hotspot/src/share/vm/opto/ifg.cpp
changeset 1 489c9b5090e2
child 1057 44220ef9a775
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/opto/ifg.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,813 @@
+/*
+ * Copyright 1998-2006 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_ifg.cpp.incl"
+
+#define EXACT_PRESSURE 1
+
+//=============================================================================
+//------------------------------IFG--------------------------------------------
+PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
+}
+
+//------------------------------init-------------------------------------------
+void PhaseIFG::init( uint maxlrg ) {
+  _maxlrg = maxlrg;
+  _yanked = new (_arena) VectorSet(_arena);
+  _is_square = false;
+  // Make uninitialized adjacency lists
+  _adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
+  // Also make empty live range structures
+  _lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
+  memset(_lrgs,0,sizeof(LRG)*maxlrg);
+  // Init all to empty
+  for( uint i = 0; i < maxlrg; i++ ) {
+    _adjs[i].initialize(maxlrg);
+    _lrgs[i].Set_All();
+  }
+}
+
+//------------------------------add--------------------------------------------
+// Add edge between vertices a & b.  These are sorted (triangular matrix),
+// then the smaller number is inserted in the larger numbered array.
+int PhaseIFG::add_edge( uint a, uint b ) {
+  lrgs(a).invalid_degree();
+  lrgs(b).invalid_degree();
+  // Sort a and b, so that a is bigger
+  assert( !_is_square, "only on triangular" );
+  if( a < b ) { uint tmp = a; a = b; b = tmp; }
+  return _adjs[a].insert( b );
+}
+
+//------------------------------add_vector-------------------------------------
+// Add an edge between 'a' and everything in the vector.
+void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
+  // IFG is triangular, so do the inserts where 'a' < 'b'.
+  assert( !_is_square, "only on triangular" );
+  IndexSet *adjs_a = &_adjs[a];
+  if( !vec->count() ) return;
+
+  IndexSetIterator elements(vec);
+  uint neighbor;
+  while ((neighbor = elements.next()) != 0) {
+    add_edge( a, neighbor );
+  }
+}
+
+//------------------------------test-------------------------------------------
+// Is there an edge between a and b?
+int PhaseIFG::test_edge( uint a, uint b ) const {
+  // Sort a and b, so that a is larger
+  assert( !_is_square, "only on triangular" );
+  if( a < b ) { uint tmp = a; a = b; b = tmp; }
+  return _adjs[a].member(b);
+}
+
+//------------------------------SquareUp---------------------------------------
+// Convert triangular matrix to square matrix
+void PhaseIFG::SquareUp() {
+  assert( !_is_square, "only on triangular" );
+
+  // Simple transpose
+  for( uint i = 0; i < _maxlrg; i++ ) {
+    IndexSetIterator elements(&_adjs[i]);
+    uint datum;
+    while ((datum = elements.next()) != 0) {
+      _adjs[datum].insert( i );
+    }
+  }
+  _is_square = true;
+}
+
+//------------------------------Compute_Effective_Degree-----------------------
+// Compute effective degree in bulk
+void PhaseIFG::Compute_Effective_Degree() {
+  assert( _is_square, "only on square" );
+
+  for( uint i = 0; i < _maxlrg; i++ )
+    lrgs(i).set_degree(effective_degree(i));
+}
+
+//------------------------------test_edge_sq-----------------------------------
+int PhaseIFG::test_edge_sq( uint a, uint b ) const {
+  assert( _is_square, "only on square" );
+  // Swap, so that 'a' has the lesser count.  Then binary search is on
+  // the smaller of a's list and b's list.
+  if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
+  //return _adjs[a].unordered_member(b);
+  return _adjs[a].member(b);
+}
+
+//------------------------------Union------------------------------------------
+// Union edges of B into A
+void PhaseIFG::Union( uint a, uint b ) {
+  assert( _is_square, "only on square" );
+  IndexSet *A = &_adjs[a];
+  IndexSetIterator b_elements(&_adjs[b]);
+  uint datum;
+  while ((datum = b_elements.next()) != 0) {
+    if(A->insert(datum)) {
+      _adjs[datum].insert(a);
+      lrgs(a).invalid_degree();
+      lrgs(datum).invalid_degree();
+    }
+  }
+}
+
+//------------------------------remove_node------------------------------------
+// Yank a Node and all connected edges from the IFG.  Return a
+// list of neighbors (edges) yanked.
+IndexSet *PhaseIFG::remove_node( uint a ) {
+  assert( _is_square, "only on square" );
+  assert( !_yanked->test(a), "" );
+  _yanked->set(a);
+
+  // I remove the LRG from all neighbors.
+  IndexSetIterator elements(&_adjs[a]);
+  LRG &lrg_a = lrgs(a);
+  uint datum;
+  while ((datum = elements.next()) != 0) {
+    _adjs[datum].remove(a);
+    lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
+  }
+  return neighbors(a);
+}
+
+//------------------------------re_insert--------------------------------------
+// Re-insert a yanked Node.
+void PhaseIFG::re_insert( uint a ) {
+  assert( _is_square, "only on square" );
+  assert( _yanked->test(a), "" );
+  (*_yanked) >>= a;
+
+  IndexSetIterator elements(&_adjs[a]);
+  uint datum;
+  while ((datum = elements.next()) != 0) {
+    _adjs[datum].insert(a);
+    lrgs(datum).invalid_degree();
+  }
+}
+
+//------------------------------compute_degree---------------------------------
+// Compute the degree between 2 live ranges.  If both live ranges are
+// aligned-adjacent powers-of-2 then we use the MAX size.  If either is
+// mis-aligned (or for Fat-Projections, not-adjacent) then we have to
+// MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
+// this is so.
+int LRG::compute_degree( LRG &l ) const {
+  int tmp;
+  int num_regs = _num_regs;
+  int nregs = l.num_regs();
+  tmp =  (_fat_proj || l._fat_proj)     // either is a fat-proj?
+    ? (num_regs * nregs)                // then use product
+    : MAX2(num_regs,nregs);             // else use max
+  return tmp;
+}
+
+//------------------------------effective_degree-------------------------------
+// Compute effective degree for this live range.  If both live ranges are
+// aligned-adjacent powers-of-2 then we use the MAX size.  If either is
+// mis-aligned (or for Fat-Projections, not-adjacent) then we have to
+// MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
+// this is so.
+int PhaseIFG::effective_degree( uint lidx ) const {
+  int eff = 0;
+  int num_regs = lrgs(lidx).num_regs();
+  int fat_proj = lrgs(lidx)._fat_proj;
+  IndexSet *s = neighbors(lidx);
+  IndexSetIterator elements(s);
+  uint nidx;
+  while((nidx = elements.next()) != 0) {
+    LRG &lrgn = lrgs(nidx);
+    int nregs = lrgn.num_regs();
+    eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
+      ? (num_regs * nregs)              // then use product
+      : MAX2(num_regs,nregs);           // else use max
+  }
+  return eff;
+}
+
+
+#ifndef PRODUCT
+//------------------------------dump-------------------------------------------
+void PhaseIFG::dump() const {
+  tty->print_cr("-- Interference Graph --%s--",
+                _is_square ? "square" : "triangular" );
+  if( _is_square ) {
+    for( uint i = 0; i < _maxlrg; i++ ) {
+      tty->print( (*_yanked)[i] ? "XX " : "  ");
+      tty->print("L%d: { ",i);
+      IndexSetIterator elements(&_adjs[i]);
+      uint datum;
+      while ((datum = elements.next()) != 0) {
+        tty->print("L%d ", datum);
+      }
+      tty->print_cr("}");
+
+    }
+    return;
+  }
+
+  // Triangular
+  for( uint i = 0; i < _maxlrg; i++ ) {
+    uint j;
+    tty->print( (*_yanked)[i] ? "XX " : "  ");
+    tty->print("L%d: { ",i);
+    for( j = _maxlrg; j > i; j-- )
+      if( test_edge(j - 1,i) ) {
+        tty->print("L%d ",j - 1);
+      }
+    tty->print("| ");
+    IndexSetIterator elements(&_adjs[i]);
+    uint datum;
+    while ((datum = elements.next()) != 0) {
+      tty->print("L%d ", datum);
+    }
+    tty->print("}\n");
+  }
+  tty->print("\n");
+}
+
+//------------------------------stats------------------------------------------
+void PhaseIFG::stats() const {
+  ResourceMark rm;
+  int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
+  memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
+  uint i;
+  for( i = 0; i < _maxlrg; i++ ) {
+    h_cnt[neighbor_cnt(i)]++;
+  }
+  tty->print_cr("--Histogram of counts--");
+  for( i = 0; i < _maxlrg*2; i++ )
+    if( h_cnt[i] )
+      tty->print("%d/%d ",i,h_cnt[i]);
+  tty->print_cr("");
+}
+
+//------------------------------verify-----------------------------------------
+void PhaseIFG::verify( const PhaseChaitin *pc ) const {
+  // IFG is square, sorted and no need for Find
+  for( uint i = 0; i < _maxlrg; i++ ) {
+    assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
+    IndexSet *set = &_adjs[i];
+    IndexSetIterator elements(set);
+    uint idx;
+    uint last = 0;
+    while ((idx = elements.next()) != 0) {
+      assert( idx != i, "Must have empty diagonal");
+      assert( pc->Find_const(idx) == idx, "Must not need Find" );
+      assert( _adjs[idx].member(i), "IFG not square" );
+      assert( !(*_yanked)[idx], "No yanked neighbors" );
+      assert( last < idx, "not sorted increasing");
+      last = idx;
+    }
+    assert( !lrgs(i)._degree_valid ||
+            effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong" );
+  }
+}
+#endif
+
+//------------------------------interfere_with_live----------------------------
+// Interfere this register with everything currently live.  Use the RegMasks
+// to trim the set of possible interferences. Return a count of register-only
+// inteferences as an estimate of register pressure.
+void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
+  uint retval = 0;
+  // Interfere with everything live.
+  const RegMask &rm = lrgs(r).mask();
+  // Check for interference by checking overlap of regmasks.
+  // Only interfere if acceptable register masks overlap.
+  IndexSetIterator elements(liveout);
+  uint l;
+  while( (l = elements.next()) != 0 )
+    if( rm.overlap( lrgs(l).mask() ) )
+      _ifg->add_edge( r, l );
+}
+
+//------------------------------build_ifg_virtual------------------------------
+// Actually build the interference graph.  Uses virtual registers only, no
+// physical register masks.  This allows me to be very aggressive when
+// coalescing copies.  Some of this aggressiveness will have to be undone
+// later, but I'd rather get all the copies I can now (since unremoved copies
+// at this point can end up in bad places).  Copies I re-insert later I have
+// more opportunity to insert them in low-frequency locations.
+void PhaseChaitin::build_ifg_virtual( ) {
+
+  // For all blocks (in any order) do...
+  for( uint i=0; i<_cfg._num_blocks; i++ ) {
+    Block *b = _cfg._blocks[i];
+    IndexSet *liveout = _live->live(b);
+
+    // The IFG is built by a single reverse pass over each basic block.
+    // Starting with the known live-out set, we remove things that get
+    // defined and add things that become live (essentially executing one
+    // pass of a standard LIVE analysis). Just before a Node defines a value
+    // (and removes it from the live-ness set) that value is certainly live.
+    // The defined value interferes with everything currently live.  The
+    // value is then removed from the live-ness set and it's inputs are
+    // added to the live-ness set.
+    for( uint j = b->end_idx() + 1; j > 1; j-- ) {
+      Node *n = b->_nodes[j-1];
+
+      // Get value being defined
+      uint r = n2lidx(n);
+
+      // Some special values do not allocate
+      if( r ) {
+
+        // Remove from live-out set
+        liveout->remove(r);
+
+        // Copies do not define a new value and so do not interfere.
+        // Remove the copies source from the liveout set before interfering.
+        uint idx = n->is_Copy();
+        if( idx ) liveout->remove( n2lidx(n->in(idx)) );
+
+        // Interfere with everything live
+        interfere_with_live( r, liveout );
+      }
+
+      // Make all inputs live
+      if( !n->is_Phi() ) {      // Phi function uses come from prior block
+        for( uint k = 1; k < n->req(); k++ )
+          liveout->insert( n2lidx(n->in(k)) );
+      }
+
+      // 2-address instructions always have the defined value live
+      // on entry to the instruction, even though it is being defined
+      // by the instruction.  We pretend a virtual copy sits just prior
+      // to the instruction and kills the src-def'd register.
+      // In other words, for 2-address instructions the defined value
+      // interferes with all inputs.
+      uint idx;
+      if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
+        const MachNode *mach = n->as_Mach();
+        // Sometimes my 2-address ADDs are commuted in a bad way.
+        // We generally want the USE-DEF register to refer to the
+        // loop-varying quantity, to avoid a copy.
+        uint op = mach->ideal_Opcode();
+        // Check that mach->num_opnds() == 3 to ensure instruction is
+        // not subsuming constants, effectively excludes addI_cin_imm
+        // Can NOT swap for instructions like addI_cin_imm since it
+        // is adding zero to yhi + carry and the second ideal-input
+        // points to the result of adding low-halves.
+        // Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
+        if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
+            n->in(1)->bottom_type()->base() == Type::Int &&
+            // See if the ADD is involved in a tight data loop the wrong way
+            n->in(2)->is_Phi() &&
+            n->in(2)->in(2) == n ) {
+          Node *tmp = n->in(1);
+          n->set_req( 1, n->in(2) );
+          n->set_req( 2, tmp );
+        }
+        // Defined value interferes with all inputs
+        uint lidx = n2lidx(n->in(idx));
+        for( uint k = 1; k < n->req(); k++ ) {
+          uint kidx = n2lidx(n->in(k));
+          if( kidx != lidx )
+            _ifg->add_edge( r, kidx );
+        }
+      }
+    } // End of forall instructions in block
+  } // End of forall blocks
+}
+
+//------------------------------count_int_pressure-----------------------------
+uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
+  IndexSetIterator elements(liveout);
+  uint lidx;
+  uint cnt = 0;
+  while ((lidx = elements.next()) != 0) {
+    if( lrgs(lidx).mask().is_UP() &&
+        lrgs(lidx).mask_size() &&
+        !lrgs(lidx)._is_float &&
+        lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) )
+      cnt += lrgs(lidx).reg_pressure();
+  }
+  return cnt;
+}
+
+//------------------------------count_float_pressure---------------------------
+uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
+  IndexSetIterator elements(liveout);
+  uint lidx;
+  uint cnt = 0;
+  while ((lidx = elements.next()) != 0) {
+    if( lrgs(lidx).mask().is_UP() &&
+        lrgs(lidx).mask_size() &&
+        lrgs(lidx)._is_float )
+      cnt += lrgs(lidx).reg_pressure();
+  }
+  return cnt;
+}
+
+//------------------------------lower_pressure---------------------------------
+// Adjust register pressure down by 1.  Capture last hi-to-low transition,
+static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
+  if( lrg->mask().is_UP() && lrg->mask_size() ) {
+    if( lrg->_is_float ) {
+      pressure[1] -= lrg->reg_pressure();
+      if( pressure[1] == (uint)FLOATPRESSURE ) {
+        hrp_index[1] = where;
+#ifdef EXACT_PRESSURE
+      if( pressure[1] > b->_freg_pressure )
+        b->_freg_pressure = pressure[1]+1;
+#else
+        b->_freg_pressure = (uint)FLOATPRESSURE+1;
+#endif
+      }
+    } else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
+      pressure[0] -= lrg->reg_pressure();
+      if( pressure[0] == (uint)INTPRESSURE   ) {
+        hrp_index[0] = where;
+#ifdef EXACT_PRESSURE
+      if( pressure[0] > b->_reg_pressure )
+        b->_reg_pressure = pressure[0]+1;
+#else
+        b->_reg_pressure = (uint)INTPRESSURE+1;
+#endif
+      }
+    }
+  }
+}
+
+//------------------------------build_ifg_physical-----------------------------
+// Build the interference graph using physical registers when available.
+// That is, if 2 live ranges are simultaneously alive but in their acceptable
+// register sets do not overlap, then they do not interfere.
+uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
+  NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
+
+  uint spill_reg = LRG::SPILL_REG;
+  uint must_spill = 0;
+
+  // For all blocks (in any order) do...
+  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
+    Block *b = _cfg._blocks[i];
+    // Clone (rather than smash in place) the liveout info, so it is alive
+    // for the "collect_gc_info" phase later.
+    IndexSet liveout(_live->live(b));
+    uint last_inst = b->end_idx();
+    // Compute last phi index
+    uint last_phi;
+    for( last_phi = 1; last_phi < last_inst; last_phi++ )
+      if( !b->_nodes[last_phi]->is_Phi() )
+        break;
+
+    // Reset block's register pressure values for each ifg construction
+    uint pressure[2], hrp_index[2];
+    pressure[0] = pressure[1] = 0;
+    hrp_index[0] = hrp_index[1] = last_inst+1;
+    b->_reg_pressure = b->_freg_pressure = 0;
+    // Liveout things are presumed live for the whole block.  We accumulate
+    // 'area' accordingly.  If they get killed in the block, we'll subtract
+    // the unused part of the block from the area.
+    double cost = b->_freq * double(last_inst-last_phi);
+    assert( cost >= 0, "negative spill cost" );
+    IndexSetIterator elements(&liveout);
+    uint lidx;
+    while ((lidx = elements.next()) != 0) {
+      LRG &lrg = lrgs(lidx);
+      lrg._area += cost;
+      // Compute initial register pressure
+      if( lrg.mask().is_UP() && lrg.mask_size() ) {
+        if( lrg._is_float ) {   // Count float pressure
+          pressure[1] += lrg.reg_pressure();
+#ifdef EXACT_PRESSURE
+          if( pressure[1] > b->_freg_pressure )
+            b->_freg_pressure = pressure[1];
+#endif
+          // Count int pressure, but do not count the SP, flags
+        } else if( lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
+          pressure[0] += lrg.reg_pressure();
+#ifdef EXACT_PRESSURE
+          if( pressure[0] > b->_reg_pressure )
+            b->_reg_pressure = pressure[0];
+#endif
+        }
+      }
+    }
+    assert( pressure[0] == count_int_pressure  (&liveout), "" );
+    assert( pressure[1] == count_float_pressure(&liveout), "" );
+
+    // The IFG is built by a single reverse pass over each basic block.
+    // Starting with the known live-out set, we remove things that get
+    // defined and add things that become live (essentially executing one
+    // pass of a standard LIVE analysis).  Just before a Node defines a value
+    // (and removes it from the live-ness set) that value is certainly live.
+    // The defined value interferes with everything currently live.  The
+    // value is then removed from the live-ness set and it's inputs are added
+    // to the live-ness set.
+    uint j;
+    for( j = last_inst + 1; j > 1; j-- ) {
+      Node *n = b->_nodes[j - 1];
+
+      // Get value being defined
+      uint r = n2lidx(n);
+
+      // Some special values do not allocate
+      if( r ) {
+        // A DEF normally costs block frequency; rematerialized values are
+        // removed from the DEF sight, so LOWER costs here.
+        lrgs(r)._cost += n->rematerialize() ? 0 : b->_freq;
+
+        // If it is not live, then this instruction is dead.  Probably caused
+        // by spilling and rematerialization.  Who cares why, yank this baby.
+        if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) {
+          Node *def = n->in(0);
+          if( !n->is_Proj() ||
+              // Could also be a flags-projection of a dead ADD or such.
+              (n2lidx(def) && !liveout.member(n2lidx(def)) ) ) {
+            b->_nodes.remove(j - 1);
+            if( lrgs(r)._def == n ) lrgs(r)._def = 0;
+            n->disconnect_inputs(NULL);
+            _cfg._bbs.map(n->_idx,NULL);
+            n->replace_by(C->top());
+            // Since yanking a Node from block, high pressure moves up one
+            hrp_index[0]--;
+            hrp_index[1]--;
+            continue;
+          }
+
+          // Fat-projections kill many registers which cannot be used to
+          // hold live ranges.
+          if( lrgs(r)._fat_proj ) {
+            // Count the int-only registers
+            RegMask itmp = lrgs(r).mask();
+            itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
+            int iregs = itmp.Size();
+#ifdef EXACT_PRESSURE
+            if( pressure[0]+iregs > b->_reg_pressure )
+              b->_reg_pressure = pressure[0]+iregs;
+#endif
+            if( pressure[0]       <= (uint)INTPRESSURE &&
+                pressure[0]+iregs >  (uint)INTPRESSURE ) {
+#ifndef EXACT_PRESSURE
+              b->_reg_pressure = (uint)INTPRESSURE+1;
+#endif
+              hrp_index[0] = j-1;
+            }
+            // Count the float-only registers
+            RegMask ftmp = lrgs(r).mask();
+            ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
+            int fregs = ftmp.Size();
+#ifdef EXACT_PRESSURE
+            if( pressure[1]+fregs > b->_freg_pressure )
+              b->_freg_pressure = pressure[1]+fregs;
+#endif
+            if( pressure[1]       <= (uint)FLOATPRESSURE &&
+                pressure[1]+fregs >  (uint)FLOATPRESSURE ) {
+#ifndef EXACT_PRESSURE
+              b->_freg_pressure = (uint)FLOATPRESSURE+1;
+#endif
+              hrp_index[1] = j-1;
+            }
+          }
+
+        } else {                // Else it is live
+          // A DEF also ends 'area' partway through the block.
+          lrgs(r)._area -= cost;
+          assert( lrgs(r)._area >= 0, "negative spill area" );
+
+          // Insure high score for immediate-use spill copies so they get a color
+          if( n->is_SpillCopy()
+              && lrgs(r)._def != NodeSentinel     // MultiDef live range can still split
+              && n->outcnt() == 1              // and use must be in this block
+              && _cfg._bbs[n->unique_out()->_idx] == b ) {
+            // All single-use MachSpillCopy(s) that immediately precede their
+            // use must color early.  If a longer live range steals their
+            // color, the spill copy will split and may push another spill copy
+            // further away resulting in an infinite spill-split-retry cycle.
+            // Assigning a zero area results in a high score() and a good
+            // location in the simplify list.
+            //
+
+            Node *single_use = n->unique_out();
+            assert( b->find_node(single_use) >= j, "Use must be later in block");
+            // Use can be earlier in block if it is a Phi, but then I should be a MultiDef
+
+            // Find first non SpillCopy 'm' that follows the current instruction
+            // (j - 1) is index for current instruction 'n'
+            Node *m = n;
+            for( uint i = j; i <= last_inst && m->is_SpillCopy(); ++i ) { m = b->_nodes[i]; }
+            if( m == single_use ) {
+              lrgs(r)._area = 0.0;
+            }
+          }
+
+          // Remove from live-out set
+          if( liveout.remove(r) ) {
+            // Adjust register pressure.
+            // Capture last hi-to-lo pressure transition
+            lower_pressure( &lrgs(r), j-1, b, pressure, hrp_index );
+            assert( pressure[0] == count_int_pressure  (&liveout), "" );
+            assert( pressure[1] == count_float_pressure(&liveout), "" );
+          }
+
+          // Copies do not define a new value and so do not interfere.
+          // Remove the copies source from the liveout set before interfering.
+          uint idx = n->is_Copy();
+          if( idx ) {
+            uint x = n2lidx(n->in(idx));
+            if( liveout.remove( x ) ) {
+              lrgs(x)._area -= cost;
+              // Adjust register pressure.
+              lower_pressure( &lrgs(x), j-1, b, pressure, hrp_index );
+              assert( pressure[0] == count_int_pressure  (&liveout), "" );
+              assert( pressure[1] == count_float_pressure(&liveout), "" );
+            }
+          }
+        } // End of if live or not
+
+        // Interfere with everything live.  If the defined value must
+        // go in a particular register, just remove that register from
+        // all conflicting parties and avoid the interference.
+
+        // Make exclusions for rematerializable defs.  Since rematerializable
+        // DEFs are not bound but the live range is, some uses must be bound.
+        // If we spill live range 'r', it can rematerialize at each use site
+        // according to its bindings.
+        const RegMask &rmask = lrgs(r).mask();
+        if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) {
+          // Smear odd bits; leave only aligned pairs of bits.
+          RegMask r2mask = rmask;
+          r2mask.SmearToPairs();
+          // Check for common case
+          int r_size = lrgs(r).num_regs();
+          OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical;
+
+          IndexSetIterator elements(&liveout);
+          uint l;
+          while ((l = elements.next()) != 0) {
+            LRG &lrg = lrgs(l);
+            // If 'l' must spill already, do not further hack his bits.
+            // He'll get some interferences and be forced to spill later.
+            if( lrg._must_spill ) continue;
+            // Remove bound register(s) from 'l's choices
+            RegMask old = lrg.mask();
+            uint old_size = lrg.mask_size();
+            // Remove the bits from LRG 'r' from LRG 'l' so 'l' no
+            // longer interferes with 'r'.  If 'l' requires aligned
+            // adjacent pairs, subtract out bit pairs.
+            if( lrg.num_regs() == 2 && !lrg._fat_proj ) {
+              lrg.SUBTRACT( r2mask );
+              lrg.compute_set_mask_size();
+            } else if( r_size != 1 ) {
+              lrg.SUBTRACT( rmask );
+              lrg.compute_set_mask_size();
+            } else {            // Common case: size 1 bound removal
+              if( lrg.mask().Member(r_reg) ) {
+                lrg.Remove(r_reg);
+                lrg.set_mask_size(lrg.mask().is_AllStack() ? 65535:old_size-1);
+              }
+            }
+            // If 'l' goes completely dry, it must spill.
+            if( lrg.not_free() ) {
+              // Give 'l' some kind of reasonable mask, so he picks up
+              // interferences (and will spill later).
+              lrg.set_mask( old );
+              lrg.set_mask_size(old_size);
+              must_spill++;
+              lrg._must_spill = 1;
+              lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
+            }
+          }
+        } // End of if bound
+
+        // Now interference with everything that is live and has
+        // compatible register sets.
+        interfere_with_live(r,&liveout);
+
+      } // End of if normal register-allocated value
+
+      cost -= b->_freq;         // Area remaining in the block
+      if( cost < 0.0 ) cost = 0.0;  // Cost goes negative in the Phi area
+
+      // Make all inputs live
+      if( !n->is_Phi() ) {      // Phi function uses come from prior block
+        JVMState* jvms = n->jvms();
+        uint debug_start = jvms ? jvms->debug_start() : 999999;
+        // Start loop at 1 (skip control edge) for most Nodes.
+        // SCMemProj's might be the sole use of a StoreLConditional.
+        // While StoreLConditionals set memory (the SCMemProj use)
+        // they also def flags; if that flag def is unused the
+        // allocator sees a flag-setting instruction with no use of
+        // the flags and assumes it's dead.  This keeps the (useless)
+        // flag-setting behavior alive while also keeping the (useful)
+        // memory update effect.
+        for( uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++ ) {
+          Node *def = n->in(k);
+          uint x = n2lidx(def);
+          if( !x ) continue;
+          LRG &lrg = lrgs(x);
+          // No use-side cost for spilling debug info
+          if( k < debug_start )
+            // A USE costs twice block frequency (once for the Load, once
+            // for a Load-delay).  Rematerialized uses only cost once.
+            lrg._cost += (def->rematerialize() ? b->_freq : (b->_freq + b->_freq));
+          // It is live now
+          if( liveout.insert( x ) ) {
+            // Newly live things assumed live from here to top of block
+            lrg._area += cost;
+            // Adjust register pressure
+            if( lrg.mask().is_UP() && lrg.mask_size() ) {
+              if( lrg._is_float ) {
+                pressure[1] += lrg.reg_pressure();
+#ifdef EXACT_PRESSURE
+                if( pressure[1] > b->_freg_pressure )
+                  b->_freg_pressure = pressure[1];
+#endif
+              } else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
+                pressure[0] += lrg.reg_pressure();
+#ifdef EXACT_PRESSURE
+                if( pressure[0] > b->_reg_pressure )
+                  b->_reg_pressure = pressure[0];
+#endif
+              }
+            }
+            assert( pressure[0] == count_int_pressure  (&liveout), "" );
+            assert( pressure[1] == count_float_pressure(&liveout), "" );
+          }
+          assert( lrg._area >= 0, "negative spill area" );
+        }
+      }
+    } // End of reverse pass over all instructions in block
+
+    // If we run off the top of the block with high pressure and
+    // never see a hi-to-low pressure transition, just record that
+    // the whole block is high pressure.
+    if( pressure[0] > (uint)INTPRESSURE   ) {
+      hrp_index[0] = 0;
+#ifdef EXACT_PRESSURE
+      if( pressure[0] > b->_reg_pressure )
+        b->_reg_pressure = pressure[0];
+#else
+      b->_reg_pressure = (uint)INTPRESSURE+1;
+#endif
+    }
+    if( pressure[1] > (uint)FLOATPRESSURE ) {
+      hrp_index[1] = 0;
+#ifdef EXACT_PRESSURE
+      if( pressure[1] > b->_freg_pressure )
+        b->_freg_pressure = pressure[1];
+#else
+      b->_freg_pressure = (uint)FLOATPRESSURE+1;
+#endif
+    }
+
+    // Compute high pressure indice; avoid landing in the middle of projnodes
+    j = hrp_index[0];
+    if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
+      Node *cur = b->_nodes[j];
+      while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
+        j--;
+        cur = b->_nodes[j];
+      }
+    }
+    b->_ihrp_index = j;
+    j = hrp_index[1];
+    if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
+      Node *cur = b->_nodes[j];
+      while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
+        j--;
+        cur = b->_nodes[j];
+      }
+    }
+    b->_fhrp_index = j;
+
+#ifndef PRODUCT
+    // Gather Register Pressure Statistics
+    if( PrintOptoStatistics ) {
+      if( b->_reg_pressure > (uint)INTPRESSURE || b->_freg_pressure > (uint)FLOATPRESSURE )
+        _high_pressure++;
+      else
+        _low_pressure++;
+    }
+#endif
+  } // End of for all blocks
+
+  return must_spill;
+}