jdk/test/java/lang/Math/HypotTests.java
changeset 1826 39d505a353e8
child 5506 202f599c92aa
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/test/java/lang/Math/HypotTests.java	Mon Jan 26 19:49:26 2009 -0800
@@ -0,0 +1,245 @@
+/*
+ * Copyright 2003 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ */
+
+/*
+ * @test
+ * @bug 4851638 4939441
+ * @summary Tests for {Math, StrictMath}.hypot
+ * @author Joseph D. Darcy
+ */
+
+import sun.misc.DoubleConsts;
+import sun.misc.FpUtils;
+
+public class HypotTests {
+    private HypotTests(){}
+
+    static final double infinityD = Double.POSITIVE_INFINITY;
+    static final double NaNd      = Double.NaN;
+
+    /**
+     * Given integers m and n, assuming m < n, the triple (n^2 - m^2,
+     * 2mn, and n^2 + m^2) is a Pythagorean triple with a^2 + b^2 =
+     * c^2.  This methods returns a long array holding the Pythagorean
+     * triple corresponding to the inputs.
+     */
+    static long [] pythagoreanTriple(int m, int n) {
+        long M = m;
+        long N = n;
+        long result[] = new long[3];
+
+
+        result[0] = Math.abs(M*M - N*N);
+        result[1] = Math.abs(2*M*N);
+        result[2] = Math.abs(M*M + N*N);
+
+        return result;
+    }
+
+    static int testHypot() {
+        int failures = 0;
+
+        double [][] testCases = {
+            // Special cases
+            {infinityD,         infinityD,              infinityD},
+            {infinityD,         0.0,                    infinityD},
+            {infinityD,         1.0,                    infinityD},
+            {infinityD,         NaNd,                   infinityD},
+            {NaNd,              NaNd,                   NaNd},
+            {0.0,               NaNd,                   NaNd},
+            {1.0,               NaNd,                   NaNd},
+            {Double.longBitsToDouble(0x7FF0000000000001L),      1.0,    NaNd},
+            {Double.longBitsToDouble(0xFFF0000000000001L),      1.0,    NaNd},
+            {Double.longBitsToDouble(0x7FF8555555555555L),      1.0,    NaNd},
+            {Double.longBitsToDouble(0xFFF8555555555555L),      1.0,    NaNd},
+            {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      1.0,    NaNd},
+            {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      1.0,    NaNd},
+            {Double.longBitsToDouble(0x7FFDeadBeef00000L),      1.0,    NaNd},
+            {Double.longBitsToDouble(0xFFFDeadBeef00000L),      1.0,    NaNd},
+            {Double.longBitsToDouble(0x7FFCafeBabe00000L),      1.0,    NaNd},
+            {Double.longBitsToDouble(0xFFFCafeBabe00000L),      1.0,    NaNd},
+        };
+
+        for(int i = 0; i < testCases.length; i++) {
+            failures += testHypotCase(testCases[i][0], testCases[i][1],
+                                      testCases[i][2]);
+        }
+
+        // Verify hypot(x, 0.0) is close to x over the entire exponent
+        // range.
+        for(int i = DoubleConsts.MIN_SUB_EXPONENT;
+            i <= DoubleConsts.MAX_EXPONENT;
+            i++) {
+            double input = FpUtils.scalb(2, i);
+            failures += testHypotCase(input, 0.0, input);
+        }
+
+
+        // Test Pythagorean triples
+
+        // Small ones
+        for(int m = 1; m < 10; m++) {
+            for(int n = m+1; n < 11; n++) {
+                long [] result = pythagoreanTriple(m, n);
+                failures += testHypotCase(result[0], result[1], result[2]);
+            }
+        }
+
+        // Big ones
+        for(int m = 100000; m < 100100; m++) {
+            for(int n = m+100000; n < 200200; n++) {
+                long [] result = pythagoreanTriple(m, n);
+                failures += testHypotCase(result[0], result[1], result[2]);
+            }
+        }
+
+        // Approaching overflow tests
+
+        /*
+         * Create a random value r with an large-ish exponent.  The
+         * result of hypot(3*r, 4*r) should be approximately 5*r. (The
+         * computation of 4*r is exact since it just changes the
+         * exponent).  While the exponent of r is less than or equal
+         * to (MAX_EXPONENT - 3), the computation should not overflow.
+         */
+        java.util.Random rand = new java.util.Random();
+        for(int i = 0; i < 1000; i++) {
+            double d = rand.nextDouble();
+            // Scale d to have an exponent equal to MAX_EXPONENT -15
+            d = FpUtils.scalb(d, DoubleConsts.MAX_EXPONENT
+                                 -15 - FpUtils.ilogb(d));
+            for(int j = 0; j <= 13; j += 1) {
+                failures += testHypotCase(3*d, 4*d, 5*d, 2.5);
+                d *= 2.0; // increase exponent by 1
+            }
+        }
+
+        // Test for monotonicity failures.  Fix one argument and test
+        // two numbers before and two numbers after each chosen value;
+        // i.e.
+        //
+        // pcNeighbors[] =
+        // {nextDown(nextDown(pc)),
+        // nextDown(pc),
+        // pc,
+        // nextUp(pc),
+        // nextUp(nextUp(pc))}
+        //
+        // and we test that hypot(pcNeighbors[i]) <= hypot(pcNeighbors[i+1])
+        {
+            double pcNeighbors[] = new double[5];
+            double pcNeighborsHypot[] = new double[5];
+            double pcNeighborsStrictHypot[] = new double[5];
+
+
+            for(int i = -18; i <= 18; i++) {
+                double pc = FpUtils.scalb(1.0, i);
+
+                pcNeighbors[2] = pc;
+                pcNeighbors[1] = FpUtils.nextDown(pc);
+                pcNeighbors[0] = FpUtils.nextDown(pcNeighbors[1]);
+                pcNeighbors[3] = FpUtils.nextUp(pc);
+                pcNeighbors[4] = FpUtils.nextUp(pcNeighbors[3]);
+
+                for(int j = 0; j < pcNeighbors.length; j++) {
+                    pcNeighborsHypot[j]       =       Math.hypot(2.0, pcNeighbors[j]);
+                    pcNeighborsStrictHypot[j] = StrictMath.hypot(2.0, pcNeighbors[j]);
+                }
+
+                for(int j = 0; j < pcNeighborsHypot.length-1; j++) {
+                    if(pcNeighborsHypot[j] >  pcNeighborsHypot[j+1] ) {
+                        failures++;
+                        System.err.println("Monotonicity failure for Math.hypot on " +
+                                          pcNeighbors[j] + " and "  +
+                                          pcNeighbors[j+1] + "\n\treturned " +
+                                          pcNeighborsHypot[j] + " and " +
+                                          pcNeighborsHypot[j+1] );
+                    }
+
+                    if(pcNeighborsStrictHypot[j] >  pcNeighborsStrictHypot[j+1] ) {
+                        failures++;
+                        System.err.println("Monotonicity failure for StrictMath.hypot on " +
+                                          pcNeighbors[j] + " and "  +
+                                          pcNeighbors[j+1] + "\n\treturned " +
+                                          pcNeighborsStrictHypot[j] + " and " +
+                                          pcNeighborsStrictHypot[j+1] );
+                    }
+
+
+                }
+
+            }
+        }
+
+
+        return failures;
+    }
+
+    static int testHypotCase(double input1, double input2, double expected) {
+        return testHypotCase(input1,input2, expected, 1);
+    }
+
+    static int testHypotCase(double input1, double input2, double expected,
+                             double ulps) {
+        int failures = 0;
+        if (expected < 0.0) {
+            throw new AssertionError("Result of hypot must be greater than " +
+                                     "or equal to zero");
+        }
+
+        // Test Math and StrictMath methods with no inputs negated,
+        // each input negated singly, and both inputs negated.  Also
+        // test inputs in reversed order.
+
+        for(int i = -1; i <= 1; i+=2) {
+            for(int j = -1; j <= 1; j+=2) {
+                double x = i * input1;
+                double y = j * input2;
+                failures += Tests.testUlpDiff("Math.hypot", x, y,
+                                              Math.hypot(x, y), expected, ulps);
+                failures += Tests.testUlpDiff("Math.hypot", y, x,
+                                              Math.hypot(y, x ), expected, ulps);
+
+                failures += Tests.testUlpDiff("StrictMath.hypot", x, y,
+                                              StrictMath.hypot(x, y), expected, ulps);
+                failures += Tests.testUlpDiff("StrictMath.hypot", y, x,
+                                              StrictMath.hypot(y, x), expected, ulps);
+            }
+        }
+
+        return failures;
+    }
+
+    public static void main(String argv[]) {
+        int failures = 0;
+
+        failures += testHypot();
+
+        if (failures > 0) {
+            System.err.println("Testing the hypot incurred "
+                               + failures + " failures.");
+            throw new RuntimeException();
+        }
+    }
+
+}