1826
|
1 |
/*
|
5506
|
2 |
* Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
|
1826
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
5506
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
20 |
* or visit www.oracle.com if you need additional information or have any
|
|
21 |
* questions.
|
1826
|
22 |
*/
|
|
23 |
|
|
24 |
/*
|
|
25 |
* @test
|
|
26 |
* @bug 4851638 4939441
|
|
27 |
* @summary Tests for {Math, StrictMath}.hypot
|
|
28 |
* @author Joseph D. Darcy
|
|
29 |
*/
|
|
30 |
|
|
31 |
import sun.misc.DoubleConsts;
|
|
32 |
import sun.misc.FpUtils;
|
|
33 |
|
|
34 |
public class HypotTests {
|
|
35 |
private HypotTests(){}
|
|
36 |
|
|
37 |
static final double infinityD = Double.POSITIVE_INFINITY;
|
|
38 |
static final double NaNd = Double.NaN;
|
|
39 |
|
|
40 |
/**
|
|
41 |
* Given integers m and n, assuming m < n, the triple (n^2 - m^2,
|
|
42 |
* 2mn, and n^2 + m^2) is a Pythagorean triple with a^2 + b^2 =
|
|
43 |
* c^2. This methods returns a long array holding the Pythagorean
|
|
44 |
* triple corresponding to the inputs.
|
|
45 |
*/
|
|
46 |
static long [] pythagoreanTriple(int m, int n) {
|
|
47 |
long M = m;
|
|
48 |
long N = n;
|
|
49 |
long result[] = new long[3];
|
|
50 |
|
|
51 |
|
|
52 |
result[0] = Math.abs(M*M - N*N);
|
|
53 |
result[1] = Math.abs(2*M*N);
|
|
54 |
result[2] = Math.abs(M*M + N*N);
|
|
55 |
|
|
56 |
return result;
|
|
57 |
}
|
|
58 |
|
|
59 |
static int testHypot() {
|
|
60 |
int failures = 0;
|
|
61 |
|
|
62 |
double [][] testCases = {
|
|
63 |
// Special cases
|
|
64 |
{infinityD, infinityD, infinityD},
|
|
65 |
{infinityD, 0.0, infinityD},
|
|
66 |
{infinityD, 1.0, infinityD},
|
|
67 |
{infinityD, NaNd, infinityD},
|
|
68 |
{NaNd, NaNd, NaNd},
|
|
69 |
{0.0, NaNd, NaNd},
|
|
70 |
{1.0, NaNd, NaNd},
|
|
71 |
{Double.longBitsToDouble(0x7FF0000000000001L), 1.0, NaNd},
|
|
72 |
{Double.longBitsToDouble(0xFFF0000000000001L), 1.0, NaNd},
|
|
73 |
{Double.longBitsToDouble(0x7FF8555555555555L), 1.0, NaNd},
|
|
74 |
{Double.longBitsToDouble(0xFFF8555555555555L), 1.0, NaNd},
|
|
75 |
{Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), 1.0, NaNd},
|
|
76 |
{Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), 1.0, NaNd},
|
|
77 |
{Double.longBitsToDouble(0x7FFDeadBeef00000L), 1.0, NaNd},
|
|
78 |
{Double.longBitsToDouble(0xFFFDeadBeef00000L), 1.0, NaNd},
|
|
79 |
{Double.longBitsToDouble(0x7FFCafeBabe00000L), 1.0, NaNd},
|
|
80 |
{Double.longBitsToDouble(0xFFFCafeBabe00000L), 1.0, NaNd},
|
|
81 |
};
|
|
82 |
|
|
83 |
for(int i = 0; i < testCases.length; i++) {
|
|
84 |
failures += testHypotCase(testCases[i][0], testCases[i][1],
|
|
85 |
testCases[i][2]);
|
|
86 |
}
|
|
87 |
|
|
88 |
// Verify hypot(x, 0.0) is close to x over the entire exponent
|
|
89 |
// range.
|
|
90 |
for(int i = DoubleConsts.MIN_SUB_EXPONENT;
|
|
91 |
i <= DoubleConsts.MAX_EXPONENT;
|
|
92 |
i++) {
|
|
93 |
double input = FpUtils.scalb(2, i);
|
|
94 |
failures += testHypotCase(input, 0.0, input);
|
|
95 |
}
|
|
96 |
|
|
97 |
|
|
98 |
// Test Pythagorean triples
|
|
99 |
|
|
100 |
// Small ones
|
|
101 |
for(int m = 1; m < 10; m++) {
|
|
102 |
for(int n = m+1; n < 11; n++) {
|
|
103 |
long [] result = pythagoreanTriple(m, n);
|
|
104 |
failures += testHypotCase(result[0], result[1], result[2]);
|
|
105 |
}
|
|
106 |
}
|
|
107 |
|
|
108 |
// Big ones
|
|
109 |
for(int m = 100000; m < 100100; m++) {
|
|
110 |
for(int n = m+100000; n < 200200; n++) {
|
|
111 |
long [] result = pythagoreanTriple(m, n);
|
|
112 |
failures += testHypotCase(result[0], result[1], result[2]);
|
|
113 |
}
|
|
114 |
}
|
|
115 |
|
|
116 |
// Approaching overflow tests
|
|
117 |
|
|
118 |
/*
|
|
119 |
* Create a random value r with an large-ish exponent. The
|
|
120 |
* result of hypot(3*r, 4*r) should be approximately 5*r. (The
|
|
121 |
* computation of 4*r is exact since it just changes the
|
|
122 |
* exponent). While the exponent of r is less than or equal
|
|
123 |
* to (MAX_EXPONENT - 3), the computation should not overflow.
|
|
124 |
*/
|
|
125 |
java.util.Random rand = new java.util.Random();
|
|
126 |
for(int i = 0; i < 1000; i++) {
|
|
127 |
double d = rand.nextDouble();
|
|
128 |
// Scale d to have an exponent equal to MAX_EXPONENT -15
|
|
129 |
d = FpUtils.scalb(d, DoubleConsts.MAX_EXPONENT
|
|
130 |
-15 - FpUtils.ilogb(d));
|
|
131 |
for(int j = 0; j <= 13; j += 1) {
|
|
132 |
failures += testHypotCase(3*d, 4*d, 5*d, 2.5);
|
|
133 |
d *= 2.0; // increase exponent by 1
|
|
134 |
}
|
|
135 |
}
|
|
136 |
|
|
137 |
// Test for monotonicity failures. Fix one argument and test
|
|
138 |
// two numbers before and two numbers after each chosen value;
|
|
139 |
// i.e.
|
|
140 |
//
|
|
141 |
// pcNeighbors[] =
|
|
142 |
// {nextDown(nextDown(pc)),
|
|
143 |
// nextDown(pc),
|
|
144 |
// pc,
|
|
145 |
// nextUp(pc),
|
|
146 |
// nextUp(nextUp(pc))}
|
|
147 |
//
|
|
148 |
// and we test that hypot(pcNeighbors[i]) <= hypot(pcNeighbors[i+1])
|
|
149 |
{
|
|
150 |
double pcNeighbors[] = new double[5];
|
|
151 |
double pcNeighborsHypot[] = new double[5];
|
|
152 |
double pcNeighborsStrictHypot[] = new double[5];
|
|
153 |
|
|
154 |
|
|
155 |
for(int i = -18; i <= 18; i++) {
|
|
156 |
double pc = FpUtils.scalb(1.0, i);
|
|
157 |
|
|
158 |
pcNeighbors[2] = pc;
|
|
159 |
pcNeighbors[1] = FpUtils.nextDown(pc);
|
|
160 |
pcNeighbors[0] = FpUtils.nextDown(pcNeighbors[1]);
|
|
161 |
pcNeighbors[3] = FpUtils.nextUp(pc);
|
|
162 |
pcNeighbors[4] = FpUtils.nextUp(pcNeighbors[3]);
|
|
163 |
|
|
164 |
for(int j = 0; j < pcNeighbors.length; j++) {
|
|
165 |
pcNeighborsHypot[j] = Math.hypot(2.0, pcNeighbors[j]);
|
|
166 |
pcNeighborsStrictHypot[j] = StrictMath.hypot(2.0, pcNeighbors[j]);
|
|
167 |
}
|
|
168 |
|
|
169 |
for(int j = 0; j < pcNeighborsHypot.length-1; j++) {
|
|
170 |
if(pcNeighborsHypot[j] > pcNeighborsHypot[j+1] ) {
|
|
171 |
failures++;
|
|
172 |
System.err.println("Monotonicity failure for Math.hypot on " +
|
|
173 |
pcNeighbors[j] + " and " +
|
|
174 |
pcNeighbors[j+1] + "\n\treturned " +
|
|
175 |
pcNeighborsHypot[j] + " and " +
|
|
176 |
pcNeighborsHypot[j+1] );
|
|
177 |
}
|
|
178 |
|
|
179 |
if(pcNeighborsStrictHypot[j] > pcNeighborsStrictHypot[j+1] ) {
|
|
180 |
failures++;
|
|
181 |
System.err.println("Monotonicity failure for StrictMath.hypot on " +
|
|
182 |
pcNeighbors[j] + " and " +
|
|
183 |
pcNeighbors[j+1] + "\n\treturned " +
|
|
184 |
pcNeighborsStrictHypot[j] + " and " +
|
|
185 |
pcNeighborsStrictHypot[j+1] );
|
|
186 |
}
|
|
187 |
|
|
188 |
|
|
189 |
}
|
|
190 |
|
|
191 |
}
|
|
192 |
}
|
|
193 |
|
|
194 |
|
|
195 |
return failures;
|
|
196 |
}
|
|
197 |
|
|
198 |
static int testHypotCase(double input1, double input2, double expected) {
|
|
199 |
return testHypotCase(input1,input2, expected, 1);
|
|
200 |
}
|
|
201 |
|
|
202 |
static int testHypotCase(double input1, double input2, double expected,
|
|
203 |
double ulps) {
|
|
204 |
int failures = 0;
|
|
205 |
if (expected < 0.0) {
|
|
206 |
throw new AssertionError("Result of hypot must be greater than " +
|
|
207 |
"or equal to zero");
|
|
208 |
}
|
|
209 |
|
|
210 |
// Test Math and StrictMath methods with no inputs negated,
|
|
211 |
// each input negated singly, and both inputs negated. Also
|
|
212 |
// test inputs in reversed order.
|
|
213 |
|
|
214 |
for(int i = -1; i <= 1; i+=2) {
|
|
215 |
for(int j = -1; j <= 1; j+=2) {
|
|
216 |
double x = i * input1;
|
|
217 |
double y = j * input2;
|
|
218 |
failures += Tests.testUlpDiff("Math.hypot", x, y,
|
|
219 |
Math.hypot(x, y), expected, ulps);
|
|
220 |
failures += Tests.testUlpDiff("Math.hypot", y, x,
|
|
221 |
Math.hypot(y, x ), expected, ulps);
|
|
222 |
|
|
223 |
failures += Tests.testUlpDiff("StrictMath.hypot", x, y,
|
|
224 |
StrictMath.hypot(x, y), expected, ulps);
|
|
225 |
failures += Tests.testUlpDiff("StrictMath.hypot", y, x,
|
|
226 |
StrictMath.hypot(y, x), expected, ulps);
|
|
227 |
}
|
|
228 |
}
|
|
229 |
|
|
230 |
return failures;
|
|
231 |
}
|
|
232 |
|
|
233 |
public static void main(String argv[]) {
|
|
234 |
int failures = 0;
|
|
235 |
|
|
236 |
failures += testHypot();
|
|
237 |
|
|
238 |
if (failures > 0) {
|
|
239 |
System.err.println("Testing the hypot incurred "
|
|
240 |
+ failures + " failures.");
|
|
241 |
throw new RuntimeException();
|
|
242 |
}
|
|
243 |
}
|
|
244 |
|
|
245 |
}
|