1
|
1 |
/*
|
|
2 |
* Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
// Portions of code courtesy of Clifford Click
|
|
26 |
|
|
27 |
// Optimization - Graph Style
|
|
28 |
|
|
29 |
#include "incls/_precompiled.incl"
|
|
30 |
#include "incls/_callnode.cpp.incl"
|
|
31 |
|
|
32 |
//=============================================================================
|
|
33 |
uint StartNode::size_of() const { return sizeof(*this); }
|
|
34 |
uint StartNode::cmp( const Node &n ) const
|
|
35 |
{ return _domain == ((StartNode&)n)._domain; }
|
|
36 |
const Type *StartNode::bottom_type() const { return _domain; }
|
|
37 |
const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
|
|
38 |
#ifndef PRODUCT
|
|
39 |
void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
|
|
40 |
#endif
|
|
41 |
|
|
42 |
//------------------------------Ideal------------------------------------------
|
|
43 |
Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
|
|
44 |
return remove_dead_region(phase, can_reshape) ? this : NULL;
|
|
45 |
}
|
|
46 |
|
|
47 |
//------------------------------calling_convention-----------------------------
|
|
48 |
void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
|
|
49 |
Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
|
|
50 |
}
|
|
51 |
|
|
52 |
//------------------------------Registers--------------------------------------
|
|
53 |
const RegMask &StartNode::in_RegMask(uint) const {
|
|
54 |
return RegMask::Empty;
|
|
55 |
}
|
|
56 |
|
|
57 |
//------------------------------match------------------------------------------
|
|
58 |
// Construct projections for incoming parameters, and their RegMask info
|
|
59 |
Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
|
|
60 |
switch (proj->_con) {
|
|
61 |
case TypeFunc::Control:
|
|
62 |
case TypeFunc::I_O:
|
|
63 |
case TypeFunc::Memory:
|
|
64 |
return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
|
|
65 |
case TypeFunc::FramePtr:
|
|
66 |
return new (match->C, 1) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
|
|
67 |
case TypeFunc::ReturnAdr:
|
|
68 |
return new (match->C, 1) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
|
|
69 |
case TypeFunc::Parms:
|
|
70 |
default: {
|
|
71 |
uint parm_num = proj->_con - TypeFunc::Parms;
|
|
72 |
const Type *t = _domain->field_at(proj->_con);
|
|
73 |
if (t->base() == Type::Half) // 2nd half of Longs and Doubles
|
|
74 |
return new (match->C, 1) ConNode(Type::TOP);
|
|
75 |
uint ideal_reg = Matcher::base2reg[t->base()];
|
|
76 |
RegMask &rm = match->_calling_convention_mask[parm_num];
|
|
77 |
return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
|
|
78 |
}
|
|
79 |
}
|
|
80 |
return NULL;
|
|
81 |
}
|
|
82 |
|
|
83 |
//------------------------------StartOSRNode----------------------------------
|
|
84 |
// The method start node for an on stack replacement adapter
|
|
85 |
|
|
86 |
//------------------------------osr_domain-----------------------------
|
|
87 |
const TypeTuple *StartOSRNode::osr_domain() {
|
|
88 |
const Type **fields = TypeTuple::fields(2);
|
|
89 |
fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer
|
|
90 |
|
|
91 |
return TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
92 |
}
|
|
93 |
|
|
94 |
//=============================================================================
|
|
95 |
const char * const ParmNode::names[TypeFunc::Parms+1] = {
|
|
96 |
"Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
|
|
97 |
};
|
|
98 |
|
|
99 |
#ifndef PRODUCT
|
|
100 |
void ParmNode::dump_spec(outputStream *st) const {
|
|
101 |
if( _con < TypeFunc::Parms ) {
|
|
102 |
st->print(names[_con]);
|
|
103 |
} else {
|
|
104 |
st->print("Parm%d: ",_con-TypeFunc::Parms);
|
|
105 |
// Verbose and WizardMode dump bottom_type for all nodes
|
|
106 |
if( !Verbose && !WizardMode ) bottom_type()->dump_on(st);
|
|
107 |
}
|
|
108 |
}
|
|
109 |
#endif
|
|
110 |
|
|
111 |
uint ParmNode::ideal_reg() const {
|
|
112 |
switch( _con ) {
|
|
113 |
case TypeFunc::Control : // fall through
|
|
114 |
case TypeFunc::I_O : // fall through
|
|
115 |
case TypeFunc::Memory : return 0;
|
|
116 |
case TypeFunc::FramePtr : // fall through
|
|
117 |
case TypeFunc::ReturnAdr: return Op_RegP;
|
|
118 |
default : assert( _con > TypeFunc::Parms, "" );
|
|
119 |
// fall through
|
|
120 |
case TypeFunc::Parms : {
|
|
121 |
// Type of argument being passed
|
|
122 |
const Type *t = in(0)->as_Start()->_domain->field_at(_con);
|
|
123 |
return Matcher::base2reg[t->base()];
|
|
124 |
}
|
|
125 |
}
|
|
126 |
ShouldNotReachHere();
|
|
127 |
return 0;
|
|
128 |
}
|
|
129 |
|
|
130 |
//=============================================================================
|
|
131 |
ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
|
|
132 |
init_req(TypeFunc::Control,cntrl);
|
|
133 |
init_req(TypeFunc::I_O,i_o);
|
|
134 |
init_req(TypeFunc::Memory,memory);
|
|
135 |
init_req(TypeFunc::FramePtr,frameptr);
|
|
136 |
init_req(TypeFunc::ReturnAdr,retadr);
|
|
137 |
}
|
|
138 |
|
|
139 |
Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
|
|
140 |
return remove_dead_region(phase, can_reshape) ? this : NULL;
|
|
141 |
}
|
|
142 |
|
|
143 |
const Type *ReturnNode::Value( PhaseTransform *phase ) const {
|
|
144 |
return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
|
|
145 |
? Type::TOP
|
|
146 |
: Type::BOTTOM;
|
|
147 |
}
|
|
148 |
|
|
149 |
// Do we Match on this edge index or not? No edges on return nodes
|
|
150 |
uint ReturnNode::match_edge(uint idx) const {
|
|
151 |
return 0;
|
|
152 |
}
|
|
153 |
|
|
154 |
|
|
155 |
#ifndef PRODUCT
|
|
156 |
void ReturnNode::dump_req() const {
|
|
157 |
// Dump the required inputs, enclosed in '(' and ')'
|
|
158 |
uint i; // Exit value of loop
|
|
159 |
for( i=0; i<req(); i++ ) { // For all required inputs
|
|
160 |
if( i == TypeFunc::Parms ) tty->print("returns");
|
|
161 |
if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
|
|
162 |
else tty->print("_ ");
|
|
163 |
}
|
|
164 |
}
|
|
165 |
#endif
|
|
166 |
|
|
167 |
//=============================================================================
|
|
168 |
RethrowNode::RethrowNode(
|
|
169 |
Node* cntrl,
|
|
170 |
Node* i_o,
|
|
171 |
Node* memory,
|
|
172 |
Node* frameptr,
|
|
173 |
Node* ret_adr,
|
|
174 |
Node* exception
|
|
175 |
) : Node(TypeFunc::Parms + 1) {
|
|
176 |
init_req(TypeFunc::Control , cntrl );
|
|
177 |
init_req(TypeFunc::I_O , i_o );
|
|
178 |
init_req(TypeFunc::Memory , memory );
|
|
179 |
init_req(TypeFunc::FramePtr , frameptr );
|
|
180 |
init_req(TypeFunc::ReturnAdr, ret_adr);
|
|
181 |
init_req(TypeFunc::Parms , exception);
|
|
182 |
}
|
|
183 |
|
|
184 |
Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
|
|
185 |
return remove_dead_region(phase, can_reshape) ? this : NULL;
|
|
186 |
}
|
|
187 |
|
|
188 |
const Type *RethrowNode::Value( PhaseTransform *phase ) const {
|
|
189 |
return (phase->type(in(TypeFunc::Control)) == Type::TOP)
|
|
190 |
? Type::TOP
|
|
191 |
: Type::BOTTOM;
|
|
192 |
}
|
|
193 |
|
|
194 |
uint RethrowNode::match_edge(uint idx) const {
|
|
195 |
return 0;
|
|
196 |
}
|
|
197 |
|
|
198 |
#ifndef PRODUCT
|
|
199 |
void RethrowNode::dump_req() const {
|
|
200 |
// Dump the required inputs, enclosed in '(' and ')'
|
|
201 |
uint i; // Exit value of loop
|
|
202 |
for( i=0; i<req(); i++ ) { // For all required inputs
|
|
203 |
if( i == TypeFunc::Parms ) tty->print("exception");
|
|
204 |
if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
|
|
205 |
else tty->print("_ ");
|
|
206 |
}
|
|
207 |
}
|
|
208 |
#endif
|
|
209 |
|
|
210 |
//=============================================================================
|
|
211 |
// Do we Match on this edge index or not? Match only target address & method
|
|
212 |
uint TailCallNode::match_edge(uint idx) const {
|
|
213 |
return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
|
|
214 |
}
|
|
215 |
|
|
216 |
//=============================================================================
|
|
217 |
// Do we Match on this edge index or not? Match only target address & oop
|
|
218 |
uint TailJumpNode::match_edge(uint idx) const {
|
|
219 |
return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
|
|
220 |
}
|
|
221 |
|
|
222 |
//=============================================================================
|
|
223 |
JVMState::JVMState(ciMethod* method, JVMState* caller) {
|
|
224 |
assert(method != NULL, "must be valid call site");
|
|
225 |
_method = method;
|
|
226 |
debug_only(_bci = -99); // random garbage value
|
|
227 |
debug_only(_map = (SafePointNode*)-1);
|
|
228 |
_caller = caller;
|
|
229 |
_depth = 1 + (caller == NULL ? 0 : caller->depth());
|
|
230 |
_locoff = TypeFunc::Parms;
|
|
231 |
_stkoff = _locoff + _method->max_locals();
|
|
232 |
_monoff = _stkoff + _method->max_stack();
|
|
233 |
_endoff = _monoff;
|
|
234 |
_sp = 0;
|
|
235 |
}
|
|
236 |
JVMState::JVMState(int stack_size) {
|
|
237 |
_method = NULL;
|
|
238 |
_bci = InvocationEntryBci;
|
|
239 |
debug_only(_map = (SafePointNode*)-1);
|
|
240 |
_caller = NULL;
|
|
241 |
_depth = 1;
|
|
242 |
_locoff = TypeFunc::Parms;
|
|
243 |
_stkoff = _locoff;
|
|
244 |
_monoff = _stkoff + stack_size;
|
|
245 |
_endoff = _monoff;
|
|
246 |
_sp = 0;
|
|
247 |
}
|
|
248 |
|
|
249 |
//--------------------------------of_depth-------------------------------------
|
|
250 |
JVMState* JVMState::of_depth(int d) const {
|
|
251 |
const JVMState* jvmp = this;
|
|
252 |
assert(0 < d && (uint)d <= depth(), "oob");
|
|
253 |
for (int skip = depth() - d; skip > 0; skip--) {
|
|
254 |
jvmp = jvmp->caller();
|
|
255 |
}
|
|
256 |
assert(jvmp->depth() == (uint)d, "found the right one");
|
|
257 |
return (JVMState*)jvmp;
|
|
258 |
}
|
|
259 |
|
|
260 |
//-----------------------------same_calls_as-----------------------------------
|
|
261 |
bool JVMState::same_calls_as(const JVMState* that) const {
|
|
262 |
if (this == that) return true;
|
|
263 |
if (this->depth() != that->depth()) return false;
|
|
264 |
const JVMState* p = this;
|
|
265 |
const JVMState* q = that;
|
|
266 |
for (;;) {
|
|
267 |
if (p->_method != q->_method) return false;
|
|
268 |
if (p->_method == NULL) return true; // bci is irrelevant
|
|
269 |
if (p->_bci != q->_bci) return false;
|
|
270 |
p = p->caller();
|
|
271 |
q = q->caller();
|
|
272 |
if (p == q) return true;
|
|
273 |
assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
|
|
274 |
}
|
|
275 |
}
|
|
276 |
|
|
277 |
//------------------------------debug_start------------------------------------
|
|
278 |
uint JVMState::debug_start() const {
|
|
279 |
debug_only(JVMState* jvmroot = of_depth(1));
|
|
280 |
assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
|
|
281 |
return of_depth(1)->locoff();
|
|
282 |
}
|
|
283 |
|
|
284 |
//-------------------------------debug_end-------------------------------------
|
|
285 |
uint JVMState::debug_end() const {
|
|
286 |
debug_only(JVMState* jvmroot = of_depth(1));
|
|
287 |
assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
|
|
288 |
return endoff();
|
|
289 |
}
|
|
290 |
|
|
291 |
//------------------------------debug_depth------------------------------------
|
|
292 |
uint JVMState::debug_depth() const {
|
|
293 |
uint total = 0;
|
|
294 |
for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
|
|
295 |
total += jvmp->debug_size();
|
|
296 |
}
|
|
297 |
return total;
|
|
298 |
}
|
|
299 |
|
|
300 |
//------------------------------format_helper----------------------------------
|
|
301 |
// Given an allocation (a Chaitin object) and a Node decide if the Node carries
|
|
302 |
// any defined value or not. If it does, print out the register or constant.
|
|
303 |
#ifndef PRODUCT
|
|
304 |
static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i ) {
|
|
305 |
if (n == NULL) { st->print(" NULL"); return; }
|
|
306 |
if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
|
|
307 |
char buf[50];
|
|
308 |
regalloc->dump_register(n,buf);
|
|
309 |
st->print(" %s%d]=%s",msg,i,buf);
|
|
310 |
} else { // No register, but might be constant
|
|
311 |
const Type *t = n->bottom_type();
|
|
312 |
switch (t->base()) {
|
|
313 |
case Type::Int:
|
|
314 |
st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
|
|
315 |
break;
|
|
316 |
case Type::AnyPtr:
|
|
317 |
assert( t == TypePtr::NULL_PTR, "" );
|
|
318 |
st->print(" %s%d]=#NULL",msg,i);
|
|
319 |
break;
|
|
320 |
case Type::AryPtr:
|
|
321 |
case Type::KlassPtr:
|
|
322 |
case Type::InstPtr:
|
|
323 |
st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
|
|
324 |
break;
|
|
325 |
case Type::RawPtr:
|
|
326 |
st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
|
|
327 |
break;
|
|
328 |
case Type::DoubleCon:
|
|
329 |
st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
|
|
330 |
break;
|
|
331 |
case Type::FloatCon:
|
|
332 |
st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
|
|
333 |
break;
|
|
334 |
case Type::Long:
|
|
335 |
st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
|
|
336 |
break;
|
|
337 |
case Type::Half:
|
|
338 |
case Type::Top:
|
|
339 |
st->print(" %s%d]=_",msg,i);
|
|
340 |
break;
|
|
341 |
default: ShouldNotReachHere();
|
|
342 |
}
|
|
343 |
}
|
|
344 |
}
|
|
345 |
#endif
|
|
346 |
|
|
347 |
//------------------------------format-----------------------------------------
|
|
348 |
#ifndef PRODUCT
|
|
349 |
void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
|
|
350 |
st->print(" #");
|
|
351 |
if( _method ) {
|
|
352 |
_method->print_short_name(st);
|
|
353 |
st->print(" @ bci:%d ",_bci);
|
|
354 |
} else {
|
|
355 |
st->print_cr(" runtime stub ");
|
|
356 |
return;
|
|
357 |
}
|
|
358 |
if (n->is_MachSafePoint()) {
|
|
359 |
MachSafePointNode *mcall = n->as_MachSafePoint();
|
|
360 |
uint i;
|
|
361 |
// Print locals
|
|
362 |
for( i = 0; i < (uint)loc_size(); i++ )
|
|
363 |
format_helper( regalloc, st, mcall->local(this, i), "L[", i );
|
|
364 |
// Print stack
|
|
365 |
for (i = 0; i < (uint)stk_size(); i++) {
|
|
366 |
if ((uint)(_stkoff + i) >= mcall->len())
|
|
367 |
st->print(" oob ");
|
|
368 |
else
|
|
369 |
format_helper( regalloc, st, mcall->stack(this, i), "STK[", i );
|
|
370 |
}
|
|
371 |
for (i = 0; (int)i < nof_monitors(); i++) {
|
|
372 |
Node *box = mcall->monitor_box(this, i);
|
|
373 |
Node *obj = mcall->monitor_obj(this, i);
|
|
374 |
if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
|
|
375 |
while( !box->is_BoxLock() ) box = box->in(1);
|
|
376 |
format_helper( regalloc, st, box, "MON-BOX[", i );
|
|
377 |
} else {
|
|
378 |
OptoReg::Name box_reg = BoxLockNode::stack_slot(box);
|
|
379 |
st->print(" MON-BOX%d=%s+%d",
|
|
380 |
i,
|
|
381 |
OptoReg::regname(OptoReg::c_frame_pointer),
|
|
382 |
regalloc->reg2offset(box_reg));
|
|
383 |
}
|
|
384 |
format_helper( regalloc, st, obj, "MON-OBJ[", i );
|
|
385 |
}
|
|
386 |
}
|
|
387 |
st->print_cr("");
|
|
388 |
if (caller() != NULL) caller()->format(regalloc, n, st);
|
|
389 |
}
|
|
390 |
#endif
|
|
391 |
|
|
392 |
#ifndef PRODUCT
|
|
393 |
void JVMState::dump_spec(outputStream *st) const {
|
|
394 |
if (_method != NULL) {
|
|
395 |
bool printed = false;
|
|
396 |
if (!Verbose) {
|
|
397 |
// The JVMS dumps make really, really long lines.
|
|
398 |
// Take out the most boring parts, which are the package prefixes.
|
|
399 |
char buf[500];
|
|
400 |
stringStream namest(buf, sizeof(buf));
|
|
401 |
_method->print_short_name(&namest);
|
|
402 |
if (namest.count() < sizeof(buf)) {
|
|
403 |
const char* name = namest.base();
|
|
404 |
if (name[0] == ' ') ++name;
|
|
405 |
const char* endcn = strchr(name, ':'); // end of class name
|
|
406 |
if (endcn == NULL) endcn = strchr(name, '(');
|
|
407 |
if (endcn == NULL) endcn = name + strlen(name);
|
|
408 |
while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
|
|
409 |
--endcn;
|
|
410 |
st->print(" %s", endcn);
|
|
411 |
printed = true;
|
|
412 |
}
|
|
413 |
}
|
|
414 |
if (!printed)
|
|
415 |
_method->print_short_name(st);
|
|
416 |
st->print(" @ bci:%d",_bci);
|
|
417 |
} else {
|
|
418 |
st->print(" runtime stub");
|
|
419 |
}
|
|
420 |
if (caller() != NULL) caller()->dump_spec(st);
|
|
421 |
}
|
|
422 |
#endif
|
|
423 |
|
|
424 |
#ifndef PRODUCT
|
|
425 |
void JVMState::dump_on(outputStream* st) const {
|
|
426 |
if (_map && !((uintptr_t)_map & 1)) {
|
|
427 |
if (_map->len() > _map->req()) { // _map->has_exceptions()
|
|
428 |
Node* ex = _map->in(_map->req()); // _map->next_exception()
|
|
429 |
// skip the first one; it's already being printed
|
|
430 |
while (ex != NULL && ex->len() > ex->req()) {
|
|
431 |
ex = ex->in(ex->req()); // ex->next_exception()
|
|
432 |
ex->dump(1);
|
|
433 |
}
|
|
434 |
}
|
|
435 |
_map->dump(2);
|
|
436 |
}
|
|
437 |
st->print("JVMS depth=%d loc=%d stk=%d mon=%d end=%d mondepth=%d sp=%d bci=%d method=",
|
|
438 |
depth(), locoff(), stkoff(), monoff(), endoff(), monitor_depth(), sp(), bci());
|
|
439 |
if (_method == NULL) {
|
|
440 |
st->print_cr("(none)");
|
|
441 |
} else {
|
|
442 |
_method->print_name(st);
|
|
443 |
st->cr();
|
|
444 |
if (bci() >= 0 && bci() < _method->code_size()) {
|
|
445 |
st->print(" bc: ");
|
|
446 |
_method->print_codes_on(bci(), bci()+1, st);
|
|
447 |
}
|
|
448 |
}
|
|
449 |
if (caller() != NULL) {
|
|
450 |
caller()->dump_on(st);
|
|
451 |
}
|
|
452 |
}
|
|
453 |
|
|
454 |
// Extra way to dump a jvms from the debugger,
|
|
455 |
// to avoid a bug with C++ member function calls.
|
|
456 |
void dump_jvms(JVMState* jvms) {
|
|
457 |
jvms->dump();
|
|
458 |
}
|
|
459 |
#endif
|
|
460 |
|
|
461 |
//--------------------------clone_shallow--------------------------------------
|
|
462 |
JVMState* JVMState::clone_shallow(Compile* C) const {
|
|
463 |
JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
|
|
464 |
n->set_bci(_bci);
|
|
465 |
n->set_locoff(_locoff);
|
|
466 |
n->set_stkoff(_stkoff);
|
|
467 |
n->set_monoff(_monoff);
|
|
468 |
n->set_endoff(_endoff);
|
|
469 |
n->set_sp(_sp);
|
|
470 |
n->set_map(_map);
|
|
471 |
return n;
|
|
472 |
}
|
|
473 |
|
|
474 |
//---------------------------clone_deep----------------------------------------
|
|
475 |
JVMState* JVMState::clone_deep(Compile* C) const {
|
|
476 |
JVMState* n = clone_shallow(C);
|
|
477 |
for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
|
|
478 |
p->_caller = p->_caller->clone_shallow(C);
|
|
479 |
}
|
|
480 |
assert(n->depth() == depth(), "sanity");
|
|
481 |
assert(n->debug_depth() == debug_depth(), "sanity");
|
|
482 |
return n;
|
|
483 |
}
|
|
484 |
|
|
485 |
//=============================================================================
|
|
486 |
uint CallNode::cmp( const Node &n ) const
|
|
487 |
{ return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
|
|
488 |
#ifndef PRODUCT
|
|
489 |
void CallNode::dump_req() const {
|
|
490 |
// Dump the required inputs, enclosed in '(' and ')'
|
|
491 |
uint i; // Exit value of loop
|
|
492 |
for( i=0; i<req(); i++ ) { // For all required inputs
|
|
493 |
if( i == TypeFunc::Parms ) tty->print("(");
|
|
494 |
if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
|
|
495 |
else tty->print("_ ");
|
|
496 |
}
|
|
497 |
tty->print(")");
|
|
498 |
}
|
|
499 |
|
|
500 |
void CallNode::dump_spec(outputStream *st) const {
|
|
501 |
st->print(" ");
|
|
502 |
tf()->dump_on(st);
|
|
503 |
if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt);
|
|
504 |
if (jvms() != NULL) jvms()->dump_spec(st);
|
|
505 |
}
|
|
506 |
#endif
|
|
507 |
|
|
508 |
const Type *CallNode::bottom_type() const { return tf()->range(); }
|
|
509 |
const Type *CallNode::Value(PhaseTransform *phase) const {
|
|
510 |
if (phase->type(in(0)) == Type::TOP) return Type::TOP;
|
|
511 |
return tf()->range();
|
|
512 |
}
|
|
513 |
|
|
514 |
//------------------------------calling_convention-----------------------------
|
|
515 |
void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
|
|
516 |
// Use the standard compiler calling convention
|
|
517 |
Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
|
|
518 |
}
|
|
519 |
|
|
520 |
|
|
521 |
//------------------------------match------------------------------------------
|
|
522 |
// Construct projections for control, I/O, memory-fields, ..., and
|
|
523 |
// return result(s) along with their RegMask info
|
|
524 |
Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
|
|
525 |
switch (proj->_con) {
|
|
526 |
case TypeFunc::Control:
|
|
527 |
case TypeFunc::I_O:
|
|
528 |
case TypeFunc::Memory:
|
|
529 |
return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
|
|
530 |
|
|
531 |
case TypeFunc::Parms+1: // For LONG & DOUBLE returns
|
|
532 |
assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
|
|
533 |
// 2nd half of doubles and longs
|
|
534 |
return new (match->C, 1) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
|
|
535 |
|
|
536 |
case TypeFunc::Parms: { // Normal returns
|
|
537 |
uint ideal_reg = Matcher::base2reg[tf()->range()->field_at(TypeFunc::Parms)->base()];
|
|
538 |
OptoRegPair regs = is_CallRuntime()
|
|
539 |
? match->c_return_value(ideal_reg,true) // Calls into C runtime
|
|
540 |
: match-> return_value(ideal_reg,true); // Calls into compiled Java code
|
|
541 |
RegMask rm = RegMask(regs.first());
|
|
542 |
if( OptoReg::is_valid(regs.second()) )
|
|
543 |
rm.Insert( regs.second() );
|
|
544 |
return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
|
|
545 |
}
|
|
546 |
|
|
547 |
case TypeFunc::ReturnAdr:
|
|
548 |
case TypeFunc::FramePtr:
|
|
549 |
default:
|
|
550 |
ShouldNotReachHere();
|
|
551 |
}
|
|
552 |
return NULL;
|
|
553 |
}
|
|
554 |
|
|
555 |
// Do we Match on this edge index or not? Match no edges
|
|
556 |
uint CallNode::match_edge(uint idx) const {
|
|
557 |
return 0;
|
|
558 |
}
|
|
559 |
|
|
560 |
//=============================================================================
|
|
561 |
uint CallJavaNode::size_of() const { return sizeof(*this); }
|
|
562 |
uint CallJavaNode::cmp( const Node &n ) const {
|
|
563 |
CallJavaNode &call = (CallJavaNode&)n;
|
|
564 |
return CallNode::cmp(call) && _method == call._method;
|
|
565 |
}
|
|
566 |
#ifndef PRODUCT
|
|
567 |
void CallJavaNode::dump_spec(outputStream *st) const {
|
|
568 |
if( _method ) _method->print_short_name(st);
|
|
569 |
CallNode::dump_spec(st);
|
|
570 |
}
|
|
571 |
#endif
|
|
572 |
|
|
573 |
//=============================================================================
|
|
574 |
uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
|
|
575 |
uint CallStaticJavaNode::cmp( const Node &n ) const {
|
|
576 |
CallStaticJavaNode &call = (CallStaticJavaNode&)n;
|
|
577 |
return CallJavaNode::cmp(call);
|
|
578 |
}
|
|
579 |
|
|
580 |
//----------------------------uncommon_trap_request----------------------------
|
|
581 |
// If this is an uncommon trap, return the request code, else zero.
|
|
582 |
int CallStaticJavaNode::uncommon_trap_request() const {
|
|
583 |
if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
|
|
584 |
return extract_uncommon_trap_request(this);
|
|
585 |
}
|
|
586 |
return 0;
|
|
587 |
}
|
|
588 |
int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
|
|
589 |
#ifndef PRODUCT
|
|
590 |
if (!(call->req() > TypeFunc::Parms &&
|
|
591 |
call->in(TypeFunc::Parms) != NULL &&
|
|
592 |
call->in(TypeFunc::Parms)->is_Con())) {
|
|
593 |
assert(_in_dump_cnt != 0, "OK if dumping");
|
|
594 |
tty->print("[bad uncommon trap]");
|
|
595 |
return 0;
|
|
596 |
}
|
|
597 |
#endif
|
|
598 |
return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
|
|
599 |
}
|
|
600 |
|
|
601 |
#ifndef PRODUCT
|
|
602 |
void CallStaticJavaNode::dump_spec(outputStream *st) const {
|
|
603 |
st->print("# Static ");
|
|
604 |
if (_name != NULL) {
|
|
605 |
st->print("%s", _name);
|
|
606 |
int trap_req = uncommon_trap_request();
|
|
607 |
if (trap_req != 0) {
|
|
608 |
char buf[100];
|
|
609 |
st->print("(%s)",
|
|
610 |
Deoptimization::format_trap_request(buf, sizeof(buf),
|
|
611 |
trap_req));
|
|
612 |
}
|
|
613 |
st->print(" ");
|
|
614 |
}
|
|
615 |
CallJavaNode::dump_spec(st);
|
|
616 |
}
|
|
617 |
#endif
|
|
618 |
|
|
619 |
//=============================================================================
|
|
620 |
uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
|
|
621 |
uint CallDynamicJavaNode::cmp( const Node &n ) const {
|
|
622 |
CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
|
|
623 |
return CallJavaNode::cmp(call);
|
|
624 |
}
|
|
625 |
#ifndef PRODUCT
|
|
626 |
void CallDynamicJavaNode::dump_spec(outputStream *st) const {
|
|
627 |
st->print("# Dynamic ");
|
|
628 |
CallJavaNode::dump_spec(st);
|
|
629 |
}
|
|
630 |
#endif
|
|
631 |
|
|
632 |
//=============================================================================
|
|
633 |
uint CallRuntimeNode::size_of() const { return sizeof(*this); }
|
|
634 |
uint CallRuntimeNode::cmp( const Node &n ) const {
|
|
635 |
CallRuntimeNode &call = (CallRuntimeNode&)n;
|
|
636 |
return CallNode::cmp(call) && !strcmp(_name,call._name);
|
|
637 |
}
|
|
638 |
#ifndef PRODUCT
|
|
639 |
void CallRuntimeNode::dump_spec(outputStream *st) const {
|
|
640 |
st->print("# ");
|
|
641 |
st->print(_name);
|
|
642 |
CallNode::dump_spec(st);
|
|
643 |
}
|
|
644 |
#endif
|
|
645 |
|
|
646 |
//------------------------------calling_convention-----------------------------
|
|
647 |
void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
|
|
648 |
Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
|
|
649 |
}
|
|
650 |
|
|
651 |
//=============================================================================
|
|
652 |
//------------------------------calling_convention-----------------------------
|
|
653 |
|
|
654 |
|
|
655 |
//=============================================================================
|
|
656 |
#ifndef PRODUCT
|
|
657 |
void CallLeafNode::dump_spec(outputStream *st) const {
|
|
658 |
st->print("# ");
|
|
659 |
st->print(_name);
|
|
660 |
CallNode::dump_spec(st);
|
|
661 |
}
|
|
662 |
#endif
|
|
663 |
|
|
664 |
//=============================================================================
|
|
665 |
|
|
666 |
void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
|
|
667 |
assert(verify_jvms(jvms), "jvms must match");
|
|
668 |
int loc = jvms->locoff() + idx;
|
|
669 |
if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
|
|
670 |
// If current local idx is top then local idx - 1 could
|
|
671 |
// be a long/double that needs to be killed since top could
|
|
672 |
// represent the 2nd half ofthe long/double.
|
|
673 |
uint ideal = in(loc -1)->ideal_reg();
|
|
674 |
if (ideal == Op_RegD || ideal == Op_RegL) {
|
|
675 |
// set other (low index) half to top
|
|
676 |
set_req(loc - 1, in(loc));
|
|
677 |
}
|
|
678 |
}
|
|
679 |
set_req(loc, c);
|
|
680 |
}
|
|
681 |
|
|
682 |
uint SafePointNode::size_of() const { return sizeof(*this); }
|
|
683 |
uint SafePointNode::cmp( const Node &n ) const {
|
|
684 |
return (&n == this); // Always fail except on self
|
|
685 |
}
|
|
686 |
|
|
687 |
//-------------------------set_next_exception----------------------------------
|
|
688 |
void SafePointNode::set_next_exception(SafePointNode* n) {
|
|
689 |
assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
|
|
690 |
if (len() == req()) {
|
|
691 |
if (n != NULL) add_prec(n);
|
|
692 |
} else {
|
|
693 |
set_prec(req(), n);
|
|
694 |
}
|
|
695 |
}
|
|
696 |
|
|
697 |
|
|
698 |
//----------------------------next_exception-----------------------------------
|
|
699 |
SafePointNode* SafePointNode::next_exception() const {
|
|
700 |
if (len() == req()) {
|
|
701 |
return NULL;
|
|
702 |
} else {
|
|
703 |
Node* n = in(req());
|
|
704 |
assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
|
|
705 |
return (SafePointNode*) n;
|
|
706 |
}
|
|
707 |
}
|
|
708 |
|
|
709 |
|
|
710 |
//------------------------------Ideal------------------------------------------
|
|
711 |
// Skip over any collapsed Regions
|
|
712 |
Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
713 |
if (remove_dead_region(phase, can_reshape)) return this;
|
|
714 |
|
|
715 |
return NULL;
|
|
716 |
}
|
|
717 |
|
|
718 |
//------------------------------Identity---------------------------------------
|
|
719 |
// Remove obviously duplicate safepoints
|
|
720 |
Node *SafePointNode::Identity( PhaseTransform *phase ) {
|
|
721 |
|
|
722 |
// If you have back to back safepoints, remove one
|
|
723 |
if( in(TypeFunc::Control)->is_SafePoint() )
|
|
724 |
return in(TypeFunc::Control);
|
|
725 |
|
|
726 |
if( in(0)->is_Proj() ) {
|
|
727 |
Node *n0 = in(0)->in(0);
|
|
728 |
// Check if he is a call projection (except Leaf Call)
|
|
729 |
if( n0->is_Catch() ) {
|
|
730 |
n0 = n0->in(0)->in(0);
|
|
731 |
assert( n0->is_Call(), "expect a call here" );
|
|
732 |
}
|
|
733 |
if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
|
|
734 |
// Useless Safepoint, so remove it
|
|
735 |
return in(TypeFunc::Control);
|
|
736 |
}
|
|
737 |
}
|
|
738 |
|
|
739 |
return this;
|
|
740 |
}
|
|
741 |
|
|
742 |
//------------------------------Value------------------------------------------
|
|
743 |
const Type *SafePointNode::Value( PhaseTransform *phase ) const {
|
|
744 |
if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
|
|
745 |
if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
|
|
746 |
return Type::CONTROL;
|
|
747 |
}
|
|
748 |
|
|
749 |
#ifndef PRODUCT
|
|
750 |
void SafePointNode::dump_spec(outputStream *st) const {
|
|
751 |
st->print(" SafePoint ");
|
|
752 |
}
|
|
753 |
#endif
|
|
754 |
|
|
755 |
const RegMask &SafePointNode::in_RegMask(uint idx) const {
|
|
756 |
if( idx < TypeFunc::Parms ) return RegMask::Empty;
|
|
757 |
// Values outside the domain represent debug info
|
|
758 |
return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
|
|
759 |
}
|
|
760 |
const RegMask &SafePointNode::out_RegMask() const {
|
|
761 |
return RegMask::Empty;
|
|
762 |
}
|
|
763 |
|
|
764 |
|
|
765 |
void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
|
|
766 |
assert((int)grow_by > 0, "sanity");
|
|
767 |
int monoff = jvms->monoff();
|
|
768 |
int endoff = jvms->endoff();
|
|
769 |
assert(endoff == (int)req(), "no other states or debug info after me");
|
|
770 |
Node* top = Compile::current()->top();
|
|
771 |
for (uint i = 0; i < grow_by; i++) {
|
|
772 |
ins_req(monoff, top);
|
|
773 |
}
|
|
774 |
jvms->set_monoff(monoff + grow_by);
|
|
775 |
jvms->set_endoff(endoff + grow_by);
|
|
776 |
}
|
|
777 |
|
|
778 |
void SafePointNode::push_monitor(const FastLockNode *lock) {
|
|
779 |
// Add a LockNode, which points to both the original BoxLockNode (the
|
|
780 |
// stack space for the monitor) and the Object being locked.
|
|
781 |
const int MonitorEdges = 2;
|
|
782 |
assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
|
|
783 |
assert(req() == jvms()->endoff(), "correct sizing");
|
|
784 |
if (GenerateSynchronizationCode) {
|
|
785 |
add_req(lock->box_node());
|
|
786 |
add_req(lock->obj_node());
|
|
787 |
} else {
|
|
788 |
add_req(NULL);
|
|
789 |
add_req(NULL);
|
|
790 |
}
|
|
791 |
jvms()->set_endoff(req());
|
|
792 |
}
|
|
793 |
|
|
794 |
void SafePointNode::pop_monitor() {
|
|
795 |
// Delete last monitor from debug info
|
|
796 |
debug_only(int num_before_pop = jvms()->nof_monitors());
|
|
797 |
const int MonitorEdges = (1<<JVMState::logMonitorEdges);
|
|
798 |
int endoff = jvms()->endoff();
|
|
799 |
int new_endoff = endoff - MonitorEdges;
|
|
800 |
jvms()->set_endoff(new_endoff);
|
|
801 |
while (endoff > new_endoff) del_req(--endoff);
|
|
802 |
assert(jvms()->nof_monitors() == num_before_pop-1, "");
|
|
803 |
}
|
|
804 |
|
|
805 |
Node *SafePointNode::peek_monitor_box() const {
|
|
806 |
int mon = jvms()->nof_monitors() - 1;
|
|
807 |
assert(mon >= 0, "most have a monitor");
|
|
808 |
return monitor_box(jvms(), mon);
|
|
809 |
}
|
|
810 |
|
|
811 |
Node *SafePointNode::peek_monitor_obj() const {
|
|
812 |
int mon = jvms()->nof_monitors() - 1;
|
|
813 |
assert(mon >= 0, "most have a monitor");
|
|
814 |
return monitor_obj(jvms(), mon);
|
|
815 |
}
|
|
816 |
|
|
817 |
// Do we Match on this edge index or not? Match no edges
|
|
818 |
uint SafePointNode::match_edge(uint idx) const {
|
|
819 |
if( !needs_polling_address_input() )
|
|
820 |
return 0;
|
|
821 |
|
|
822 |
return (TypeFunc::Parms == idx);
|
|
823 |
}
|
|
824 |
|
|
825 |
//=============================================================================
|
|
826 |
uint AllocateNode::size_of() const { return sizeof(*this); }
|
|
827 |
|
|
828 |
AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
|
|
829 |
Node *ctrl, Node *mem, Node *abio,
|
|
830 |
Node *size, Node *klass_node, Node *initial_test)
|
|
831 |
: CallNode(atype, NULL, TypeRawPtr::BOTTOM)
|
|
832 |
{
|
|
833 |
init_class_id(Class_Allocate);
|
|
834 |
init_flags(Flag_is_macro);
|
|
835 |
Node *topnode = C->top();
|
|
836 |
|
|
837 |
init_req( TypeFunc::Control , ctrl );
|
|
838 |
init_req( TypeFunc::I_O , abio );
|
|
839 |
init_req( TypeFunc::Memory , mem );
|
|
840 |
init_req( TypeFunc::ReturnAdr, topnode );
|
|
841 |
init_req( TypeFunc::FramePtr , topnode );
|
|
842 |
init_req( AllocSize , size);
|
|
843 |
init_req( KlassNode , klass_node);
|
|
844 |
init_req( InitialTest , initial_test);
|
|
845 |
init_req( ALength , topnode);
|
|
846 |
C->add_macro_node(this);
|
|
847 |
}
|
|
848 |
|
|
849 |
//=============================================================================
|
|
850 |
uint AllocateArrayNode::size_of() const { return sizeof(*this); }
|
|
851 |
|
|
852 |
//=============================================================================
|
|
853 |
uint LockNode::size_of() const { return sizeof(*this); }
|
|
854 |
|
|
855 |
// Redundant lock elimination
|
|
856 |
//
|
|
857 |
// There are various patterns of locking where we release and
|
|
858 |
// immediately reacquire a lock in a piece of code where no operations
|
|
859 |
// occur in between that would be observable. In those cases we can
|
|
860 |
// skip releasing and reacquiring the lock without violating any
|
|
861 |
// fairness requirements. Doing this around a loop could cause a lock
|
|
862 |
// to be held for a very long time so we concentrate on non-looping
|
|
863 |
// control flow. We also require that the operations are fully
|
|
864 |
// redundant meaning that we don't introduce new lock operations on
|
|
865 |
// some paths so to be able to eliminate it on others ala PRE. This
|
|
866 |
// would probably require some more extensive graph manipulation to
|
|
867 |
// guarantee that the memory edges were all handled correctly.
|
|
868 |
//
|
|
869 |
// Assuming p is a simple predicate which can't trap in any way and s
|
|
870 |
// is a synchronized method consider this code:
|
|
871 |
//
|
|
872 |
// s();
|
|
873 |
// if (p)
|
|
874 |
// s();
|
|
875 |
// else
|
|
876 |
// s();
|
|
877 |
// s();
|
|
878 |
//
|
|
879 |
// 1. The unlocks of the first call to s can be eliminated if the
|
|
880 |
// locks inside the then and else branches are eliminated.
|
|
881 |
//
|
|
882 |
// 2. The unlocks of the then and else branches can be eliminated if
|
|
883 |
// the lock of the final call to s is eliminated.
|
|
884 |
//
|
|
885 |
// Either of these cases subsumes the simple case of sequential control flow
|
|
886 |
//
|
|
887 |
// Addtionally we can eliminate versions without the else case:
|
|
888 |
//
|
|
889 |
// s();
|
|
890 |
// if (p)
|
|
891 |
// s();
|
|
892 |
// s();
|
|
893 |
//
|
|
894 |
// 3. In this case we eliminate the unlock of the first s, the lock
|
|
895 |
// and unlock in the then case and the lock in the final s.
|
|
896 |
//
|
|
897 |
// Note also that in all these cases the then/else pieces don't have
|
|
898 |
// to be trivial as long as they begin and end with synchronization
|
|
899 |
// operations.
|
|
900 |
//
|
|
901 |
// s();
|
|
902 |
// if (p)
|
|
903 |
// s();
|
|
904 |
// f();
|
|
905 |
// s();
|
|
906 |
// s();
|
|
907 |
//
|
|
908 |
// The code will work properly for this case, leaving in the unlock
|
|
909 |
// before the call to f and the relock after it.
|
|
910 |
//
|
|
911 |
// A potentially interesting case which isn't handled here is when the
|
|
912 |
// locking is partially redundant.
|
|
913 |
//
|
|
914 |
// s();
|
|
915 |
// if (p)
|
|
916 |
// s();
|
|
917 |
//
|
|
918 |
// This could be eliminated putting unlocking on the else case and
|
|
919 |
// eliminating the first unlock and the lock in the then side.
|
|
920 |
// Alternatively the unlock could be moved out of the then side so it
|
|
921 |
// was after the merge and the first unlock and second lock
|
|
922 |
// eliminated. This might require less manipulation of the memory
|
|
923 |
// state to get correct.
|
|
924 |
//
|
|
925 |
// Additionally we might allow work between a unlock and lock before
|
|
926 |
// giving up eliminating the locks. The current code disallows any
|
|
927 |
// conditional control flow between these operations. A formulation
|
|
928 |
// similar to partial redundancy elimination computing the
|
|
929 |
// availability of unlocking and the anticipatability of locking at a
|
|
930 |
// program point would allow detection of fully redundant locking with
|
|
931 |
// some amount of work in between. I'm not sure how often I really
|
|
932 |
// think that would occur though. Most of the cases I've seen
|
|
933 |
// indicate it's likely non-trivial work would occur in between.
|
|
934 |
// There may be other more complicated constructs where we could
|
|
935 |
// eliminate locking but I haven't seen any others appear as hot or
|
|
936 |
// interesting.
|
|
937 |
//
|
|
938 |
// Locking and unlocking have a canonical form in ideal that looks
|
|
939 |
// roughly like this:
|
|
940 |
//
|
|
941 |
// <obj>
|
|
942 |
// | \\------+
|
|
943 |
// | \ \
|
|
944 |
// | BoxLock \
|
|
945 |
// | | | \
|
|
946 |
// | | \ \
|
|
947 |
// | | FastLock
|
|
948 |
// | | /
|
|
949 |
// | | /
|
|
950 |
// | | |
|
|
951 |
//
|
|
952 |
// Lock
|
|
953 |
// |
|
|
954 |
// Proj #0
|
|
955 |
// |
|
|
956 |
// MembarAcquire
|
|
957 |
// |
|
|
958 |
// Proj #0
|
|
959 |
//
|
|
960 |
// MembarRelease
|
|
961 |
// |
|
|
962 |
// Proj #0
|
|
963 |
// |
|
|
964 |
// Unlock
|
|
965 |
// |
|
|
966 |
// Proj #0
|
|
967 |
//
|
|
968 |
//
|
|
969 |
// This code proceeds by processing Lock nodes during PhaseIterGVN
|
|
970 |
// and searching back through its control for the proper code
|
|
971 |
// patterns. Once it finds a set of lock and unlock operations to
|
|
972 |
// eliminate they are marked as eliminatable which causes the
|
|
973 |
// expansion of the Lock and Unlock macro nodes to make the operation a NOP
|
|
974 |
//
|
|
975 |
//=============================================================================
|
|
976 |
|
|
977 |
//
|
|
978 |
// Utility function to skip over uninteresting control nodes. Nodes skipped are:
|
|
979 |
// - copy regions. (These may not have been optimized away yet.)
|
|
980 |
// - eliminated locking nodes
|
|
981 |
//
|
|
982 |
static Node *next_control(Node *ctrl) {
|
|
983 |
if (ctrl == NULL)
|
|
984 |
return NULL;
|
|
985 |
while (1) {
|
|
986 |
if (ctrl->is_Region()) {
|
|
987 |
RegionNode *r = ctrl->as_Region();
|
|
988 |
Node *n = r->is_copy();
|
|
989 |
if (n == NULL)
|
|
990 |
break; // hit a region, return it
|
|
991 |
else
|
|
992 |
ctrl = n;
|
|
993 |
} else if (ctrl->is_Proj()) {
|
|
994 |
Node *in0 = ctrl->in(0);
|
|
995 |
if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
|
|
996 |
ctrl = in0->in(0);
|
|
997 |
} else {
|
|
998 |
break;
|
|
999 |
}
|
|
1000 |
} else {
|
|
1001 |
break; // found an interesting control
|
|
1002 |
}
|
|
1003 |
}
|
|
1004 |
return ctrl;
|
|
1005 |
}
|
|
1006 |
//
|
|
1007 |
// Given a control, see if it's the control projection of an Unlock which
|
|
1008 |
// operating on the same object as lock.
|
|
1009 |
//
|
|
1010 |
bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
|
|
1011 |
GrowableArray<AbstractLockNode*> &lock_ops) {
|
|
1012 |
ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
|
|
1013 |
if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
|
|
1014 |
Node *n = ctrl_proj->in(0);
|
|
1015 |
if (n != NULL && n->is_Unlock()) {
|
|
1016 |
UnlockNode *unlock = n->as_Unlock();
|
|
1017 |
if ((lock->obj_node() == unlock->obj_node()) &&
|
|
1018 |
(lock->box_node() == unlock->box_node()) && !unlock->is_eliminated()) {
|
|
1019 |
lock_ops.append(unlock);
|
|
1020 |
return true;
|
|
1021 |
}
|
|
1022 |
}
|
|
1023 |
}
|
|
1024 |
return false;
|
|
1025 |
}
|
|
1026 |
|
|
1027 |
//
|
|
1028 |
// Find the lock matching an unlock. Returns null if a safepoint
|
|
1029 |
// or complicated control is encountered first.
|
|
1030 |
LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
|
|
1031 |
LockNode *lock_result = NULL;
|
|
1032 |
// find the matching lock, or an intervening safepoint
|
|
1033 |
Node *ctrl = next_control(unlock->in(0));
|
|
1034 |
while (1) {
|
|
1035 |
assert(ctrl != NULL, "invalid control graph");
|
|
1036 |
assert(!ctrl->is_Start(), "missing lock for unlock");
|
|
1037 |
if (ctrl->is_top()) break; // dead control path
|
|
1038 |
if (ctrl->is_Proj()) ctrl = ctrl->in(0);
|
|
1039 |
if (ctrl->is_SafePoint()) {
|
|
1040 |
break; // found a safepoint (may be the lock we are searching for)
|
|
1041 |
} else if (ctrl->is_Region()) {
|
|
1042 |
// Check for a simple diamond pattern. Punt on anything more complicated
|
|
1043 |
if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
|
|
1044 |
Node *in1 = next_control(ctrl->in(1));
|
|
1045 |
Node *in2 = next_control(ctrl->in(2));
|
|
1046 |
if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
|
|
1047 |
(in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
|
|
1048 |
ctrl = next_control(in1->in(0)->in(0));
|
|
1049 |
} else {
|
|
1050 |
break;
|
|
1051 |
}
|
|
1052 |
} else {
|
|
1053 |
break;
|
|
1054 |
}
|
|
1055 |
} else {
|
|
1056 |
ctrl = next_control(ctrl->in(0)); // keep searching
|
|
1057 |
}
|
|
1058 |
}
|
|
1059 |
if (ctrl->is_Lock()) {
|
|
1060 |
LockNode *lock = ctrl->as_Lock();
|
|
1061 |
if ((lock->obj_node() == unlock->obj_node()) &&
|
|
1062 |
(lock->box_node() == unlock->box_node())) {
|
|
1063 |
lock_result = lock;
|
|
1064 |
}
|
|
1065 |
}
|
|
1066 |
return lock_result;
|
|
1067 |
}
|
|
1068 |
|
|
1069 |
// This code corresponds to case 3 above.
|
|
1070 |
|
|
1071 |
bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
|
|
1072 |
GrowableArray<AbstractLockNode*> &lock_ops) {
|
|
1073 |
Node* if_node = node->in(0);
|
|
1074 |
bool if_true = node->is_IfTrue();
|
|
1075 |
|
|
1076 |
if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
|
|
1077 |
Node *lock_ctrl = next_control(if_node->in(0));
|
|
1078 |
if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
|
|
1079 |
Node* lock1_node = NULL;
|
|
1080 |
ProjNode* proj = if_node->as_If()->proj_out(!if_true);
|
|
1081 |
if (if_true) {
|
|
1082 |
if (proj->is_IfFalse() && proj->outcnt() == 1) {
|
|
1083 |
lock1_node = proj->unique_out();
|
|
1084 |
}
|
|
1085 |
} else {
|
|
1086 |
if (proj->is_IfTrue() && proj->outcnt() == 1) {
|
|
1087 |
lock1_node = proj->unique_out();
|
|
1088 |
}
|
|
1089 |
}
|
|
1090 |
if (lock1_node != NULL && lock1_node->is_Lock()) {
|
|
1091 |
LockNode *lock1 = lock1_node->as_Lock();
|
|
1092 |
if ((lock->obj_node() == lock1->obj_node()) &&
|
|
1093 |
(lock->box_node() == lock1->box_node()) && !lock1->is_eliminated()) {
|
|
1094 |
lock_ops.append(lock1);
|
|
1095 |
return true;
|
|
1096 |
}
|
|
1097 |
}
|
|
1098 |
}
|
|
1099 |
}
|
|
1100 |
|
|
1101 |
lock_ops.trunc_to(0);
|
|
1102 |
return false;
|
|
1103 |
}
|
|
1104 |
|
|
1105 |
bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
|
|
1106 |
GrowableArray<AbstractLockNode*> &lock_ops) {
|
|
1107 |
// check each control merging at this point for a matching unlock.
|
|
1108 |
// in(0) should be self edge so skip it.
|
|
1109 |
for (int i = 1; i < (int)region->req(); i++) {
|
|
1110 |
Node *in_node = next_control(region->in(i));
|
|
1111 |
if (in_node != NULL) {
|
|
1112 |
if (find_matching_unlock(in_node, lock, lock_ops)) {
|
|
1113 |
// found a match so keep on checking.
|
|
1114 |
continue;
|
|
1115 |
} else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
|
|
1116 |
continue;
|
|
1117 |
}
|
|
1118 |
|
|
1119 |
// If we fall through to here then it was some kind of node we
|
|
1120 |
// don't understand or there wasn't a matching unlock, so give
|
|
1121 |
// up trying to merge locks.
|
|
1122 |
lock_ops.trunc_to(0);
|
|
1123 |
return false;
|
|
1124 |
}
|
|
1125 |
}
|
|
1126 |
return true;
|
|
1127 |
|
|
1128 |
}
|
|
1129 |
|
|
1130 |
#ifndef PRODUCT
|
|
1131 |
//
|
|
1132 |
// Create a counter which counts the number of times this lock is acquired
|
|
1133 |
//
|
|
1134 |
void AbstractLockNode::create_lock_counter(JVMState* state) {
|
|
1135 |
_counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
|
|
1136 |
}
|
|
1137 |
#endif
|
|
1138 |
|
|
1139 |
void AbstractLockNode::set_eliminated() {
|
|
1140 |
_eliminate = true;
|
|
1141 |
#ifndef PRODUCT
|
|
1142 |
if (_counter) {
|
|
1143 |
// Update the counter to indicate that this lock was eliminated.
|
|
1144 |
// The counter update code will stay around even though the
|
|
1145 |
// optimizer will eliminate the lock operation itself.
|
|
1146 |
_counter->set_tag(NamedCounter::EliminatedLockCounter);
|
|
1147 |
}
|
|
1148 |
#endif
|
|
1149 |
}
|
|
1150 |
|
|
1151 |
//=============================================================================
|
|
1152 |
Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
1153 |
|
|
1154 |
// perform any generic optimizations first
|
|
1155 |
Node *result = SafePointNode::Ideal(phase, can_reshape);
|
|
1156 |
|
|
1157 |
// Now see if we can optimize away this lock. We don't actually
|
|
1158 |
// remove the locking here, we simply set the _eliminate flag which
|
|
1159 |
// prevents macro expansion from expanding the lock. Since we don't
|
|
1160 |
// modify the graph, the value returned from this function is the
|
|
1161 |
// one computed above.
|
|
1162 |
if (EliminateLocks && !is_eliminated()) {
|
|
1163 |
//
|
|
1164 |
// Try lock coarsening
|
|
1165 |
//
|
|
1166 |
PhaseIterGVN* iter = phase->is_IterGVN();
|
|
1167 |
if (iter != NULL) {
|
|
1168 |
|
|
1169 |
GrowableArray<AbstractLockNode*> lock_ops;
|
|
1170 |
|
|
1171 |
Node *ctrl = next_control(in(0));
|
|
1172 |
|
|
1173 |
// now search back for a matching Unlock
|
|
1174 |
if (find_matching_unlock(ctrl, this, lock_ops)) {
|
|
1175 |
// found an unlock directly preceding this lock. This is the
|
|
1176 |
// case of single unlock directly control dependent on a
|
|
1177 |
// single lock which is the trivial version of case 1 or 2.
|
|
1178 |
} else if (ctrl->is_Region() ) {
|
|
1179 |
if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
|
|
1180 |
// found lock preceded by multiple unlocks along all paths
|
|
1181 |
// joining at this point which is case 3 in description above.
|
|
1182 |
}
|
|
1183 |
} else {
|
|
1184 |
// see if this lock comes from either half of an if and the
|
|
1185 |
// predecessors merges unlocks and the other half of the if
|
|
1186 |
// performs a lock.
|
|
1187 |
if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
|
|
1188 |
// found unlock splitting to an if with locks on both branches.
|
|
1189 |
}
|
|
1190 |
}
|
|
1191 |
|
|
1192 |
if (lock_ops.length() > 0) {
|
|
1193 |
// add ourselves to the list of locks to be eliminated.
|
|
1194 |
lock_ops.append(this);
|
|
1195 |
|
|
1196 |
#ifndef PRODUCT
|
|
1197 |
if (PrintEliminateLocks) {
|
|
1198 |
int locks = 0;
|
|
1199 |
int unlocks = 0;
|
|
1200 |
for (int i = 0; i < lock_ops.length(); i++) {
|
|
1201 |
AbstractLockNode* lock = lock_ops.at(i);
|
|
1202 |
if (lock->Opcode() == Op_Lock) locks++;
|
|
1203 |
else unlocks++;
|
|
1204 |
if (Verbose) {
|
|
1205 |
lock->dump(1);
|
|
1206 |
}
|
|
1207 |
}
|
|
1208 |
tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
|
|
1209 |
}
|
|
1210 |
#endif
|
|
1211 |
|
|
1212 |
// for each of the identified locks, mark them
|
|
1213 |
// as eliminatable
|
|
1214 |
for (int i = 0; i < lock_ops.length(); i++) {
|
|
1215 |
AbstractLockNode* lock = lock_ops.at(i);
|
|
1216 |
|
|
1217 |
// Mark it eliminated to update any counters
|
|
1218 |
lock->set_eliminated();
|
|
1219 |
}
|
|
1220 |
} else if (result != NULL && ctrl->is_Region() &&
|
|
1221 |
iter->_worklist.member(ctrl)) {
|
|
1222 |
// We weren't able to find any opportunities but the region this
|
|
1223 |
// lock is control dependent on hasn't been processed yet so put
|
|
1224 |
// this lock back on the worklist so we can check again once any
|
|
1225 |
// region simplification has occurred.
|
|
1226 |
iter->_worklist.push(this);
|
|
1227 |
}
|
|
1228 |
}
|
|
1229 |
}
|
|
1230 |
|
|
1231 |
return result;
|
|
1232 |
}
|
|
1233 |
|
|
1234 |
//=============================================================================
|
|
1235 |
uint UnlockNode::size_of() const { return sizeof(*this); }
|
|
1236 |
|
|
1237 |
//=============================================================================
|
|
1238 |
Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
1239 |
|
|
1240 |
// perform any generic optimizations first
|
|
1241 |
Node * result = SafePointNode::Ideal(phase, can_reshape);
|
|
1242 |
|
|
1243 |
// Now see if we can optimize away this unlock. We don't actually
|
|
1244 |
// remove the unlocking here, we simply set the _eliminate flag which
|
|
1245 |
// prevents macro expansion from expanding the unlock. Since we don't
|
|
1246 |
// modify the graph, the value returned from this function is the
|
|
1247 |
// one computed above.
|
|
1248 |
if (EliminateLocks && !is_eliminated()) {
|
|
1249 |
//
|
|
1250 |
// If we are unlocking an unescaped object, the lock/unlock is unnecessary
|
|
1251 |
// We can eliminate them if there are no safepoints in the locked region.
|
|
1252 |
//
|
|
1253 |
ConnectionGraph *cgr = Compile::current()->congraph();
|
|
1254 |
if (cgr != NULL && cgr->escape_state(obj_node(), phase) == PointsToNode::NoEscape) {
|
|
1255 |
GrowableArray<AbstractLockNode*> lock_ops;
|
|
1256 |
LockNode *lock = find_matching_lock(this);
|
|
1257 |
if (lock != NULL) {
|
|
1258 |
lock_ops.append(this);
|
|
1259 |
lock_ops.append(lock);
|
|
1260 |
// find other unlocks which pair with the lock we found and add them
|
|
1261 |
// to the list
|
|
1262 |
Node * box = box_node();
|
|
1263 |
|
|
1264 |
for (DUIterator_Fast imax, i = box->fast_outs(imax); i < imax; i++) {
|
|
1265 |
Node *use = box->fast_out(i);
|
|
1266 |
if (use->is_Unlock() && use != this) {
|
|
1267 |
UnlockNode *unlock1 = use->as_Unlock();
|
|
1268 |
if (!unlock1->is_eliminated()) {
|
|
1269 |
LockNode *lock1 = find_matching_lock(unlock1);
|
|
1270 |
if (lock == lock1)
|
|
1271 |
lock_ops.append(unlock1);
|
|
1272 |
else if (lock1 == NULL) {
|
|
1273 |
// we can't find a matching lock, we must assume the worst
|
|
1274 |
lock_ops.trunc_to(0);
|
|
1275 |
break;
|
|
1276 |
}
|
|
1277 |
}
|
|
1278 |
}
|
|
1279 |
}
|
|
1280 |
if (lock_ops.length() > 0) {
|
|
1281 |
|
|
1282 |
#ifndef PRODUCT
|
|
1283 |
if (PrintEliminateLocks) {
|
|
1284 |
int locks = 0;
|
|
1285 |
int unlocks = 0;
|
|
1286 |
for (int i = 0; i < lock_ops.length(); i++) {
|
|
1287 |
AbstractLockNode* lock = lock_ops.at(i);
|
|
1288 |
if (lock->Opcode() == Op_Lock) locks++;
|
|
1289 |
else unlocks++;
|
|
1290 |
if (Verbose) {
|
|
1291 |
lock->dump(1);
|
|
1292 |
}
|
|
1293 |
}
|
|
1294 |
tty->print_cr("***Eliminated %d unescaped unlocks and %d unescaped locks", unlocks, locks);
|
|
1295 |
}
|
|
1296 |
#endif
|
|
1297 |
|
|
1298 |
// for each of the identified locks, mark them
|
|
1299 |
// as eliminatable
|
|
1300 |
for (int i = 0; i < lock_ops.length(); i++) {
|
|
1301 |
AbstractLockNode* lock = lock_ops.at(i);
|
|
1302 |
|
|
1303 |
// Mark it eliminated to update any counters
|
|
1304 |
lock->set_eliminated();
|
|
1305 |
}
|
|
1306 |
}
|
|
1307 |
}
|
|
1308 |
}
|
|
1309 |
}
|
|
1310 |
return result;
|
|
1311 |
}
|