
if (text == null) {
|
|
272 |
return NULLORDER;
|
|
273 |
}
|
|
274 |
NormalizerBase.Mode textMode = text.getMode();
|
|
275 |
// convert the owner's mode to something the Normalizer understands
|
|
276 |
NormalizerBase.Mode ownerMode =
|
|
277 |
CollatorUtilities.toNormalizerMode(owner.getDecomposition());
|
|
278 |
if (textMode != ownerMode) {
|
|
279 |
text.setMode(ownerMode);
|
|
280 |
}
|
|
281 |
if (buffer != null) {
|
|
282 |
if (expIndex > 0) {
|
|
283 |
return strengthOrder(buffer[--expIndex]);
|
|
284 |
} else {
|
|
285 |
buffer = null;
|
|
286 |
expIndex = 0;
|
|
287 |
}
|
|
288 |
} else if (swapOrder != 0) {
|
|
289 |
if (Character.isSupplementaryCodePoint(swapOrder)) {
|
|
290 |
char[] chars = Character.toChars(swapOrder);
|
|
291 |
swapOrder = chars[1];
|
|
292 |
return chars[0] << 16;
|
|
293 |
}
|
|
294 |
int order = swapOrder << 16;
|
|
295 |
swapOrder = 0;
|
|
296 |
return order;
|
|
297 |
}
|
|
298 |
int ch = text.previous();
|
|
299 |
if (ch == NormalizerBase.DONE) {
|
|
300 |
return NULLORDER;
|
|
301 |
}
|
|
302 |
|
|
303 |
int value = ordering.getUnicodeOrder(ch);
|
|
304 |
|
|
305 |
if (value == RuleBasedCollator.UNMAPPED) {
|
|
306 |
swapOrder = UNMAPPEDCHARVALUE;
|
|
307 |
return ch;
|
|
308 |
} else if (value >= RuleBasedCollator.CONTRACTCHARINDEX) {
|
|
309 |
value = prevContractChar(ch);
|
|
310 |
}
|
|
311 |
if (value >= RuleBasedCollator.EXPANDCHARINDEX) {
|
|
312 |
buffer = ordering.getExpandValueList(value);
|
|
313 |
expIndex = buffer.length;
|
|
314 |
value = buffer[--expIndex];
|
|
315 |
}
|
|
316 |
|
|
317 |
if (ordering.isSEAsianSwapping()) {
|
|
318 |
int vowel;
|
|
319 |
if (isThaiBaseConsonant(ch)) {
|
|
320 |
vowel = text.previous();
|
|
321 |
if (isThaiPreVowel(vowel)) {
|
|
322 |
buffer = makeReorderedBuffer(vowel, value, buffer, false);
|
|
323 |
expIndex = buffer.length - 1;
|
|
324 |
value = buffer[expIndex];
|
|
325 |
} else {
|
|
326 |
text.next();
|
|
327 |
}
|
|
328 |
}
|
|
329 |
if (isLaoBaseConsonant(ch)) {
|
|
330 |
vowel = text.previous();
|
|
331 |
if (isLaoPreVowel(vowel)) {
|
|
332 |
buffer = makeReorderedBuffer(vowel, value, buffer, false);
|
|
333 |
expIndex = buffer.length - 1;
|
|
334 |
value = buffer[expIndex];
|
|
335 |
} else {
|
|
336 |
text.next();
|
|
337 |
}
|
|
338 |
}
|
|
339 |
}
|
|
340 |
|
|
341 |
return strengthOrder(value);
|
|
342 |
}
|
|
343 |
|
|
344 |
/**
|
|
345 |
* Return the primary component of a collation element.
|
|
346 |
* @param order the collation element
|
|
347 |
* @return the element's primary component
|
|
348 |
*/
|
|
349 |
public final static int primaryOrder(int order)
|
|
350 |
{
|
|
351 |
order &= RBCollationTables.PRIMARYORDERMASK;
|
|
352 |
return (order >>> RBCollationTables.PRIMARYORDERSHIFT);
|
|
353 |
}
|
|
354 |
/**
|
|
355 |
* Return the secondary component of a collation element.
|
|
356 |
* @param order the collation element
|
|
357 |
* @return the element's secondary component
|
|
358 |
*/
|
|
359 |
public final static short secondaryOrder(int order)
|
|
360 |
{
|
|
361 |
order = order & RBCollationTables.SECONDARYORDERMASK;
|
|
362 |
return ((short)(order >> RBCollationTables.SECONDARYORDERSHIFT));
|
|
363 |
}
|
|
364 |
/**
|
|
365 |
* Return the tertiary component of a collation element.
|
|
366 |
* @param order the collation element
|
|
367 |
* @return the element's tertiary component
|
|
368 |
*/
|
|
369 |
public final static short tertiaryOrder(int order)
|
|
370 |
{
|
|
371 |
return ((short)(order &= RBCollationTables.TERTIARYORDERMASK));
|
|
372 |
}
|
|
373 |
|
|
374 |
/**
|
|
375 |
* Get the comparison order in the desired strength. Ignore the other
|
|
376 |
* differences.
|
|
377 |
* @param order The order value
|
|
378 |
*/
|
|
379 |
final int strengthOrder(int order)
|
|
380 |
{
|
|
381 |
int s = owner.getStrength();
|
|
382 |
if (s == Collator.PRIMARY)
|
|
383 |
{
|
|
384 |
order &= RBCollationTables.PRIMARYDIFFERENCEONLY;
|
|
385 |
} else if (s == Collator.SECONDARY)
|
|
386 |
{
|
|
387 |
order &= RBCollationTables.SECONDARYDIFFERENCEONLY;
|
|
388 |
}
|
|
389 |
return order;
|
|
390 |
}
|
|
391 |
|
|
392 |
/**
|
|
393 |
* Sets the iterator to point to the collation element corresponding to
|
|
394 |
* the specified character (the parameter is a CHARACTER offset in the
|
|
395 |
* original string, not an offset into its corresponding sequence of
|
|
396 |
* collation elements). The value returned by the next call to next()
|
|
397 |
* will be the collation element corresponding to the specified position
|
|
398 |
* in the text. If that position is in the middle of a contracting
|
|
399 |
* character sequence, the result of the next call to next() is the
|
|
400 |
* collation element for that sequence. This means that getOffset()
|
|
401 |
* is not guaranteed to return the same value as was passed to a preceding
|
|
402 |
* call to setOffset().
|
|
403 |
*
|
|
404 |
* @param newOffset The new character offset into the original text.
|
|
405 |
* @since 1.2
|
|
406 |
*/
|
|
407 |
public void setOffset(int newOffset)
|
|
408 |
{
|
|
409 |
if (text != null) {
|
|
410 |
if (newOffset < text.getBeginIndex()
|
|
411 |
|| newOffset >= text.getEndIndex()) {
|
|
412 |
text.setIndexOnly(newOffset);
|
|
413 |
} else {
|
|
414 |
int c = text.setIndex(newOffset);
|
|
415 |
|
|
416 |
// if the desired character isn't used in a contracting character
|
|
417 |
// sequence, bypass all the backing-up logic-- we're sitting on
|
|
418 |
// the right character already
|
|
419 |
if (ordering.usedInContractSeq(c)) {
|
|
420 |
// walk backwards through the string until we see a character
|
|
421 |
// that DOESN'T participate in a contracting character sequence
|
|
422 |
while (ordering.usedInContractSeq(c)) {
|
|
423 |
c = text.previous();
|
|
424 |
}
|
|
425 |
// now walk forward using this object's next() method until
|
|
426 |
// we pass the starting point and set our current position
|
|
427 |
// to the beginning of the last "character" before or at
|
|
428 |
// our starting position
|
|
429 |
int last = text.getIndex();
|
|
430 |
while (text.getIndex() <= newOffset) {
|
|
431 |
last = text.getIndex();
|
|
432 |
next();
|
|
433 |
}
|
|
434 |
text.setIndexOnly(last);
|
|
435 |
// we don't need this, since last is the last index
|
|
436 |
// that is the starting of the contraction which encompass
|
|
437 |
// newOffset
|
|
438 |
// text.previous();
|
|
439 |
}
|
|
440 |
}
|
|
441 |
}
|
|
442 |
buffer = null;
|
|
443 |
expIndex = 0;
|
|
444 |
swapOrder = 0;
|
|
445 |
}
|
|
446 |
|
|
447 |
/**
|
|
448 |
* Returns the character offset in the original text corresponding to the next
|
|
449 |
* collation element. (That is, getOffset() returns the position in the text
|
|
450 |
* corresponding to the collation element that will be returned by the next
|
|
451 |
* call to next().) This value will always be the index of the FIRST character
|
|
452 |
* corresponding to the collation element (a contracting character sequence is
|
|
453 |
* when two or more characters all correspond to the same collation element).
|
|
454 |
* This means if you do setOffset(x) followed immediately by getOffset(), getOffset()
|
|
455 |
* won't necessarily return x.
|
|
456 |
*
|
|
457 |
* @return The character offset in the original text corresponding to the collation
|
|
458 |
* element that will be returned by the next call to next().
|
|
459 |
* @since 1.2
|
|
460 |
*/
|
|
461 |
public int getOffset()
|
|
462 |
{
|
|
463 |
return (text != null) ? text.getIndex() : 0;
|
|
464 |
}
|
|
465 |
|
|
466 |
|
|
467 |
/**
|
|
468 |
* Return the maximum length of any expansion sequences that end
|
|
469 |
* with the specified comparison order.
|
|
470 |
* @param order a collation order returned by previous or next.
|
|
471 |
* @return the maximum length of any expansion sequences ending
|
|
472 |
* with the specified order.
|
|
473 |
* @since 1.2
|
|
474 |
*/
|
|
475 |
public int getMaxExpansion(int order)
|
|
476 |
{
|
|
477 |
return ordering.getMaxExpansion(order);
|
|
478 |
}
|
|
479 |
|
|
480 |
/**
|
|
481 |
* Set a new string over which to iterate.
|
|
482 |
*
|
|
483 |
* @param source the new source text
|
|
484 |
* @since 1.2
|
|
485 |
*/
|
|
486 |
public void setText(String source)
|
|
487 |
{
|
|
488 |
buffer = null;
|
|
489 |
swapOrder = 0;
|
|
490 |
expIndex = 0;
|
|
491 |
NormalizerBase.Mode mode =
|
|
492 |
CollatorUtilities.toNormalizerMode(owner.getDecomposition());
|
|
493 |
if (text == null) {
|
|
494 |
text = new NormalizerBase(source, mode);
|
|
495 |
} else {
|
|
496 |
text.setMode(mode);
|
|
497 |
text.setText(source);
|
|
498 |
}
|
|
499 |
}
|
|
500 |
|
|
501 |
/**
|
|
502 |
* Set a new string over which to iterate.
|
|
503 |
*
|
|
504 |
* @param source the new source text.
|
|
505 |
* @since 1.2
|
|
506 |
*/
|
|
507 |
public void setText(CharacterIterator source)
|
|
508 |
{
|
|
509 |
buffer = null;
|
|
510 |
swapOrder = 0;
|
|
511 |
expIndex = 0;
|
|
512 |
NormalizerBase.Mode mode =
|
|
513 |
CollatorUtilities.toNormalizerMode(owner.getDecomposition());
|
|
514 |
if (text == null) {
|
|
515 |
text = new NormalizerBase(source, mode);
|
|
516 |
} else {
|
|
517 |
text.setMode(mode);
|
|
518 |
text.setText(source);
|
|
519 |
}
|
|
520 |
}
|
|
521 |
|
|
522 |
//============================================================
|
|
523 |
// privates
|
|
524 |
//============================================================
|
|
525 |
|
|
526 |
/**
|
|
527 |
* Determine if a character is a Thai vowel (which sorts after
|
|
528 |
* its base consonant).
|
|
529 |
*/
|
|
530 |
private final static boolean isThaiPreVowel(int ch) {
|
|
531 |
return (ch >= 0x0e40) && (ch <= 0x0e44);
|
|
532 |
}
|
|
533 |
|
|
534 |
/**
|
|
535 |
* Determine if a character is a Thai base consonant
|
|
536 |
*/
|
|
537 |
private final static boolean isThaiBaseConsonant(int ch) {
|
|
538 |
return (ch >= 0x0e01) && (ch <= 0x0e2e);
|
|
539 |
}
|
|
540 |
|
|
541 |
/**
|
|
542 |
* Determine if a character is a Lao vowel (which sorts after
|
|
543 |
* its base consonant).
|
|
544 |
*/
|
|
545 |
private final static boolean isLaoPreVowel(int ch) {
|
|
546 |
return (ch >= 0x0ec0) && (ch <= 0x0ec4);
|
|
547 |
}
|
|
548 |
|
|
549 |
/**
|
|
550 |
* Determine if a character is a Lao base consonant
|
|
551 |
*/
|
|
552 |
private final static boolean isLaoBaseConsonant(int ch) {
|
|
553 |
return (ch >= 0x0e81) && (ch <= 0x0eae);
|
|
554 |
}
|
|
555 |
|
|
556 |
/**
|
|
557 |
* This method produces a buffer which contains the collation
|
|
558 |
* elements for the two characters, with colFirst's values preceding
|
|
559 |
* another character's. Presumably, the other character precedes colFirst
|
|
560 |
* in logical order (otherwise you wouldn't need this method would you?).
|
|
561 |
* The assumption is that the other char's value(s) have already been
|
|
562 |
* computed. If this char has a single element it is passed to this
|
|
563 |
* method as lastValue, and lastExpansion is null. If it has an
|
|
564 |
* expansion it is passed in lastExpansion, and colLastValue is ignored.
|
|
565 |
*/
|
|
566 |
private int[] makeReorderedBuffer(int colFirst,
|
|
567 |
int lastValue,
|
|
568 |
int[] lastExpansion,
|
|
569 |
boolean forward) {
|
|
570 |
|
|
571 |
int[] result;
|
|
572 |
|
|
573 |
int firstValue = ordering.getUnicodeOrder(colFirst);
|
|
574 |
if (firstValue >= RuleBasedCollator.CONTRACTCHARINDEX) {
|
|
575 |
firstValue = forward? nextContractChar(colFirst) : prevContractChar(colFirst);
|
|
576 |
}
|
|
577 |
|
|
578 |
int[] firstExpansion = null;
|
|
579 |
if (firstValue >= RuleBasedCollator.EXPANDCHARINDEX) {
|
|
580 |
firstExpansion = ordering.getExpandValueList(firstValue);
|
|
581 |
}
|
|
582 |
|
|
583 |
if (!forward) {
|
|
584 |
int temp1 = firstValue;
|
|
585 |
firstValue = lastValue;
|
|
586 |
lastValue = temp1;
|
|
587 |
int[] temp2 = firstExpansion;
|
|
588 |
firstExpansion = lastExpansion;
|
|
589 |
lastExpansion = temp2;
|
|
590 |
}
|
|
591 |
|
|
592 |
if (firstExpansion == null && lastExpansion == null) {
|
|
593 |
result = new int [2];
|
|
594 |
result[0] = firstValue;
|
|
595 |
result[1] = lastValue;
|
|
596 |
}
|
|
597 |
else {
|
|
598 |
int firstLength = firstExpansion==null? 1 : firstExpansion.length;
|
|
599 |
int lastLength = lastExpansion==null? 1 : lastExpansion.length;
|
|
600 |
result = new int[firstLength + lastLength];
|
|
601 |
|
|
602 |
if (firstExpansion == null) {
|
|
603 |
result[0] = firstValue;
|
|
604 |
}
|
|
605 |
else {
|
|
606 |
System.arraycopy(firstExpansion, 0, result, 0, firstLength);
|
|
607 |
}
|
|
608 |
|
|
609 |
if (lastExpansion == null) {
|
|
610 |
result[firstLength] = lastValue;
|
|
611 |
}
|
|
612 |
else {
|
|
613 |
System.arraycopy(lastExpansion, 0, result, firstLength, lastLength);
|
|
614 |
}
|
|
615 |
}
|
|
616 |
|
|
617 |
return result;
|
|
618 |
}
|
|
619 |
|
|
620 |
/**
|
|
621 |
* Check if a comparison order is ignorable.
|
|
622 |
* @return true if a character is ignorable, false otherwise.
|
|
623 |
*/
|
|
624 |
final static boolean isIgnorable(int order)
|
|
625 |
{
|
|
626 |
return ((primaryOrder(order) == 0) ? true : false);
|
|
627 |
}
|
|
628 |
|
|
629 |
/**
|
|
630 |
* Get the ordering priority of the next contracting character in the
|
|
631 |
* string.
|
|
632 |
* @param ch the starting character of a contracting character token
|
|
633 |
* @return the next contracting character's ordering. Returns NULLORDER
|
|
634 |
* if the end of string is reached.
|
|
635 |
*/
|
|
636 |
private int nextContractChar(int ch)
|
|
637 |
{
|
|
638 |
// First get the ordering of this single character,
|
|
639 |
// which is always the first element in the list
|
|
640 |
Vector list = ordering.getContractValues(ch);
|
|
641 |
EntryPair pair = (EntryPair)list.firstElement();
|
|
642 |
int order = pair.value;
|
|
643 |
|
|
644 |
// find out the length of the longest contracting character sequence in the list.
|
|
645 |
// There's logic in the builder code to make sure the longest sequence is always
|
|
646 |
// the last.
|
|
647 |
pair = (EntryPair)list.lastElement();
|
|
648 |
int maxLength = pair.entryName.length();
|
|
649 |
|
|
650 |
// (the Normalizer is cloned here so that the seeking we do in the next loop
|
|
651 |
// won't affect our real position in the text)
|
|
652 |
NormalizerBase tempText = (NormalizerBase)text.clone();
|
|
653 |
|
|
654 |
// extract the next maxLength characters in the string (we have to do this using the
|
|
655 |
// Normalizer to ensure that our offsets correspond to those the rest of the
|
|
656 |
// iterator is using) and store it in "fragment".
|
|
657 |
tempText.previous();
|
|
658 |
key.setLength(0);
|
|
659 |
int c = tempText.next();
|
|
660 |
while (maxLength > 0 && c != NormalizerBase.DONE) {
|
|
661 |
if (Character.isSupplementaryCodePoint(c)) {
|
|
662 |
key.append(Character.toChars(c));
|
|
663 |
maxLength -= 2;
|
|
664 |
} else {
|
|
665 |
key.append((char)c);
|
|
666 |
--maxLength;
|
|
667 |
}
|
|
668 |
c = tempText.next();
|
|
669 |
}
|
|
670 |
String fragment = key.toString();
|
|
671 |
// now that we have that fragment, iterate through this list looking for the
|
|
672 |
// longest sequence that matches the characters in the actual text. (maxLength
|
|
673 |
// is used here to keep track of the length of the longest sequence)
|
|
674 |
// Upon exit from this loop, maxLength will contain the length of the matching
|
|
675 |
// sequence and order will contain the collation-element value corresponding
|
|
676 |
// to this sequence
|
|
677 |
maxLength = 1;
|
|
678 |
for (int i = list.size() - 1; i > 0; i--) {
|
|
679 |
pair = (EntryPair)list.elementAt(i);
|
|
680 |
if (!pair.fwd)
|
|
681 |
continue;
|
|
682 |
|
|
683 |
if (fragment.startsWith(pair.entryName) && pair.entryName.length()
|
|
684 |
> maxLength) {
|
|
685 |
maxLength = pair.entryName.length();
|
|
686 |
order = pair.value;
|
|
687 |
}
|
|
688 |
}
|
|
689 |
|
|
690 |
// seek our current iteration position to the end of the matching sequence
|
|
691 |
// and return the appropriate collation-element value (if there was no matching
|
|
692 |
// sequence, we're already seeked to the right position and order already contains
|
|
693 |
// the correct collation-element value for the single character)
|
|
694 |
while (maxLength > 1) {
|
|
695 |
c = text.next();
|
|
696 |
maxLength -= Character.charCount(c);
|
|
697 |
}
|
|
698 |
return order;
|
|
699 |
}
|
|
700 |
|
|
701 |
/**
|
|
702 |
* Get the ordering priority of the previous contracting character in the
|
|
703 |
* string.
|
|
704 |
* @param ch the starting character of a contracting character token
|
|
705 |
* @return the next contracting character's ordering. Returns NULLORDER
|
|
706 |
* if the end of string is reached.
|
|
707 |
*/
|
|
708 |
private int prevContractChar(int ch)
|
|
709 |
{
|
|
710 |
// This function is identical to nextContractChar(), except that we've
|
|
711 |
// switched things so that the next() and previous() calls on the Normalizer
|
|
712 |
// are switched and so that we skip entry pairs with the fwd flag turned on
|
|
713 |
// rather than off. Notice that we still use append() and startsWith() when
|
|
714 |
// working on the fragment. This is because the entry pairs that are used
|
|
715 |
// in reverse iteration have their names reversed already.
|
|
716 |
Vector list = ordering.getContractValues(ch);
|
|
717 |
EntryPair pair = (EntryPair)list.firstElement();
|
|
718 |
int order = pair.value;
|
|
719 |
|
|
720 |
pair = (EntryPair)list.lastElement();
|
|
721 |
int maxLength = pair.entryName.length();
|
|
722 |
|
|
723 |
NormalizerBase tempText = (NormalizerBase)text.clone();
|
|
724 |
|
|
725 |
tempText.next();
|
|
726 |
key.setLength(0);
|
|
727 |
int c = tempText.previous();
|
|
728 |
while (maxLength > 0 && c != NormalizerBase.DONE) {
|
|
729 |
if (Character.isSupplementaryCodePoint(c)) {
|
|
730 |
key.append(Character.toChars(c));
|
|
731 |
maxLength -= 2;
|
|
732 |
} else {
|
|
733 |
key.append((char)c);
|
|
734 |
--maxLength;
|
|
735 |
}
|
|
736 |
c = tempText.previous();
|
|
737 |
}
|
|
738 |
String fragment = key.toString();
|
|
739 |
|
|
740 |
maxLength = 1;
|
|
741 |
for (int i = list.size() - 1; i > 0; i--) {
|
|
742 |
pair = (EntryPair)list.elementAt(i);
|
|
743 |
if (pair.fwd)
|
|
744 |
continue;
|
|
745 |
|
|
746 |
if (fragment.startsWith(pair.entryName) && pair.entryName.length()
|
|
747 |
> maxLength) {
|
|
748 |
maxLength = pair.entryName.length();
|
|
749 |
order = pair.value;
|
|
750 |
}
|
|
751 |
}
|
|
752 |
|
|
753 |
while (maxLength > 1) {
|
|
754 |
c = text.previous();
|
|
755 |
maxLength -= Character.charCount(c);
|
|
756 |
}
|
|
757 |
return order;
|
|
758 |
}
|
|
759 |
|
|
760 |
final static int UNMAPPEDCHARVALUE = 0x7FFF0000;
|
|
761 |
|
|
762 |
private NormalizerBase text = null;
|
|
763 |
private int[] buffer = null;
|
|
764 |
private int expIndex = 0;
|
|
765 |
private StringBuffer key = new StringBuffer(5);
|
|
766 |
private int swapOrder = 0;
|
|
767 |
private RBCollationTables ordering;
|
|
768 |
private RuleBasedCollator owner;
|
|
769 |
}
|