2
|
1 |
/*
|
|
2 |
* Portions Copyright 2000-2004 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation. Sun designates this
|
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
|
9 |
* by Sun in the LICENSE file that accompanied this code.
|
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
|
21 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
22 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
23 |
* have any questions.
|
|
24 |
*/
|
|
25 |
|
|
26 |
/*
|
|
27 |
* (C) Copyright IBM Corp. 1999-2003 - All Rights Reserved
|
|
28 |
*
|
|
29 |
* The original version of this source code and documentation is
|
|
30 |
* copyrighted and owned by IBM. These materials are provided
|
|
31 |
* under terms of a License Agreement between IBM and Sun.
|
|
32 |
* This technology is protected by multiple US and International
|
|
33 |
* patents. This notice and attribution to IBM may not be removed.
|
|
34 |
*/
|
|
35 |
|
|
36 |
/*
|
|
37 |
*
|
|
38 |
******************************************************************************
|
|
39 |
* file name: ubidi.c
|
|
40 |
* encoding: US-ASCII
|
|
41 |
* tab size: 8 (not used)
|
|
42 |
* indentation:4
|
|
43 |
*
|
|
44 |
* created on: 1999jul27
|
|
45 |
* created by: Markus W. Scherer
|
|
46 |
*/
|
|
47 |
|
|
48 |
/* set import/export definitions */
|
|
49 |
#ifndef U_COMMON_IMPLEMENTATION
|
|
50 |
# define U_COMMON_IMPLEMENTATION
|
|
51 |
#endif
|
|
52 |
|
|
53 |
#include "cmemory.h"
|
|
54 |
#include "utypes.h"
|
|
55 |
#include "uchardir.h"
|
|
56 |
#include "ubidi.h"
|
|
57 |
#include "ubidiimp.h"
|
|
58 |
|
|
59 |
/*
|
|
60 |
* General implementation notes:
|
|
61 |
*
|
|
62 |
* Throughout the implementation, there are comments like (W2) that refer to
|
|
63 |
* rules of the BiDi algorithm in its version 5, in this example to the second
|
|
64 |
* rule of the resolution of weak types.
|
|
65 |
*
|
|
66 |
* For handling surrogate pairs, where two UChar's form one "abstract" (or UTF-32)
|
|
67 |
* character according to UTF-16, the second UChar gets the directional property of
|
|
68 |
* the entire character assigned, while the first one gets a BN, a boundary
|
|
69 |
* neutral, type, which is ignored by most of the algorithm according to
|
|
70 |
* rule (X9) and the implementation suggestions of the BiDi algorithm.
|
|
71 |
*
|
|
72 |
* Later, adjustWSLevels() will set the level for each BN to that of the
|
|
73 |
* following character (UChar), which results in surrogate pairs getting the
|
|
74 |
* same level on each of their surrogates.
|
|
75 |
*
|
|
76 |
* In a UTF-8 implementation, the same thing could be done: the last byte of
|
|
77 |
* a multi-byte sequence would get the "real" property, while all previous
|
|
78 |
* bytes of that sequence would get BN.
|
|
79 |
*
|
|
80 |
* It is not possible to assign all those parts of a character the same real
|
|
81 |
* property because this would fail in the resolution of weak types with rules
|
|
82 |
* that look at immediately surrounding types.
|
|
83 |
*
|
|
84 |
* As a related topic, this implementation does not remove Boundary Neutral
|
|
85 |
* types from the input, but ignores them whereever this is relevant.
|
|
86 |
* For example, the loop for the resolution of the weak types reads
|
|
87 |
* types until it finds a non-BN.
|
|
88 |
* Also, explicit embedding codes are neither changed into BN nor removed.
|
|
89 |
* They are only treated the same way real BNs are.
|
|
90 |
* As stated before, adjustWSLevels() takes care of them at the end.
|
|
91 |
* For the purpose of conformance, the levels of all these codes
|
|
92 |
* do not matter.
|
|
93 |
*
|
|
94 |
* Note that this implementation never modifies the dirProps
|
|
95 |
* after the initial setup.
|
|
96 |
*
|
|
97 |
*
|
|
98 |
* In this implementation, the resolution of weak types (Wn),
|
|
99 |
* neutrals (Nn), and the assignment of the resolved level (In)
|
|
100 |
* are all done in one single loop, in resolveImplicitLevels().
|
|
101 |
* Changes of dirProp values are done on the fly, without writing
|
|
102 |
* them back to the dirProps array.
|
|
103 |
*
|
|
104 |
*
|
|
105 |
* This implementation contains code that allows to bypass steps of the
|
|
106 |
* algorithm that are not needed on the specific paragraph
|
|
107 |
* in order to speed up the most common cases considerably,
|
|
108 |
* like text that is entirely LTR, or RTL text without numbers.
|
|
109 |
*
|
|
110 |
* Most of this is done by setting a bit for each directional property
|
|
111 |
* in a flags variable and later checking for whether there are
|
|
112 |
* any LTR characters or any RTL characters, or both, whether
|
|
113 |
* there are any explicit embedding codes, etc.
|
|
114 |
*
|
|
115 |
* If the (Xn) steps are performed, then the flags are re-evaluated,
|
|
116 |
* because they will then not contain the embedding codes any more
|
|
117 |
* and will be adjusted for override codes, so that subsequently
|
|
118 |
* more bypassing may be possible than what the initial flags suggested.
|
|
119 |
*
|
|
120 |
* If the text is not mixed-directional, then the
|
|
121 |
* algorithm steps for the weak type resolution are not performed,
|
|
122 |
* and all levels are set to the paragraph level.
|
|
123 |
*
|
|
124 |
* If there are no explicit embedding codes, then the (Xn) steps
|
|
125 |
* are not performed.
|
|
126 |
*
|
|
127 |
* If embedding levels are supplied as a parameter, then all
|
|
128 |
* explicit embedding codes are ignored, and the (Xn) steps
|
|
129 |
* are not performed.
|
|
130 |
*
|
|
131 |
* White Space types could get the level of the run they belong to,
|
|
132 |
* and are checked with a test of (flags&MASK_EMBEDDING) to
|
|
133 |
* consider if the paragraph direction should be considered in
|
|
134 |
* the flags variable.
|
|
135 |
*
|
|
136 |
* If there are no White Space types in the paragraph, then
|
|
137 |
* (L1) is not necessary in adjustWSLevels().
|
|
138 |
*/
|
|
139 |
|
|
140 |
/* prototypes --------------------------------------------------------------- */
|
|
141 |
|
|
142 |
static void
|
|
143 |
getDirProps(UBiDi *pBiDi, const UChar *text);
|
|
144 |
|
|
145 |
static UBiDiDirection
|
|
146 |
resolveExplicitLevels(UBiDi *pBiDi);
|
|
147 |
|
|
148 |
static UBiDiDirection
|
|
149 |
checkExplicitLevels(UBiDi *pBiDi, UErrorCode *pErrorCode);
|
|
150 |
|
|
151 |
static UBiDiDirection
|
|
152 |
directionFromFlags(Flags flags);
|
|
153 |
|
|
154 |
static void
|
|
155 |
resolveImplicitLevels(UBiDi *pBiDi,
|
|
156 |
int32_t start, int32_t limit,
|
|
157 |
DirProp sor, DirProp eor);
|
|
158 |
|
|
159 |
static void
|
|
160 |
adjustWSLevels(UBiDi *pBiDi);
|
|
161 |
|
|
162 |
/* to avoid some conditional statements, use tiny constant arrays */
|
|
163 |
static const Flags flagLR[2]={ DIRPROP_FLAG(L), DIRPROP_FLAG(R) };
|
|
164 |
static const Flags flagE[2]={ DIRPROP_FLAG(LRE), DIRPROP_FLAG(RLE) };
|
|
165 |
static const Flags flagO[2]={ DIRPROP_FLAG(LRO), DIRPROP_FLAG(RLO) };
|
|
166 |
|
|
167 |
#define DIRPROP_FLAG_LR(level) flagLR[(level)&1]
|
|
168 |
#define DIRPROP_FLAG_E(level) flagE[(level)&1]
|
|
169 |
#define DIRPROP_FLAG_O(level) flagO[(level)&1]
|
|
170 |
|
|
171 |
/* UBiDi object management -------------------------------------------------- */
|
|
172 |
|
|
173 |
U_CAPI UBiDi * U_EXPORT2
|
|
174 |
ubidi_open(void)
|
|
175 |
{
|
|
176 |
UErrorCode errorCode=U_ZERO_ERROR;
|
|
177 |
return ubidi_openSized(0, 0, &errorCode);
|
|
178 |
}
|
|
179 |
|
|
180 |
U_CAPI UBiDi * U_EXPORT2
|
|
181 |
ubidi_openSized(int32_t maxLength, int32_t maxRunCount, UErrorCode *pErrorCode) {
|
|
182 |
UBiDi *pBiDi;
|
|
183 |
|
|
184 |
/* check the argument values */
|
|
185 |
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
|
|
186 |
return NULL;
|
|
187 |
} else if(maxLength<0 || maxRunCount<0) {
|
|
188 |
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
189 |
return NULL; /* invalid arguments */
|
|
190 |
}
|
|
191 |
|
|
192 |
/* allocate memory for the object */
|
|
193 |
pBiDi=(UBiDi *)icu_malloc(sizeof(UBiDi));
|
|
194 |
if(pBiDi==NULL) {
|
|
195 |
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
196 |
return NULL;
|
|
197 |
}
|
|
198 |
|
|
199 |
/* reset the object, all pointers NULL, all flags FALSE, all sizes 0 */
|
|
200 |
icu_memset(pBiDi, 0, sizeof(UBiDi));
|
|
201 |
|
|
202 |
/* allocate memory for arrays as requested */
|
|
203 |
if(maxLength>0) {
|
|
204 |
if( !getInitialDirPropsMemory(pBiDi, maxLength) ||
|
|
205 |
!getInitialLevelsMemory(pBiDi, maxLength)
|
|
206 |
) {
|
|
207 |
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
208 |
}
|
|
209 |
} else {
|
|
210 |
pBiDi->mayAllocateText=TRUE;
|
|
211 |
}
|
|
212 |
|
|
213 |
if(maxRunCount>0) {
|
|
214 |
if(maxRunCount==1) {
|
|
215 |
/* use simpleRuns[] */
|
|
216 |
pBiDi->runsSize=sizeof(Run);
|
|
217 |
} else if(!getInitialRunsMemory(pBiDi, maxRunCount)) {
|
|
218 |
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
219 |
}
|
|
220 |
} else {
|
|
221 |
pBiDi->mayAllocateRuns=TRUE;
|
|
222 |
}
|
|
223 |
|
|
224 |
if(U_SUCCESS(*pErrorCode)) {
|
|
225 |
return pBiDi;
|
|
226 |
} else {
|
|
227 |
ubidi_close(pBiDi);
|
|
228 |
return NULL;
|
|
229 |
}
|
|
230 |
}
|
|
231 |
|
|
232 |
/*
|
|
233 |
* We are allowed to allocate memory if memory==NULL or
|
|
234 |
* mayAllocate==TRUE for each array that we need.
|
|
235 |
* We also try to grow and shrink memory as needed if we
|
|
236 |
* allocate it.
|
|
237 |
*
|
|
238 |
* Assume sizeNeeded>0.
|
|
239 |
* If *pMemory!=NULL, then assume *pSize>0.
|
|
240 |
*
|
|
241 |
* ### this realloc() may unnecessarily copy the old data,
|
|
242 |
* which we know we don't need any more;
|
|
243 |
* is this the best way to do this??
|
|
244 |
*/
|
|
245 |
extern bool_t
|
|
246 |
ubidi_getMemory(void **pMemory, int32_t *pSize, bool_t mayAllocate, int32_t sizeNeeded) {
|
|
247 |
/* check for existing memory */
|
|
248 |
if(*pMemory==NULL) {
|
|
249 |
/* we need to allocate memory */
|
|
250 |
if(mayAllocate && (*pMemory=icu_malloc(sizeNeeded))!=NULL) {
|
|
251 |
*pSize=sizeNeeded;
|
|
252 |
return TRUE;
|
|
253 |
} else {
|
|
254 |
return FALSE;
|
|
255 |
}
|
|
256 |
} else {
|
|
257 |
/* there is some memory, is it enough or too much? */
|
|
258 |
if(sizeNeeded>*pSize && !mayAllocate) {
|
|
259 |
/* not enough memory, and we must not allocate */
|
|
260 |
return FALSE;
|
|
261 |
} else if(sizeNeeded!=*pSize && mayAllocate) {
|
|
262 |
/* we may try to grow or shrink */
|
|
263 |
void *memory;
|
|
264 |
|
|
265 |
if((memory=icu_realloc(*pMemory, sizeNeeded))!=NULL) {
|
|
266 |
*pMemory=memory;
|
|
267 |
*pSize=sizeNeeded;
|
|
268 |
return TRUE;
|
|
269 |
} else {
|
|
270 |
/* we failed to grow */
|
|
271 |
return FALSE;
|
|
272 |
}
|
|
273 |
} else {
|
|
274 |
/* we have at least enough memory and must not allocate */
|
|
275 |
return TRUE;
|
|
276 |
}
|
|
277 |
}
|
|
278 |
}
|
|
279 |
|
|
280 |
U_CAPI void U_EXPORT2
|
|
281 |
ubidi_close(UBiDi *pBiDi) {
|
|
282 |
if(pBiDi!=NULL) {
|
|
283 |
if(pBiDi->dirPropsMemory!=NULL) {
|
|
284 |
icu_free(pBiDi->dirPropsMemory);
|
|
285 |
}
|
|
286 |
if(pBiDi->levelsMemory!=NULL) {
|
|
287 |
icu_free(pBiDi->levelsMemory);
|
|
288 |
}
|
|
289 |
if(pBiDi->runsMemory!=NULL) {
|
|
290 |
icu_free(pBiDi->runsMemory);
|
|
291 |
}
|
|
292 |
icu_free(pBiDi);
|
|
293 |
}
|
|
294 |
}
|
|
295 |
|
|
296 |
/* set to approximate "inverse BiDi" ---------------------------------------- */
|
|
297 |
|
|
298 |
U_CAPI void U_EXPORT2
|
|
299 |
ubidi_setInverse(UBiDi *pBiDi, bool_t isInverse) {
|
|
300 |
if(pBiDi!=NULL) {
|
|
301 |
pBiDi->isInverse=isInverse;
|
|
302 |
}
|
|
303 |
}
|
|
304 |
|
|
305 |
U_CAPI bool_t U_EXPORT2
|
|
306 |
ubidi_isInverse(UBiDi *pBiDi) {
|
|
307 |
if(pBiDi!=NULL) {
|
|
308 |
return pBiDi->isInverse;
|
|
309 |
} else {
|
|
310 |
return FALSE;
|
|
311 |
}
|
|
312 |
}
|
|
313 |
|
|
314 |
/* ubidi_setPara ------------------------------------------------------------ */
|
|
315 |
|
|
316 |
U_CAPI void U_EXPORT2
|
|
317 |
ubidi_setPara(UBiDi *pBiDi, const UChar *text, int32_t length,
|
|
318 |
UBiDiLevel paraLevel, UBiDiLevel *embeddingLevels,
|
|
319 |
UErrorCode *pErrorCode) {
|
|
320 |
UBiDiDirection direction;
|
|
321 |
|
|
322 |
/* check the argument values */
|
|
323 |
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
|
|
324 |
return;
|
|
325 |
} else if(pBiDi==NULL || text==NULL ||
|
|
326 |
((UBIDI_MAX_EXPLICIT_LEVEL<paraLevel) && !IS_DEFAULT_LEVEL(paraLevel)) ||
|
|
327 |
length<-1
|
|
328 |
) {
|
|
329 |
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
330 |
return;
|
|
331 |
}
|
|
332 |
|
|
333 |
if(length==-1) {
|
|
334 |
// length=u_strlen(text);
|
|
335 |
const UChar *p = text - 1;
|
|
336 |
while(*++p);
|
|
337 |
length = p - text;
|
|
338 |
}
|
|
339 |
|
|
340 |
/* initialize the UBiDi structure */
|
|
341 |
pBiDi->text=text;
|
|
342 |
pBiDi->length=length;
|
|
343 |
pBiDi->paraLevel=paraLevel;
|
|
344 |
pBiDi->direction=UBIDI_LTR;
|
|
345 |
pBiDi->trailingWSStart=length; /* the levels[] will reflect the WS run */
|
|
346 |
|
|
347 |
pBiDi->dirProps=NULL;
|
|
348 |
pBiDi->levels=NULL;
|
|
349 |
pBiDi->runs=NULL;
|
|
350 |
|
|
351 |
if(length==0) {
|
|
352 |
/*
|
|
353 |
* For an empty paragraph, create a UBiDi object with the paraLevel and
|
|
354 |
* the flags and the direction set but without allocating zero-length arrays.
|
|
355 |
* There is nothing more to do.
|
|
356 |
*/
|
|
357 |
if(IS_DEFAULT_LEVEL(paraLevel)) {
|
|
358 |
pBiDi->paraLevel&=1;
|
|
359 |
}
|
|
360 |
if(paraLevel&1) {
|
|
361 |
pBiDi->flags=DIRPROP_FLAG(R);
|
|
362 |
pBiDi->direction=UBIDI_RTL;
|
|
363 |
} else {
|
|
364 |
pBiDi->flags=DIRPROP_FLAG(L);
|
|
365 |
pBiDi->direction=UBIDI_LTR;
|
|
366 |
}
|
|
367 |
|
|
368 |
pBiDi->runCount=0;
|
|
369 |
return;
|
|
370 |
}
|
|
371 |
|
|
372 |
pBiDi->runCount=-1;
|
|
373 |
|
|
374 |
/*
|
|
375 |
* Get the directional properties,
|
|
376 |
* the flags bit-set, and
|
|
377 |
* determine the partagraph level if necessary.
|
|
378 |
*/
|
|
379 |
if(getDirPropsMemory(pBiDi, length)) {
|
|
380 |
pBiDi->dirProps=pBiDi->dirPropsMemory;
|
|
381 |
getDirProps(pBiDi, text);
|
|
382 |
} else {
|
|
383 |
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
384 |
return;
|
|
385 |
}
|
|
386 |
|
|
387 |
/* are explicit levels specified? */
|
|
388 |
if(embeddingLevels==NULL) {
|
|
389 |
/* no: determine explicit levels according to the (Xn) rules */\
|
|
390 |
if(getLevelsMemory(pBiDi, length)) {
|
|
391 |
pBiDi->levels=pBiDi->levelsMemory;
|
|
392 |
direction=resolveExplicitLevels(pBiDi);
|
|
393 |
} else {
|
|
394 |
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
395 |
return;
|
|
396 |
}
|
|
397 |
} else {
|
|
398 |
/* set BN for all explicit codes, check that all levels are paraLevel..UBIDI_MAX_EXPLICIT_LEVEL */
|
|
399 |
pBiDi->levels=embeddingLevels;
|
|
400 |
direction=checkExplicitLevels(pBiDi, pErrorCode);
|
|
401 |
if(U_FAILURE(*pErrorCode)) {
|
|
402 |
return;
|
|
403 |
}
|
|
404 |
}
|
|
405 |
|
|
406 |
/*
|
|
407 |
* The steps after (X9) in the UBiDi algorithm are performed only if
|
|
408 |
* the paragraph text has mixed directionality!
|
|
409 |
*/
|
|
410 |
pBiDi->direction=direction;
|
|
411 |
switch(direction) {
|
|
412 |
case UBIDI_LTR:
|
|
413 |
/* make sure paraLevel is even */
|
|
414 |
pBiDi->paraLevel=(UBiDiLevel)((pBiDi->paraLevel+1)&~1);
|
|
415 |
|
|
416 |
/* all levels are implicitly at paraLevel (important for ubidi_getLevels()) */
|
|
417 |
pBiDi->trailingWSStart=0;
|
|
418 |
break;
|
|
419 |
case UBIDI_RTL:
|
|
420 |
/* make sure paraLevel is odd */
|
|
421 |
pBiDi->paraLevel|=1;
|
|
422 |
|
|
423 |
/* all levels are implicitly at paraLevel (important for ubidi_getLevels()) */
|
|
424 |
pBiDi->trailingWSStart=0;
|
|
425 |
break;
|
|
426 |
default:
|
|
427 |
/*
|
|
428 |
* If there are no external levels specified and there
|
|
429 |
* are no significant explicit level codes in the text,
|
|
430 |
* then we can treat the entire paragraph as one run.
|
|
431 |
* Otherwise, we need to perform the following rules on runs of
|
|
432 |
* the text with the same embedding levels. (X10)
|
|
433 |
* "Significant" explicit level codes are ones that actually
|
|
434 |
* affect non-BN characters.
|
|
435 |
* Examples for "insignificant" ones are empty embeddings
|
|
436 |
* LRE-PDF, LRE-RLE-PDF-PDF, etc.
|
|
437 |
*/
|
|
438 |
if(embeddingLevels==NULL && !(pBiDi->flags&DIRPROP_FLAG_MULTI_RUNS)) {
|
|
439 |
resolveImplicitLevels(pBiDi, 0, length,
|
|
440 |
GET_LR_FROM_LEVEL(pBiDi->paraLevel),
|
|
441 |
GET_LR_FROM_LEVEL(pBiDi->paraLevel));
|
|
442 |
} else {
|
|
443 |
/* sor, eor: start and end types of same-level-run */
|
|
444 |
UBiDiLevel *levels=pBiDi->levels;
|
|
445 |
int32_t start, limit=0;
|
|
446 |
UBiDiLevel level, nextLevel;
|
|
447 |
DirProp sor, eor;
|
|
448 |
|
|
449 |
/* determine the first sor and set eor to it because of the loop body (sor=eor there) */
|
|
450 |
level=pBiDi->paraLevel;
|
|
451 |
nextLevel=levels[0];
|
|
452 |
if(level<nextLevel) {
|
|
453 |
eor=GET_LR_FROM_LEVEL(nextLevel);
|
|
454 |
} else {
|
|
455 |
eor=GET_LR_FROM_LEVEL(level);
|
|
456 |
}
|
|
457 |
|
|
458 |
do {
|
|
459 |
/* determine start and limit of the run (end points just behind the run) */
|
|
460 |
|
|
461 |
/* the values for this run's start are the same as for the previous run's end */
|
|
462 |
sor=eor;
|
|
463 |
start=limit;
|
|
464 |
level=nextLevel;
|
|
465 |
|
|
466 |
/* search for the limit of this run */
|
|
467 |
while(++limit<length && levels[limit]==level) {}
|
|
468 |
|
|
469 |
/* get the correct level of the next run */
|
|
470 |
if(limit<length) {
|
|
471 |
nextLevel=levels[limit];
|
|
472 |
} else {
|
|
473 |
nextLevel=pBiDi->paraLevel;
|
|
474 |
}
|
|
475 |
|
|
476 |
/* determine eor from max(level, nextLevel); sor is last run's eor */
|
|
477 |
if((level&~UBIDI_LEVEL_OVERRIDE)<(nextLevel&~UBIDI_LEVEL_OVERRIDE)) {
|
|
478 |
eor=GET_LR_FROM_LEVEL(nextLevel);
|
|
479 |
} else {
|
|
480 |
eor=GET_LR_FROM_LEVEL(level);
|
|
481 |
}
|
|
482 |
|
|
483 |
/* if the run consists of overridden directional types, then there
|
|
484 |
are no implicit types to be resolved */
|
|
485 |
if(!(level&UBIDI_LEVEL_OVERRIDE)) {
|
|
486 |
resolveImplicitLevels(pBiDi, start, limit, sor, eor);
|
|
487 |
} else {
|
|
488 |
/* remove the UBIDI_LEVEL_OVERRIDE flags */
|
|
489 |
do {
|
|
490 |
levels[start++]&=~UBIDI_LEVEL_OVERRIDE;
|
|
491 |
} while(start<limit);
|
|
492 |
}
|
|
493 |
} while(limit<length);
|
|
494 |
}
|
|
495 |
|
|
496 |
/* reset the embedding levels for some non-graphic characters (L1), (X9) */
|
|
497 |
adjustWSLevels(pBiDi);
|
|
498 |
|
|
499 |
/* for "inverse BiDi", ubidi_getRuns() modifies the levels of numeric runs following RTL runs */
|
|
500 |
if(pBiDi->isInverse) {
|
|
501 |
if(!ubidi_getRuns(pBiDi)) {
|
|
502 |
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
503 |
return;
|
|
504 |
}
|
|
505 |
}
|
|
506 |
break;
|
|
507 |
}
|
|
508 |
}
|
|
509 |
|
|
510 |
/* perform (P2)..(P3) ------------------------------------------------------- */
|
|
511 |
|
|
512 |
/*
|
|
513 |
* Get the directional properties for the text,
|
|
514 |
* calculate the flags bit-set, and
|
|
515 |
* determine the partagraph level if necessary.
|
|
516 |
*/
|
|
517 |
static void
|
|
518 |
getDirProps(UBiDi *pBiDi, const UChar *text) {
|
|
519 |
DirProp *dirProps=pBiDi->dirPropsMemory; /* pBiDi->dirProps is const */
|
|
520 |
|
|
521 |
int32_t i=0, i0, i1, length=pBiDi->length;
|
|
522 |
Flags flags=0; /* collect all directionalities in the text */
|
|
523 |
UChar uchar;
|
|
524 |
DirProp dirProp;
|
|
525 |
|
|
526 |
if(IS_DEFAULT_LEVEL(pBiDi->paraLevel)) {
|
|
527 |
/* determine the paragraph level (P2..P3) */
|
|
528 |
for(;;) {
|
|
529 |
uchar=text[i];
|
|
530 |
if(!IS_FIRST_SURROGATE(uchar) || i+1==length || !IS_SECOND_SURROGATE(text[i+1])) {
|
|
531 |
/* not a surrogate pair */
|
|
532 |
flags|=DIRPROP_FLAG(dirProps[i]=dirProp=u_charDirection(uchar));
|
|
533 |
} else {
|
|
534 |
/* a surrogate pair */
|
|
535 |
dirProps[i++]=BN; /* first surrogate in the pair gets the BN type */
|
|
536 |
flags|=DIRPROP_FLAG(dirProps[i]=dirProp=u_surrogatePairDirection(uchar, text[i]))|DIRPROP_FLAG(BN);
|
|
537 |
}
|
|
538 |
++i;
|
|
539 |
if(dirProp==L) {
|
|
540 |
pBiDi->paraLevel=0;
|
|
541 |
break;
|
|
542 |
} else if(dirProp==R || dirProp==AL) {
|
|
543 |
pBiDi->paraLevel=1;
|
|
544 |
break;
|
|
545 |
} else if(i>=length) {
|
|
546 |
/*
|
|
547 |
* see comment in ubidi.h:
|
|
548 |
* the DEFAULT_XXX values are designed so that
|
|
549 |
* their bit 0 alone yields the intended default
|
|
550 |
*/
|
|
551 |
pBiDi->paraLevel&=1;
|
|
552 |
break;
|
|
553 |
}
|
|
554 |
}
|
|
555 |
} else {
|
|
556 |
flags|=DIRPROP_FLAG_LR(pBiDi->paraLevel);
|
|
557 |
}
|
|
558 |
|
|
559 |
/* get the rest of the directional properties and the flags bits */
|
|
560 |
while(i<length) {
|
|
561 |
uchar=text[i];
|
|
562 |
if(!IS_FIRST_SURROGATE(uchar) || i+1==length || !IS_SECOND_SURROGATE(text[i+1])) {
|
|
563 |
/* not a surrogate pair */
|
|
564 |
flags|=DIRPROP_FLAG(dirProps[i]=u_charDirection(uchar));
|
|
565 |
} else {
|
|
566 |
/* a surrogate pair */
|
|
567 |
dirProps[i++]=BN; /* first surrogate in the pair gets the BN type */
|
|
568 |
flags|=DIRPROP_FLAG(dirProps[i]=dirProp=u_surrogatePairDirection(uchar, text[i]))|DIRPROP_FLAG(BN);
|
|
569 |
}
|
|
570 |
++i;
|
|
571 |
}
|
|
572 |
if(flags&MASK_EMBEDDING) {
|
|
573 |
flags|=DIRPROP_FLAG_LR(pBiDi->paraLevel);
|
|
574 |
}
|
|
575 |
|
|
576 |
pBiDi->flags=flags;
|
|
577 |
}
|
|
578 |
|
|
579 |
/* perform (X1)..(X9) ------------------------------------------------------- */
|
|
580 |
|
|
581 |
/*
|
|
582 |
* Resolve the explicit levels as specified by explicit embedding codes.
|
|
583 |
* Recalculate the flags to have them reflect the real properties
|
|
584 |
* after taking the explicit embeddings into account.
|
|
585 |
*
|
|
586 |
* The BiDi algorithm is designed to result in the same behavior whether embedding
|
|
587 |
* levels are externally specified (from "styled text", supposedly the preferred
|
|
588 |
* method) or set by explicit embedding codes (LRx, RLx, PDF) in the plain text.
|
|
589 |
* That is why (X9) instructs to remove all explicit codes (and BN).
|
|
590 |
* However, in a real implementation, this removal of these codes and their index
|
|
591 |
* positions in the plain text is undesirable since it would result in
|
|
592 |
* reallocated, reindexed text.
|
|
593 |
* Instead, this implementation leaves the codes in there and just ignores them
|
|
594 |
* in the subsequent processing.
|
|
595 |
* In order to get the same reordering behavior, positions with a BN or an
|
|
596 |
* explicit embedding code just get the same level assigned as the last "real"
|
|
597 |
* character.
|
|
598 |
*
|
|
599 |
* Some implementations, not this one, then overwrite some of these
|
|
600 |
* directionality properties at "real" same-level-run boundaries by
|
|
601 |
* L or R codes so that the resolution of weak types can be performed on the
|
|
602 |
* entire paragraph at once instead of having to parse it once more and
|
|
603 |
* perform that resolution on same-level-runs.
|
|
604 |
* This limits the scope of the implicit rules in effectively
|
|
605 |
* the same way as the run limits.
|
|
606 |
*
|
|
607 |
* Instead, this implementation does not modify these codes.
|
|
608 |
* On one hand, the paragraph has to be scanned for same-level-runs, but
|
|
609 |
* on the other hand, this saves another loop to reset these codes,
|
|
610 |
* or saves making and modifying a copy of dirProps[].
|
|
611 |
*
|
|
612 |
*
|
|
613 |
* Note that (Pn) and (Xn) changed significantly from version 4 of the BiDi algorithm.
|
|
614 |
*
|
|
615 |
*
|
|
616 |
* Handling the stack of explicit levels (Xn):
|
|
617 |
*
|
|
618 |
* With the BiDi stack of explicit levels,
|
|
619 |
* as pushed with each LRE, RLE, LRO, and RLO and popped with each PDF,
|
|
620 |
* the explicit level must never exceed UBIDI_MAX_EXPLICIT_LEVEL==61.
|
|
621 |
*
|
|
622 |
* In order to have a correct push-pop semantics even in the case of overflows,
|
|
623 |
* there are two overflow counters:
|
|
624 |
* - countOver60 is incremented with each LRx at level 60
|
|
625 |
* - from level 60, one RLx increases the level to 61
|
|
626 |
* - countOver61 is incremented with each LRx and RLx at level 61
|
|
627 |
*
|
|
628 |
* Popping levels with PDF must work in the opposite order so that level 61
|
|
629 |
* is correct at the correct point. Underflows (too many PDFs) must be checked.
|
|
630 |
*
|
|
631 |
* This implementation assumes that UBIDI_MAX_EXPLICIT_LEVEL is odd.
|
|
632 |
*/
|
|
633 |
|
|
634 |
static UBiDiDirection
|
|
635 |
resolveExplicitLevels(UBiDi *pBiDi) {
|
|
636 |
const DirProp *dirProps=pBiDi->dirProps;
|
|
637 |
UBiDiLevel *levels=pBiDi->levels;
|
|
638 |
|
|
639 |
int32_t i=0, length=pBiDi->length;
|
|
640 |
Flags flags=pBiDi->flags; /* collect all directionalities in the text */
|
|
641 |
DirProp dirProp;
|
|
642 |
UBiDiLevel level=pBiDi->paraLevel;
|
|
643 |
|
|
644 |
UBiDiDirection direction;
|
|
645 |
|
|
646 |
/* determine if the text is mixed-directional or single-directional */
|
|
647 |
direction=directionFromFlags(flags);
|
|
648 |
|
|
649 |
/* we may not need to resolve any explicit levels */
|
|
650 |
if(direction!=UBIDI_MIXED) {
|
|
651 |
/* not mixed directionality: levels don't matter - trailingWSStart will be 0 */
|
|
652 |
} else if(!(flags&MASK_EXPLICIT) || pBiDi->isInverse) {
|
|
653 |
/* mixed, but all characters are at the same embedding level */
|
|
654 |
/* or we are in "inverse BiDi" */
|
|
655 |
/* set all levels to the paragraph level */
|
|
656 |
for(i=0; i<length; ++i) {
|
|
657 |
levels[i]=level;
|
|
658 |
}
|
|
659 |
} else {
|
|
660 |
/* continue to perform (Xn) */
|
|
661 |
|
|
662 |
/* (X1) level is set for all codes, embeddingLevel keeps track of the push/pop operations */
|
|
663 |
/* both variables may carry the UBIDI_LEVEL_OVERRIDE flag to indicate the override status */
|
|
664 |
UBiDiLevel embeddingLevel=level, newLevel, stackTop=0;
|
|
665 |
|
|
666 |
UBiDiLevel stack[UBIDI_MAX_EXPLICIT_LEVEL]; /* we never push anything >=UBIDI_MAX_EXPLICIT_LEVEL */
|
|
667 |
uint32_t countOver60=0, countOver61=0; /* count overflows of explicit levels */
|
|
668 |
|
|
669 |
/* recalculate the flags */
|
|
670 |
flags=0;
|
|
671 |
|
|
672 |
/* since we assume that this is a single paragraph, we ignore (X8) */
|
|
673 |
for(i=0; i<length; ++i) {
|
|
674 |
dirProp=dirProps[i];
|
|
675 |
switch(dirProp) {
|
|
676 |
case LRE:
|
|
677 |
case LRO:
|
|
678 |
/* (X3, X5) */
|
|
679 |
newLevel=(UBiDiLevel)((embeddingLevel+2)&~(UBIDI_LEVEL_OVERRIDE|1)); /* least greater even level */
|
|
680 |
if(newLevel<=UBIDI_MAX_EXPLICIT_LEVEL) {
|
|
681 |
stack[stackTop]=embeddingLevel;
|
|
682 |
++stackTop;
|
|
683 |
embeddingLevel=newLevel;
|
|
684 |
if(dirProp==LRO) {
|
|
685 |
embeddingLevel|=UBIDI_LEVEL_OVERRIDE;
|
|
686 |
} else {
|
|
687 |
embeddingLevel&=~UBIDI_LEVEL_OVERRIDE;
|
|
688 |
}
|
|
689 |
} else if((embeddingLevel&~UBIDI_LEVEL_OVERRIDE)==UBIDI_MAX_EXPLICIT_LEVEL) {
|
|
690 |
++countOver61;
|
|
691 |
} else /* (embeddingLevel&~UBIDI_LEVEL_OVERRIDE)==UBIDI_MAX_EXPLICIT_LEVEL-1 */ {
|
|
692 |
++countOver60;
|
|
693 |
}
|
|
694 |
flags|=DIRPROP_FLAG(BN);
|
|
695 |
break;
|
|
696 |
case RLE:
|
|
697 |
case RLO:
|
|
698 |
/* (X2, X4) */
|
|
699 |
newLevel=(UBiDiLevel)(((embeddingLevel&~UBIDI_LEVEL_OVERRIDE)+1)|1); /* least greater odd level */
|
|
700 |
if(newLevel<=UBIDI_MAX_EXPLICIT_LEVEL) {
|
|
701 |
stack[stackTop]=embeddingLevel;
|
|
702 |
++stackTop;
|
|
703 |
embeddingLevel=newLevel;
|
|
704 |
if(dirProp==RLO) {
|
|
705 |
embeddingLevel|=UBIDI_LEVEL_OVERRIDE;
|
|
706 |
} else {
|
|
707 |
embeddingLevel&=~UBIDI_LEVEL_OVERRIDE;
|
|
708 |
}
|
|
709 |
} else {
|
|
710 |
++countOver61;
|
|
711 |
}
|
|
712 |
flags|=DIRPROP_FLAG(BN);
|
|
713 |
break;
|
|
714 |
case PDF:
|
|
715 |
/* (X7) */
|
|
716 |
/* handle all the overflow cases first */
|
|
717 |
if(countOver61>0) {
|
|
718 |
--countOver61;
|
|
719 |
} else if(countOver60>0 && (embeddingLevel&~UBIDI_LEVEL_OVERRIDE)!=UBIDI_MAX_EXPLICIT_LEVEL) {
|
|
720 |
/* handle LRx overflows from level 60 */
|
|
721 |
--countOver60;
|
|
722 |
} else if(stackTop>0) {
|
|
723 |
/* this is the pop operation; it also pops level 61 while countOver60>0 */
|
|
724 |
--stackTop;
|
|
725 |
embeddingLevel=stack[stackTop];
|
|
726 |
/* } else { (underflow) */
|
|
727 |
}
|
|
728 |
flags|=DIRPROP_FLAG(BN);
|
|
729 |
break;
|
|
730 |
case B:
|
|
731 |
/*
|
|
732 |
* We do not really expect to see a paragraph separator (B),
|
|
733 |
* but we should do something reasonable with it,
|
|
734 |
* especially at the end of the text.
|
|
735 |
*/
|
|
736 |
stackTop=0;
|
|
737 |
countOver60=countOver61=0;
|
|
738 |
embeddingLevel=level=pBiDi->paraLevel;
|
|
739 |
flags|=DIRPROP_FLAG(B);
|
|
740 |
break;
|
|
741 |
case BN:
|
|
742 |
/* BN, LRE, RLE, and PDF are supposed to be removed (X9) */
|
|
743 |
/* they will get their levels set correctly in adjustWSLevels() */
|
|
744 |
flags|=DIRPROP_FLAG(BN);
|
|
745 |
break;
|
|
746 |
default:
|
|
747 |
/* all other types get the "real" level */
|
|
748 |
if(level!=embeddingLevel) {
|
|
749 |
level=embeddingLevel;
|
|
750 |
if(level&UBIDI_LEVEL_OVERRIDE) {
|
|
751 |
flags|=DIRPROP_FLAG_O(level)|DIRPROP_FLAG_MULTI_RUNS;
|
|
752 |
} else {
|
|
753 |
flags|=DIRPROP_FLAG_E(level)|DIRPROP_FLAG_MULTI_RUNS;
|
|
754 |
}
|
|
755 |
}
|
|
756 |
if(!(level&UBIDI_LEVEL_OVERRIDE)) {
|
|
757 |
flags|=DIRPROP_FLAG(dirProp);
|
|
758 |
}
|
|
759 |
break;
|
|
760 |
}
|
|
761 |
|
|
762 |
/*
|
|
763 |
* We need to set reasonable levels even on BN codes and
|
|
764 |
* explicit codes because we will later look at same-level runs (X10).
|
|
765 |
*/
|
|
766 |
levels[i]=level;
|
|
767 |
}
|
|
768 |
if(flags&MASK_EMBEDDING) {
|
|
769 |
flags|=DIRPROP_FLAG_LR(pBiDi->paraLevel);
|
|
770 |
}
|
|
771 |
|
|
772 |
/* subsequently, ignore the explicit codes and BN (X9) */
|
|
773 |
|
|
774 |
/* again, determine if the text is mixed-directional or single-directional */
|
|
775 |
pBiDi->flags=flags;
|
|
776 |
direction=directionFromFlags(flags);
|
|
777 |
}
|
|
778 |
return direction;
|
|
779 |
}
|
|
780 |
|
|
781 |
/*
|
|
782 |
* Use a pre-specified embedding levels array:
|
|
783 |
*
|
|
784 |
* Adjust the directional properties for overrides (->LEVEL_OVERRIDE),
|
|
785 |
* ignore all explicit codes (X9),
|
|
786 |
* and check all the preset levels.
|
|
787 |
*
|
|
788 |
* Recalculate the flags to have them reflect the real properties
|
|
789 |
* after taking the explicit embeddings into account.
|
|
790 |
*/
|
|
791 |
static UBiDiDirection
|
|
792 |
checkExplicitLevels(UBiDi *pBiDi, UErrorCode *pErrorCode) {
|
|
793 |
const DirProp *dirProps=pBiDi->dirProps;
|
|
794 |
UBiDiLevel *levels=pBiDi->levels;
|
|
795 |
|
|
796 |
int32_t i, length=pBiDi->length;
|
|
797 |
Flags flags=0; /* collect all directionalities in the text */
|
|
798 |
UBiDiLevel level, paraLevel=pBiDi->paraLevel;
|
|
799 |
|
|
800 |
for(i=0; i<length; ++i) {
|
|
801 |
// dlf: we special case levels array for java, 0 means base level, not actually 0
|
|
802 |
if (levels[i] == 0) {
|
|
803 |
levels[i] = paraLevel;
|
|
804 |
}
|
|
805 |
level=levels[i];
|
|
806 |
if(level&UBIDI_LEVEL_OVERRIDE) {
|
|
807 |
/* keep the override flag in levels[i] but adjust the flags */
|
|
808 |
level&=~UBIDI_LEVEL_OVERRIDE; /* make the range check below simpler */
|
|
809 |
flags|=DIRPROP_FLAG_O(level);
|
|
810 |
} else {
|
|
811 |
/* set the flags */
|
|
812 |
flags|=DIRPROP_FLAG_E(level)|DIRPROP_FLAG(dirProps[i]);
|
|
813 |
}
|
|
814 |
if(level<paraLevel || UBIDI_MAX_EXPLICIT_LEVEL<level) {
|
|
815 |
/* level out of bounds */
|
|
816 |
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
817 |
return UBIDI_LTR;
|
|
818 |
}
|
|
819 |
}
|
|
820 |
if(flags&MASK_EMBEDDING) {
|
|
821 |
flags|=DIRPROP_FLAG_LR(pBiDi->paraLevel);
|
|
822 |
}
|
|
823 |
|
|
824 |
/* determine if the text is mixed-directional or single-directional */
|
|
825 |
pBiDi->flags=flags;
|
|
826 |
return directionFromFlags(flags);
|
|
827 |
}
|
|
828 |
|
|
829 |
/* determine if the text is mixed-directional or single-directional */
|
|
830 |
static UBiDiDirection
|
|
831 |
directionFromFlags(Flags flags) {
|
|
832 |
/* if the text contains AN and neutrals, then some neutrals may become RTL */
|
|
833 |
if(!(flags&MASK_RTL || ((flags&DIRPROP_FLAG(AN)) && (flags&MASK_POSSIBLE_N)))) {
|
|
834 |
return UBIDI_LTR;
|
|
835 |
} else if(!(flags&MASK_LTR)) {
|
|
836 |
return UBIDI_RTL;
|
|
837 |
} else {
|
|
838 |
return UBIDI_MIXED;
|
|
839 |
}
|
|
840 |
}
|
|
841 |
|
|
842 |
/* perform rules (Wn), (Nn), and (In) on a run of the text ------------------ */
|
|
843 |
|
|
844 |
/*
|
|
845 |
* This implementation of the (Wn) rules applies all rules in one pass.
|
|
846 |
* In order to do so, it needs a look-ahead of typically 1 character
|
|
847 |
* (except for W5: sequences of ET) and keeps track of changes
|
|
848 |
* in a rule Wp that affect a later Wq (p<q).
|
|
849 |
*
|
|
850 |
* historyOfEN is a variable-saver: it contains 4 boolean states;
|
|
851 |
* a bit in it set to 1 means:
|
|
852 |
* bit 0: the current code is an EN after W2
|
|
853 |
* bit 1: the current code is an EN after W4
|
|
854 |
* bit 2: the previous code was an EN after W2
|
|
855 |
* bit 3: the previous code was an EN after W4
|
|
856 |
* In other words, b0..1 have transitions of EN in the current iteration,
|
|
857 |
* while b2..3 have the transitions of EN in the previous iteration.
|
|
858 |
* A simple historyOfEN<<=2 suffices for the propagation.
|
|
859 |
*
|
|
860 |
* The (Nn) and (In) rules are also performed in that same single loop,
|
|
861 |
* but effectively one iteration behind for white space.
|
|
862 |
*
|
|
863 |
* Since all implicit rules are performed in one step, it is not necessary
|
|
864 |
* to actually store the intermediate directional properties in dirProps[].
|
|
865 |
*/
|
|
866 |
|
|
867 |
#define EN_SHIFT 2
|
|
868 |
#define EN_AFTER_W2 1
|
|
869 |
#define EN_AFTER_W4 2
|
|
870 |
#define EN_ALL 3
|
|
871 |
#define PREV_EN_AFTER_W2 4
|
|
872 |
#define PREV_EN_AFTER_W4 8
|
|
873 |
|
|
874 |
static void
|
|
875 |
resolveImplicitLevels(UBiDi *pBiDi,
|
|
876 |
int32_t start, int32_t limit,
|
|
877 |
DirProp sor, DirProp eor) {
|
|
878 |
const DirProp *dirProps=pBiDi->dirProps;
|
|
879 |
UBiDiLevel *levels=pBiDi->levels;
|
|
880 |
|
|
881 |
int32_t i, next, neutralStart=-1;
|
|
882 |
DirProp prevDirProp, dirProp, nextDirProp, lastStrong, beforeNeutral=L;
|
|
883 |
UBiDiLevel numberLevel;
|
|
884 |
uint8_t historyOfEN;
|
|
885 |
|
|
886 |
/* initialize: current at sor, next at start (it is start<limit) */
|
|
887 |
next=start;
|
|
888 |
dirProp=lastStrong=sor;
|
|
889 |
nextDirProp=dirProps[next];
|
|
890 |
historyOfEN=0;
|
|
891 |
|
|
892 |
if(pBiDi->isInverse) {
|
|
893 |
/*
|
|
894 |
* For "inverse BiDi", we set the levels of numbers just like for
|
|
895 |
* regular L characters, plus a flag that ubidi_getRuns() will use
|
|
896 |
* to set a similar flag on the corresponding output run.
|
|
897 |
*/
|
|
898 |
numberLevel=levels[start];
|
|
899 |
if(numberLevel&1) {
|
|
900 |
++numberLevel;
|
|
901 |
}
|
|
902 |
} else {
|
|
903 |
/* normal BiDi: least greater even level */
|
|
904 |
numberLevel=(UBiDiLevel)((levels[start]+2)&~1);
|
|
905 |
}
|
|
906 |
|
|
907 |
/*
|
|
908 |
* In all steps of this implementation, BN and explicit embedding codes
|
|
909 |
* must be treated as if they didn't exist (X9).
|
|
910 |
* They will get levels set before a non-neutral character, and remain
|
|
911 |
* undefined before a neutral one, but adjustWSLevels() will take care
|
|
912 |
* of all of them.
|
|
913 |
*/
|
|
914 |
while(DIRPROP_FLAG(nextDirProp)&MASK_BN_EXPLICIT) {
|
|
915 |
if(++next<limit) {
|
|
916 |
nextDirProp=dirProps[next];
|
|
917 |
} else {
|
|
918 |
nextDirProp=eor;
|
|
919 |
break;
|
|
920 |
}
|
|
921 |
}
|
|
922 |
|
|
923 |
/*
|
|
924 |
* Note: at the end of this file, there is a prototype
|
|
925 |
* of a version of this function that uses a statetable
|
|
926 |
* at the core of this state machine.
|
|
927 |
* If you make changes to this state machine,
|
|
928 |
* please update that prototype as well.
|
|
929 |
*/
|
|
930 |
|
|
931 |
/* loop for entire run */
|
|
932 |
while(next<limit) {
|
|
933 |
/* advance */
|
|
934 |
prevDirProp=dirProp;
|
|
935 |
dirProp=nextDirProp;
|
|
936 |
i=next;
|
|
937 |
do {
|
|
938 |
if(++next<limit) {
|
|
939 |
nextDirProp=dirProps[next];
|
|
940 |
} else {
|
|
941 |
nextDirProp=eor;
|
|
942 |
break;
|
|
943 |
}
|
|
944 |
} while(DIRPROP_FLAG(nextDirProp)&MASK_BN_EXPLICIT);
|
|
945 |
historyOfEN<<=EN_SHIFT;
|
|
946 |
|
|
947 |
/* (W1..W7) */
|
|
948 |
switch(dirProp) {
|
|
949 |
case L:
|
|
950 |
lastStrong=L;
|
|
951 |
break;
|
|
952 |
case R:
|
|
953 |
lastStrong=R;
|
|
954 |
break;
|
|
955 |
case AL:
|
|
956 |
/* (W3) */
|
|
957 |
lastStrong=AL;
|
|
958 |
dirProp=R;
|
|
959 |
break;
|
|
960 |
case EN:
|
|
961 |
/* we have to set historyOfEN correctly */
|
|
962 |
if(lastStrong==AL) {
|
|
963 |
/* (W2) */
|
|
964 |
dirProp=AN;
|
|
965 |
} else {
|
|
966 |
if(lastStrong==L) {
|
|
967 |
/* (W7) */
|
|
968 |
dirProp=L;
|
|
969 |
}
|
|
970 |
/* this EN stays after (W2) and (W4) - at least before (W7) */
|
|
971 |
historyOfEN|=EN_ALL;
|
|
972 |
}
|
|
973 |
break;
|
|
974 |
case ES:
|
|
975 |
if( historyOfEN&PREV_EN_AFTER_W2 && /* previous was EN before (W4) */
|
|
976 |
nextDirProp==EN && lastStrong!=AL /* next is EN and (W2) won't make it AN */
|
|
977 |
) {
|
|
978 |
/* (W4) */
|
|
979 |
if(lastStrong!=L) {
|
|
980 |
dirProp=EN;
|
|
981 |
} else {
|
|
982 |
/* (W7) */
|
|
983 |
dirProp=L;
|
|
984 |
}
|
|
985 |
historyOfEN|=EN_AFTER_W4;
|
|
986 |
} else {
|
|
987 |
/* (W6) */
|
|
988 |
dirProp=ON;
|
|
989 |
}
|
|
990 |
break;
|
|
991 |
case CS:
|
|
992 |
if( historyOfEN&PREV_EN_AFTER_W2 && /* previous was EN before (W4) */
|
|
993 |
nextDirProp==EN && lastStrong!=AL /* next is EN and (W2) won't make it AN */
|
|
994 |
) {
|
|
995 |
/* (W4) */
|
|
996 |
if(lastStrong!=L) {
|
|
997 |
dirProp=EN;
|
|
998 |
} else {
|
|
999 |
/* (W7) */
|
|
1000 |
dirProp=L;
|
|
1001 |
}
|
|
1002 |
historyOfEN|=EN_AFTER_W4;
|
|
1003 |
} else if(prevDirProp==AN && /* previous was AN */
|
|
1004 |
(nextDirProp==AN || /* next is AN */
|
|
1005 |
(nextDirProp==EN && lastStrong==AL)) /* or (W2) will make it one */
|
|
1006 |
) {
|
|
1007 |
/* (W4) */
|
|
1008 |
dirProp=AN;
|
|
1009 |
} else {
|
|
1010 |
/* (W6) */
|
|
1011 |
dirProp=ON;
|
|
1012 |
}
|
|
1013 |
break;
|
|
1014 |
case ET:
|
|
1015 |
/* get sequence of ET; advance only next, not current, previous or historyOfEN */
|
|
1016 |
if(next<limit) {
|
|
1017 |
while(DIRPROP_FLAG(nextDirProp)&MASK_ET_NSM_BN /* (W1), (X9) */) {
|
|
1018 |
if(++next<limit) {
|
|
1019 |
nextDirProp=dirProps[next];
|
|
1020 |
} else {
|
|
1021 |
nextDirProp=eor;
|
|
1022 |
break;
|
|
1023 |
}
|
|
1024 |
}
|
|
1025 |
}
|
|
1026 |
|
|
1027 |
/* now process the sequence of ET like a single ET */
|
|
1028 |
if((historyOfEN&PREV_EN_AFTER_W4) || /* previous was EN before (W5) */
|
|
1029 |
(nextDirProp==EN && lastStrong!=AL) /* next is EN and (W2) won't make it AN */
|
|
1030 |
) {
|
|
1031 |
/* (W5) */
|
|
1032 |
if(lastStrong!=L) {
|
|
1033 |
dirProp=EN;
|
|
1034 |
} else {
|
|
1035 |
/* (W7) */
|
|
1036 |
dirProp=L;
|
|
1037 |
}
|
|
1038 |
} else {
|
|
1039 |
/* (W6) */
|
|
1040 |
dirProp=ON;
|
|
1041 |
}
|
|
1042 |
|
|
1043 |
/* apply the result of (W1), (W5)..(W7) to the entire sequence of ET */
|
|
1044 |
break;
|
|
1045 |
case NSM:
|
|
1046 |
/* (W1) */
|
|
1047 |
dirProp=prevDirProp;
|
|
1048 |
/* set historyOfEN back to prevDirProp's historyOfEN */
|
|
1049 |
historyOfEN>>=EN_SHIFT;
|
|
1050 |
/*
|
|
1051 |
* Technically, this should be done before the switch() in the form
|
|
1052 |
* if(nextDirProp==NSM) {
|
|
1053 |
* dirProps[next]=nextDirProp=dirProp;
|
|
1054 |
* }
|
|
1055 |
*
|
|
1056 |
* - effectively one iteration ahead.
|
|
1057 |
* However, whether the next dirProp is NSM or is equal to the current dirProp
|
|
1058 |
* does not change the outcome of any condition in (W2)..(W7).
|
|
1059 |
*/
|
|
1060 |
break;
|
|
1061 |
default:
|
|
1062 |
break;
|
|
1063 |
}
|
|
1064 |
|
|
1065 |
/* here, it is always [prev,this,next]dirProp!=BN; it may be next>i+1 */
|
|
1066 |
|
|
1067 |
/* perform (Nn) - here, only L, R, EN, AN, and neutrals are left */
|
|
1068 |
/* for "inverse BiDi", treat neutrals like L */
|
|
1069 |
/* this is one iteration late for the neutrals */
|
|
1070 |
if(DIRPROP_FLAG(dirProp)&MASK_N) {
|
|
1071 |
if(neutralStart<0) {
|
|
1072 |
/* start of a sequence of neutrals */
|
|
1073 |
neutralStart=i;
|
|
1074 |
beforeNeutral=prevDirProp;
|
|
1075 |
}
|
|
1076 |
} else /* not a neutral, can be only one of { L, R, EN, AN } */ {
|
|
1077 |
/*
|
|
1078 |
* Note that all levels[] values are still the same at this
|
|
1079 |
* point because this function is called for an entire
|
|
1080 |
* same-level run.
|
|
1081 |
* Therefore, we need to read only one actual level.
|
|
1082 |
*/
|
|
1083 |
UBiDiLevel level=levels[i];
|
|
1084 |
|
|
1085 |
if(neutralStart>=0) {
|
|
1086 |
UBiDiLevel final;
|
|
1087 |
/* end of a sequence of neutrals (dirProp is "afterNeutral") */
|
|
1088 |
if(!(pBiDi->isInverse)) {
|
|
1089 |
if(beforeNeutral==L) {
|
|
1090 |
if(dirProp==L) {
|
|
1091 |
final=0; /* make all neutrals L (N1) */
|
|
1092 |
} else {
|
|
1093 |
final=level; /* make all neutrals "e" (N2) */
|
|
1094 |
}
|
|
1095 |
} else /* beforeNeutral is one of { R, EN, AN } */ {
|
|
1096 |
if(dirProp==L) {
|
|
1097 |
final=level; /* make all neutrals "e" (N2) */
|
|
1098 |
} else {
|
|
1099 |
final=1; /* make all neutrals R (N1) */
|
|
1100 |
}
|
|
1101 |
}
|
|
1102 |
} else {
|
|
1103 |
/* "inverse BiDi": collapse [before]dirProps L, EN, AN into L */
|
|
1104 |
if(beforeNeutral!=R) {
|
|
1105 |
if(dirProp!=R) {
|
|
1106 |
final=0; /* make all neutrals L (N1) */
|
|
1107 |
} else {
|
|
1108 |
final=level; /* make all neutrals "e" (N2) */
|
|
1109 |
}
|
|
1110 |
} else /* beforeNeutral is one of { R, EN, AN } */ {
|
|
1111 |
if(dirProp!=R) {
|
|
1112 |
final=level; /* make all neutrals "e" (N2) */
|
|
1113 |
} else {
|
|
1114 |
final=1; /* make all neutrals R (N1) */
|
|
1115 |
}
|
|
1116 |
}
|
|
1117 |
}
|
|
1118 |
/* perform (In) on the sequence of neutrals */
|
|
1119 |
if((level^final)&1) {
|
|
1120 |
/* do something only if we need to _change_ the level */
|
|
1121 |
do {
|
|
1122 |
++levels[neutralStart];
|
|
1123 |
} while(++neutralStart<i);
|
|
1124 |
}
|
|
1125 |
neutralStart=-1;
|
|
1126 |
}
|
|
1127 |
|
|
1128 |
/* perform (In) on the non-neutral character */
|
|
1129 |
/*
|
|
1130 |
* in the cases of (W5), processing a sequence of ET,
|
|
1131 |
* and of (X9), skipping BN,
|
|
1132 |
* there may be multiple characters from i to <next
|
|
1133 |
* that all get (virtually) the same dirProp and (really) the same level
|
|
1134 |
*/
|
|
1135 |
if(dirProp==L) {
|
|
1136 |
if(level&1) {
|
|
1137 |
++level;
|
|
1138 |
} else {
|
|
1139 |
i=next; /* we keep the levels */
|
|
1140 |
}
|
|
1141 |
} else if(dirProp==R) {
|
|
1142 |
if(!(level&1)) {
|
|
1143 |
++level;
|
|
1144 |
} else {
|
|
1145 |
i=next; /* we keep the levels */
|
|
1146 |
}
|
|
1147 |
} else /* EN or AN */ {
|
|
1148 |
/* this level depends on whether we do "inverse BiDi" */
|
|
1149 |
level=numberLevel;
|
|
1150 |
}
|
|
1151 |
|
|
1152 |
/* apply the new level to the sequence, if necessary */
|
|
1153 |
while(i<next) {
|
|
1154 |
levels[i++]=level;
|
|
1155 |
}
|
|
1156 |
}
|
|
1157 |
}
|
|
1158 |
|
|
1159 |
/* perform (Nn) - here,
|
|
1160 |
the character after the the neutrals is eor, which is either L or R */
|
|
1161 |
/* this is one iteration late for the neutrals */
|
|
1162 |
if(neutralStart>=0) {
|
|
1163 |
/*
|
|
1164 |
* Note that all levels[] values are still the same at this
|
|
1165 |
* point because this function is called for an entire
|
|
1166 |
* same-level run.
|
|
1167 |
* Therefore, we need to read only one actual level.
|
|
1168 |
*/
|
|
1169 |
UBiDiLevel level=levels[neutralStart], final;
|
|
1170 |
|
|
1171 |
/* end of a sequence of neutrals (eor is "afterNeutral") */
|
|
1172 |
if(!(pBiDi->isInverse)) {
|
|
1173 |
if(beforeNeutral==L) {
|
|
1174 |
if(eor==L) {
|
|
1175 |
final=0; /* make all neutrals L (N1) */
|
|
1176 |
} else {
|
|
1177 |
final=level; /* make all neutrals "e" (N2) */
|
|
1178 |
}
|
|
1179 |
} else /* beforeNeutral is one of { R, EN, AN } */ {
|
|
1180 |
if(eor==L) {
|
|
1181 |
final=level; /* make all neutrals "e" (N2) */
|
|
1182 |
} else {
|
|
1183 |
final=1; /* make all neutrals R (N1) */
|
|
1184 |
}
|
|
1185 |
}
|
|
1186 |
} else {
|
|
1187 |
/* "inverse BiDi": collapse [before]dirProps L, EN, AN into L */
|
|
1188 |
if(beforeNeutral!=R) {
|
|
1189 |
if(eor!=R) {
|
|
1190 |
final=0; /* make all neutrals L (N1) */
|
|
1191 |
} else {
|
|
1192 |
final=level; /* make all neutrals "e" (N2) */
|
|
1193 |
}
|
|
1194 |
} else /* beforeNeutral is one of { R, EN, AN } */ {
|
|
1195 |
if(eor!=R) {
|
|
1196 |
final=level; /* make all neutrals "e" (N2) */
|
|
1197 |
} else {
|
|
1198 |
final=1; /* make all neutrals R (N1) */
|
|
1199 |
}
|
|
1200 |
}
|
|
1201 |
}
|
|
1202 |
/* perform (In) on the sequence of neutrals */
|
|
1203 |
if((level^final)&1) {
|
|
1204 |
/* do something only if we need to _change_ the level */
|
|
1205 |
do {
|
|
1206 |
++levels[neutralStart];
|
|
1207 |
} while(++neutralStart<limit);
|
|
1208 |
}
|
|
1209 |
}
|
|
1210 |
}
|
|
1211 |
|
|
1212 |
/* perform (L1) and (X9) ---------------------------------------------------- */
|
|
1213 |
|
|
1214 |
/*
|
|
1215 |
* Reset the embedding levels for some non-graphic characters (L1).
|
|
1216 |
* This function also sets appropriate levels for BN, and
|
|
1217 |
* explicit embedding types that are supposed to have been removed
|
|
1218 |
* from the paragraph in (X9).
|
|
1219 |
*/
|
|
1220 |
static void
|
|
1221 |
adjustWSLevels(UBiDi *pBiDi) {
|
|
1222 |
const DirProp *dirProps=pBiDi->dirProps;
|
|
1223 |
UBiDiLevel *levels=pBiDi->levels;
|
|
1224 |
int32_t i;
|
|
1225 |
|
|
1226 |
if(pBiDi->flags&MASK_WS) {
|
|
1227 |
UBiDiLevel paraLevel=pBiDi->paraLevel;
|
|
1228 |
Flags flag;
|
|
1229 |
|
|
1230 |
i=pBiDi->trailingWSStart;
|
|
1231 |
while(i>0) {
|
|
1232 |
/* reset a sequence of WS/BN before eop and B/S to the paragraph paraLevel */
|
|
1233 |
while(i>0 && DIRPROP_FLAG(dirProps[--i])&MASK_WS) {
|
|
1234 |
levels[i]=paraLevel;
|
|
1235 |
}
|
|
1236 |
|
|
1237 |
/* reset BN to the next character's paraLevel until B/S, which restarts above loop */
|
|
1238 |
/* here, i+1 is guaranteed to be <length */
|
|
1239 |
while(i>0) {
|
|
1240 |
flag=DIRPROP_FLAG(dirProps[--i]);
|
|
1241 |
if(flag&MASK_BN_EXPLICIT) {
|
|
1242 |
levels[i]=levels[i+1];
|
|
1243 |
} else if(flag&MASK_B_S) {
|
|
1244 |
levels[i]=paraLevel;
|
|
1245 |
break;
|
|
1246 |
}
|
|
1247 |
}
|
|
1248 |
}
|
|
1249 |
}
|
|
1250 |
|
|
1251 |
/* now remove the UBIDI_LEVEL_OVERRIDE flags, if any */
|
|
1252 |
/* (a separate loop can be optimized more easily by a compiler) */
|
|
1253 |
if(pBiDi->flags&MASK_OVERRIDE) {
|
|
1254 |
for(i=pBiDi->trailingWSStart; i>0;) {
|
|
1255 |
levels[--i]&=~UBIDI_LEVEL_OVERRIDE;
|
|
1256 |
}
|
|
1257 |
}
|
|
1258 |
}
|
|
1259 |
|
|
1260 |
/* -------------------------------------------------------------------------- */
|
|
1261 |
|
|
1262 |
U_CAPI UBiDiDirection U_EXPORT2
|
|
1263 |
ubidi_getDirection(const UBiDi *pBiDi) {
|
|
1264 |
if(pBiDi!=NULL) {
|
|
1265 |
return pBiDi->direction;
|
|
1266 |
} else {
|
|
1267 |
return UBIDI_LTR;
|
|
1268 |
}
|
|
1269 |
}
|
|
1270 |
|
|
1271 |
U_CAPI const UChar * U_EXPORT2
|
|
1272 |
ubidi_getText(const UBiDi *pBiDi) {
|
|
1273 |
if(pBiDi!=NULL) {
|
|
1274 |
return pBiDi->text;
|
|
1275 |
} else {
|
|
1276 |
return NULL;
|
|
1277 |
}
|
|
1278 |
}
|
|
1279 |
|
|
1280 |
U_CAPI int32_t U_EXPORT2
|
|
1281 |
ubidi_getLength(const UBiDi *pBiDi) {
|
|
1282 |
if(pBiDi!=NULL) {
|
|
1283 |
return pBiDi->length;
|
|
1284 |
} else {
|
|
1285 |
return 0;
|
|
1286 |
}
|
|
1287 |
}
|
|
1288 |
|
|
1289 |
U_CAPI UBiDiLevel U_EXPORT2
|
|
1290 |
ubidi_getParaLevel(const UBiDi *pBiDi) {
|
|
1291 |
if(pBiDi!=NULL) {
|
|
1292 |
return pBiDi->paraLevel;
|
|
1293 |
} else {
|
|
1294 |
return 0;
|
|
1295 |
}
|
|
1296 |
}
|
|
1297 |
|
|
1298 |
/* statetable prototype ----------------------------------------------------- */
|
|
1299 |
|
|
1300 |
/*
|
|
1301 |
* This is here for possible future
|
|
1302 |
* performance work and is not compiled right now.
|
|
1303 |
*/
|
|
1304 |
|
|
1305 |
#if 0
|
|
1306 |
/*
|
|
1307 |
* This is a piece of code that could be part of ubidi.c/resolveImplicitLevels().
|
|
1308 |
* It replaces in the (Wn) state machine the switch()-if()-cascade with
|
|
1309 |
* just a few if()s and a state table.
|
|
1310 |
*/
|
|
1311 |
|
|
1312 |
/* use the state table only for the following dirProp's */
|
|
1313 |
#define MASK_W_TABLE (FLAG(L)|FLAG(R)|FLAG(AL)|FLAG(EN)|FLAG(ES)|FLAG(CS)|FLAG(ET)|FLAG(AN))
|
|
1314 |
|
|
1315 |
/*
|
|
1316 |
* inputs:
|
|
1317 |
*
|
|
1318 |
* 0..1 historyOfEN - 2b
|
|
1319 |
* 2 prevDirProp==AN - 1b
|
|
1320 |
* 3..4 lastStrong, one of { L, R, AL, none } - 2b
|
|
1321 |
* 5..7 dirProp, one of { L, R, AL, EN, ES, CS, ET, AN } - 3b
|
|
1322 |
* 8..9 nextDirProp, one of { EN, AN, other }
|
|
1323 |
*
|
|
1324 |
* total: 10b=1024 states
|
|
1325 |
*/
|
|
1326 |
enum { _L, _R, _AL, _EN, _ES, _CS, _ET, _AN, _OTHER }; /* lastStrong, dirProp */
|
|
1327 |
enum { __EN, __AN, __OTHER }; /* nextDirProp */
|
|
1328 |
|
|
1329 |
#define LAST_STRONG_SHIFT 3
|
|
1330 |
#define DIR_PROP_SHIFT 5
|
|
1331 |
#define NEXT_DIR_PROP_SHIFT 8
|
|
1332 |
|
|
1333 |
/* masks after shifting */
|
|
1334 |
#define LAST_STRONG_MASK 3
|
|
1335 |
#define DIR_PROP_MASK 7
|
|
1336 |
#define STATE_MASK 0x1f
|
|
1337 |
|
|
1338 |
/* convert dirProp into _dirProp (above enum) */
|
|
1339 |
static DirProp inputDirProp[dirPropCount]={ _X<<DIR_PROP_SHIFT, ... };
|
|
1340 |
|
|
1341 |
/* convert dirProp into __dirProp (above enum) */
|
|
1342 |
static DirProp inputNextDirProp[dirPropCount]={ __X<<NEXT_DIR_PROP_SHIFT, ... };
|
|
1343 |
|
|
1344 |
/*
|
|
1345 |
* outputs:
|
|
1346 |
*
|
|
1347 |
* dirProp, one of { L, R, EN, AN, ON } - 3b
|
|
1348 |
*
|
|
1349 |
* 0..1 historyOfEN - 2b
|
|
1350 |
* 2 prevDirProp==AN - 1b
|
|
1351 |
* 3..4 lastStrong, one of { L, R, AL, none } - 2b
|
|
1352 |
* 5..7 new dirProp, one of { L, R, EN, AN, ON }
|
|
1353 |
*
|
|
1354 |
* total: 8 bits=1 byte per state
|
|
1355 |
*/
|
|
1356 |
enum { ___L, ___R, ___EN, ___AN, ___ON, ___count };
|
|
1357 |
|
|
1358 |
/* convert ___dirProp into dirProp (above enum) */
|
|
1359 |
static DirProp outputDirProp[___count]={ X, ... };
|
|
1360 |
|
|
1361 |
/* state table */
|
|
1362 |
static uint8_t wnTable[1024]={ /* calculate with switch()-if()-cascade */ };
|
|
1363 |
|
|
1364 |
static void
|
|
1365 |
resolveImplicitLevels(BiDi *pBiDi,
|
|
1366 |
Index start, Index end,
|
|
1367 |
DirProp sor, DirProp eor) {
|
|
1368 |
/* new variable */
|
|
1369 |
uint8_t state;
|
|
1370 |
|
|
1371 |
/* remove variable lastStrong */
|
|
1372 |
|
|
1373 |
/* set initial state (set lastStrong, the rest is 0) */
|
|
1374 |
state= sor==L ? 0 : _R<<LAST_STRONG_SHIFT;
|
|
1375 |
|
|
1376 |
while(next<limit) {
|
|
1377 |
/* advance */
|
|
1378 |
prevDirProp=dirProp;
|
|
1379 |
dirProp=nextDirProp;
|
|
1380 |
i=next;
|
|
1381 |
do {
|
|
1382 |
if(++next<limit) {
|
|
1383 |
nextDirProp=dirProps[next];
|
|
1384 |
} else {
|
|
1385 |
nextDirProp=eor;
|
|
1386 |
break;
|
|
1387 |
}
|
|
1388 |
} while(FLAG(nextDirProp)&MASK_BN_EXPLICIT);
|
|
1389 |
|
|
1390 |
/* (W1..W7) */
|
|
1391 |
/* ### This may be more efficient with a switch(dirProp). */
|
|
1392 |
if(FLAG(dirProp)&MASK_W_TABLE) {
|
|
1393 |
state=wnTable[
|
|
1394 |
((int)state)|
|
|
1395 |
inputDirProp[dirProp]|
|
|
1396 |
inputNextDirProp[nextDirProp]
|
|
1397 |
];
|
|
1398 |
dirProp=outputDirProp[state>>DIR_PROP_SHIFT];
|
|
1399 |
state&=STATE_MASK;
|
|
1400 |
} else if(dirProp==ET) {
|
|
1401 |
/* get sequence of ET; advance only next, not current, previous or historyOfEN */
|
|
1402 |
while(next<limit && FLAG(nextDirProp)&MASK_ET_NSM_BN /* (W1), (X9) */) {
|
|
1403 |
if(++next<limit) {
|
|
1404 |
nextDirProp=dirProps[next];
|
|
1405 |
} else {
|
|
1406 |
nextDirProp=eor;
|
|
1407 |
break;
|
|
1408 |
}
|
|
1409 |
}
|
|
1410 |
|
|
1411 |
state=wnTable[
|
|
1412 |
((int)state)|
|
|
1413 |
_ET<<DIR_PROP_SHIFT|
|
|
1414 |
inputNextDirProp[nextDirProp]
|
|
1415 |
];
|
|
1416 |
dirProp=outputDirProp[state>>DIR_PROP_SHIFT];
|
|
1417 |
state&=STATE_MASK;
|
|
1418 |
|
|
1419 |
/* apply the result of (W1), (W5)..(W7) to the entire sequence of ET */
|
|
1420 |
} else if(dirProp==NSM) {
|
|
1421 |
/* (W1) */
|
|
1422 |
dirProp=prevDirProp;
|
|
1423 |
/* keep prevDirProp's EN and AN states! */
|
|
1424 |
} else /* other */ {
|
|
1425 |
/* set EN and AN states to 0 */
|
|
1426 |
state&=LAST_STRONG_MASK<<LAST_STRONG_SHIFT;
|
|
1427 |
}
|
|
1428 |
|
|
1429 |
/* perform (Nn) and (In) as usual */
|
|
1430 |
}
|
|
1431 |
/* perform (Nn) and (In) as usual */
|
|
1432 |
}
|
|
1433 |
#endif
|