hotspot/src/share/vm/opto/callnode.cpp
changeset 1 489c9b5090e2
child 212 cd4963e67949
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/opto/callnode.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1311 @@
+/*
+ * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// Portions of code courtesy of Clifford Click
+
+// Optimization - Graph Style
+
+#include "incls/_precompiled.incl"
+#include "incls/_callnode.cpp.incl"
+
+//=============================================================================
+uint StartNode::size_of() const { return sizeof(*this); }
+uint StartNode::cmp( const Node &n ) const
+{ return _domain == ((StartNode&)n)._domain; }
+const Type *StartNode::bottom_type() const { return _domain; }
+const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
+#ifndef PRODUCT
+void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
+#endif
+
+//------------------------------Ideal------------------------------------------
+Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
+  return remove_dead_region(phase, can_reshape) ? this : NULL;
+}
+
+//------------------------------calling_convention-----------------------------
+void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
+  Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
+}
+
+//------------------------------Registers--------------------------------------
+const RegMask &StartNode::in_RegMask(uint) const {
+  return RegMask::Empty;
+}
+
+//------------------------------match------------------------------------------
+// Construct projections for incoming parameters, and their RegMask info
+Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
+  switch (proj->_con) {
+  case TypeFunc::Control:
+  case TypeFunc::I_O:
+  case TypeFunc::Memory:
+    return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
+  case TypeFunc::FramePtr:
+    return new (match->C, 1) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
+  case TypeFunc::ReturnAdr:
+    return new (match->C, 1) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
+  case TypeFunc::Parms:
+  default: {
+      uint parm_num = proj->_con - TypeFunc::Parms;
+      const Type *t = _domain->field_at(proj->_con);
+      if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
+        return new (match->C, 1) ConNode(Type::TOP);
+      uint ideal_reg = Matcher::base2reg[t->base()];
+      RegMask &rm = match->_calling_convention_mask[parm_num];
+      return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
+    }
+  }
+  return NULL;
+}
+
+//------------------------------StartOSRNode----------------------------------
+// The method start node for an on stack replacement adapter
+
+//------------------------------osr_domain-----------------------------
+const TypeTuple *StartOSRNode::osr_domain() {
+  const Type **fields = TypeTuple::fields(2);
+  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
+
+  return TypeTuple::make(TypeFunc::Parms+1, fields);
+}
+
+//=============================================================================
+const char * const ParmNode::names[TypeFunc::Parms+1] = {
+  "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
+};
+
+#ifndef PRODUCT
+void ParmNode::dump_spec(outputStream *st) const {
+  if( _con < TypeFunc::Parms ) {
+    st->print(names[_con]);
+  } else {
+    st->print("Parm%d: ",_con-TypeFunc::Parms);
+    // Verbose and WizardMode dump bottom_type for all nodes
+    if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
+  }
+}
+#endif
+
+uint ParmNode::ideal_reg() const {
+  switch( _con ) {
+  case TypeFunc::Control  : // fall through
+  case TypeFunc::I_O      : // fall through
+  case TypeFunc::Memory   : return 0;
+  case TypeFunc::FramePtr : // fall through
+  case TypeFunc::ReturnAdr: return Op_RegP;
+  default                 : assert( _con > TypeFunc::Parms, "" );
+    // fall through
+  case TypeFunc::Parms    : {
+    // Type of argument being passed
+    const Type *t = in(0)->as_Start()->_domain->field_at(_con);
+    return Matcher::base2reg[t->base()];
+  }
+  }
+  ShouldNotReachHere();
+  return 0;
+}
+
+//=============================================================================
+ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
+  init_req(TypeFunc::Control,cntrl);
+  init_req(TypeFunc::I_O,i_o);
+  init_req(TypeFunc::Memory,memory);
+  init_req(TypeFunc::FramePtr,frameptr);
+  init_req(TypeFunc::ReturnAdr,retadr);
+}
+
+Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
+  return remove_dead_region(phase, can_reshape) ? this : NULL;
+}
+
+const Type *ReturnNode::Value( PhaseTransform *phase ) const {
+  return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
+    ? Type::TOP
+    : Type::BOTTOM;
+}
+
+// Do we Match on this edge index or not?  No edges on return nodes
+uint ReturnNode::match_edge(uint idx) const {
+  return 0;
+}
+
+
+#ifndef PRODUCT
+void ReturnNode::dump_req() const {
+  // Dump the required inputs, enclosed in '(' and ')'
+  uint i;                       // Exit value of loop
+  for( i=0; i<req(); i++ ) {    // For all required inputs
+    if( i == TypeFunc::Parms ) tty->print("returns");
+    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
+    else tty->print("_ ");
+  }
+}
+#endif
+
+//=============================================================================
+RethrowNode::RethrowNode(
+  Node* cntrl,
+  Node* i_o,
+  Node* memory,
+  Node* frameptr,
+  Node* ret_adr,
+  Node* exception
+) : Node(TypeFunc::Parms + 1) {
+  init_req(TypeFunc::Control  , cntrl    );
+  init_req(TypeFunc::I_O      , i_o      );
+  init_req(TypeFunc::Memory   , memory   );
+  init_req(TypeFunc::FramePtr , frameptr );
+  init_req(TypeFunc::ReturnAdr, ret_adr);
+  init_req(TypeFunc::Parms    , exception);
+}
+
+Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
+  return remove_dead_region(phase, can_reshape) ? this : NULL;
+}
+
+const Type *RethrowNode::Value( PhaseTransform *phase ) const {
+  return (phase->type(in(TypeFunc::Control)) == Type::TOP)
+    ? Type::TOP
+    : Type::BOTTOM;
+}
+
+uint RethrowNode::match_edge(uint idx) const {
+  return 0;
+}
+
+#ifndef PRODUCT
+void RethrowNode::dump_req() const {
+  // Dump the required inputs, enclosed in '(' and ')'
+  uint i;                       // Exit value of loop
+  for( i=0; i<req(); i++ ) {    // For all required inputs
+    if( i == TypeFunc::Parms ) tty->print("exception");
+    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
+    else tty->print("_ ");
+  }
+}
+#endif
+
+//=============================================================================
+// Do we Match on this edge index or not?  Match only target address & method
+uint TailCallNode::match_edge(uint idx) const {
+  return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
+}
+
+//=============================================================================
+// Do we Match on this edge index or not?  Match only target address & oop
+uint TailJumpNode::match_edge(uint idx) const {
+  return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
+}
+
+//=============================================================================
+JVMState::JVMState(ciMethod* method, JVMState* caller) {
+  assert(method != NULL, "must be valid call site");
+  _method = method;
+  debug_only(_bci = -99);  // random garbage value
+  debug_only(_map = (SafePointNode*)-1);
+  _caller = caller;
+  _depth  = 1 + (caller == NULL ? 0 : caller->depth());
+  _locoff = TypeFunc::Parms;
+  _stkoff = _locoff + _method->max_locals();
+  _monoff = _stkoff + _method->max_stack();
+  _endoff = _monoff;
+  _sp = 0;
+}
+JVMState::JVMState(int stack_size) {
+  _method = NULL;
+  _bci = InvocationEntryBci;
+  debug_only(_map = (SafePointNode*)-1);
+  _caller = NULL;
+  _depth  = 1;
+  _locoff = TypeFunc::Parms;
+  _stkoff = _locoff;
+  _monoff = _stkoff + stack_size;
+  _endoff = _monoff;
+  _sp = 0;
+}
+
+//--------------------------------of_depth-------------------------------------
+JVMState* JVMState::of_depth(int d) const {
+  const JVMState* jvmp = this;
+  assert(0 < d && (uint)d <= depth(), "oob");
+  for (int skip = depth() - d; skip > 0; skip--) {
+    jvmp = jvmp->caller();
+  }
+  assert(jvmp->depth() == (uint)d, "found the right one");
+  return (JVMState*)jvmp;
+}
+
+//-----------------------------same_calls_as-----------------------------------
+bool JVMState::same_calls_as(const JVMState* that) const {
+  if (this == that)                    return true;
+  if (this->depth() != that->depth())  return false;
+  const JVMState* p = this;
+  const JVMState* q = that;
+  for (;;) {
+    if (p->_method != q->_method)    return false;
+    if (p->_method == NULL)          return true;   // bci is irrelevant
+    if (p->_bci    != q->_bci)       return false;
+    p = p->caller();
+    q = q->caller();
+    if (p == q)                      return true;
+    assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
+  }
+}
+
+//------------------------------debug_start------------------------------------
+uint JVMState::debug_start()  const {
+  debug_only(JVMState* jvmroot = of_depth(1));
+  assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
+  return of_depth(1)->locoff();
+}
+
+//-------------------------------debug_end-------------------------------------
+uint JVMState::debug_end() const {
+  debug_only(JVMState* jvmroot = of_depth(1));
+  assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
+  return endoff();
+}
+
+//------------------------------debug_depth------------------------------------
+uint JVMState::debug_depth() const {
+  uint total = 0;
+  for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
+    total += jvmp->debug_size();
+  }
+  return total;
+}
+
+//------------------------------format_helper----------------------------------
+// Given an allocation (a Chaitin object) and a Node decide if the Node carries
+// any defined value or not.  If it does, print out the register or constant.
+#ifndef PRODUCT
+static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i ) {
+  if (n == NULL) { st->print(" NULL"); return; }
+  if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
+    char buf[50];
+    regalloc->dump_register(n,buf);
+    st->print(" %s%d]=%s",msg,i,buf);
+  } else {                      // No register, but might be constant
+    const Type *t = n->bottom_type();
+    switch (t->base()) {
+    case Type::Int:
+      st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
+      break;
+    case Type::AnyPtr:
+      assert( t == TypePtr::NULL_PTR, "" );
+      st->print(" %s%d]=#NULL",msg,i);
+      break;
+    case Type::AryPtr:
+    case Type::KlassPtr:
+    case Type::InstPtr:
+      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
+      break;
+    case Type::RawPtr:
+      st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
+      break;
+    case Type::DoubleCon:
+      st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
+      break;
+    case Type::FloatCon:
+      st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
+      break;
+    case Type::Long:
+      st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
+      break;
+    case Type::Half:
+    case Type::Top:
+      st->print(" %s%d]=_",msg,i);
+      break;
+    default: ShouldNotReachHere();
+    }
+  }
+}
+#endif
+
+//------------------------------format-----------------------------------------
+#ifndef PRODUCT
+void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
+  st->print("        #");
+  if( _method ) {
+    _method->print_short_name(st);
+    st->print(" @ bci:%d ",_bci);
+  } else {
+    st->print_cr(" runtime stub ");
+    return;
+  }
+  if (n->is_MachSafePoint()) {
+    MachSafePointNode *mcall = n->as_MachSafePoint();
+    uint i;
+    // Print locals
+    for( i = 0; i < (uint)loc_size(); i++ )
+      format_helper( regalloc, st, mcall->local(this, i), "L[", i );
+    // Print stack
+    for (i = 0; i < (uint)stk_size(); i++) {
+      if ((uint)(_stkoff + i) >= mcall->len())
+        st->print(" oob ");
+      else
+       format_helper( regalloc, st, mcall->stack(this, i), "STK[", i );
+    }
+    for (i = 0; (int)i < nof_monitors(); i++) {
+      Node *box = mcall->monitor_box(this, i);
+      Node *obj = mcall->monitor_obj(this, i);
+      if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
+        while( !box->is_BoxLock() )  box = box->in(1);
+        format_helper( regalloc, st, box, "MON-BOX[", i );
+      } else {
+        OptoReg::Name box_reg = BoxLockNode::stack_slot(box);
+        st->print(" MON-BOX%d=%s+%d",
+                   i,
+                   OptoReg::regname(OptoReg::c_frame_pointer),
+                   regalloc->reg2offset(box_reg));
+      }
+      format_helper( regalloc, st, obj, "MON-OBJ[", i );
+    }
+  }
+  st->print_cr("");
+  if (caller() != NULL)  caller()->format(regalloc, n, st);
+}
+#endif
+
+#ifndef PRODUCT
+void JVMState::dump_spec(outputStream *st) const {
+  if (_method != NULL) {
+    bool printed = false;
+    if (!Verbose) {
+      // The JVMS dumps make really, really long lines.
+      // Take out the most boring parts, which are the package prefixes.
+      char buf[500];
+      stringStream namest(buf, sizeof(buf));
+      _method->print_short_name(&namest);
+      if (namest.count() < sizeof(buf)) {
+        const char* name = namest.base();
+        if (name[0] == ' ')  ++name;
+        const char* endcn = strchr(name, ':');  // end of class name
+        if (endcn == NULL)  endcn = strchr(name, '(');
+        if (endcn == NULL)  endcn = name + strlen(name);
+        while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
+          --endcn;
+        st->print(" %s", endcn);
+        printed = true;
+      }
+    }
+    if (!printed)
+      _method->print_short_name(st);
+    st->print(" @ bci:%d",_bci);
+  } else {
+    st->print(" runtime stub");
+  }
+  if (caller() != NULL)  caller()->dump_spec(st);
+}
+#endif
+
+#ifndef PRODUCT
+void JVMState::dump_on(outputStream* st) const {
+  if (_map && !((uintptr_t)_map & 1)) {
+    if (_map->len() > _map->req()) {  // _map->has_exceptions()
+      Node* ex = _map->in(_map->req());  // _map->next_exception()
+      // skip the first one; it's already being printed
+      while (ex != NULL && ex->len() > ex->req()) {
+        ex = ex->in(ex->req());  // ex->next_exception()
+        ex->dump(1);
+      }
+    }
+    _map->dump(2);
+  }
+  st->print("JVMS depth=%d loc=%d stk=%d mon=%d end=%d mondepth=%d sp=%d bci=%d method=",
+             depth(), locoff(), stkoff(), monoff(), endoff(), monitor_depth(), sp(), bci());
+  if (_method == NULL) {
+    st->print_cr("(none)");
+  } else {
+    _method->print_name(st);
+    st->cr();
+    if (bci() >= 0 && bci() < _method->code_size()) {
+      st->print("    bc: ");
+      _method->print_codes_on(bci(), bci()+1, st);
+    }
+  }
+  if (caller() != NULL) {
+    caller()->dump_on(st);
+  }
+}
+
+// Extra way to dump a jvms from the debugger,
+// to avoid a bug with C++ member function calls.
+void dump_jvms(JVMState* jvms) {
+  jvms->dump();
+}
+#endif
+
+//--------------------------clone_shallow--------------------------------------
+JVMState* JVMState::clone_shallow(Compile* C) const {
+  JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
+  n->set_bci(_bci);
+  n->set_locoff(_locoff);
+  n->set_stkoff(_stkoff);
+  n->set_monoff(_monoff);
+  n->set_endoff(_endoff);
+  n->set_sp(_sp);
+  n->set_map(_map);
+  return n;
+}
+
+//---------------------------clone_deep----------------------------------------
+JVMState* JVMState::clone_deep(Compile* C) const {
+  JVMState* n = clone_shallow(C);
+  for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
+    p->_caller = p->_caller->clone_shallow(C);
+  }
+  assert(n->depth() == depth(), "sanity");
+  assert(n->debug_depth() == debug_depth(), "sanity");
+  return n;
+}
+
+//=============================================================================
+uint CallNode::cmp( const Node &n ) const
+{ return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
+#ifndef PRODUCT
+void CallNode::dump_req() const {
+  // Dump the required inputs, enclosed in '(' and ')'
+  uint i;                       // Exit value of loop
+  for( i=0; i<req(); i++ ) {    // For all required inputs
+    if( i == TypeFunc::Parms ) tty->print("(");
+    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
+    else tty->print("_ ");
+  }
+  tty->print(")");
+}
+
+void CallNode::dump_spec(outputStream *st) const {
+  st->print(" ");
+  tf()->dump_on(st);
+  if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
+  if (jvms() != NULL)  jvms()->dump_spec(st);
+}
+#endif
+
+const Type *CallNode::bottom_type() const { return tf()->range(); }
+const Type *CallNode::Value(PhaseTransform *phase) const {
+  if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
+  return tf()->range();
+}
+
+//------------------------------calling_convention-----------------------------
+void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
+  // Use the standard compiler calling convention
+  Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
+}
+
+
+//------------------------------match------------------------------------------
+// Construct projections for control, I/O, memory-fields, ..., and
+// return result(s) along with their RegMask info
+Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
+  switch (proj->_con) {
+  case TypeFunc::Control:
+  case TypeFunc::I_O:
+  case TypeFunc::Memory:
+    return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
+
+  case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
+    assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
+    // 2nd half of doubles and longs
+    return new (match->C, 1) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
+
+  case TypeFunc::Parms: {       // Normal returns
+    uint ideal_reg = Matcher::base2reg[tf()->range()->field_at(TypeFunc::Parms)->base()];
+    OptoRegPair regs = is_CallRuntime()
+      ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
+      : match->  return_value(ideal_reg,true); // Calls into compiled Java code
+    RegMask rm = RegMask(regs.first());
+    if( OptoReg::is_valid(regs.second()) )
+      rm.Insert( regs.second() );
+    return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
+  }
+
+  case TypeFunc::ReturnAdr:
+  case TypeFunc::FramePtr:
+  default:
+    ShouldNotReachHere();
+  }
+  return NULL;
+}
+
+// Do we Match on this edge index or not?  Match no edges
+uint CallNode::match_edge(uint idx) const {
+  return 0;
+}
+
+//=============================================================================
+uint CallJavaNode::size_of() const { return sizeof(*this); }
+uint CallJavaNode::cmp( const Node &n ) const {
+  CallJavaNode &call = (CallJavaNode&)n;
+  return CallNode::cmp(call) && _method == call._method;
+}
+#ifndef PRODUCT
+void CallJavaNode::dump_spec(outputStream *st) const {
+  if( _method ) _method->print_short_name(st);
+  CallNode::dump_spec(st);
+}
+#endif
+
+//=============================================================================
+uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
+uint CallStaticJavaNode::cmp( const Node &n ) const {
+  CallStaticJavaNode &call = (CallStaticJavaNode&)n;
+  return CallJavaNode::cmp(call);
+}
+
+//----------------------------uncommon_trap_request----------------------------
+// If this is an uncommon trap, return the request code, else zero.
+int CallStaticJavaNode::uncommon_trap_request() const {
+  if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
+    return extract_uncommon_trap_request(this);
+  }
+  return 0;
+}
+int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
+#ifndef PRODUCT
+  if (!(call->req() > TypeFunc::Parms &&
+        call->in(TypeFunc::Parms) != NULL &&
+        call->in(TypeFunc::Parms)->is_Con())) {
+    assert(_in_dump_cnt != 0, "OK if dumping");
+    tty->print("[bad uncommon trap]");
+    return 0;
+  }
+#endif
+  return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
+}
+
+#ifndef PRODUCT
+void CallStaticJavaNode::dump_spec(outputStream *st) const {
+  st->print("# Static ");
+  if (_name != NULL) {
+    st->print("%s", _name);
+    int trap_req = uncommon_trap_request();
+    if (trap_req != 0) {
+      char buf[100];
+      st->print("(%s)",
+                 Deoptimization::format_trap_request(buf, sizeof(buf),
+                                                     trap_req));
+    }
+    st->print(" ");
+  }
+  CallJavaNode::dump_spec(st);
+}
+#endif
+
+//=============================================================================
+uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
+uint CallDynamicJavaNode::cmp( const Node &n ) const {
+  CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
+  return CallJavaNode::cmp(call);
+}
+#ifndef PRODUCT
+void CallDynamicJavaNode::dump_spec(outputStream *st) const {
+  st->print("# Dynamic ");
+  CallJavaNode::dump_spec(st);
+}
+#endif
+
+//=============================================================================
+uint CallRuntimeNode::size_of() const { return sizeof(*this); }
+uint CallRuntimeNode::cmp( const Node &n ) const {
+  CallRuntimeNode &call = (CallRuntimeNode&)n;
+  return CallNode::cmp(call) && !strcmp(_name,call._name);
+}
+#ifndef PRODUCT
+void CallRuntimeNode::dump_spec(outputStream *st) const {
+  st->print("# ");
+  st->print(_name);
+  CallNode::dump_spec(st);
+}
+#endif
+
+//------------------------------calling_convention-----------------------------
+void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
+  Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
+}
+
+//=============================================================================
+//------------------------------calling_convention-----------------------------
+
+
+//=============================================================================
+#ifndef PRODUCT
+void CallLeafNode::dump_spec(outputStream *st) const {
+  st->print("# ");
+  st->print(_name);
+  CallNode::dump_spec(st);
+}
+#endif
+
+//=============================================================================
+
+void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
+  assert(verify_jvms(jvms), "jvms must match");
+  int loc = jvms->locoff() + idx;
+  if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
+    // If current local idx is top then local idx - 1 could
+    // be a long/double that needs to be killed since top could
+    // represent the 2nd half ofthe long/double.
+    uint ideal = in(loc -1)->ideal_reg();
+    if (ideal == Op_RegD || ideal == Op_RegL) {
+      // set other (low index) half to top
+      set_req(loc - 1, in(loc));
+    }
+  }
+  set_req(loc, c);
+}
+
+uint SafePointNode::size_of() const { return sizeof(*this); }
+uint SafePointNode::cmp( const Node &n ) const {
+  return (&n == this);          // Always fail except on self
+}
+
+//-------------------------set_next_exception----------------------------------
+void SafePointNode::set_next_exception(SafePointNode* n) {
+  assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
+  if (len() == req()) {
+    if (n != NULL)  add_prec(n);
+  } else {
+    set_prec(req(), n);
+  }
+}
+
+
+//----------------------------next_exception-----------------------------------
+SafePointNode* SafePointNode::next_exception() const {
+  if (len() == req()) {
+    return NULL;
+  } else {
+    Node* n = in(req());
+    assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
+    return (SafePointNode*) n;
+  }
+}
+
+
+//------------------------------Ideal------------------------------------------
+// Skip over any collapsed Regions
+Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  if (remove_dead_region(phase, can_reshape))  return this;
+
+  return NULL;
+}
+
+//------------------------------Identity---------------------------------------
+// Remove obviously duplicate safepoints
+Node *SafePointNode::Identity( PhaseTransform *phase ) {
+
+  // If you have back to back safepoints, remove one
+  if( in(TypeFunc::Control)->is_SafePoint() )
+    return in(TypeFunc::Control);
+
+  if( in(0)->is_Proj() ) {
+    Node *n0 = in(0)->in(0);
+    // Check if he is a call projection (except Leaf Call)
+    if( n0->is_Catch() ) {
+      n0 = n0->in(0)->in(0);
+      assert( n0->is_Call(), "expect a call here" );
+    }
+    if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
+      // Useless Safepoint, so remove it
+      return in(TypeFunc::Control);
+    }
+  }
+
+  return this;
+}
+
+//------------------------------Value------------------------------------------
+const Type *SafePointNode::Value( PhaseTransform *phase ) const {
+  if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
+  if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
+  return Type::CONTROL;
+}
+
+#ifndef PRODUCT
+void SafePointNode::dump_spec(outputStream *st) const {
+  st->print(" SafePoint ");
+}
+#endif
+
+const RegMask &SafePointNode::in_RegMask(uint idx) const {
+  if( idx < TypeFunc::Parms ) return RegMask::Empty;
+  // Values outside the domain represent debug info
+  return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
+}
+const RegMask &SafePointNode::out_RegMask() const {
+  return RegMask::Empty;
+}
+
+
+void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
+  assert((int)grow_by > 0, "sanity");
+  int monoff = jvms->monoff();
+  int endoff = jvms->endoff();
+  assert(endoff == (int)req(), "no other states or debug info after me");
+  Node* top = Compile::current()->top();
+  for (uint i = 0; i < grow_by; i++) {
+    ins_req(monoff, top);
+  }
+  jvms->set_monoff(monoff + grow_by);
+  jvms->set_endoff(endoff + grow_by);
+}
+
+void SafePointNode::push_monitor(const FastLockNode *lock) {
+  // Add a LockNode, which points to both the original BoxLockNode (the
+  // stack space for the monitor) and the Object being locked.
+  const int MonitorEdges = 2;
+  assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
+  assert(req() == jvms()->endoff(), "correct sizing");
+  if (GenerateSynchronizationCode) {
+    add_req(lock->box_node());
+    add_req(lock->obj_node());
+  } else {
+    add_req(NULL);
+    add_req(NULL);
+  }
+  jvms()->set_endoff(req());
+}
+
+void SafePointNode::pop_monitor() {
+  // Delete last monitor from debug info
+  debug_only(int num_before_pop = jvms()->nof_monitors());
+  const int MonitorEdges = (1<<JVMState::logMonitorEdges);
+  int endoff = jvms()->endoff();
+  int new_endoff = endoff - MonitorEdges;
+  jvms()->set_endoff(new_endoff);
+  while (endoff > new_endoff)  del_req(--endoff);
+  assert(jvms()->nof_monitors() == num_before_pop-1, "");
+}
+
+Node *SafePointNode::peek_monitor_box() const {
+  int mon = jvms()->nof_monitors() - 1;
+  assert(mon >= 0, "most have a monitor");
+  return monitor_box(jvms(), mon);
+}
+
+Node *SafePointNode::peek_monitor_obj() const {
+  int mon = jvms()->nof_monitors() - 1;
+  assert(mon >= 0, "most have a monitor");
+  return monitor_obj(jvms(), mon);
+}
+
+// Do we Match on this edge index or not?  Match no edges
+uint SafePointNode::match_edge(uint idx) const {
+  if( !needs_polling_address_input() )
+    return 0;
+
+  return (TypeFunc::Parms == idx);
+}
+
+//=============================================================================
+uint AllocateNode::size_of() const { return sizeof(*this); }
+
+AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
+                           Node *ctrl, Node *mem, Node *abio,
+                           Node *size, Node *klass_node, Node *initial_test)
+  : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
+{
+  init_class_id(Class_Allocate);
+  init_flags(Flag_is_macro);
+  Node *topnode = C->top();
+
+  init_req( TypeFunc::Control  , ctrl );
+  init_req( TypeFunc::I_O      , abio );
+  init_req( TypeFunc::Memory   , mem );
+  init_req( TypeFunc::ReturnAdr, topnode );
+  init_req( TypeFunc::FramePtr , topnode );
+  init_req( AllocSize          , size);
+  init_req( KlassNode          , klass_node);
+  init_req( InitialTest        , initial_test);
+  init_req( ALength            , topnode);
+  C->add_macro_node(this);
+}
+
+//=============================================================================
+uint AllocateArrayNode::size_of() const { return sizeof(*this); }
+
+//=============================================================================
+uint LockNode::size_of() const { return sizeof(*this); }
+
+// Redundant lock elimination
+//
+// There are various patterns of locking where we release and
+// immediately reacquire a lock in a piece of code where no operations
+// occur in between that would be observable.  In those cases we can
+// skip releasing and reacquiring the lock without violating any
+// fairness requirements.  Doing this around a loop could cause a lock
+// to be held for a very long time so we concentrate on non-looping
+// control flow.  We also require that the operations are fully
+// redundant meaning that we don't introduce new lock operations on
+// some paths so to be able to eliminate it on others ala PRE.  This
+// would probably require some more extensive graph manipulation to
+// guarantee that the memory edges were all handled correctly.
+//
+// Assuming p is a simple predicate which can't trap in any way and s
+// is a synchronized method consider this code:
+//
+//   s();
+//   if (p)
+//     s();
+//   else
+//     s();
+//   s();
+//
+// 1. The unlocks of the first call to s can be eliminated if the
+// locks inside the then and else branches are eliminated.
+//
+// 2. The unlocks of the then and else branches can be eliminated if
+// the lock of the final call to s is eliminated.
+//
+// Either of these cases subsumes the simple case of sequential control flow
+//
+// Addtionally we can eliminate versions without the else case:
+//
+//   s();
+//   if (p)
+//     s();
+//   s();
+//
+// 3. In this case we eliminate the unlock of the first s, the lock
+// and unlock in the then case and the lock in the final s.
+//
+// Note also that in all these cases the then/else pieces don't have
+// to be trivial as long as they begin and end with synchronization
+// operations.
+//
+//   s();
+//   if (p)
+//     s();
+//     f();
+//     s();
+//   s();
+//
+// The code will work properly for this case, leaving in the unlock
+// before the call to f and the relock after it.
+//
+// A potentially interesting case which isn't handled here is when the
+// locking is partially redundant.
+//
+//   s();
+//   if (p)
+//     s();
+//
+// This could be eliminated putting unlocking on the else case and
+// eliminating the first unlock and the lock in the then side.
+// Alternatively the unlock could be moved out of the then side so it
+// was after the merge and the first unlock and second lock
+// eliminated.  This might require less manipulation of the memory
+// state to get correct.
+//
+// Additionally we might allow work between a unlock and lock before
+// giving up eliminating the locks.  The current code disallows any
+// conditional control flow between these operations.  A formulation
+// similar to partial redundancy elimination computing the
+// availability of unlocking and the anticipatability of locking at a
+// program point would allow detection of fully redundant locking with
+// some amount of work in between.  I'm not sure how often I really
+// think that would occur though.  Most of the cases I've seen
+// indicate it's likely non-trivial work would occur in between.
+// There may be other more complicated constructs where we could
+// eliminate locking but I haven't seen any others appear as hot or
+// interesting.
+//
+// Locking and unlocking have a canonical form in ideal that looks
+// roughly like this:
+//
+//              <obj>
+//                | \\------+
+//                |  \       \
+//                | BoxLock   \
+//                |  |   |     \
+//                |  |    \     \
+//                |  |   FastLock
+//                |  |   /
+//                |  |  /
+//                |  |  |
+//
+//               Lock
+//                |
+//            Proj #0
+//                |
+//            MembarAcquire
+//                |
+//            Proj #0
+//
+//            MembarRelease
+//                |
+//            Proj #0
+//                |
+//              Unlock
+//                |
+//            Proj #0
+//
+//
+// This code proceeds by processing Lock nodes during PhaseIterGVN
+// and searching back through its control for the proper code
+// patterns.  Once it finds a set of lock and unlock operations to
+// eliminate they are marked as eliminatable which causes the
+// expansion of the Lock and Unlock macro nodes to make the operation a NOP
+//
+//=============================================================================
+
+//
+// Utility function to skip over uninteresting control nodes.  Nodes skipped are:
+//   - copy regions.  (These may not have been optimized away yet.)
+//   - eliminated locking nodes
+//
+static Node *next_control(Node *ctrl) {
+  if (ctrl == NULL)
+    return NULL;
+  while (1) {
+    if (ctrl->is_Region()) {
+      RegionNode *r = ctrl->as_Region();
+      Node *n = r->is_copy();
+      if (n == NULL)
+        break;  // hit a region, return it
+      else
+        ctrl = n;
+    } else if (ctrl->is_Proj()) {
+      Node *in0 = ctrl->in(0);
+      if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
+        ctrl = in0->in(0);
+      } else {
+        break;
+      }
+    } else {
+      break; // found an interesting control
+    }
+  }
+  return ctrl;
+}
+//
+// Given a control, see if it's the control projection of an Unlock which
+// operating on the same object as lock.
+//
+bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
+                                            GrowableArray<AbstractLockNode*> &lock_ops) {
+  ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
+  if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
+    Node *n = ctrl_proj->in(0);
+    if (n != NULL && n->is_Unlock()) {
+      UnlockNode *unlock = n->as_Unlock();
+      if ((lock->obj_node() == unlock->obj_node()) &&
+          (lock->box_node() == unlock->box_node()) && !unlock->is_eliminated()) {
+        lock_ops.append(unlock);
+        return true;
+      }
+    }
+  }
+  return false;
+}
+
+//
+// Find the lock matching an unlock.  Returns null if a safepoint
+// or complicated control is encountered first.
+LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
+  LockNode *lock_result = NULL;
+  // find the matching lock, or an intervening safepoint
+  Node *ctrl = next_control(unlock->in(0));
+  while (1) {
+    assert(ctrl != NULL, "invalid control graph");
+    assert(!ctrl->is_Start(), "missing lock for unlock");
+    if (ctrl->is_top()) break;  // dead control path
+    if (ctrl->is_Proj()) ctrl = ctrl->in(0);
+    if (ctrl->is_SafePoint()) {
+        break;  // found a safepoint (may be the lock we are searching for)
+    } else if (ctrl->is_Region()) {
+      // Check for a simple diamond pattern.  Punt on anything more complicated
+      if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
+        Node *in1 = next_control(ctrl->in(1));
+        Node *in2 = next_control(ctrl->in(2));
+        if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
+             (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
+          ctrl = next_control(in1->in(0)->in(0));
+        } else {
+          break;
+        }
+      } else {
+        break;
+      }
+    } else {
+      ctrl = next_control(ctrl->in(0));  // keep searching
+    }
+  }
+  if (ctrl->is_Lock()) {
+    LockNode *lock = ctrl->as_Lock();
+    if ((lock->obj_node() == unlock->obj_node()) &&
+            (lock->box_node() == unlock->box_node())) {
+      lock_result = lock;
+    }
+  }
+  return lock_result;
+}
+
+// This code corresponds to case 3 above.
+
+bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
+                                                       GrowableArray<AbstractLockNode*> &lock_ops) {
+  Node* if_node = node->in(0);
+  bool  if_true = node->is_IfTrue();
+
+  if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
+    Node *lock_ctrl = next_control(if_node->in(0));
+    if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
+      Node* lock1_node = NULL;
+      ProjNode* proj = if_node->as_If()->proj_out(!if_true);
+      if (if_true) {
+        if (proj->is_IfFalse() && proj->outcnt() == 1) {
+          lock1_node = proj->unique_out();
+        }
+      } else {
+        if (proj->is_IfTrue() && proj->outcnt() == 1) {
+          lock1_node = proj->unique_out();
+        }
+      }
+      if (lock1_node != NULL && lock1_node->is_Lock()) {
+        LockNode *lock1 = lock1_node->as_Lock();
+        if ((lock->obj_node() == lock1->obj_node()) &&
+            (lock->box_node() == lock1->box_node()) && !lock1->is_eliminated()) {
+          lock_ops.append(lock1);
+          return true;
+        }
+      }
+    }
+  }
+
+  lock_ops.trunc_to(0);
+  return false;
+}
+
+bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
+                               GrowableArray<AbstractLockNode*> &lock_ops) {
+  // check each control merging at this point for a matching unlock.
+  // in(0) should be self edge so skip it.
+  for (int i = 1; i < (int)region->req(); i++) {
+    Node *in_node = next_control(region->in(i));
+    if (in_node != NULL) {
+      if (find_matching_unlock(in_node, lock, lock_ops)) {
+        // found a match so keep on checking.
+        continue;
+      } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
+        continue;
+      }
+
+      // If we fall through to here then it was some kind of node we
+      // don't understand or there wasn't a matching unlock, so give
+      // up trying to merge locks.
+      lock_ops.trunc_to(0);
+      return false;
+    }
+  }
+  return true;
+
+}
+
+#ifndef PRODUCT
+//
+// Create a counter which counts the number of times this lock is acquired
+//
+void AbstractLockNode::create_lock_counter(JVMState* state) {
+  _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
+}
+#endif
+
+void AbstractLockNode::set_eliminated() {
+  _eliminate = true;
+#ifndef PRODUCT
+  if (_counter) {
+    // Update the counter to indicate that this lock was eliminated.
+    // The counter update code will stay around even though the
+    // optimizer will eliminate the lock operation itself.
+    _counter->set_tag(NamedCounter::EliminatedLockCounter);
+  }
+#endif
+}
+
+//=============================================================================
+Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+
+  // perform any generic optimizations first
+  Node *result = SafePointNode::Ideal(phase, can_reshape);
+
+  // Now see if we can optimize away this lock.  We don't actually
+  // remove the locking here, we simply set the _eliminate flag which
+  // prevents macro expansion from expanding the lock.  Since we don't
+  // modify the graph, the value returned from this function is the
+  // one computed above.
+  if (EliminateLocks && !is_eliminated()) {
+    //
+    // Try lock coarsening
+    //
+    PhaseIterGVN* iter = phase->is_IterGVN();
+    if (iter != NULL) {
+
+      GrowableArray<AbstractLockNode*>   lock_ops;
+
+      Node *ctrl = next_control(in(0));
+
+      // now search back for a matching Unlock
+      if (find_matching_unlock(ctrl, this, lock_ops)) {
+        // found an unlock directly preceding this lock.  This is the
+        // case of single unlock directly control dependent on a
+        // single lock which is the trivial version of case 1 or 2.
+      } else if (ctrl->is_Region() ) {
+        if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
+        // found lock preceded by multiple unlocks along all paths
+        // joining at this point which is case 3 in description above.
+        }
+      } else {
+        // see if this lock comes from either half of an if and the
+        // predecessors merges unlocks and the other half of the if
+        // performs a lock.
+        if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
+          // found unlock splitting to an if with locks on both branches.
+        }
+      }
+
+      if (lock_ops.length() > 0) {
+        // add ourselves to the list of locks to be eliminated.
+        lock_ops.append(this);
+
+  #ifndef PRODUCT
+        if (PrintEliminateLocks) {
+          int locks = 0;
+          int unlocks = 0;
+          for (int i = 0; i < lock_ops.length(); i++) {
+            AbstractLockNode* lock = lock_ops.at(i);
+            if (lock->Opcode() == Op_Lock) locks++;
+            else                               unlocks++;
+            if (Verbose) {
+              lock->dump(1);
+            }
+          }
+          tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
+        }
+  #endif
+
+        // for each of the identified locks, mark them
+        // as eliminatable
+        for (int i = 0; i < lock_ops.length(); i++) {
+          AbstractLockNode* lock = lock_ops.at(i);
+
+          // Mark it eliminated to update any counters
+          lock->set_eliminated();
+        }
+      } else if (result != NULL && ctrl->is_Region() &&
+                 iter->_worklist.member(ctrl)) {
+        // We weren't able to find any opportunities but the region this
+        // lock is control dependent on hasn't been processed yet so put
+        // this lock back on the worklist so we can check again once any
+        // region simplification has occurred.
+        iter->_worklist.push(this);
+      }
+    }
+  }
+
+  return result;
+}
+
+//=============================================================================
+uint UnlockNode::size_of() const { return sizeof(*this); }
+
+//=============================================================================
+Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+
+  // perform any generic optimizations first
+  Node * result = SafePointNode::Ideal(phase, can_reshape);
+
+  // Now see if we can optimize away this unlock.  We don't actually
+  // remove the unlocking here, we simply set the _eliminate flag which
+  // prevents macro expansion from expanding the unlock.  Since we don't
+  // modify the graph, the value returned from this function is the
+  // one computed above.
+  if (EliminateLocks && !is_eliminated()) {
+    //
+    // If we are unlocking an unescaped object, the lock/unlock is unnecessary
+    // We can eliminate them if there are no safepoints in the locked region.
+    //
+    ConnectionGraph *cgr = Compile::current()->congraph();
+    if (cgr != NULL && cgr->escape_state(obj_node(), phase) == PointsToNode::NoEscape) {
+      GrowableArray<AbstractLockNode*>   lock_ops;
+      LockNode *lock = find_matching_lock(this);
+      if (lock != NULL) {
+        lock_ops.append(this);
+        lock_ops.append(lock);
+        // find other unlocks which pair with the lock we found and add them
+        // to the list
+        Node * box = box_node();
+
+        for (DUIterator_Fast imax, i = box->fast_outs(imax); i < imax; i++) {
+          Node *use = box->fast_out(i);
+          if (use->is_Unlock() && use != this) {
+            UnlockNode *unlock1 = use->as_Unlock();
+            if (!unlock1->is_eliminated()) {
+              LockNode *lock1 = find_matching_lock(unlock1);
+              if (lock == lock1)
+                lock_ops.append(unlock1);
+              else if (lock1 == NULL) {
+               // we can't find a matching lock, we must assume the worst
+                lock_ops.trunc_to(0);
+                break;
+              }
+            }
+          }
+        }
+        if (lock_ops.length() > 0) {
+
+  #ifndef PRODUCT
+          if (PrintEliminateLocks) {
+            int locks = 0;
+            int unlocks = 0;
+            for (int i = 0; i < lock_ops.length(); i++) {
+              AbstractLockNode* lock = lock_ops.at(i);
+              if (lock->Opcode() == Op_Lock) locks++;
+              else                               unlocks++;
+              if (Verbose) {
+                lock->dump(1);
+              }
+            }
+            tty->print_cr("***Eliminated %d unescaped unlocks and %d unescaped locks", unlocks, locks);
+          }
+  #endif
+
+          // for each of the identified locks, mark them
+          // as eliminatable
+          for (int i = 0; i < lock_ops.length(); i++) {
+            AbstractLockNode* lock = lock_ops.at(i);
+
+            // Mark it eliminated to update any counters
+            lock->set_eliminated();
+          }
+        }
+      }
+    }
+  }
+  return result;
+}