author | kvn |
Wed, 27 Jul 2011 17:28:36 -0700 | |
changeset 10255 | bab46e6f7661 |
parent 7397 | 5b173b4ca846 |
child 13104 | 657b387034fb |
permissions | -rw-r--r-- |
1 | 1 |
/* |
7397 | 2 |
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3261
diff
changeset
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3261
diff
changeset
|
20 |
* or visit www.oracle.com if you need additional information or have any |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3261
diff
changeset
|
21 |
* questions. |
1 | 22 |
*/ |
23 |
||
7397 | 24 |
#ifndef SHARE_VM_OPTO_SUPERWORD_HPP |
25 |
#define SHARE_VM_OPTO_SUPERWORD_HPP |
|
26 |
||
27 |
#include "opto/connode.hpp" |
|
28 |
#include "opto/loopnode.hpp" |
|
29 |
#include "opto/node.hpp" |
|
30 |
#include "opto/phaseX.hpp" |
|
31 |
#include "opto/vectornode.hpp" |
|
32 |
#include "utilities/growableArray.hpp" |
|
33 |
||
1 | 34 |
// |
35 |
// S U P E R W O R D T R A N S F O R M |
|
36 |
// |
|
37 |
// SuperWords are short, fixed length vectors. |
|
38 |
// |
|
39 |
// Algorithm from: |
|
40 |
// |
|
41 |
// Exploiting SuperWord Level Parallelism with |
|
42 |
// Multimedia Instruction Sets |
|
43 |
// by |
|
44 |
// Samuel Larsen and Saman Amarasighe |
|
45 |
// MIT Laboratory for Computer Science |
|
46 |
// date |
|
47 |
// May 2000 |
|
48 |
// published in |
|
49 |
// ACM SIGPLAN Notices |
|
50 |
// Proceedings of ACM PLDI '00, Volume 35 Issue 5 |
|
51 |
// |
|
52 |
// Definition 3.1 A Pack is an n-tuple, <s1, ...,sn>, where |
|
53 |
// s1,...,sn are independent isomorphic statements in a basic |
|
54 |
// block. |
|
55 |
// |
|
56 |
// Definition 3.2 A PackSet is a set of Packs. |
|
57 |
// |
|
58 |
// Definition 3.3 A Pair is a Pack of size two, where the |
|
59 |
// first statement is considered the left element, and the |
|
60 |
// second statement is considered the right element. |
|
61 |
||
62 |
class SWPointer; |
|
63 |
class OrderedPair; |
|
64 |
||
65 |
// ========================= Dependence Graph ===================== |
|
66 |
||
67 |
class DepMem; |
|
68 |
||
69 |
//------------------------------DepEdge--------------------------- |
|
70 |
// An edge in the dependence graph. The edges incident to a dependence |
|
71 |
// node are threaded through _next_in for incoming edges and _next_out |
|
72 |
// for outgoing edges. |
|
73 |
class DepEdge : public ResourceObj { |
|
74 |
protected: |
|
75 |
DepMem* _pred; |
|
76 |
DepMem* _succ; |
|
77 |
DepEdge* _next_in; // list of in edges, null terminated |
|
78 |
DepEdge* _next_out; // list of out edges, null terminated |
|
79 |
||
80 |
public: |
|
81 |
DepEdge(DepMem* pred, DepMem* succ, DepEdge* next_in, DepEdge* next_out) : |
|
82 |
_pred(pred), _succ(succ), _next_in(next_in), _next_out(next_out) {} |
|
83 |
||
84 |
DepEdge* next_in() { return _next_in; } |
|
85 |
DepEdge* next_out() { return _next_out; } |
|
86 |
DepMem* pred() { return _pred; } |
|
87 |
DepMem* succ() { return _succ; } |
|
88 |
||
89 |
void print(); |
|
90 |
}; |
|
91 |
||
92 |
//------------------------------DepMem--------------------------- |
|
93 |
// A node in the dependence graph. _in_head starts the threaded list of |
|
94 |
// incoming edges, and _out_head starts the list of outgoing edges. |
|
95 |
class DepMem : public ResourceObj { |
|
96 |
protected: |
|
97 |
Node* _node; // Corresponding ideal node |
|
98 |
DepEdge* _in_head; // Head of list of in edges, null terminated |
|
99 |
DepEdge* _out_head; // Head of list of out edges, null terminated |
|
100 |
||
101 |
public: |
|
102 |
DepMem(Node* node) : _node(node), _in_head(NULL), _out_head(NULL) {} |
|
103 |
||
104 |
Node* node() { return _node; } |
|
105 |
DepEdge* in_head() { return _in_head; } |
|
106 |
DepEdge* out_head() { return _out_head; } |
|
107 |
void set_in_head(DepEdge* hd) { _in_head = hd; } |
|
108 |
void set_out_head(DepEdge* hd) { _out_head = hd; } |
|
109 |
||
110 |
int in_cnt(); // Incoming edge count |
|
111 |
int out_cnt(); // Outgoing edge count |
|
112 |
||
113 |
void print(); |
|
114 |
}; |
|
115 |
||
116 |
//------------------------------DepGraph--------------------------- |
|
117 |
class DepGraph VALUE_OBJ_CLASS_SPEC { |
|
118 |
protected: |
|
119 |
Arena* _arena; |
|
120 |
GrowableArray<DepMem*> _map; |
|
121 |
DepMem* _root; |
|
122 |
DepMem* _tail; |
|
123 |
||
124 |
public: |
|
125 |
DepGraph(Arena* a) : _arena(a), _map(a, 8, 0, NULL) { |
|
126 |
_root = new (_arena) DepMem(NULL); |
|
127 |
_tail = new (_arena) DepMem(NULL); |
|
128 |
} |
|
129 |
||
130 |
DepMem* root() { return _root; } |
|
131 |
DepMem* tail() { return _tail; } |
|
132 |
||
133 |
// Return dependence node corresponding to an ideal node |
|
134 |
DepMem* dep(Node* node) { return _map.at(node->_idx); } |
|
135 |
||
136 |
// Make a new dependence graph node for an ideal node. |
|
137 |
DepMem* make_node(Node* node); |
|
138 |
||
139 |
// Make a new dependence graph edge dprec->dsucc |
|
140 |
DepEdge* make_edge(DepMem* dpred, DepMem* dsucc); |
|
141 |
||
142 |
DepEdge* make_edge(Node* pred, Node* succ) { return make_edge(dep(pred), dep(succ)); } |
|
143 |
DepEdge* make_edge(DepMem* pred, Node* succ) { return make_edge(pred, dep(succ)); } |
|
144 |
DepEdge* make_edge(Node* pred, DepMem* succ) { return make_edge(dep(pred), succ); } |
|
145 |
||
146 |
void init() { _map.clear(); } // initialize |
|
147 |
||
148 |
void print(Node* n) { dep(n)->print(); } |
|
149 |
void print(DepMem* d) { d->print(); } |
|
150 |
}; |
|
151 |
||
152 |
//------------------------------DepPreds--------------------------- |
|
153 |
// Iterator over predecessors in the dependence graph and |
|
154 |
// non-memory-graph inputs of ideal nodes. |
|
155 |
class DepPreds : public StackObj { |
|
156 |
private: |
|
157 |
Node* _n; |
|
158 |
int _next_idx, _end_idx; |
|
159 |
DepEdge* _dep_next; |
|
160 |
Node* _current; |
|
161 |
bool _done; |
|
162 |
||
163 |
public: |
|
164 |
DepPreds(Node* n, DepGraph& dg); |
|
165 |
Node* current() { return _current; } |
|
166 |
bool done() { return _done; } |
|
167 |
void next(); |
|
168 |
}; |
|
169 |
||
170 |
//------------------------------DepSuccs--------------------------- |
|
171 |
// Iterator over successors in the dependence graph and |
|
172 |
// non-memory-graph outputs of ideal nodes. |
|
173 |
class DepSuccs : public StackObj { |
|
174 |
private: |
|
175 |
Node* _n; |
|
176 |
int _next_idx, _end_idx; |
|
177 |
DepEdge* _dep_next; |
|
178 |
Node* _current; |
|
179 |
bool _done; |
|
180 |
||
181 |
public: |
|
182 |
DepSuccs(Node* n, DepGraph& dg); |
|
183 |
Node* current() { return _current; } |
|
184 |
bool done() { return _done; } |
|
185 |
void next(); |
|
186 |
}; |
|
187 |
||
188 |
||
189 |
// ========================= SuperWord ===================== |
|
190 |
||
191 |
// -----------------------------SWNodeInfo--------------------------------- |
|
192 |
// Per node info needed by SuperWord |
|
193 |
class SWNodeInfo VALUE_OBJ_CLASS_SPEC { |
|
194 |
public: |
|
195 |
int _alignment; // memory alignment for a node |
|
196 |
int _depth; // Max expression (DAG) depth from block start |
|
197 |
const Type* _velt_type; // vector element type |
|
198 |
Node_List* _my_pack; // pack containing this node |
|
199 |
||
200 |
SWNodeInfo() : _alignment(-1), _depth(0), _velt_type(NULL), _my_pack(NULL) {} |
|
201 |
static const SWNodeInfo initial; |
|
202 |
}; |
|
203 |
||
204 |
// -----------------------------SuperWord--------------------------------- |
|
205 |
// Transforms scalar operations into packed (superword) operations. |
|
206 |
class SuperWord : public ResourceObj { |
|
207 |
private: |
|
208 |
PhaseIdealLoop* _phase; |
|
209 |
Arena* _arena; |
|
210 |
PhaseIterGVN &_igvn; |
|
211 |
||
212 |
enum consts { top_align = -1, bottom_align = -666 }; |
|
213 |
||
214 |
GrowableArray<Node_List*> _packset; // Packs for the current block |
|
215 |
||
216 |
GrowableArray<int> _bb_idx; // Map from Node _idx to index within block |
|
217 |
||
218 |
GrowableArray<Node*> _block; // Nodes in current block |
|
219 |
GrowableArray<Node*> _data_entry; // Nodes with all inputs from outside |
|
220 |
GrowableArray<Node*> _mem_slice_head; // Memory slice head nodes |
|
221 |
GrowableArray<Node*> _mem_slice_tail; // Memory slice tail nodes |
|
222 |
||
223 |
GrowableArray<SWNodeInfo> _node_info; // Info needed per node |
|
224 |
||
225 |
MemNode* _align_to_ref; // Memory reference that pre-loop will align to |
|
226 |
||
227 |
GrowableArray<OrderedPair> _disjoint_ptrs; // runtime disambiguated pointer pairs |
|
228 |
||
229 |
DepGraph _dg; // Dependence graph |
|
230 |
||
231 |
// Scratch pads |
|
232 |
VectorSet _visited; // Visited set |
|
233 |
VectorSet _post_visited; // Post-visited set |
|
234 |
Node_Stack _n_idx_list; // List of (node,index) pairs |
|
235 |
GrowableArray<Node*> _nlist; // List of nodes |
|
236 |
GrowableArray<Node*> _stk; // Stack of nodes |
|
237 |
||
238 |
public: |
|
239 |
SuperWord(PhaseIdealLoop* phase); |
|
240 |
||
241 |
void transform_loop(IdealLoopTree* lpt); |
|
242 |
||
243 |
// Accessors for SWPointer |
|
244 |
PhaseIdealLoop* phase() { return _phase; } |
|
245 |
IdealLoopTree* lpt() { return _lpt; } |
|
246 |
PhiNode* iv() { return _iv; } |
|
247 |
||
248 |
private: |
|
249 |
IdealLoopTree* _lpt; // Current loop tree node |
|
250 |
LoopNode* _lp; // Current LoopNode |
|
251 |
Node* _bb; // Current basic block |
|
252 |
PhiNode* _iv; // Induction var |
|
253 |
||
254 |
// Accessors |
|
255 |
Arena* arena() { return _arena; } |
|
256 |
||
257 |
Node* bb() { return _bb; } |
|
258 |
void set_bb(Node* bb) { _bb = bb; } |
|
259 |
||
260 |
void set_lpt(IdealLoopTree* lpt) { _lpt = lpt; } |
|
261 |
||
262 |
LoopNode* lp() { return _lp; } |
|
263 |
void set_lp(LoopNode* lp) { _lp = lp; |
|
264 |
_iv = lp->as_CountedLoop()->phi()->as_Phi(); } |
|
265 |
int iv_stride() { return lp()->as_CountedLoop()->stride_con(); } |
|
266 |
||
267 |
int vector_width_in_bytes() { return Matcher::vector_width_in_bytes(); } |
|
268 |
||
269 |
MemNode* align_to_ref() { return _align_to_ref; } |
|
270 |
void set_align_to_ref(MemNode* m) { _align_to_ref = m; } |
|
271 |
||
272 |
Node* ctrl(Node* n) const { return _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n; } |
|
273 |
||
274 |
// block accessors |
|
275 |
bool in_bb(Node* n) { return n != NULL && n->outcnt() > 0 && ctrl(n) == _bb; } |
|
276 |
int bb_idx(Node* n) { assert(in_bb(n), "must be"); return _bb_idx.at(n->_idx); } |
|
277 |
void set_bb_idx(Node* n, int i) { _bb_idx.at_put_grow(n->_idx, i); } |
|
278 |
||
279 |
// visited set accessors |
|
280 |
void visited_clear() { _visited.Clear(); } |
|
281 |
void visited_set(Node* n) { return _visited.set(bb_idx(n)); } |
|
282 |
int visited_test(Node* n) { return _visited.test(bb_idx(n)); } |
|
283 |
int visited_test_set(Node* n) { return _visited.test_set(bb_idx(n)); } |
|
284 |
void post_visited_clear() { _post_visited.Clear(); } |
|
285 |
void post_visited_set(Node* n) { return _post_visited.set(bb_idx(n)); } |
|
286 |
int post_visited_test(Node* n) { return _post_visited.test(bb_idx(n)); } |
|
287 |
||
288 |
// Ensure node_info contains element "i" |
|
289 |
void grow_node_info(int i) { if (i >= _node_info.length()) _node_info.at_put_grow(i, SWNodeInfo::initial); } |
|
290 |
||
291 |
// memory alignment for a node |
|
292 |
int alignment(Node* n) { return _node_info.adr_at(bb_idx(n))->_alignment; } |
|
293 |
void set_alignment(Node* n, int a) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_alignment = a; } |
|
294 |
||
295 |
// Max expression (DAG) depth from beginning of the block for each node |
|
296 |
int depth(Node* n) { return _node_info.adr_at(bb_idx(n))->_depth; } |
|
297 |
void set_depth(Node* n, int d) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_depth = d; } |
|
298 |
||
299 |
// vector element type |
|
300 |
const Type* velt_type(Node* n) { return _node_info.adr_at(bb_idx(n))->_velt_type; } |
|
301 |
void set_velt_type(Node* n, const Type* t) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_velt_type = t; } |
|
302 |
||
303 |
// my_pack |
|
304 |
Node_List* my_pack(Node* n) { return !in_bb(n) ? NULL : _node_info.adr_at(bb_idx(n))->_my_pack; } |
|
305 |
void set_my_pack(Node* n, Node_List* p) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_my_pack = p; } |
|
306 |
||
307 |
// methods |
|
308 |
||
309 |
// Extract the superword level parallelism |
|
310 |
void SLP_extract(); |
|
311 |
// Find the adjacent memory references and create pack pairs for them. |
|
312 |
void find_adjacent_refs(); |
|
313 |
// Find a memory reference to align the loop induction variable to. |
|
314 |
void find_align_to_ref(Node_List &memops); |
|
315 |
// Can the preloop align the reference to position zero in the vector? |
|
316 |
bool ref_is_alignable(SWPointer& p); |
|
317 |
// Construct dependency graph. |
|
318 |
void dependence_graph(); |
|
319 |
// Return a memory slice (node list) in predecessor order starting at "start" |
|
320 |
void mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds); |
|
2131 | 321 |
// Can s1 and s2 be in a pack with s1 immediately preceding s2 and s1 aligned at "align" |
1 | 322 |
bool stmts_can_pack(Node* s1, Node* s2, int align); |
323 |
// Does s exist in a pack at position pos? |
|
324 |
bool exists_at(Node* s, uint pos); |
|
325 |
// Is s1 immediately before s2 in memory? |
|
326 |
bool are_adjacent_refs(Node* s1, Node* s2); |
|
327 |
// Are s1 and s2 similar? |
|
328 |
bool isomorphic(Node* s1, Node* s2); |
|
329 |
// Is there no data path from s1 to s2 or s2 to s1? |
|
330 |
bool independent(Node* s1, Node* s2); |
|
331 |
// Helper for independent |
|
332 |
bool independent_path(Node* shallow, Node* deep, uint dp=0); |
|
333 |
void set_alignment(Node* s1, Node* s2, int align); |
|
334 |
int data_size(Node* s); |
|
335 |
// Extend packset by following use->def and def->use links from pack members. |
|
336 |
void extend_packlist(); |
|
337 |
// Extend the packset by visiting operand definitions of nodes in pack p |
|
338 |
bool follow_use_defs(Node_List* p); |
|
339 |
// Extend the packset by visiting uses of nodes in pack p |
|
340 |
bool follow_def_uses(Node_List* p); |
|
341 |
// Estimate the savings from executing s1 and s2 as a pack |
|
342 |
int est_savings(Node* s1, Node* s2); |
|
343 |
int adjacent_profit(Node* s1, Node* s2); |
|
344 |
int pack_cost(int ct); |
|
345 |
int unpack_cost(int ct); |
|
346 |
// Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last |
|
347 |
void combine_packs(); |
|
348 |
// Construct the map from nodes to packs. |
|
349 |
void construct_my_pack_map(); |
|
350 |
// Remove packs that are not implemented or not profitable. |
|
351 |
void filter_packs(); |
|
352 |
// Adjust the memory graph for the packed operations |
|
353 |
void schedule(); |
|
2334 | 354 |
// Remove "current" from its current position in the memory graph and insert |
355 |
// it after the appropriate insert points (lip or uip); |
|
356 |
void remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip, Node *uip, Unique_Node_List &schd_before); |
|
357 |
// Within a store pack, schedule stores together by moving out the sandwiched memory ops according |
|
358 |
// to dependence info; and within a load pack, move loads down to the last executed load. |
|
1 | 359 |
void co_locate_pack(Node_List* p); |
360 |
// Convert packs into vector node operations |
|
361 |
void output(); |
|
362 |
// Create a vector operand for the nodes in pack p for operand: in(opd_idx) |
|
10255 | 363 |
Node* vector_opd(Node_List* p, int opd_idx); |
1 | 364 |
// Can code be generated for pack p? |
365 |
bool implemented(Node_List* p); |
|
366 |
// For pack p, are all operands and all uses (with in the block) vector? |
|
367 |
bool profitable(Node_List* p); |
|
368 |
// If a use of pack p is not a vector use, then replace the use with an extract operation. |
|
369 |
void insert_extracts(Node_List* p); |
|
370 |
// Is use->in(u_idx) a vector use? |
|
371 |
bool is_vector_use(Node* use, int u_idx); |
|
372 |
// Construct reverse postorder list of block members |
|
373 |
void construct_bb(); |
|
374 |
// Initialize per node info |
|
375 |
void initialize_bb(); |
|
376 |
// Insert n into block after pos |
|
377 |
void bb_insert_after(Node* n, int pos); |
|
378 |
// Compute max depth for expressions from beginning of block |
|
379 |
void compute_max_depth(); |
|
380 |
// Compute necessary vector element type for expressions |
|
381 |
void compute_vector_element_type(); |
|
382 |
// Are s1 and s2 in a pack pair and ordered as s1,s2? |
|
383 |
bool in_packset(Node* s1, Node* s2); |
|
384 |
// Is s in pack p? |
|
385 |
Node_List* in_pack(Node* s, Node_List* p); |
|
386 |
// Remove the pack at position pos in the packset |
|
387 |
void remove_pack_at(int pos); |
|
388 |
// Return the node executed first in pack p. |
|
389 |
Node* executed_first(Node_List* p); |
|
390 |
// Return the node executed last in pack p. |
|
391 |
Node* executed_last(Node_List* p); |
|
392 |
// Alignment within a vector memory reference |
|
393 |
int memory_alignment(MemNode* s, int iv_adjust_in_bytes); |
|
394 |
// (Start, end] half-open range defining which operands are vector |
|
395 |
void vector_opd_range(Node* n, uint* start, uint* end); |
|
396 |
// Smallest type containing range of values |
|
397 |
static const Type* container_type(const Type* t); |
|
398 |
// Adjust pre-loop limit so that in main loop, a load/store reference |
|
399 |
// to align_to_ref will be a position zero in the vector. |
|
400 |
void align_initial_loop_index(MemNode* align_to_ref); |
|
401 |
// Find pre loop end from main loop. Returns null if none. |
|
402 |
CountedLoopEndNode* get_pre_loop_end(CountedLoopNode *cl); |
|
403 |
// Is the use of d1 in u1 at the same operand position as d2 in u2? |
|
404 |
bool opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2); |
|
405 |
void init(); |
|
406 |
||
407 |
// print methods |
|
408 |
void print_packset(); |
|
409 |
void print_pack(Node_List* p); |
|
410 |
void print_bb(); |
|
411 |
void print_stmt(Node* s); |
|
412 |
char* blank(uint depth); |
|
413 |
}; |
|
414 |
||
415 |
||
416 |
//------------------------------SWPointer--------------------------- |
|
417 |
// Information about an address for dependence checking and vector alignment |
|
418 |
class SWPointer VALUE_OBJ_CLASS_SPEC { |
|
419 |
protected: |
|
420 |
MemNode* _mem; // My memory reference node |
|
421 |
SuperWord* _slp; // SuperWord class |
|
422 |
||
423 |
Node* _base; // NULL if unsafe nonheap reference |
|
424 |
Node* _adr; // address pointer |
|
425 |
jint _scale; // multipler for iv (in bytes), 0 if no loop iv |
|
426 |
jint _offset; // constant offset (in bytes) |
|
427 |
Node* _invar; // invariant offset (in bytes), NULL if none |
|
428 |
bool _negate_invar; // if true then use: (0 - _invar) |
|
429 |
||
430 |
PhaseIdealLoop* phase() { return _slp->phase(); } |
|
431 |
IdealLoopTree* lpt() { return _slp->lpt(); } |
|
432 |
PhiNode* iv() { return _slp->iv(); } // Induction var |
|
433 |
||
434 |
bool invariant(Node* n) { |
|
435 |
Node *n_c = phase()->get_ctrl(n); |
|
436 |
return !lpt()->is_member(phase()->get_loop(n_c)); |
|
437 |
} |
|
438 |
||
439 |
// Match: k*iv + offset |
|
440 |
bool scaled_iv_plus_offset(Node* n); |
|
441 |
// Match: k*iv where k is a constant that's not zero |
|
442 |
bool scaled_iv(Node* n); |
|
443 |
// Match: offset is (k [+/- invariant]) |
|
444 |
bool offset_plus_k(Node* n, bool negate = false); |
|
445 |
||
446 |
public: |
|
447 |
enum CMP { |
|
448 |
Less = 1, |
|
449 |
Greater = 2, |
|
450 |
Equal = 4, |
|
451 |
NotEqual = (Less | Greater), |
|
452 |
NotComparable = (Less | Greater | Equal) |
|
453 |
}; |
|
454 |
||
455 |
SWPointer(MemNode* mem, SuperWord* slp); |
|
456 |
// Following is used to create a temporary object during |
|
457 |
// the pattern match of an address expression. |
|
458 |
SWPointer(SWPointer* p); |
|
459 |
||
460 |
bool valid() { return _adr != NULL; } |
|
461 |
bool has_iv() { return _scale != 0; } |
|
462 |
||
463 |
Node* base() { return _base; } |
|
464 |
Node* adr() { return _adr; } |
|
465 |
int scale_in_bytes() { return _scale; } |
|
466 |
Node* invar() { return _invar; } |
|
467 |
bool negate_invar() { return _negate_invar; } |
|
468 |
int offset_in_bytes() { return _offset; } |
|
469 |
int memory_size() { return _mem->memory_size(); } |
|
470 |
||
471 |
// Comparable? |
|
472 |
int cmp(SWPointer& q) { |
|
473 |
if (valid() && q.valid() && |
|
474 |
(_adr == q._adr || _base == _adr && q._base == q._adr) && |
|
475 |
_scale == q._scale && |
|
476 |
_invar == q._invar && |
|
477 |
_negate_invar == q._negate_invar) { |
|
478 |
bool overlap = q._offset < _offset + memory_size() && |
|
479 |
_offset < q._offset + q.memory_size(); |
|
480 |
return overlap ? Equal : (_offset < q._offset ? Less : Greater); |
|
481 |
} else { |
|
482 |
return NotComparable; |
|
483 |
} |
|
484 |
} |
|
485 |
||
486 |
bool not_equal(SWPointer& q) { return not_equal(cmp(q)); } |
|
487 |
bool equal(SWPointer& q) { return equal(cmp(q)); } |
|
488 |
bool comparable(SWPointer& q) { return comparable(cmp(q)); } |
|
489 |
static bool not_equal(int cmp) { return cmp <= NotEqual; } |
|
490 |
static bool equal(int cmp) { return cmp == Equal; } |
|
491 |
static bool comparable(int cmp) { return cmp < NotComparable; } |
|
492 |
||
493 |
void print(); |
|
494 |
}; |
|
495 |
||
496 |
||
497 |
//------------------------------OrderedPair--------------------------- |
|
498 |
// Ordered pair of Node*. |
|
499 |
class OrderedPair VALUE_OBJ_CLASS_SPEC { |
|
500 |
protected: |
|
501 |
Node* _p1; |
|
502 |
Node* _p2; |
|
503 |
public: |
|
504 |
OrderedPair() : _p1(NULL), _p2(NULL) {} |
|
505 |
OrderedPair(Node* p1, Node* p2) { |
|
506 |
if (p1->_idx < p2->_idx) { |
|
507 |
_p1 = p1; _p2 = p2; |
|
508 |
} else { |
|
509 |
_p1 = p2; _p2 = p1; |
|
510 |
} |
|
511 |
} |
|
512 |
||
513 |
bool operator==(const OrderedPair &rhs) { |
|
514 |
return _p1 == rhs._p1 && _p2 == rhs._p2; |
|
515 |
} |
|
516 |
void print() { tty->print(" (%d, %d)", _p1->_idx, _p2->_idx); } |
|
517 |
||
518 |
static const OrderedPair initial; |
|
519 |
}; |
|
7397 | 520 |
|
521 |
#endif // SHARE_VM_OPTO_SUPERWORD_HPP |