1
|
1 |
/*
|
|
2 |
* Copyright 2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*/
|
|
23 |
|
|
24 |
//
|
|
25 |
// S U P E R W O R D T R A N S F O R M
|
|
26 |
//
|
|
27 |
// SuperWords are short, fixed length vectors.
|
|
28 |
//
|
|
29 |
// Algorithm from:
|
|
30 |
//
|
|
31 |
// Exploiting SuperWord Level Parallelism with
|
|
32 |
// Multimedia Instruction Sets
|
|
33 |
// by
|
|
34 |
// Samuel Larsen and Saman Amarasighe
|
|
35 |
// MIT Laboratory for Computer Science
|
|
36 |
// date
|
|
37 |
// May 2000
|
|
38 |
// published in
|
|
39 |
// ACM SIGPLAN Notices
|
|
40 |
// Proceedings of ACM PLDI '00, Volume 35 Issue 5
|
|
41 |
//
|
|
42 |
// Definition 3.1 A Pack is an n-tuple, <s1, ...,sn>, where
|
|
43 |
// s1,...,sn are independent isomorphic statements in a basic
|
|
44 |
// block.
|
|
45 |
//
|
|
46 |
// Definition 3.2 A PackSet is a set of Packs.
|
|
47 |
//
|
|
48 |
// Definition 3.3 A Pair is a Pack of size two, where the
|
|
49 |
// first statement is considered the left element, and the
|
|
50 |
// second statement is considered the right element.
|
|
51 |
|
|
52 |
class SWPointer;
|
|
53 |
class OrderedPair;
|
|
54 |
|
|
55 |
// ========================= Dependence Graph =====================
|
|
56 |
|
|
57 |
class DepMem;
|
|
58 |
|
|
59 |
//------------------------------DepEdge---------------------------
|
|
60 |
// An edge in the dependence graph. The edges incident to a dependence
|
|
61 |
// node are threaded through _next_in for incoming edges and _next_out
|
|
62 |
// for outgoing edges.
|
|
63 |
class DepEdge : public ResourceObj {
|
|
64 |
protected:
|
|
65 |
DepMem* _pred;
|
|
66 |
DepMem* _succ;
|
|
67 |
DepEdge* _next_in; // list of in edges, null terminated
|
|
68 |
DepEdge* _next_out; // list of out edges, null terminated
|
|
69 |
|
|
70 |
public:
|
|
71 |
DepEdge(DepMem* pred, DepMem* succ, DepEdge* next_in, DepEdge* next_out) :
|
|
72 |
_pred(pred), _succ(succ), _next_in(next_in), _next_out(next_out) {}
|
|
73 |
|
|
74 |
DepEdge* next_in() { return _next_in; }
|
|
75 |
DepEdge* next_out() { return _next_out; }
|
|
76 |
DepMem* pred() { return _pred; }
|
|
77 |
DepMem* succ() { return _succ; }
|
|
78 |
|
|
79 |
void print();
|
|
80 |
};
|
|
81 |
|
|
82 |
//------------------------------DepMem---------------------------
|
|
83 |
// A node in the dependence graph. _in_head starts the threaded list of
|
|
84 |
// incoming edges, and _out_head starts the list of outgoing edges.
|
|
85 |
class DepMem : public ResourceObj {
|
|
86 |
protected:
|
|
87 |
Node* _node; // Corresponding ideal node
|
|
88 |
DepEdge* _in_head; // Head of list of in edges, null terminated
|
|
89 |
DepEdge* _out_head; // Head of list of out edges, null terminated
|
|
90 |
|
|
91 |
public:
|
|
92 |
DepMem(Node* node) : _node(node), _in_head(NULL), _out_head(NULL) {}
|
|
93 |
|
|
94 |
Node* node() { return _node; }
|
|
95 |
DepEdge* in_head() { return _in_head; }
|
|
96 |
DepEdge* out_head() { return _out_head; }
|
|
97 |
void set_in_head(DepEdge* hd) { _in_head = hd; }
|
|
98 |
void set_out_head(DepEdge* hd) { _out_head = hd; }
|
|
99 |
|
|
100 |
int in_cnt(); // Incoming edge count
|
|
101 |
int out_cnt(); // Outgoing edge count
|
|
102 |
|
|
103 |
void print();
|
|
104 |
};
|
|
105 |
|
|
106 |
//------------------------------DepGraph---------------------------
|
|
107 |
class DepGraph VALUE_OBJ_CLASS_SPEC {
|
|
108 |
protected:
|
|
109 |
Arena* _arena;
|
|
110 |
GrowableArray<DepMem*> _map;
|
|
111 |
DepMem* _root;
|
|
112 |
DepMem* _tail;
|
|
113 |
|
|
114 |
public:
|
|
115 |
DepGraph(Arena* a) : _arena(a), _map(a, 8, 0, NULL) {
|
|
116 |
_root = new (_arena) DepMem(NULL);
|
|
117 |
_tail = new (_arena) DepMem(NULL);
|
|
118 |
}
|
|
119 |
|
|
120 |
DepMem* root() { return _root; }
|
|
121 |
DepMem* tail() { return _tail; }
|
|
122 |
|
|
123 |
// Return dependence node corresponding to an ideal node
|
|
124 |
DepMem* dep(Node* node) { return _map.at(node->_idx); }
|
|
125 |
|
|
126 |
// Make a new dependence graph node for an ideal node.
|
|
127 |
DepMem* make_node(Node* node);
|
|
128 |
|
|
129 |
// Make a new dependence graph edge dprec->dsucc
|
|
130 |
DepEdge* make_edge(DepMem* dpred, DepMem* dsucc);
|
|
131 |
|
|
132 |
DepEdge* make_edge(Node* pred, Node* succ) { return make_edge(dep(pred), dep(succ)); }
|
|
133 |
DepEdge* make_edge(DepMem* pred, Node* succ) { return make_edge(pred, dep(succ)); }
|
|
134 |
DepEdge* make_edge(Node* pred, DepMem* succ) { return make_edge(dep(pred), succ); }
|
|
135 |
|
|
136 |
void init() { _map.clear(); } // initialize
|
|
137 |
|
|
138 |
void print(Node* n) { dep(n)->print(); }
|
|
139 |
void print(DepMem* d) { d->print(); }
|
|
140 |
};
|
|
141 |
|
|
142 |
//------------------------------DepPreds---------------------------
|
|
143 |
// Iterator over predecessors in the dependence graph and
|
|
144 |
// non-memory-graph inputs of ideal nodes.
|
|
145 |
class DepPreds : public StackObj {
|
|
146 |
private:
|
|
147 |
Node* _n;
|
|
148 |
int _next_idx, _end_idx;
|
|
149 |
DepEdge* _dep_next;
|
|
150 |
Node* _current;
|
|
151 |
bool _done;
|
|
152 |
|
|
153 |
public:
|
|
154 |
DepPreds(Node* n, DepGraph& dg);
|
|
155 |
Node* current() { return _current; }
|
|
156 |
bool done() { return _done; }
|
|
157 |
void next();
|
|
158 |
};
|
|
159 |
|
|
160 |
//------------------------------DepSuccs---------------------------
|
|
161 |
// Iterator over successors in the dependence graph and
|
|
162 |
// non-memory-graph outputs of ideal nodes.
|
|
163 |
class DepSuccs : public StackObj {
|
|
164 |
private:
|
|
165 |
Node* _n;
|
|
166 |
int _next_idx, _end_idx;
|
|
167 |
DepEdge* _dep_next;
|
|
168 |
Node* _current;
|
|
169 |
bool _done;
|
|
170 |
|
|
171 |
public:
|
|
172 |
DepSuccs(Node* n, DepGraph& dg);
|
|
173 |
Node* current() { return _current; }
|
|
174 |
bool done() { return _done; }
|
|
175 |
void next();
|
|
176 |
};
|
|
177 |
|
|
178 |
|
|
179 |
// ========================= SuperWord =====================
|
|
180 |
|
|
181 |
// -----------------------------SWNodeInfo---------------------------------
|
|
182 |
// Per node info needed by SuperWord
|
|
183 |
class SWNodeInfo VALUE_OBJ_CLASS_SPEC {
|
|
184 |
public:
|
|
185 |
int _alignment; // memory alignment for a node
|
|
186 |
int _depth; // Max expression (DAG) depth from block start
|
|
187 |
const Type* _velt_type; // vector element type
|
|
188 |
Node_List* _my_pack; // pack containing this node
|
|
189 |
|
|
190 |
SWNodeInfo() : _alignment(-1), _depth(0), _velt_type(NULL), _my_pack(NULL) {}
|
|
191 |
static const SWNodeInfo initial;
|
|
192 |
};
|
|
193 |
|
|
194 |
// -----------------------------SuperWord---------------------------------
|
|
195 |
// Transforms scalar operations into packed (superword) operations.
|
|
196 |
class SuperWord : public ResourceObj {
|
|
197 |
private:
|
|
198 |
PhaseIdealLoop* _phase;
|
|
199 |
Arena* _arena;
|
|
200 |
PhaseIterGVN &_igvn;
|
|
201 |
|
|
202 |
enum consts { top_align = -1, bottom_align = -666 };
|
|
203 |
|
|
204 |
GrowableArray<Node_List*> _packset; // Packs for the current block
|
|
205 |
|
|
206 |
GrowableArray<int> _bb_idx; // Map from Node _idx to index within block
|
|
207 |
|
|
208 |
GrowableArray<Node*> _block; // Nodes in current block
|
|
209 |
GrowableArray<Node*> _data_entry; // Nodes with all inputs from outside
|
|
210 |
GrowableArray<Node*> _mem_slice_head; // Memory slice head nodes
|
|
211 |
GrowableArray<Node*> _mem_slice_tail; // Memory slice tail nodes
|
|
212 |
|
|
213 |
GrowableArray<SWNodeInfo> _node_info; // Info needed per node
|
|
214 |
|
|
215 |
MemNode* _align_to_ref; // Memory reference that pre-loop will align to
|
|
216 |
|
|
217 |
GrowableArray<OrderedPair> _disjoint_ptrs; // runtime disambiguated pointer pairs
|
|
218 |
|
|
219 |
DepGraph _dg; // Dependence graph
|
|
220 |
|
|
221 |
// Scratch pads
|
|
222 |
VectorSet _visited; // Visited set
|
|
223 |
VectorSet _post_visited; // Post-visited set
|
|
224 |
Node_Stack _n_idx_list; // List of (node,index) pairs
|
|
225 |
GrowableArray<Node*> _nlist; // List of nodes
|
|
226 |
GrowableArray<Node*> _stk; // Stack of nodes
|
|
227 |
|
|
228 |
public:
|
|
229 |
SuperWord(PhaseIdealLoop* phase);
|
|
230 |
|
|
231 |
void transform_loop(IdealLoopTree* lpt);
|
|
232 |
|
|
233 |
// Accessors for SWPointer
|
|
234 |
PhaseIdealLoop* phase() { return _phase; }
|
|
235 |
IdealLoopTree* lpt() { return _lpt; }
|
|
236 |
PhiNode* iv() { return _iv; }
|
|
237 |
|
|
238 |
private:
|
|
239 |
IdealLoopTree* _lpt; // Current loop tree node
|
|
240 |
LoopNode* _lp; // Current LoopNode
|
|
241 |
Node* _bb; // Current basic block
|
|
242 |
PhiNode* _iv; // Induction var
|
|
243 |
|
|
244 |
// Accessors
|
|
245 |
Arena* arena() { return _arena; }
|
|
246 |
|
|
247 |
Node* bb() { return _bb; }
|
|
248 |
void set_bb(Node* bb) { _bb = bb; }
|
|
249 |
|
|
250 |
void set_lpt(IdealLoopTree* lpt) { _lpt = lpt; }
|
|
251 |
|
|
252 |
LoopNode* lp() { return _lp; }
|
|
253 |
void set_lp(LoopNode* lp) { _lp = lp;
|
|
254 |
_iv = lp->as_CountedLoop()->phi()->as_Phi(); }
|
|
255 |
int iv_stride() { return lp()->as_CountedLoop()->stride_con(); }
|
|
256 |
|
|
257 |
int vector_width_in_bytes() { return Matcher::vector_width_in_bytes(); }
|
|
258 |
|
|
259 |
MemNode* align_to_ref() { return _align_to_ref; }
|
|
260 |
void set_align_to_ref(MemNode* m) { _align_to_ref = m; }
|
|
261 |
|
|
262 |
Node* ctrl(Node* n) const { return _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n; }
|
|
263 |
|
|
264 |
// block accessors
|
|
265 |
bool in_bb(Node* n) { return n != NULL && n->outcnt() > 0 && ctrl(n) == _bb; }
|
|
266 |
int bb_idx(Node* n) { assert(in_bb(n), "must be"); return _bb_idx.at(n->_idx); }
|
|
267 |
void set_bb_idx(Node* n, int i) { _bb_idx.at_put_grow(n->_idx, i); }
|
|
268 |
|
|
269 |
// visited set accessors
|
|
270 |
void visited_clear() { _visited.Clear(); }
|
|
271 |
void visited_set(Node* n) { return _visited.set(bb_idx(n)); }
|
|
272 |
int visited_test(Node* n) { return _visited.test(bb_idx(n)); }
|
|
273 |
int visited_test_set(Node* n) { return _visited.test_set(bb_idx(n)); }
|
|
274 |
void post_visited_clear() { _post_visited.Clear(); }
|
|
275 |
void post_visited_set(Node* n) { return _post_visited.set(bb_idx(n)); }
|
|
276 |
int post_visited_test(Node* n) { return _post_visited.test(bb_idx(n)); }
|
|
277 |
|
|
278 |
// Ensure node_info contains element "i"
|
|
279 |
void grow_node_info(int i) { if (i >= _node_info.length()) _node_info.at_put_grow(i, SWNodeInfo::initial); }
|
|
280 |
|
|
281 |
// memory alignment for a node
|
|
282 |
int alignment(Node* n) { return _node_info.adr_at(bb_idx(n))->_alignment; }
|
|
283 |
void set_alignment(Node* n, int a) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_alignment = a; }
|
|
284 |
|
|
285 |
// Max expression (DAG) depth from beginning of the block for each node
|
|
286 |
int depth(Node* n) { return _node_info.adr_at(bb_idx(n))->_depth; }
|
|
287 |
void set_depth(Node* n, int d) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_depth = d; }
|
|
288 |
|
|
289 |
// vector element type
|
|
290 |
const Type* velt_type(Node* n) { return _node_info.adr_at(bb_idx(n))->_velt_type; }
|
|
291 |
void set_velt_type(Node* n, const Type* t) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_velt_type = t; }
|
|
292 |
|
|
293 |
// my_pack
|
|
294 |
Node_List* my_pack(Node* n) { return !in_bb(n) ? NULL : _node_info.adr_at(bb_idx(n))->_my_pack; }
|
|
295 |
void set_my_pack(Node* n, Node_List* p) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_my_pack = p; }
|
|
296 |
|
|
297 |
// methods
|
|
298 |
|
|
299 |
// Extract the superword level parallelism
|
|
300 |
void SLP_extract();
|
|
301 |
// Find the adjacent memory references and create pack pairs for them.
|
|
302 |
void find_adjacent_refs();
|
|
303 |
// Find a memory reference to align the loop induction variable to.
|
|
304 |
void find_align_to_ref(Node_List &memops);
|
|
305 |
// Can the preloop align the reference to position zero in the vector?
|
|
306 |
bool ref_is_alignable(SWPointer& p);
|
|
307 |
// Construct dependency graph.
|
|
308 |
void dependence_graph();
|
|
309 |
// Return a memory slice (node list) in predecessor order starting at "start"
|
|
310 |
void mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds);
|
|
311 |
// Can s1 and s2 be in a pack with s1 immediately preceeding s2 and s1 aligned at "align"
|
|
312 |
bool stmts_can_pack(Node* s1, Node* s2, int align);
|
|
313 |
// Does s exist in a pack at position pos?
|
|
314 |
bool exists_at(Node* s, uint pos);
|
|
315 |
// Is s1 immediately before s2 in memory?
|
|
316 |
bool are_adjacent_refs(Node* s1, Node* s2);
|
|
317 |
// Are s1 and s2 similar?
|
|
318 |
bool isomorphic(Node* s1, Node* s2);
|
|
319 |
// Is there no data path from s1 to s2 or s2 to s1?
|
|
320 |
bool independent(Node* s1, Node* s2);
|
|
321 |
// Helper for independent
|
|
322 |
bool independent_path(Node* shallow, Node* deep, uint dp=0);
|
|
323 |
void set_alignment(Node* s1, Node* s2, int align);
|
|
324 |
int data_size(Node* s);
|
|
325 |
// Extend packset by following use->def and def->use links from pack members.
|
|
326 |
void extend_packlist();
|
|
327 |
// Extend the packset by visiting operand definitions of nodes in pack p
|
|
328 |
bool follow_use_defs(Node_List* p);
|
|
329 |
// Extend the packset by visiting uses of nodes in pack p
|
|
330 |
bool follow_def_uses(Node_List* p);
|
|
331 |
// Estimate the savings from executing s1 and s2 as a pack
|
|
332 |
int est_savings(Node* s1, Node* s2);
|
|
333 |
int adjacent_profit(Node* s1, Node* s2);
|
|
334 |
int pack_cost(int ct);
|
|
335 |
int unpack_cost(int ct);
|
|
336 |
// Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
|
|
337 |
void combine_packs();
|
|
338 |
// Construct the map from nodes to packs.
|
|
339 |
void construct_my_pack_map();
|
|
340 |
// Remove packs that are not implemented or not profitable.
|
|
341 |
void filter_packs();
|
|
342 |
// Adjust the memory graph for the packed operations
|
|
343 |
void schedule();
|
|
344 |
// Within a pack, move stores down to the last executed store,
|
|
345 |
// and move loads up to the first executed load.
|
|
346 |
void co_locate_pack(Node_List* p);
|
|
347 |
// Convert packs into vector node operations
|
|
348 |
void output();
|
|
349 |
// Create a vector operand for the nodes in pack p for operand: in(opd_idx)
|
|
350 |
VectorNode* vector_opd(Node_List* p, int opd_idx);
|
|
351 |
// Can code be generated for pack p?
|
|
352 |
bool implemented(Node_List* p);
|
|
353 |
// For pack p, are all operands and all uses (with in the block) vector?
|
|
354 |
bool profitable(Node_List* p);
|
|
355 |
// If a use of pack p is not a vector use, then replace the use with an extract operation.
|
|
356 |
void insert_extracts(Node_List* p);
|
|
357 |
// Is use->in(u_idx) a vector use?
|
|
358 |
bool is_vector_use(Node* use, int u_idx);
|
|
359 |
// Construct reverse postorder list of block members
|
|
360 |
void construct_bb();
|
|
361 |
// Initialize per node info
|
|
362 |
void initialize_bb();
|
|
363 |
// Insert n into block after pos
|
|
364 |
void bb_insert_after(Node* n, int pos);
|
|
365 |
// Compute max depth for expressions from beginning of block
|
|
366 |
void compute_max_depth();
|
|
367 |
// Compute necessary vector element type for expressions
|
|
368 |
void compute_vector_element_type();
|
|
369 |
// Are s1 and s2 in a pack pair and ordered as s1,s2?
|
|
370 |
bool in_packset(Node* s1, Node* s2);
|
|
371 |
// Is s in pack p?
|
|
372 |
Node_List* in_pack(Node* s, Node_List* p);
|
|
373 |
// Remove the pack at position pos in the packset
|
|
374 |
void remove_pack_at(int pos);
|
|
375 |
// Return the node executed first in pack p.
|
|
376 |
Node* executed_first(Node_List* p);
|
|
377 |
// Return the node executed last in pack p.
|
|
378 |
Node* executed_last(Node_List* p);
|
|
379 |
// Alignment within a vector memory reference
|
|
380 |
int memory_alignment(MemNode* s, int iv_adjust_in_bytes);
|
|
381 |
// (Start, end] half-open range defining which operands are vector
|
|
382 |
void vector_opd_range(Node* n, uint* start, uint* end);
|
|
383 |
// Smallest type containing range of values
|
|
384 |
static const Type* container_type(const Type* t);
|
|
385 |
// Adjust pre-loop limit so that in main loop, a load/store reference
|
|
386 |
// to align_to_ref will be a position zero in the vector.
|
|
387 |
void align_initial_loop_index(MemNode* align_to_ref);
|
|
388 |
// Find pre loop end from main loop. Returns null if none.
|
|
389 |
CountedLoopEndNode* get_pre_loop_end(CountedLoopNode *cl);
|
|
390 |
// Is the use of d1 in u1 at the same operand position as d2 in u2?
|
|
391 |
bool opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2);
|
|
392 |
void init();
|
|
393 |
|
|
394 |
// print methods
|
|
395 |
void print_packset();
|
|
396 |
void print_pack(Node_List* p);
|
|
397 |
void print_bb();
|
|
398 |
void print_stmt(Node* s);
|
|
399 |
char* blank(uint depth);
|
|
400 |
};
|
|
401 |
|
|
402 |
|
|
403 |
//------------------------------SWPointer---------------------------
|
|
404 |
// Information about an address for dependence checking and vector alignment
|
|
405 |
class SWPointer VALUE_OBJ_CLASS_SPEC {
|
|
406 |
protected:
|
|
407 |
MemNode* _mem; // My memory reference node
|
|
408 |
SuperWord* _slp; // SuperWord class
|
|
409 |
|
|
410 |
Node* _base; // NULL if unsafe nonheap reference
|
|
411 |
Node* _adr; // address pointer
|
|
412 |
jint _scale; // multipler for iv (in bytes), 0 if no loop iv
|
|
413 |
jint _offset; // constant offset (in bytes)
|
|
414 |
Node* _invar; // invariant offset (in bytes), NULL if none
|
|
415 |
bool _negate_invar; // if true then use: (0 - _invar)
|
|
416 |
|
|
417 |
PhaseIdealLoop* phase() { return _slp->phase(); }
|
|
418 |
IdealLoopTree* lpt() { return _slp->lpt(); }
|
|
419 |
PhiNode* iv() { return _slp->iv(); } // Induction var
|
|
420 |
|
|
421 |
bool invariant(Node* n) {
|
|
422 |
Node *n_c = phase()->get_ctrl(n);
|
|
423 |
return !lpt()->is_member(phase()->get_loop(n_c));
|
|
424 |
}
|
|
425 |
|
|
426 |
// Match: k*iv + offset
|
|
427 |
bool scaled_iv_plus_offset(Node* n);
|
|
428 |
// Match: k*iv where k is a constant that's not zero
|
|
429 |
bool scaled_iv(Node* n);
|
|
430 |
// Match: offset is (k [+/- invariant])
|
|
431 |
bool offset_plus_k(Node* n, bool negate = false);
|
|
432 |
|
|
433 |
public:
|
|
434 |
enum CMP {
|
|
435 |
Less = 1,
|
|
436 |
Greater = 2,
|
|
437 |
Equal = 4,
|
|
438 |
NotEqual = (Less | Greater),
|
|
439 |
NotComparable = (Less | Greater | Equal)
|
|
440 |
};
|
|
441 |
|
|
442 |
SWPointer(MemNode* mem, SuperWord* slp);
|
|
443 |
// Following is used to create a temporary object during
|
|
444 |
// the pattern match of an address expression.
|
|
445 |
SWPointer(SWPointer* p);
|
|
446 |
|
|
447 |
bool valid() { return _adr != NULL; }
|
|
448 |
bool has_iv() { return _scale != 0; }
|
|
449 |
|
|
450 |
Node* base() { return _base; }
|
|
451 |
Node* adr() { return _adr; }
|
|
452 |
int scale_in_bytes() { return _scale; }
|
|
453 |
Node* invar() { return _invar; }
|
|
454 |
bool negate_invar() { return _negate_invar; }
|
|
455 |
int offset_in_bytes() { return _offset; }
|
|
456 |
int memory_size() { return _mem->memory_size(); }
|
|
457 |
|
|
458 |
// Comparable?
|
|
459 |
int cmp(SWPointer& q) {
|
|
460 |
if (valid() && q.valid() &&
|
|
461 |
(_adr == q._adr || _base == _adr && q._base == q._adr) &&
|
|
462 |
_scale == q._scale &&
|
|
463 |
_invar == q._invar &&
|
|
464 |
_negate_invar == q._negate_invar) {
|
|
465 |
bool overlap = q._offset < _offset + memory_size() &&
|
|
466 |
_offset < q._offset + q.memory_size();
|
|
467 |
return overlap ? Equal : (_offset < q._offset ? Less : Greater);
|
|
468 |
} else {
|
|
469 |
return NotComparable;
|
|
470 |
}
|
|
471 |
}
|
|
472 |
|
|
473 |
bool not_equal(SWPointer& q) { return not_equal(cmp(q)); }
|
|
474 |
bool equal(SWPointer& q) { return equal(cmp(q)); }
|
|
475 |
bool comparable(SWPointer& q) { return comparable(cmp(q)); }
|
|
476 |
static bool not_equal(int cmp) { return cmp <= NotEqual; }
|
|
477 |
static bool equal(int cmp) { return cmp == Equal; }
|
|
478 |
static bool comparable(int cmp) { return cmp < NotComparable; }
|
|
479 |
|
|
480 |
void print();
|
|
481 |
};
|
|
482 |
|
|
483 |
|
|
484 |
//------------------------------OrderedPair---------------------------
|
|
485 |
// Ordered pair of Node*.
|
|
486 |
class OrderedPair VALUE_OBJ_CLASS_SPEC {
|
|
487 |
protected:
|
|
488 |
Node* _p1;
|
|
489 |
Node* _p2;
|
|
490 |
public:
|
|
491 |
OrderedPair() : _p1(NULL), _p2(NULL) {}
|
|
492 |
OrderedPair(Node* p1, Node* p2) {
|
|
493 |
if (p1->_idx < p2->_idx) {
|
|
494 |
_p1 = p1; _p2 = p2;
|
|
495 |
} else {
|
|
496 |
_p1 = p2; _p2 = p1;
|
|
497 |
}
|
|
498 |
}
|
|
499 |
|
|
500 |
bool operator==(const OrderedPair &rhs) {
|
|
501 |
return _p1 == rhs._p1 && _p2 == rhs._p2;
|
|
502 |
}
|
|
503 |
void print() { tty->print(" (%d, %d)", _p1->_idx, _p2->_idx); }
|
|
504 |
|
|
505 |
static const OrderedPair initial;
|
|
506 |
};
|