8032027: Add BigInteger square root methods
Summary: Add sqrt() and sqrtAndReminder() using Newton iteration
Reviewed-by: darcy, lowasser
--- a/jdk/src/java.base/share/classes/java/math/BigInteger.java Thu Dec 10 15:57:27 2015 -0800
+++ b/jdk/src/java.base/share/classes/java/math/BigInteger.java Thu Dec 10 17:47:26 2015 -0800
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 1996, 2014, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 1996, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -2410,6 +2410,53 @@
}
/**
+ * Returns the integer square root of this BigInteger. The integer square
+ * root of the corresponding mathematical integer {@code n} is the largest
+ * mathematical integer {@code s} such that {@code s*s <= n}. It is equal
+ * to the value of {@code floor(sqrt(n))}, where {@code sqrt(n)} denotes the
+ * real square root of {@code n} treated as a real. Note that the integer
+ * square root will be less than the real square root if the latter is not
+ * representable as an integral value.
+ *
+ * @return the integer square root of {@code this}
+ * @throws ArithmeticException if {@code this} is negative. (The square
+ * root of a negative integer {@code val} is
+ * {@code (i * sqrt(-val))} where <i>i</i> is the
+ * <i>imaginary unit</i> and is equal to
+ * {@code sqrt(-1)}.)
+ * @since 1.9
+ */
+ public BigInteger sqrt() {
+ if (this.signum < 0) {
+ throw new ArithmeticException("Negative BigInteger");
+ }
+
+ return new MutableBigInteger(this.mag).sqrt().toBigInteger();
+ }
+
+ /**
+ * Returns an array of two BigIntegers containing the integer square root
+ * {@code s} of {@code this} and its remainder {@code this - s*s},
+ * respectively.
+ *
+ * @return an array of two BigIntegers with the integer square root at
+ * offset 0 and the remainder at offset 1
+ * @throws ArithmeticException if {@code this} is negative. (The square
+ * root of a negative integer {@code val} is
+ * {@code (i * sqrt(-val))} where <i>i</i> is the
+ * <i>imaginary unit</i> and is equal to
+ * {@code sqrt(-1)}.)
+ * @see #sqrt()
+ * @since 1.9
+ */
+ public BigInteger[] sqrtAndRemainder() {
+ BigInteger s = sqrt();
+ BigInteger r = this.subtract(s.square());
+ assert r.compareTo(BigInteger.ZERO) >= 0;
+ return new BigInteger[] {s, r};
+ }
+
+ /**
* Returns a BigInteger whose value is the greatest common divisor of
* {@code abs(this)} and {@code abs(val)}. Returns 0 if
* {@code this == 0 && val == 0}.
--- a/jdk/src/java.base/share/classes/java/math/MutableBigInteger.java Thu Dec 10 15:57:27 2015 -0800
+++ b/jdk/src/java.base/share/classes/java/math/MutableBigInteger.java Thu Dec 10 17:47:26 2015 -0800
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -1867,6 +1867,96 @@
}
/**
+ * Calculate the integer square root {@code floor(sqrt(this))} where
+ * {@code sqrt(.)} denotes the mathematical square root. The contents of
+ * {@code this} are <b>not</b> changed. The value of {@code this} is assumed
+ * to be non-negative.
+ *
+ * @implNote The implementation is based on the material in Henry S. Warren,
+ * Jr., <i>Hacker's Delight (2nd ed.)</i> (Addison Wesley, 2013), 279-282.
+ *
+ * @throws ArithmeticException if the value returned by {@code bitLength()}
+ * overflows the range of {@code int}.
+ * @return the integer square root of {@code this}
+ * @since 1.9
+ */
+ MutableBigInteger sqrt() {
+ // Special cases.
+ if (this.isZero()) {
+ return new MutableBigInteger(0);
+ } else if (this.value.length == 1
+ && (this.value[0] & LONG_MASK) < 4) { // result is unity
+ return ONE;
+ }
+
+ if (bitLength() <= 63) {
+ // Initial estimate is the square root of the positive long value.
+ long v = new BigInteger(this.value, 1).longValueExact();
+ long xk = (long)Math.floor(Math.sqrt(v));
+
+ // Refine the estimate.
+ do {
+ long xk1 = (xk + v/xk)/2;
+
+ // Terminate when non-decreasing.
+ if (xk1 >= xk) {
+ return new MutableBigInteger(new int[] {
+ (int)(xk >>> 32), (int)(xk & LONG_MASK)
+ });
+ }
+
+ xk = xk1;
+ } while (true);
+ } else {
+ // Set up the initial estimate of the iteration.
+
+ // Obtain the bitLength > 63.
+ int bitLength = (int) this.bitLength();
+ if (bitLength != this.bitLength()) {
+ throw new ArithmeticException("bitLength() integer overflow");
+ }
+
+ // Determine an even valued right shift into positive long range.
+ int shift = bitLength - 63;
+ if (shift % 2 == 1) {
+ shift++;
+ }
+
+ // Shift the value into positive long range.
+ MutableBigInteger xk = new MutableBigInteger(this);
+ xk.rightShift(shift);
+ xk.normalize();
+
+ // Use the square root of the shifted value as an approximation.
+ double d = new BigInteger(xk.value, 1).doubleValue();
+ BigInteger bi = BigInteger.valueOf((long)Math.ceil(Math.sqrt(d)));
+ xk = new MutableBigInteger(bi.mag);
+
+ // Shift the approximate square root back into the original range.
+ xk.leftShift(shift / 2);
+
+ // Refine the estimate.
+ MutableBigInteger xk1 = new MutableBigInteger();
+ do {
+ // xk1 = (xk + n/xk)/2
+ this.divide(xk, xk1, false);
+ xk1.add(xk);
+ xk1.rightShift(1);
+
+ // Terminate when non-decreasing.
+ if (xk1.compare(xk) >= 0) {
+ return xk;
+ }
+
+ // xk = xk1
+ xk.copyValue(xk1);
+
+ xk1.reset();
+ } while (true);
+ }
+ }
+
+ /**
* Calculate GCD of this and b. This and b are changed by the computation.
*/
MutableBigInteger hybridGCD(MutableBigInteger b) {
--- a/jdk/test/java/math/BigInteger/BigIntegerTest.java Thu Dec 10 15:57:27 2015 -0800
+++ b/jdk/test/java/math/BigInteger/BigIntegerTest.java Thu Dec 10 17:47:26 2015 -0800
@@ -26,7 +26,7 @@
* @library /lib/testlibrary/
* @build jdk.testlibrary.*
* @run main BigIntegerTest
- * @bug 4181191 4161971 4227146 4194389 4823171 4624738 4812225 4837946 4026465 8074460 8078672
+ * @bug 4181191 4161971 4227146 4194389 4823171 4624738 4812225 4837946 4026465 8074460 8078672 8032027
* @summary tests methods in BigInteger (use -Dseed=X to set PRNG seed)
* @run main/timeout=400 BigIntegerTest
* @author madbot
@@ -38,8 +38,15 @@
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
+import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.Random;
+import java.util.function.ToIntFunction;
+import java.util.stream.Collectors;
+import java.util.stream.DoubleStream;
+import java.util.stream.IntStream;
+import java.util.stream.LongStream;
+import java.util.stream.Stream;
import jdk.testlibrary.RandomFactory;
/**
@@ -243,6 +250,146 @@
report("square for " + order + " bits", failCount1);
}
+ private static void printErr(String msg) {
+ System.err.println(msg);
+ }
+
+ private static int checkResult(BigInteger expected, BigInteger actual,
+ String failureMessage) {
+ if (expected.compareTo(actual) != 0) {
+ printErr(failureMessage + " - expected: " + expected
+ + ", actual: " + actual);
+ return 1;
+ }
+ return 0;
+ }
+
+ private static void squareRootSmall() {
+ int failCount = 0;
+
+ // A negative value should cause an exception.
+ BigInteger n = BigInteger.ONE.negate();
+ BigInteger s;
+ try {
+ s = n.sqrt();
+ // If sqrt() does not throw an exception that is a failure.
+ failCount++;
+ printErr("sqrt() of negative number did not throw an exception");
+ } catch (ArithmeticException expected) {
+ // A negative value should cause an exception and is not a failure.
+ }
+
+ // A zero value should return BigInteger.ZERO.
+ failCount += checkResult(BigInteger.ZERO, BigInteger.ZERO.sqrt(),
+ "sqrt(0) != BigInteger.ZERO");
+
+ // 1 <= value < 4 should return BigInteger.ONE.
+ long[] smalls = new long[] {1, 2, 3};
+ for (long small : smalls) {
+ failCount += checkResult(BigInteger.ONE,
+ BigInteger.valueOf(small).sqrt(), "sqrt("+small+") != 1");
+ }
+
+ report("squareRootSmall", failCount);
+ }
+
+ public static void squareRoot() {
+ squareRootSmall();
+
+ ToIntFunction<BigInteger> f = (n) -> {
+ int failCount = 0;
+
+ // square root of n^2 -> n
+ BigInteger n2 = n.pow(2);
+ failCount += checkResult(n, n2.sqrt(), "sqrt() n^2 -> n");
+
+ // square root of n^2 + 1 -> n
+ BigInteger n2up = n2.add(BigInteger.ONE);
+ failCount += checkResult(n, n2up.sqrt(), "sqrt() n^2 + 1 -> n");
+
+ // square root of (n + 1)^2 - 1 -> n
+ BigInteger up =
+ n.add(BigInteger.ONE).pow(2).subtract(BigInteger.ONE);
+ failCount += checkResult(n, up.sqrt(), "sqrt() (n + 1)^2 - 1 -> n");
+
+ // sqrt(n)^2 <= n
+ BigInteger s = n.sqrt();
+ if (s.multiply(s).compareTo(n) > 0) {
+ failCount++;
+ printErr("sqrt(n)^2 > n for n = " + n);
+ }
+
+ // (sqrt(n) + 1)^2 > n
+ if (s.add(BigInteger.ONE).pow(2).compareTo(n) <= 0) {
+ failCount++;
+ printErr("(sqrt(n) + 1)^2 <= n for n = " + n);
+ }
+
+ return failCount;
+ };
+
+ Stream.Builder<BigInteger> sb = Stream.builder();
+ int maxExponent = Double.MAX_EXPONENT + 1;
+ for (int i = 1; i <= maxExponent; i++) {
+ BigInteger p2 = BigInteger.ONE.shiftLeft(i);
+ sb.add(p2.subtract(BigInteger.ONE));
+ sb.add(p2);
+ sb.add(p2.add(BigInteger.ONE));
+ }
+ sb.add((new BigDecimal(Double.MAX_VALUE)).toBigInteger());
+ sb.add((new BigDecimal(Double.MAX_VALUE)).toBigInteger().add(BigInteger.ONE));
+ report("squareRoot for 2^N and 2^N - 1, 1 <= N <= Double.MAX_EXPONENT",
+ sb.build().collect(Collectors.summingInt(f)));
+
+ IntStream ints = random.ints(SIZE, 4, Integer.MAX_VALUE);
+ report("squareRoot for int", ints.mapToObj(x ->
+ BigInteger.valueOf(x)).collect(Collectors.summingInt(f)));
+
+ LongStream longs = random.longs(SIZE, (long)Integer.MAX_VALUE + 1L,
+ Long.MAX_VALUE);
+ report("squareRoot for long", longs.mapToObj(x ->
+ BigInteger.valueOf(x)).collect(Collectors.summingInt(f)));
+
+ DoubleStream doubles = random.doubles(SIZE,
+ (double) Long.MAX_VALUE + 1.0, Math.sqrt(Double.MAX_VALUE));
+ report("squareRoot for double", doubles.mapToObj(x ->
+ BigDecimal.valueOf(x).toBigInteger()).collect(Collectors.summingInt(f)));
+ }
+
+ public static void squareRootAndRemainder() {
+ ToIntFunction<BigInteger> g = (n) -> {
+ int failCount = 0;
+ BigInteger n2 = n.pow(2);
+
+ // square root of n^2 -> n
+ BigInteger[] actual = n2.sqrtAndRemainder();
+ failCount += checkResult(n, actual[0], "sqrtAndRemainder()[0]");
+ failCount += checkResult(BigInteger.ZERO, actual[1],
+ "sqrtAndRemainder()[1]");
+
+ // square root of n^2 + 1 -> n
+ BigInteger n2up = n2.add(BigInteger.ONE);
+ actual = n2up.sqrtAndRemainder();
+ failCount += checkResult(n, actual[0], "sqrtAndRemainder()[0]");
+ failCount += checkResult(BigInteger.ONE, actual[1],
+ "sqrtAndRemainder()[1]");
+
+ // square root of (n + 1)^2 - 1 -> n
+ BigInteger up =
+ n.add(BigInteger.ONE).pow(2).subtract(BigInteger.ONE);
+ actual = up.sqrtAndRemainder();
+ failCount += checkResult(n, actual[0], "sqrtAndRemainder()[0]");
+ BigInteger r = up.subtract(n2);
+ failCount += checkResult(r, actual[1], "sqrtAndRemainder()[1]");
+
+ return failCount;
+ };
+
+ IntStream bits = random.ints(SIZE, 3, Short.MAX_VALUE);
+ report("sqrtAndRemainder", bits.mapToObj(x ->
+ BigInteger.valueOf(x)).collect(Collectors.summingInt(g)));
+ }
+
public static void arithmetic(int order) {
int failCount = 0;
@@ -1101,6 +1248,9 @@
square(ORDER_KARATSUBA_SQUARE);
square(ORDER_TOOM_COOK_SQUARE);
+ squareRoot();
+ squareRootAndRemainder();
+
bitCount();
bitLength();
bitOps(order1);