hotspot/src/share/vm/opto/ifg.cpp
changeset 1 489c9b5090e2
child 1057 44220ef9a775
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 1998-2006 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "incls/_precompiled.incl"
       
    26 #include "incls/_ifg.cpp.incl"
       
    27 
       
    28 #define EXACT_PRESSURE 1
       
    29 
       
    30 //=============================================================================
       
    31 //------------------------------IFG--------------------------------------------
       
    32 PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
       
    33 }
       
    34 
       
    35 //------------------------------init-------------------------------------------
       
    36 void PhaseIFG::init( uint maxlrg ) {
       
    37   _maxlrg = maxlrg;
       
    38   _yanked = new (_arena) VectorSet(_arena);
       
    39   _is_square = false;
       
    40   // Make uninitialized adjacency lists
       
    41   _adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
       
    42   // Also make empty live range structures
       
    43   _lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
       
    44   memset(_lrgs,0,sizeof(LRG)*maxlrg);
       
    45   // Init all to empty
       
    46   for( uint i = 0; i < maxlrg; i++ ) {
       
    47     _adjs[i].initialize(maxlrg);
       
    48     _lrgs[i].Set_All();
       
    49   }
       
    50 }
       
    51 
       
    52 //------------------------------add--------------------------------------------
       
    53 // Add edge between vertices a & b.  These are sorted (triangular matrix),
       
    54 // then the smaller number is inserted in the larger numbered array.
       
    55 int PhaseIFG::add_edge( uint a, uint b ) {
       
    56   lrgs(a).invalid_degree();
       
    57   lrgs(b).invalid_degree();
       
    58   // Sort a and b, so that a is bigger
       
    59   assert( !_is_square, "only on triangular" );
       
    60   if( a < b ) { uint tmp = a; a = b; b = tmp; }
       
    61   return _adjs[a].insert( b );
       
    62 }
       
    63 
       
    64 //------------------------------add_vector-------------------------------------
       
    65 // Add an edge between 'a' and everything in the vector.
       
    66 void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
       
    67   // IFG is triangular, so do the inserts where 'a' < 'b'.
       
    68   assert( !_is_square, "only on triangular" );
       
    69   IndexSet *adjs_a = &_adjs[a];
       
    70   if( !vec->count() ) return;
       
    71 
       
    72   IndexSetIterator elements(vec);
       
    73   uint neighbor;
       
    74   while ((neighbor = elements.next()) != 0) {
       
    75     add_edge( a, neighbor );
       
    76   }
       
    77 }
       
    78 
       
    79 //------------------------------test-------------------------------------------
       
    80 // Is there an edge between a and b?
       
    81 int PhaseIFG::test_edge( uint a, uint b ) const {
       
    82   // Sort a and b, so that a is larger
       
    83   assert( !_is_square, "only on triangular" );
       
    84   if( a < b ) { uint tmp = a; a = b; b = tmp; }
       
    85   return _adjs[a].member(b);
       
    86 }
       
    87 
       
    88 //------------------------------SquareUp---------------------------------------
       
    89 // Convert triangular matrix to square matrix
       
    90 void PhaseIFG::SquareUp() {
       
    91   assert( !_is_square, "only on triangular" );
       
    92 
       
    93   // Simple transpose
       
    94   for( uint i = 0; i < _maxlrg; i++ ) {
       
    95     IndexSetIterator elements(&_adjs[i]);
       
    96     uint datum;
       
    97     while ((datum = elements.next()) != 0) {
       
    98       _adjs[datum].insert( i );
       
    99     }
       
   100   }
       
   101   _is_square = true;
       
   102 }
       
   103 
       
   104 //------------------------------Compute_Effective_Degree-----------------------
       
   105 // Compute effective degree in bulk
       
   106 void PhaseIFG::Compute_Effective_Degree() {
       
   107   assert( _is_square, "only on square" );
       
   108 
       
   109   for( uint i = 0; i < _maxlrg; i++ )
       
   110     lrgs(i).set_degree(effective_degree(i));
       
   111 }
       
   112 
       
   113 //------------------------------test_edge_sq-----------------------------------
       
   114 int PhaseIFG::test_edge_sq( uint a, uint b ) const {
       
   115   assert( _is_square, "only on square" );
       
   116   // Swap, so that 'a' has the lesser count.  Then binary search is on
       
   117   // the smaller of a's list and b's list.
       
   118   if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
       
   119   //return _adjs[a].unordered_member(b);
       
   120   return _adjs[a].member(b);
       
   121 }
       
   122 
       
   123 //------------------------------Union------------------------------------------
       
   124 // Union edges of B into A
       
   125 void PhaseIFG::Union( uint a, uint b ) {
       
   126   assert( _is_square, "only on square" );
       
   127   IndexSet *A = &_adjs[a];
       
   128   IndexSetIterator b_elements(&_adjs[b]);
       
   129   uint datum;
       
   130   while ((datum = b_elements.next()) != 0) {
       
   131     if(A->insert(datum)) {
       
   132       _adjs[datum].insert(a);
       
   133       lrgs(a).invalid_degree();
       
   134       lrgs(datum).invalid_degree();
       
   135     }
       
   136   }
       
   137 }
       
   138 
       
   139 //------------------------------remove_node------------------------------------
       
   140 // Yank a Node and all connected edges from the IFG.  Return a
       
   141 // list of neighbors (edges) yanked.
       
   142 IndexSet *PhaseIFG::remove_node( uint a ) {
       
   143   assert( _is_square, "only on square" );
       
   144   assert( !_yanked->test(a), "" );
       
   145   _yanked->set(a);
       
   146 
       
   147   // I remove the LRG from all neighbors.
       
   148   IndexSetIterator elements(&_adjs[a]);
       
   149   LRG &lrg_a = lrgs(a);
       
   150   uint datum;
       
   151   while ((datum = elements.next()) != 0) {
       
   152     _adjs[datum].remove(a);
       
   153     lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
       
   154   }
       
   155   return neighbors(a);
       
   156 }
       
   157 
       
   158 //------------------------------re_insert--------------------------------------
       
   159 // Re-insert a yanked Node.
       
   160 void PhaseIFG::re_insert( uint a ) {
       
   161   assert( _is_square, "only on square" );
       
   162   assert( _yanked->test(a), "" );
       
   163   (*_yanked) >>= a;
       
   164 
       
   165   IndexSetIterator elements(&_adjs[a]);
       
   166   uint datum;
       
   167   while ((datum = elements.next()) != 0) {
       
   168     _adjs[datum].insert(a);
       
   169     lrgs(datum).invalid_degree();
       
   170   }
       
   171 }
       
   172 
       
   173 //------------------------------compute_degree---------------------------------
       
   174 // Compute the degree between 2 live ranges.  If both live ranges are
       
   175 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
       
   176 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
       
   177 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
       
   178 // this is so.
       
   179 int LRG::compute_degree( LRG &l ) const {
       
   180   int tmp;
       
   181   int num_regs = _num_regs;
       
   182   int nregs = l.num_regs();
       
   183   tmp =  (_fat_proj || l._fat_proj)     // either is a fat-proj?
       
   184     ? (num_regs * nregs)                // then use product
       
   185     : MAX2(num_regs,nregs);             // else use max
       
   186   return tmp;
       
   187 }
       
   188 
       
   189 //------------------------------effective_degree-------------------------------
       
   190 // Compute effective degree for this live range.  If both live ranges are
       
   191 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
       
   192 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
       
   193 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
       
   194 // this is so.
       
   195 int PhaseIFG::effective_degree( uint lidx ) const {
       
   196   int eff = 0;
       
   197   int num_regs = lrgs(lidx).num_regs();
       
   198   int fat_proj = lrgs(lidx)._fat_proj;
       
   199   IndexSet *s = neighbors(lidx);
       
   200   IndexSetIterator elements(s);
       
   201   uint nidx;
       
   202   while((nidx = elements.next()) != 0) {
       
   203     LRG &lrgn = lrgs(nidx);
       
   204     int nregs = lrgn.num_regs();
       
   205     eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
       
   206       ? (num_regs * nregs)              // then use product
       
   207       : MAX2(num_regs,nregs);           // else use max
       
   208   }
       
   209   return eff;
       
   210 }
       
   211 
       
   212 
       
   213 #ifndef PRODUCT
       
   214 //------------------------------dump-------------------------------------------
       
   215 void PhaseIFG::dump() const {
       
   216   tty->print_cr("-- Interference Graph --%s--",
       
   217                 _is_square ? "square" : "triangular" );
       
   218   if( _is_square ) {
       
   219     for( uint i = 0; i < _maxlrg; i++ ) {
       
   220       tty->print( (*_yanked)[i] ? "XX " : "  ");
       
   221       tty->print("L%d: { ",i);
       
   222       IndexSetIterator elements(&_adjs[i]);
       
   223       uint datum;
       
   224       while ((datum = elements.next()) != 0) {
       
   225         tty->print("L%d ", datum);
       
   226       }
       
   227       tty->print_cr("}");
       
   228 
       
   229     }
       
   230     return;
       
   231   }
       
   232 
       
   233   // Triangular
       
   234   for( uint i = 0; i < _maxlrg; i++ ) {
       
   235     uint j;
       
   236     tty->print( (*_yanked)[i] ? "XX " : "  ");
       
   237     tty->print("L%d: { ",i);
       
   238     for( j = _maxlrg; j > i; j-- )
       
   239       if( test_edge(j - 1,i) ) {
       
   240         tty->print("L%d ",j - 1);
       
   241       }
       
   242     tty->print("| ");
       
   243     IndexSetIterator elements(&_adjs[i]);
       
   244     uint datum;
       
   245     while ((datum = elements.next()) != 0) {
       
   246       tty->print("L%d ", datum);
       
   247     }
       
   248     tty->print("}\n");
       
   249   }
       
   250   tty->print("\n");
       
   251 }
       
   252 
       
   253 //------------------------------stats------------------------------------------
       
   254 void PhaseIFG::stats() const {
       
   255   ResourceMark rm;
       
   256   int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
       
   257   memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
       
   258   uint i;
       
   259   for( i = 0; i < _maxlrg; i++ ) {
       
   260     h_cnt[neighbor_cnt(i)]++;
       
   261   }
       
   262   tty->print_cr("--Histogram of counts--");
       
   263   for( i = 0; i < _maxlrg*2; i++ )
       
   264     if( h_cnt[i] )
       
   265       tty->print("%d/%d ",i,h_cnt[i]);
       
   266   tty->print_cr("");
       
   267 }
       
   268 
       
   269 //------------------------------verify-----------------------------------------
       
   270 void PhaseIFG::verify( const PhaseChaitin *pc ) const {
       
   271   // IFG is square, sorted and no need for Find
       
   272   for( uint i = 0; i < _maxlrg; i++ ) {
       
   273     assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
       
   274     IndexSet *set = &_adjs[i];
       
   275     IndexSetIterator elements(set);
       
   276     uint idx;
       
   277     uint last = 0;
       
   278     while ((idx = elements.next()) != 0) {
       
   279       assert( idx != i, "Must have empty diagonal");
       
   280       assert( pc->Find_const(idx) == idx, "Must not need Find" );
       
   281       assert( _adjs[idx].member(i), "IFG not square" );
       
   282       assert( !(*_yanked)[idx], "No yanked neighbors" );
       
   283       assert( last < idx, "not sorted increasing");
       
   284       last = idx;
       
   285     }
       
   286     assert( !lrgs(i)._degree_valid ||
       
   287             effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong" );
       
   288   }
       
   289 }
       
   290 #endif
       
   291 
       
   292 //------------------------------interfere_with_live----------------------------
       
   293 // Interfere this register with everything currently live.  Use the RegMasks
       
   294 // to trim the set of possible interferences. Return a count of register-only
       
   295 // inteferences as an estimate of register pressure.
       
   296 void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
       
   297   uint retval = 0;
       
   298   // Interfere with everything live.
       
   299   const RegMask &rm = lrgs(r).mask();
       
   300   // Check for interference by checking overlap of regmasks.
       
   301   // Only interfere if acceptable register masks overlap.
       
   302   IndexSetIterator elements(liveout);
       
   303   uint l;
       
   304   while( (l = elements.next()) != 0 )
       
   305     if( rm.overlap( lrgs(l).mask() ) )
       
   306       _ifg->add_edge( r, l );
       
   307 }
       
   308 
       
   309 //------------------------------build_ifg_virtual------------------------------
       
   310 // Actually build the interference graph.  Uses virtual registers only, no
       
   311 // physical register masks.  This allows me to be very aggressive when
       
   312 // coalescing copies.  Some of this aggressiveness will have to be undone
       
   313 // later, but I'd rather get all the copies I can now (since unremoved copies
       
   314 // at this point can end up in bad places).  Copies I re-insert later I have
       
   315 // more opportunity to insert them in low-frequency locations.
       
   316 void PhaseChaitin::build_ifg_virtual( ) {
       
   317 
       
   318   // For all blocks (in any order) do...
       
   319   for( uint i=0; i<_cfg._num_blocks; i++ ) {
       
   320     Block *b = _cfg._blocks[i];
       
   321     IndexSet *liveout = _live->live(b);
       
   322 
       
   323     // The IFG is built by a single reverse pass over each basic block.
       
   324     // Starting with the known live-out set, we remove things that get
       
   325     // defined and add things that become live (essentially executing one
       
   326     // pass of a standard LIVE analysis). Just before a Node defines a value
       
   327     // (and removes it from the live-ness set) that value is certainly live.
       
   328     // The defined value interferes with everything currently live.  The
       
   329     // value is then removed from the live-ness set and it's inputs are
       
   330     // added to the live-ness set.
       
   331     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
       
   332       Node *n = b->_nodes[j-1];
       
   333 
       
   334       // Get value being defined
       
   335       uint r = n2lidx(n);
       
   336 
       
   337       // Some special values do not allocate
       
   338       if( r ) {
       
   339 
       
   340         // Remove from live-out set
       
   341         liveout->remove(r);
       
   342 
       
   343         // Copies do not define a new value and so do not interfere.
       
   344         // Remove the copies source from the liveout set before interfering.
       
   345         uint idx = n->is_Copy();
       
   346         if( idx ) liveout->remove( n2lidx(n->in(idx)) );
       
   347 
       
   348         // Interfere with everything live
       
   349         interfere_with_live( r, liveout );
       
   350       }
       
   351 
       
   352       // Make all inputs live
       
   353       if( !n->is_Phi() ) {      // Phi function uses come from prior block
       
   354         for( uint k = 1; k < n->req(); k++ )
       
   355           liveout->insert( n2lidx(n->in(k)) );
       
   356       }
       
   357 
       
   358       // 2-address instructions always have the defined value live
       
   359       // on entry to the instruction, even though it is being defined
       
   360       // by the instruction.  We pretend a virtual copy sits just prior
       
   361       // to the instruction and kills the src-def'd register.
       
   362       // In other words, for 2-address instructions the defined value
       
   363       // interferes with all inputs.
       
   364       uint idx;
       
   365       if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
       
   366         const MachNode *mach = n->as_Mach();
       
   367         // Sometimes my 2-address ADDs are commuted in a bad way.
       
   368         // We generally want the USE-DEF register to refer to the
       
   369         // loop-varying quantity, to avoid a copy.
       
   370         uint op = mach->ideal_Opcode();
       
   371         // Check that mach->num_opnds() == 3 to ensure instruction is
       
   372         // not subsuming constants, effectively excludes addI_cin_imm
       
   373         // Can NOT swap for instructions like addI_cin_imm since it
       
   374         // is adding zero to yhi + carry and the second ideal-input
       
   375         // points to the result of adding low-halves.
       
   376         // Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
       
   377         if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
       
   378             n->in(1)->bottom_type()->base() == Type::Int &&
       
   379             // See if the ADD is involved in a tight data loop the wrong way
       
   380             n->in(2)->is_Phi() &&
       
   381             n->in(2)->in(2) == n ) {
       
   382           Node *tmp = n->in(1);
       
   383           n->set_req( 1, n->in(2) );
       
   384           n->set_req( 2, tmp );
       
   385         }
       
   386         // Defined value interferes with all inputs
       
   387         uint lidx = n2lidx(n->in(idx));
       
   388         for( uint k = 1; k < n->req(); k++ ) {
       
   389           uint kidx = n2lidx(n->in(k));
       
   390           if( kidx != lidx )
       
   391             _ifg->add_edge( r, kidx );
       
   392         }
       
   393       }
       
   394     } // End of forall instructions in block
       
   395   } // End of forall blocks
       
   396 }
       
   397 
       
   398 //------------------------------count_int_pressure-----------------------------
       
   399 uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
       
   400   IndexSetIterator elements(liveout);
       
   401   uint lidx;
       
   402   uint cnt = 0;
       
   403   while ((lidx = elements.next()) != 0) {
       
   404     if( lrgs(lidx).mask().is_UP() &&
       
   405         lrgs(lidx).mask_size() &&
       
   406         !lrgs(lidx)._is_float &&
       
   407         lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) )
       
   408       cnt += lrgs(lidx).reg_pressure();
       
   409   }
       
   410   return cnt;
       
   411 }
       
   412 
       
   413 //------------------------------count_float_pressure---------------------------
       
   414 uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
       
   415   IndexSetIterator elements(liveout);
       
   416   uint lidx;
       
   417   uint cnt = 0;
       
   418   while ((lidx = elements.next()) != 0) {
       
   419     if( lrgs(lidx).mask().is_UP() &&
       
   420         lrgs(lidx).mask_size() &&
       
   421         lrgs(lidx)._is_float )
       
   422       cnt += lrgs(lidx).reg_pressure();
       
   423   }
       
   424   return cnt;
       
   425 }
       
   426 
       
   427 //------------------------------lower_pressure---------------------------------
       
   428 // Adjust register pressure down by 1.  Capture last hi-to-low transition,
       
   429 static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
       
   430   if( lrg->mask().is_UP() && lrg->mask_size() ) {
       
   431     if( lrg->_is_float ) {
       
   432       pressure[1] -= lrg->reg_pressure();
       
   433       if( pressure[1] == (uint)FLOATPRESSURE ) {
       
   434         hrp_index[1] = where;
       
   435 #ifdef EXACT_PRESSURE
       
   436       if( pressure[1] > b->_freg_pressure )
       
   437         b->_freg_pressure = pressure[1]+1;
       
   438 #else
       
   439         b->_freg_pressure = (uint)FLOATPRESSURE+1;
       
   440 #endif
       
   441       }
       
   442     } else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
       
   443       pressure[0] -= lrg->reg_pressure();
       
   444       if( pressure[0] == (uint)INTPRESSURE   ) {
       
   445         hrp_index[0] = where;
       
   446 #ifdef EXACT_PRESSURE
       
   447       if( pressure[0] > b->_reg_pressure )
       
   448         b->_reg_pressure = pressure[0]+1;
       
   449 #else
       
   450         b->_reg_pressure = (uint)INTPRESSURE+1;
       
   451 #endif
       
   452       }
       
   453     }
       
   454   }
       
   455 }
       
   456 
       
   457 //------------------------------build_ifg_physical-----------------------------
       
   458 // Build the interference graph using physical registers when available.
       
   459 // That is, if 2 live ranges are simultaneously alive but in their acceptable
       
   460 // register sets do not overlap, then they do not interfere.
       
   461 uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
       
   462   NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
       
   463 
       
   464   uint spill_reg = LRG::SPILL_REG;
       
   465   uint must_spill = 0;
       
   466 
       
   467   // For all blocks (in any order) do...
       
   468   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
       
   469     Block *b = _cfg._blocks[i];
       
   470     // Clone (rather than smash in place) the liveout info, so it is alive
       
   471     // for the "collect_gc_info" phase later.
       
   472     IndexSet liveout(_live->live(b));
       
   473     uint last_inst = b->end_idx();
       
   474     // Compute last phi index
       
   475     uint last_phi;
       
   476     for( last_phi = 1; last_phi < last_inst; last_phi++ )
       
   477       if( !b->_nodes[last_phi]->is_Phi() )
       
   478         break;
       
   479 
       
   480     // Reset block's register pressure values for each ifg construction
       
   481     uint pressure[2], hrp_index[2];
       
   482     pressure[0] = pressure[1] = 0;
       
   483     hrp_index[0] = hrp_index[1] = last_inst+1;
       
   484     b->_reg_pressure = b->_freg_pressure = 0;
       
   485     // Liveout things are presumed live for the whole block.  We accumulate
       
   486     // 'area' accordingly.  If they get killed in the block, we'll subtract
       
   487     // the unused part of the block from the area.
       
   488     double cost = b->_freq * double(last_inst-last_phi);
       
   489     assert( cost >= 0, "negative spill cost" );
       
   490     IndexSetIterator elements(&liveout);
       
   491     uint lidx;
       
   492     while ((lidx = elements.next()) != 0) {
       
   493       LRG &lrg = lrgs(lidx);
       
   494       lrg._area += cost;
       
   495       // Compute initial register pressure
       
   496       if( lrg.mask().is_UP() && lrg.mask_size() ) {
       
   497         if( lrg._is_float ) {   // Count float pressure
       
   498           pressure[1] += lrg.reg_pressure();
       
   499 #ifdef EXACT_PRESSURE
       
   500           if( pressure[1] > b->_freg_pressure )
       
   501             b->_freg_pressure = pressure[1];
       
   502 #endif
       
   503           // Count int pressure, but do not count the SP, flags
       
   504         } else if( lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
       
   505           pressure[0] += lrg.reg_pressure();
       
   506 #ifdef EXACT_PRESSURE
       
   507           if( pressure[0] > b->_reg_pressure )
       
   508             b->_reg_pressure = pressure[0];
       
   509 #endif
       
   510         }
       
   511       }
       
   512     }
       
   513     assert( pressure[0] == count_int_pressure  (&liveout), "" );
       
   514     assert( pressure[1] == count_float_pressure(&liveout), "" );
       
   515 
       
   516     // The IFG is built by a single reverse pass over each basic block.
       
   517     // Starting with the known live-out set, we remove things that get
       
   518     // defined and add things that become live (essentially executing one
       
   519     // pass of a standard LIVE analysis).  Just before a Node defines a value
       
   520     // (and removes it from the live-ness set) that value is certainly live.
       
   521     // The defined value interferes with everything currently live.  The
       
   522     // value is then removed from the live-ness set and it's inputs are added
       
   523     // to the live-ness set.
       
   524     uint j;
       
   525     for( j = last_inst + 1; j > 1; j-- ) {
       
   526       Node *n = b->_nodes[j - 1];
       
   527 
       
   528       // Get value being defined
       
   529       uint r = n2lidx(n);
       
   530 
       
   531       // Some special values do not allocate
       
   532       if( r ) {
       
   533         // A DEF normally costs block frequency; rematerialized values are
       
   534         // removed from the DEF sight, so LOWER costs here.
       
   535         lrgs(r)._cost += n->rematerialize() ? 0 : b->_freq;
       
   536 
       
   537         // If it is not live, then this instruction is dead.  Probably caused
       
   538         // by spilling and rematerialization.  Who cares why, yank this baby.
       
   539         if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) {
       
   540           Node *def = n->in(0);
       
   541           if( !n->is_Proj() ||
       
   542               // Could also be a flags-projection of a dead ADD or such.
       
   543               (n2lidx(def) && !liveout.member(n2lidx(def)) ) ) {
       
   544             b->_nodes.remove(j - 1);
       
   545             if( lrgs(r)._def == n ) lrgs(r)._def = 0;
       
   546             n->disconnect_inputs(NULL);
       
   547             _cfg._bbs.map(n->_idx,NULL);
       
   548             n->replace_by(C->top());
       
   549             // Since yanking a Node from block, high pressure moves up one
       
   550             hrp_index[0]--;
       
   551             hrp_index[1]--;
       
   552             continue;
       
   553           }
       
   554 
       
   555           // Fat-projections kill many registers which cannot be used to
       
   556           // hold live ranges.
       
   557           if( lrgs(r)._fat_proj ) {
       
   558             // Count the int-only registers
       
   559             RegMask itmp = lrgs(r).mask();
       
   560             itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
       
   561             int iregs = itmp.Size();
       
   562 #ifdef EXACT_PRESSURE
       
   563             if( pressure[0]+iregs > b->_reg_pressure )
       
   564               b->_reg_pressure = pressure[0]+iregs;
       
   565 #endif
       
   566             if( pressure[0]       <= (uint)INTPRESSURE &&
       
   567                 pressure[0]+iregs >  (uint)INTPRESSURE ) {
       
   568 #ifndef EXACT_PRESSURE
       
   569               b->_reg_pressure = (uint)INTPRESSURE+1;
       
   570 #endif
       
   571               hrp_index[0] = j-1;
       
   572             }
       
   573             // Count the float-only registers
       
   574             RegMask ftmp = lrgs(r).mask();
       
   575             ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
       
   576             int fregs = ftmp.Size();
       
   577 #ifdef EXACT_PRESSURE
       
   578             if( pressure[1]+fregs > b->_freg_pressure )
       
   579               b->_freg_pressure = pressure[1]+fregs;
       
   580 #endif
       
   581             if( pressure[1]       <= (uint)FLOATPRESSURE &&
       
   582                 pressure[1]+fregs >  (uint)FLOATPRESSURE ) {
       
   583 #ifndef EXACT_PRESSURE
       
   584               b->_freg_pressure = (uint)FLOATPRESSURE+1;
       
   585 #endif
       
   586               hrp_index[1] = j-1;
       
   587             }
       
   588           }
       
   589 
       
   590         } else {                // Else it is live
       
   591           // A DEF also ends 'area' partway through the block.
       
   592           lrgs(r)._area -= cost;
       
   593           assert( lrgs(r)._area >= 0, "negative spill area" );
       
   594 
       
   595           // Insure high score for immediate-use spill copies so they get a color
       
   596           if( n->is_SpillCopy()
       
   597               && lrgs(r)._def != NodeSentinel     // MultiDef live range can still split
       
   598               && n->outcnt() == 1              // and use must be in this block
       
   599               && _cfg._bbs[n->unique_out()->_idx] == b ) {
       
   600             // All single-use MachSpillCopy(s) that immediately precede their
       
   601             // use must color early.  If a longer live range steals their
       
   602             // color, the spill copy will split and may push another spill copy
       
   603             // further away resulting in an infinite spill-split-retry cycle.
       
   604             // Assigning a zero area results in a high score() and a good
       
   605             // location in the simplify list.
       
   606             //
       
   607 
       
   608             Node *single_use = n->unique_out();
       
   609             assert( b->find_node(single_use) >= j, "Use must be later in block");
       
   610             // Use can be earlier in block if it is a Phi, but then I should be a MultiDef
       
   611 
       
   612             // Find first non SpillCopy 'm' that follows the current instruction
       
   613             // (j - 1) is index for current instruction 'n'
       
   614             Node *m = n;
       
   615             for( uint i = j; i <= last_inst && m->is_SpillCopy(); ++i ) { m = b->_nodes[i]; }
       
   616             if( m == single_use ) {
       
   617               lrgs(r)._area = 0.0;
       
   618             }
       
   619           }
       
   620 
       
   621           // Remove from live-out set
       
   622           if( liveout.remove(r) ) {
       
   623             // Adjust register pressure.
       
   624             // Capture last hi-to-lo pressure transition
       
   625             lower_pressure( &lrgs(r), j-1, b, pressure, hrp_index );
       
   626             assert( pressure[0] == count_int_pressure  (&liveout), "" );
       
   627             assert( pressure[1] == count_float_pressure(&liveout), "" );
       
   628           }
       
   629 
       
   630           // Copies do not define a new value and so do not interfere.
       
   631           // Remove the copies source from the liveout set before interfering.
       
   632           uint idx = n->is_Copy();
       
   633           if( idx ) {
       
   634             uint x = n2lidx(n->in(idx));
       
   635             if( liveout.remove( x ) ) {
       
   636               lrgs(x)._area -= cost;
       
   637               // Adjust register pressure.
       
   638               lower_pressure( &lrgs(x), j-1, b, pressure, hrp_index );
       
   639               assert( pressure[0] == count_int_pressure  (&liveout), "" );
       
   640               assert( pressure[1] == count_float_pressure(&liveout), "" );
       
   641             }
       
   642           }
       
   643         } // End of if live or not
       
   644 
       
   645         // Interfere with everything live.  If the defined value must
       
   646         // go in a particular register, just remove that register from
       
   647         // all conflicting parties and avoid the interference.
       
   648 
       
   649         // Make exclusions for rematerializable defs.  Since rematerializable
       
   650         // DEFs are not bound but the live range is, some uses must be bound.
       
   651         // If we spill live range 'r', it can rematerialize at each use site
       
   652         // according to its bindings.
       
   653         const RegMask &rmask = lrgs(r).mask();
       
   654         if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) {
       
   655           // Smear odd bits; leave only aligned pairs of bits.
       
   656           RegMask r2mask = rmask;
       
   657           r2mask.SmearToPairs();
       
   658           // Check for common case
       
   659           int r_size = lrgs(r).num_regs();
       
   660           OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical;
       
   661 
       
   662           IndexSetIterator elements(&liveout);
       
   663           uint l;
       
   664           while ((l = elements.next()) != 0) {
       
   665             LRG &lrg = lrgs(l);
       
   666             // If 'l' must spill already, do not further hack his bits.
       
   667             // He'll get some interferences and be forced to spill later.
       
   668             if( lrg._must_spill ) continue;
       
   669             // Remove bound register(s) from 'l's choices
       
   670             RegMask old = lrg.mask();
       
   671             uint old_size = lrg.mask_size();
       
   672             // Remove the bits from LRG 'r' from LRG 'l' so 'l' no
       
   673             // longer interferes with 'r'.  If 'l' requires aligned
       
   674             // adjacent pairs, subtract out bit pairs.
       
   675             if( lrg.num_regs() == 2 && !lrg._fat_proj ) {
       
   676               lrg.SUBTRACT( r2mask );
       
   677               lrg.compute_set_mask_size();
       
   678             } else if( r_size != 1 ) {
       
   679               lrg.SUBTRACT( rmask );
       
   680               lrg.compute_set_mask_size();
       
   681             } else {            // Common case: size 1 bound removal
       
   682               if( lrg.mask().Member(r_reg) ) {
       
   683                 lrg.Remove(r_reg);
       
   684                 lrg.set_mask_size(lrg.mask().is_AllStack() ? 65535:old_size-1);
       
   685               }
       
   686             }
       
   687             // If 'l' goes completely dry, it must spill.
       
   688             if( lrg.not_free() ) {
       
   689               // Give 'l' some kind of reasonable mask, so he picks up
       
   690               // interferences (and will spill later).
       
   691               lrg.set_mask( old );
       
   692               lrg.set_mask_size(old_size);
       
   693               must_spill++;
       
   694               lrg._must_spill = 1;
       
   695               lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
       
   696             }
       
   697           }
       
   698         } // End of if bound
       
   699 
       
   700         // Now interference with everything that is live and has
       
   701         // compatible register sets.
       
   702         interfere_with_live(r,&liveout);
       
   703 
       
   704       } // End of if normal register-allocated value
       
   705 
       
   706       cost -= b->_freq;         // Area remaining in the block
       
   707       if( cost < 0.0 ) cost = 0.0;  // Cost goes negative in the Phi area
       
   708 
       
   709       // Make all inputs live
       
   710       if( !n->is_Phi() ) {      // Phi function uses come from prior block
       
   711         JVMState* jvms = n->jvms();
       
   712         uint debug_start = jvms ? jvms->debug_start() : 999999;
       
   713         // Start loop at 1 (skip control edge) for most Nodes.
       
   714         // SCMemProj's might be the sole use of a StoreLConditional.
       
   715         // While StoreLConditionals set memory (the SCMemProj use)
       
   716         // they also def flags; if that flag def is unused the
       
   717         // allocator sees a flag-setting instruction with no use of
       
   718         // the flags and assumes it's dead.  This keeps the (useless)
       
   719         // flag-setting behavior alive while also keeping the (useful)
       
   720         // memory update effect.
       
   721         for( uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++ ) {
       
   722           Node *def = n->in(k);
       
   723           uint x = n2lidx(def);
       
   724           if( !x ) continue;
       
   725           LRG &lrg = lrgs(x);
       
   726           // No use-side cost for spilling debug info
       
   727           if( k < debug_start )
       
   728             // A USE costs twice block frequency (once for the Load, once
       
   729             // for a Load-delay).  Rematerialized uses only cost once.
       
   730             lrg._cost += (def->rematerialize() ? b->_freq : (b->_freq + b->_freq));
       
   731           // It is live now
       
   732           if( liveout.insert( x ) ) {
       
   733             // Newly live things assumed live from here to top of block
       
   734             lrg._area += cost;
       
   735             // Adjust register pressure
       
   736             if( lrg.mask().is_UP() && lrg.mask_size() ) {
       
   737               if( lrg._is_float ) {
       
   738                 pressure[1] += lrg.reg_pressure();
       
   739 #ifdef EXACT_PRESSURE
       
   740                 if( pressure[1] > b->_freg_pressure )
       
   741                   b->_freg_pressure = pressure[1];
       
   742 #endif
       
   743               } else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
       
   744                 pressure[0] += lrg.reg_pressure();
       
   745 #ifdef EXACT_PRESSURE
       
   746                 if( pressure[0] > b->_reg_pressure )
       
   747                   b->_reg_pressure = pressure[0];
       
   748 #endif
       
   749               }
       
   750             }
       
   751             assert( pressure[0] == count_int_pressure  (&liveout), "" );
       
   752             assert( pressure[1] == count_float_pressure(&liveout), "" );
       
   753           }
       
   754           assert( lrg._area >= 0, "negative spill area" );
       
   755         }
       
   756       }
       
   757     } // End of reverse pass over all instructions in block
       
   758 
       
   759     // If we run off the top of the block with high pressure and
       
   760     // never see a hi-to-low pressure transition, just record that
       
   761     // the whole block is high pressure.
       
   762     if( pressure[0] > (uint)INTPRESSURE   ) {
       
   763       hrp_index[0] = 0;
       
   764 #ifdef EXACT_PRESSURE
       
   765       if( pressure[0] > b->_reg_pressure )
       
   766         b->_reg_pressure = pressure[0];
       
   767 #else
       
   768       b->_reg_pressure = (uint)INTPRESSURE+1;
       
   769 #endif
       
   770     }
       
   771     if( pressure[1] > (uint)FLOATPRESSURE ) {
       
   772       hrp_index[1] = 0;
       
   773 #ifdef EXACT_PRESSURE
       
   774       if( pressure[1] > b->_freg_pressure )
       
   775         b->_freg_pressure = pressure[1];
       
   776 #else
       
   777       b->_freg_pressure = (uint)FLOATPRESSURE+1;
       
   778 #endif
       
   779     }
       
   780 
       
   781     // Compute high pressure indice; avoid landing in the middle of projnodes
       
   782     j = hrp_index[0];
       
   783     if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
       
   784       Node *cur = b->_nodes[j];
       
   785       while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
       
   786         j--;
       
   787         cur = b->_nodes[j];
       
   788       }
       
   789     }
       
   790     b->_ihrp_index = j;
       
   791     j = hrp_index[1];
       
   792     if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
       
   793       Node *cur = b->_nodes[j];
       
   794       while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
       
   795         j--;
       
   796         cur = b->_nodes[j];
       
   797       }
       
   798     }
       
   799     b->_fhrp_index = j;
       
   800 
       
   801 #ifndef PRODUCT
       
   802     // Gather Register Pressure Statistics
       
   803     if( PrintOptoStatistics ) {
       
   804       if( b->_reg_pressure > (uint)INTPRESSURE || b->_freg_pressure > (uint)FLOATPRESSURE )
       
   805         _high_pressure++;
       
   806       else
       
   807         _low_pressure++;
       
   808     }
       
   809 #endif
       
   810   } // End of for all blocks
       
   811 
       
   812   return must_spill;
       
   813 }