8226297: Dual-pivot quicksort improvements
authorbchristi
Tue, 12 Nov 2019 13:49:40 -0800
changeset 59042 8910b995a2ee
parent 59041 d6d8fdc95ed2
child 59043 1a79b4bfc85a
8226297: Dual-pivot quicksort improvements Reviewed-by: dl, lbourges Contributed-by: Vladimir Yaroslavskiy <vlv.spb.ru@mail.ru>
src/java.base/share/classes/java/util/Arrays.java
src/java.base/share/classes/java/util/ArraysParallelSortHelpers.java
src/java.base/share/classes/java/util/DualPivotQuicksort.java
test/jdk/java/util/Arrays/ParallelSorting.java
test/jdk/java/util/Arrays/Sorting.java
test/jdk/java/util/Arrays/java.base/java/util/SortingHelper.java
--- a/src/java.base/share/classes/java/util/Arrays.java	Tue Nov 12 21:00:08 2019 +0000
+++ b/src/java.base/share/classes/java/util/Arrays.java	Tue Nov 12 13:49:40 2019 -0800
@@ -74,17 +74,658 @@
  */
 public class Arrays {
 
-    /**
-     * The minimum array length below which a parallel sorting
-     * algorithm will not further partition the sorting task. Using
-     * smaller sizes typically results in memory contention across
-     * tasks that makes parallel speedups unlikely.
-     */
-    private static final int MIN_ARRAY_SORT_GRAN = 1 << 13;
-
     // Suppresses default constructor, ensuring non-instantiability.
     private Arrays() {}
 
+    /*
+     * Sorting methods. Note that all public "sort" methods take the
+     * same form: performing argument checks if necessary, and then
+     * expanding arguments into those required for the internal
+     * implementation methods residing in other package-private
+     * classes (except for legacyMergeSort, included in this class).
+     */
+
+    /**
+     * Sorts the specified array into ascending numerical order.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort
+     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     */
+    public static void sort(int[] a) {
+        DualPivotQuicksort.sort(a, 0, 0, a.length);
+    }
+
+    /**
+     * Sorts the specified range of the array into ascending order. The range
+     * to be sorted extends from the index {@code fromIndex}, inclusive, to
+     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
+     * the range to be sorted is empty.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort
+     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     * @param fromIndex the index of the first element, inclusive, to be sorted
+     * @param toIndex the index of the last element, exclusive, to be sorted
+     *
+     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
+     * @throws ArrayIndexOutOfBoundsException
+     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
+     */
+    public static void sort(int[] a, int fromIndex, int toIndex) {
+        rangeCheck(a.length, fromIndex, toIndex);
+        DualPivotQuicksort.sort(a, 0, fromIndex, toIndex);
+    }
+
+    /**
+     * Sorts the specified array into ascending numerical order.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort
+     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     */
+    public static void sort(long[] a) {
+        DualPivotQuicksort.sort(a, 0, 0, a.length);
+    }
+
+    /**
+     * Sorts the specified range of the array into ascending order. The range
+     * to be sorted extends from the index {@code fromIndex}, inclusive, to
+     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
+     * the range to be sorted is empty.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort
+     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     * @param fromIndex the index of the first element, inclusive, to be sorted
+     * @param toIndex the index of the last element, exclusive, to be sorted
+     *
+     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
+     * @throws ArrayIndexOutOfBoundsException
+     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
+     */
+    public static void sort(long[] a, int fromIndex, int toIndex) {
+        rangeCheck(a.length, fromIndex, toIndex);
+        DualPivotQuicksort.sort(a, 0, fromIndex, toIndex);
+    }
+
+    /**
+     * Sorts the specified array into ascending numerical order.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort
+     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     */
+    public static void sort(short[] a) {
+        DualPivotQuicksort.sort(a, 0, a.length);
+    }
+
+    /**
+     * Sorts the specified range of the array into ascending order. The range
+     * to be sorted extends from the index {@code fromIndex}, inclusive, to
+     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
+     * the range to be sorted is empty.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort
+     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     * @param fromIndex the index of the first element, inclusive, to be sorted
+     * @param toIndex the index of the last element, exclusive, to be sorted
+     *
+     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
+     * @throws ArrayIndexOutOfBoundsException
+     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
+     */
+    public static void sort(short[] a, int fromIndex, int toIndex) {
+        rangeCheck(a.length, fromIndex, toIndex);
+        DualPivotQuicksort.sort(a, fromIndex, toIndex);
+    }
+
+    /**
+     * Sorts the specified array into ascending numerical order.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort
+     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     */
+    public static void sort(char[] a) {
+        DualPivotQuicksort.sort(a, 0, a.length);
+    }
+
+    /**
+     * Sorts the specified range of the array into ascending order. The range
+     * to be sorted extends from the index {@code fromIndex}, inclusive, to
+     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
+     * the range to be sorted is empty.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort
+     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     * @param fromIndex the index of the first element, inclusive, to be sorted
+     * @param toIndex the index of the last element, exclusive, to be sorted
+     *
+     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
+     * @throws ArrayIndexOutOfBoundsException
+     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
+     */
+    public static void sort(char[] a, int fromIndex, int toIndex) {
+        rangeCheck(a.length, fromIndex, toIndex);
+        DualPivotQuicksort.sort(a, fromIndex, toIndex);
+    }
+
+    /**
+     * Sorts the specified array into ascending numerical order.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort
+     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     */
+    public static void sort(byte[] a) {
+        DualPivotQuicksort.sort(a, 0, a.length);
+    }
+
+    /**
+     * Sorts the specified range of the array into ascending order. The range
+     * to be sorted extends from the index {@code fromIndex}, inclusive, to
+     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
+     * the range to be sorted is empty.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort
+     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     * @param fromIndex the index of the first element, inclusive, to be sorted
+     * @param toIndex the index of the last element, exclusive, to be sorted
+     *
+     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
+     * @throws ArrayIndexOutOfBoundsException
+     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
+     */
+    public static void sort(byte[] a, int fromIndex, int toIndex) {
+        rangeCheck(a.length, fromIndex, toIndex);
+        DualPivotQuicksort.sort(a, fromIndex, toIndex);
+    }
+
+    /**
+     * Sorts the specified array into ascending numerical order.
+     *
+     * <p>The {@code <} relation does not provide a total order on all float
+     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
+     * value compares neither less than, greater than, nor equal to any value,
+     * even itself. This method uses the total order imposed by the method
+     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
+     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
+     * other value and all {@code Float.NaN} values are considered equal.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort
+     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     */
+    public static void sort(float[] a) {
+        DualPivotQuicksort.sort(a, 0, 0, a.length);
+    }
+
+    /**
+     * Sorts the specified range of the array into ascending order. The range
+     * to be sorted extends from the index {@code fromIndex}, inclusive, to
+     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
+     * the range to be sorted is empty.
+     *
+     * <p>The {@code <} relation does not provide a total order on all float
+     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
+     * value compares neither less than, greater than, nor equal to any value,
+     * even itself. This method uses the total order imposed by the method
+     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
+     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
+     * other value and all {@code Float.NaN} values are considered equal.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort
+     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     * @param fromIndex the index of the first element, inclusive, to be sorted
+     * @param toIndex the index of the last element, exclusive, to be sorted
+     *
+     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
+     * @throws ArrayIndexOutOfBoundsException
+     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
+     */
+    public static void sort(float[] a, int fromIndex, int toIndex) {
+        rangeCheck(a.length, fromIndex, toIndex);
+        DualPivotQuicksort.sort(a, 0, fromIndex, toIndex);
+    }
+
+    /**
+     * Sorts the specified array into ascending numerical order.
+     *
+     * <p>The {@code <} relation does not provide a total order on all double
+     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
+     * value compares neither less than, greater than, nor equal to any value,
+     * even itself. This method uses the total order imposed by the method
+     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
+     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
+     * other value and all {@code Double.NaN} values are considered equal.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort
+     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     */
+    public static void sort(double[] a) {
+        DualPivotQuicksort.sort(a, 0, 0, a.length);
+    }
+
+    /**
+     * Sorts the specified range of the array into ascending order. The range
+     * to be sorted extends from the index {@code fromIndex}, inclusive, to
+     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
+     * the range to be sorted is empty.
+     *
+     * <p>The {@code <} relation does not provide a total order on all double
+     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
+     * value compares neither less than, greater than, nor equal to any value,
+     * even itself. This method uses the total order imposed by the method
+     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
+     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
+     * other value and all {@code Double.NaN} values are considered equal.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort
+     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     * @param fromIndex the index of the first element, inclusive, to be sorted
+     * @param toIndex the index of the last element, exclusive, to be sorted
+     *
+     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
+     * @throws ArrayIndexOutOfBoundsException
+     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
+     */
+    public static void sort(double[] a, int fromIndex, int toIndex) {
+        rangeCheck(a.length, fromIndex, toIndex);
+        DualPivotQuicksort.sort(a, 0, fromIndex, toIndex);
+    }
+
+    /**
+     * Sorts the specified array into ascending numerical order.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort by
+     * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     *
+     * @since 1.8
+     */
+    public static void parallelSort(byte[] a) {
+        DualPivotQuicksort.sort(a, 0, a.length);
+    }
+
+    /**
+     * Sorts the specified range of the array into ascending numerical order.
+     * The range to be sorted extends from the index {@code fromIndex},
+     * inclusive, to the index {@code toIndex}, exclusive. If
+     * {@code fromIndex == toIndex}, the range to be sorted is empty.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort by
+     * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     * @param fromIndex the index of the first element, inclusive, to be sorted
+     * @param toIndex the index of the last element, exclusive, to be sorted
+     *
+     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
+     * @throws ArrayIndexOutOfBoundsException
+     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
+     *
+     * @since 1.8
+     */
+    public static void parallelSort(byte[] a, int fromIndex, int toIndex) {
+        rangeCheck(a.length, fromIndex, toIndex);
+        DualPivotQuicksort.sort(a, fromIndex, toIndex);
+    }
+
+    /**
+     * Sorts the specified array into ascending numerical order.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort by
+     * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     *
+     * @since 1.8
+     */
+    public static void parallelSort(char[] a) {
+        DualPivotQuicksort.sort(a, 0, a.length);
+    }
+
+    /**
+     * Sorts the specified range of the array into ascending numerical order.
+     * The range to be sorted extends from the index {@code fromIndex},
+     * inclusive, to the index {@code toIndex}, exclusive. If
+     * {@code fromIndex == toIndex}, the range to be sorted is empty.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort by
+     * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     * @param fromIndex the index of the first element, inclusive, to be sorted
+     * @param toIndex the index of the last element, exclusive, to be sorted
+     *
+     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
+     * @throws ArrayIndexOutOfBoundsException
+     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
+     *
+     * @since 1.8
+     */
+    public static void parallelSort(char[] a, int fromIndex, int toIndex) {
+        rangeCheck(a.length, fromIndex, toIndex);
+        DualPivotQuicksort.sort(a, fromIndex, toIndex);
+    }
+
+    /**
+     * Sorts the specified array into ascending numerical order.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort by
+     * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     *
+     * @since 1.8
+     */
+    public static void parallelSort(short[] a) {
+        DualPivotQuicksort.sort(a, 0, a.length);
+    }
+
+    /**
+     * Sorts the specified range of the array into ascending numerical order.
+     * The range to be sorted extends from the index {@code fromIndex},
+     * inclusive, to the index {@code toIndex}, exclusive. If
+     * {@code fromIndex == toIndex}, the range to be sorted is empty.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort by
+     * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     * @param fromIndex the index of the first element, inclusive, to be sorted
+     * @param toIndex the index of the last element, exclusive, to be sorted
+     *
+     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
+     * @throws ArrayIndexOutOfBoundsException
+     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
+     *
+     * @since 1.8
+     */
+    public static void parallelSort(short[] a, int fromIndex, int toIndex) {
+        rangeCheck(a.length, fromIndex, toIndex);
+        DualPivotQuicksort.sort(a, fromIndex, toIndex);
+    }
+
+    /**
+     * Sorts the specified array into ascending numerical order.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort by
+     * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     *
+     * @since 1.8
+     */
+    public static void parallelSort(int[] a) {
+        DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), 0, a.length);
+    }
+
+    /**
+     * Sorts the specified range of the array into ascending numerical order.
+     * The range to be sorted extends from the index {@code fromIndex},
+     * inclusive, to the index {@code toIndex}, exclusive. If
+     * {@code fromIndex == toIndex}, the range to be sorted is empty.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort by
+     * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     * @param fromIndex the index of the first element, inclusive, to be sorted
+     * @param toIndex the index of the last element, exclusive, to be sorted
+     *
+     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
+     * @throws ArrayIndexOutOfBoundsException
+     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
+     *
+     * @since 1.8
+     */
+    public static void parallelSort(int[] a, int fromIndex, int toIndex) {
+        rangeCheck(a.length, fromIndex, toIndex);
+        DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), fromIndex, toIndex);
+    }
+
+    /**
+     * Sorts the specified array into ascending numerical order.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort by
+     * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     *
+     * @since 1.8
+     */
+    public static void parallelSort(long[] a) {
+        DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), 0, a.length);
+    }
+
+    /**
+     * Sorts the specified range of the array into ascending numerical order.
+     * The range to be sorted extends from the index {@code fromIndex},
+     * inclusive, to the index {@code toIndex}, exclusive. If
+     * {@code fromIndex == toIndex}, the range to be sorted is empty.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort by
+     * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     * @param fromIndex the index of the first element, inclusive, to be sorted
+     * @param toIndex the index of the last element, exclusive, to be sorted
+     *
+     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
+     * @throws ArrayIndexOutOfBoundsException
+     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
+     *
+     * @since 1.8
+     */
+    public static void parallelSort(long[] a, int fromIndex, int toIndex) {
+        rangeCheck(a.length, fromIndex, toIndex);
+        DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), fromIndex, toIndex);
+    }
+
+    /**
+     * Sorts the specified array into ascending numerical order.
+     *
+     * <p>The {@code <} relation does not provide a total order on all float
+     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
+     * value compares neither less than, greater than, nor equal to any value,
+     * even itself. This method uses the total order imposed by the method
+     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
+     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
+     * other value and all {@code Float.NaN} values are considered equal.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort by
+     * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     *
+     * @since 1.8
+     */
+    public static void parallelSort(float[] a) {
+        DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), 0, a.length);
+    }
+
+    /**
+     * Sorts the specified range of the array into ascending numerical order.
+     * The range to be sorted extends from the index {@code fromIndex},
+     * inclusive, to the index {@code toIndex}, exclusive. If
+     * {@code fromIndex == toIndex}, the range to be sorted is empty.
+     *
+     * <p>The {@code <} relation does not provide a total order on all float
+     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
+     * value compares neither less than, greater than, nor equal to any value,
+     * even itself. This method uses the total order imposed by the method
+     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
+     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
+     * other value and all {@code Float.NaN} values are considered equal.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort by
+     * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     * @param fromIndex the index of the first element, inclusive, to be sorted
+     * @param toIndex the index of the last element, exclusive, to be sorted
+     *
+     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
+     * @throws ArrayIndexOutOfBoundsException
+     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
+     *
+     * @since 1.8
+     */
+    public static void parallelSort(float[] a, int fromIndex, int toIndex) {
+        rangeCheck(a.length, fromIndex, toIndex);
+        DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), fromIndex, toIndex);
+    }
+
+    /**
+     * Sorts the specified array into ascending numerical order.
+     *
+     * <p>The {@code <} relation does not provide a total order on all double
+     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
+     * value compares neither less than, greater than, nor equal to any value,
+     * even itself. This method uses the total order imposed by the method
+     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
+     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
+     * other value and all {@code Double.NaN} values are considered equal.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort by
+     * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     *
+     * @since 1.8
+     */
+    public static void parallelSort(double[] a) {
+        DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), 0, a.length);
+    }
+
+    /**
+     * Sorts the specified range of the array into ascending numerical order.
+     * The range to be sorted extends from the index {@code fromIndex},
+     * inclusive, to the index {@code toIndex}, exclusive. If
+     * {@code fromIndex == toIndex}, the range to be sorted is empty.
+     *
+     * <p>The {@code <} relation does not provide a total order on all double
+     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
+     * value compares neither less than, greater than, nor equal to any value,
+     * even itself. This method uses the total order imposed by the method
+     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
+     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
+     * other value and all {@code Double.NaN} values are considered equal.
+     *
+     * @implNote The sorting algorithm is a Dual-Pivot Quicksort by
+     * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
+     * offers O(n log(n)) performance on all data sets, and is typically
+     * faster than traditional (one-pivot) Quicksort implementations.
+     *
+     * @param a the array to be sorted
+     * @param fromIndex the index of the first element, inclusive, to be sorted
+     * @param toIndex the index of the last element, exclusive, to be sorted
+     *
+     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
+     * @throws ArrayIndexOutOfBoundsException
+     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
+     *
+     * @since 1.8
+     */
+    public static void parallelSort(double[] a, int fromIndex, int toIndex) {
+        rangeCheck(a.length, fromIndex, toIndex);
+        DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), fromIndex, toIndex);
+    }
+
+    /**
+     * Checks that {@code fromIndex} and {@code toIndex} are in
+     * the range and throws an exception if they aren't.
+     */
+    static void rangeCheck(int arrayLength, int fromIndex, int toIndex) {
+        if (fromIndex > toIndex) {
+            throw new IllegalArgumentException(
+                "fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")");
+        }
+        if (fromIndex < 0) {
+            throw new ArrayIndexOutOfBoundsException(fromIndex);
+        }
+        if (toIndex > arrayLength) {
+            throw new ArrayIndexOutOfBoundsException(toIndex);
+        }
+    }
+
     /**
      * A comparator that implements the natural ordering of a group of
      * mutually comparable elements. May be used when a supplied
@@ -109,863 +750,12 @@
     }
 
     /**
-     * Checks that {@code fromIndex} and {@code toIndex} are in
-     * the range and throws an exception if they aren't.
-     */
-    static void rangeCheck(int arrayLength, int fromIndex, int toIndex) {
-        if (fromIndex > toIndex) {
-            throw new IllegalArgumentException(
-                    "fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")");
-        }
-        if (fromIndex < 0) {
-            throw new ArrayIndexOutOfBoundsException(fromIndex);
-        }
-        if (toIndex > arrayLength) {
-            throw new ArrayIndexOutOfBoundsException(toIndex);
-        }
-    }
-
-    /*
-     * Sorting methods. Note that all public "sort" methods take the
-     * same form: Performing argument checks if necessary, and then
-     * expanding arguments into those required for the internal
-     * implementation methods residing in other package-private
-     * classes (except for legacyMergeSort, included in this class).
-     */
-
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     */
-    public static void sort(int[] a) {
-        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending order. The range
-     * to be sorted extends from the index {@code fromIndex}, inclusive, to
-     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
-     * the range to be sorted is empty.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     */
-    public static void sort(int[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     */
-    public static void sort(long[] a) {
-        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending order. The range
-     * to be sorted extends from the index {@code fromIndex}, inclusive, to
-     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
-     * the range to be sorted is empty.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     */
-    public static void sort(long[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     */
-    public static void sort(short[] a) {
-        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending order. The range
-     * to be sorted extends from the index {@code fromIndex}, inclusive, to
-     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
-     * the range to be sorted is empty.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     */
-    public static void sort(short[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     */
-    public static void sort(char[] a) {
-        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending order. The range
-     * to be sorted extends from the index {@code fromIndex}, inclusive, to
-     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
-     * the range to be sorted is empty.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     */
-    public static void sort(char[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     */
-    public static void sort(byte[] a) {
-        DualPivotQuicksort.sort(a, 0, a.length - 1);
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending order. The range
-     * to be sorted extends from the index {@code fromIndex}, inclusive, to
-     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
-     * the range to be sorted is empty.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     */
-    public static void sort(byte[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * <p>The {@code <} relation does not provide a total order on all float
-     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
-     * value compares neither less than, greater than, nor equal to any value,
-     * even itself. This method uses the total order imposed by the method
-     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
-     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
-     * other value and all {@code Float.NaN} values are considered equal.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     */
-    public static void sort(float[] a) {
-        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending order. The range
-     * to be sorted extends from the index {@code fromIndex}, inclusive, to
-     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
-     * the range to be sorted is empty.
-     *
-     * <p>The {@code <} relation does not provide a total order on all float
-     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
-     * value compares neither less than, greater than, nor equal to any value,
-     * even itself. This method uses the total order imposed by the method
-     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
-     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
-     * other value and all {@code Float.NaN} values are considered equal.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     */
-    public static void sort(float[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * <p>The {@code <} relation does not provide a total order on all double
-     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
-     * value compares neither less than, greater than, nor equal to any value,
-     * even itself. This method uses the total order imposed by the method
-     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
-     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
-     * other value and all {@code Double.NaN} values are considered equal.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     */
-    public static void sort(double[] a) {
-        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending order. The range
-     * to be sorted extends from the index {@code fromIndex}, inclusive, to
-     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
-     * the range to be sorted is empty.
-     *
-     * <p>The {@code <} relation does not provide a total order on all double
-     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
-     * value compares neither less than, greater than, nor equal to any value,
-     * even itself. This method uses the total order imposed by the method
-     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
-     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
-     * other value and all {@code Double.NaN} values are considered equal.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     */
-    public static void sort(double[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(byte[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(byte[]) Arrays.sort} method. The algorithm requires a
-     * working space no greater than the size of the original array. The
-     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
-     * execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(byte[] a) {
-        int n = a.length, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, 0, n - 1);
-        else
-            new ArraysParallelSortHelpers.FJByte.Sorter
-                (null, a, new byte[n], 0, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending numerical order.
-     * The range to be sorted extends from the index {@code fromIndex},
-     * inclusive, to the index {@code toIndex}, exclusive. If
-     * {@code fromIndex == toIndex}, the range to be sorted is empty.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(byte[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(byte[]) Arrays.sort} method. The algorithm requires a working
-     * space no greater than the size of the specified range of the original
-     * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is
-     * used to execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(byte[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        int n = toIndex - fromIndex, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
-        else
-            new ArraysParallelSortHelpers.FJByte.Sorter
-                (null, a, new byte[n], fromIndex, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(char[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(char[]) Arrays.sort} method. The algorithm requires a
-     * working space no greater than the size of the original array. The
-     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
-     * execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(char[] a) {
-        int n = a.length, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJChar.Sorter
-                (null, a, new char[n], 0, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending numerical order.
-     * The range to be sorted extends from the index {@code fromIndex},
-     * inclusive, to the index {@code toIndex}, exclusive. If
-     * {@code fromIndex == toIndex}, the range to be sorted is empty.
-     *
-      @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(char[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(char[]) Arrays.sort} method. The algorithm requires a working
-     * space no greater than the size of the specified range of the original
-     * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is
-     * used to execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(char[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        int n = toIndex - fromIndex, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJChar.Sorter
-                (null, a, new char[n], fromIndex, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(short[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(short[]) Arrays.sort} method. The algorithm requires a
-     * working space no greater than the size of the original array. The
-     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
-     * execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(short[] a) {
-        int n = a.length, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJShort.Sorter
-                (null, a, new short[n], 0, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending numerical order.
-     * The range to be sorted extends from the index {@code fromIndex},
-     * inclusive, to the index {@code toIndex}, exclusive. If
-     * {@code fromIndex == toIndex}, the range to be sorted is empty.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(short[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(short[]) Arrays.sort} method. The algorithm requires a working
-     * space no greater than the size of the specified range of the original
-     * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is
-     * used to execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(short[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        int n = toIndex - fromIndex, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJShort.Sorter
-                (null, a, new short[n], fromIndex, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(int[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(int[]) Arrays.sort} method. The algorithm requires a
-     * working space no greater than the size of the original array. The
-     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
-     * execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(int[] a) {
-        int n = a.length, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJInt.Sorter
-                (null, a, new int[n], 0, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending numerical order.
-     * The range to be sorted extends from the index {@code fromIndex},
-     * inclusive, to the index {@code toIndex}, exclusive. If
-     * {@code fromIndex == toIndex}, the range to be sorted is empty.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(int[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(int[]) Arrays.sort} method. The algorithm requires a working
-     * space no greater than the size of the specified range of the original
-     * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is
-     * used to execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(int[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        int n = toIndex - fromIndex, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJInt.Sorter
-                (null, a, new int[n], fromIndex, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(long[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(long[]) Arrays.sort} method. The algorithm requires a
-     * working space no greater than the size of the original array. The
-     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
-     * execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(long[] a) {
-        int n = a.length, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJLong.Sorter
-                (null, a, new long[n], 0, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending numerical order.
-     * The range to be sorted extends from the index {@code fromIndex},
-     * inclusive, to the index {@code toIndex}, exclusive. If
-     * {@code fromIndex == toIndex}, the range to be sorted is empty.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(long[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(long[]) Arrays.sort} method. The algorithm requires a working
-     * space no greater than the size of the specified range of the original
-     * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is
-     * used to execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(long[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        int n = toIndex - fromIndex, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJLong.Sorter
-                (null, a, new long[n], fromIndex, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * <p>The {@code <} relation does not provide a total order on all float
-     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
-     * value compares neither less than, greater than, nor equal to any value,
-     * even itself. This method uses the total order imposed by the method
-     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
-     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
-     * other value and all {@code Float.NaN} values are considered equal.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(float[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(float[]) Arrays.sort} method. The algorithm requires a
-     * working space no greater than the size of the original array. The
-     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
-     * execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(float[] a) {
-        int n = a.length, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJFloat.Sorter
-                (null, a, new float[n], 0, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending numerical order.
-     * The range to be sorted extends from the index {@code fromIndex},
-     * inclusive, to the index {@code toIndex}, exclusive. If
-     * {@code fromIndex == toIndex}, the range to be sorted is empty.
-     *
-     * <p>The {@code <} relation does not provide a total order on all float
-     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
-     * value compares neither less than, greater than, nor equal to any value,
-     * even itself. This method uses the total order imposed by the method
-     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
-     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
-     * other value and all {@code Float.NaN} values are considered equal.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(float[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(float[]) Arrays.sort} method. The algorithm requires a working
-     * space no greater than the size of the specified range of the original
-     * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is
-     * used to execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(float[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        int n = toIndex - fromIndex, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJFloat.Sorter
-                (null, a, new float[n], fromIndex, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * <p>The {@code <} relation does not provide a total order on all double
-     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
-     * value compares neither less than, greater than, nor equal to any value,
-     * even itself. This method uses the total order imposed by the method
-     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
-     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
-     * other value and all {@code Double.NaN} values are considered equal.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(double[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(double[]) Arrays.sort} method. The algorithm requires a
-     * working space no greater than the size of the original array. The
-     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
-     * execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(double[] a) {
-        int n = a.length, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJDouble.Sorter
-                (null, a, new double[n], 0, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending numerical order.
-     * The range to be sorted extends from the index {@code fromIndex},
-     * inclusive, to the index {@code toIndex}, exclusive. If
-     * {@code fromIndex == toIndex}, the range to be sorted is empty.
-     *
-     * <p>The {@code <} relation does not provide a total order on all double
-     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
-     * value compares neither less than, greater than, nor equal to any value,
-     * even itself. This method uses the total order imposed by the method
-     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
-     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
-     * other value and all {@code Double.NaN} values are considered equal.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(double[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(double[]) Arrays.sort} method. The algorithm requires a working
-     * space no greater than the size of the specified range of the original
-     * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is
-     * used to execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(double[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        int n = toIndex - fromIndex, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJDouble.Sorter
-                (null, a, new double[n], fromIndex, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
+     * The minimum array length below which a parallel sorting
+     * algorithm will not further partition the sorting task. Using
+     * smaller sizes typically results in memory contention across
+     * tasks that makes parallel speedups unlikely.
+     */
+    private static final int MIN_ARRAY_SORT_GRAN = 1 << 13;
 
     /**
      * Sorts the specified array of objects into ascending order, according
--- a/src/java.base/share/classes/java/util/ArraysParallelSortHelpers.java	Tue Nov 12 21:00:08 2019 +0000
+++ b/src/java.base/share/classes/java/util/ArraysParallelSortHelpers.java	Tue Nov 12 13:49:40 2019 -0800
@@ -24,7 +24,6 @@
  */
 package java.util;
 
-import java.util.concurrent.RecursiveAction;
 import java.util.concurrent.CountedCompleter;
 
 /**
@@ -36,7 +35,7 @@
  * Sorter classes based mainly on CilkSort
  * <A href="http://supertech.lcs.mit.edu/cilk/"> Cilk</A>:
  * Basic algorithm:
- * if array size is small, just use a sequential quicksort (via Arrays.sort)
+ * if array size is small, just use a sequential sort (via Arrays.sort)
  *         Otherwise:
  *         1. Break array in half.
  *         2. For each half,
@@ -63,14 +62,10 @@
  * need to keep track of the arrays, and are never themselves forked,
  * so don't hold any task state.
  *
- * The primitive class versions (FJByte... FJDouble) are
- * identical to each other except for type declarations.
- *
  * The base sequential sorts rely on non-public versions of TimSort,
- * ComparableTimSort, and DualPivotQuicksort sort methods that accept
- * temp workspace array slices that we will have already allocated, so
- * avoids redundant allocation. (Except for DualPivotQuicksort byte[]
- * sort, that does not ever use a workspace array.)
+ * ComparableTimSort sort methods that accept temp workspace array
+ * slices that we will have already allocated, so avoids redundant
+ * allocation.
  */
 /*package*/ class ArraysParallelSortHelpers {
 
@@ -142,7 +137,7 @@
                     Relay rc = new Relay(new Merger<>(fc, a, w, b+h, q,
                                                       b+u, n-u, wb+h, g, c));
                     new Sorter<>(rc, a, w, b+u, n-u, wb+u, g, c).fork();
-                    new Sorter<>(rc, a, w, b+h, q, wb+h, g, c).fork();;
+                    new Sorter<>(rc, a, w, b+h, q, wb+h, g, c).fork();
                     Relay bc = new Relay(new Merger<>(fc, a, w, b, q,
                                                       b+q, h-q, wb, g, c));
                     new Sorter<>(bc, a, w, b+q, h-q, wb+q, g, c).fork();
@@ -239,799 +234,6 @@
 
                 tryComplete();
             }
-
         }
-    } // FJObject
-
-    /** byte support class */
-    static final class FJByte {
-        static final class Sorter extends CountedCompleter<Void> {
-            @java.io.Serial
-            static final long serialVersionUID = 2446542900576103244L;
-            final byte[] a, w;
-            final int base, size, wbase, gran;
-            Sorter(CountedCompleter<?> par, byte[] a, byte[] w, int base,
-                   int size, int wbase, int gran) {
-                super(par);
-                this.a = a; this.w = w; this.base = base; this.size = size;
-                this.wbase = wbase; this.gran = gran;
-            }
-            public final void compute() {
-                CountedCompleter<?> s = this;
-                byte[] a = this.a, w = this.w; // localize all params
-                int b = this.base, n = this.size, wb = this.wbase, g = this.gran;
-                while (n > g) {
-                    int h = n >>> 1, q = h >>> 1, u = h + q; // quartiles
-                    Relay fc = new Relay(new Merger(s, w, a, wb, h,
-                                                    wb+h, n-h, b, g));
-                    Relay rc = new Relay(new Merger(fc, a, w, b+h, q,
-                                                    b+u, n-u, wb+h, g));
-                    new Sorter(rc, a, w, b+u, n-u, wb+u, g).fork();
-                    new Sorter(rc, a, w, b+h, q, wb+h, g).fork();;
-                    Relay bc = new Relay(new Merger(fc, a, w, b, q,
-                                                    b+q, h-q, wb, g));
-                    new Sorter(bc, a, w, b+q, h-q, wb+q, g).fork();
-                    s = new EmptyCompleter(bc);
-                    n = q;
-                }
-                DualPivotQuicksort.sort(a, b, b + n - 1);
-                s.tryComplete();
-            }
-        }
-
-        static final class Merger extends CountedCompleter<Void> {
-            @java.io.Serial
-            static final long serialVersionUID = 2446542900576103244L;
-            final byte[] a, w; // main and workspace arrays
-            final int lbase, lsize, rbase, rsize, wbase, gran;
-            Merger(CountedCompleter<?> par, byte[] a, byte[] w,
-                   int lbase, int lsize, int rbase,
-                   int rsize, int wbase, int gran) {
-                super(par);
-                this.a = a; this.w = w;
-                this.lbase = lbase; this.lsize = lsize;
-                this.rbase = rbase; this.rsize = rsize;
-                this.wbase = wbase; this.gran = gran;
-            }
-
-            public final void compute() {
-                byte[] a = this.a, w = this.w; // localize all params
-                int lb = this.lbase, ln = this.lsize, rb = this.rbase,
-                    rn = this.rsize, k = this.wbase, g = this.gran;
-                if (a == null || w == null || lb < 0 || rb < 0 || k < 0)
-                    throw new IllegalStateException(); // hoist checks
-                for (int lh, rh;;) {  // split larger, find point in smaller
-                    if (ln >= rn) {
-                        if (ln <= g)
-                            break;
-                        rh = rn;
-                        byte split = a[(lh = ln >>> 1) + lb];
-                        for (int lo = 0; lo < rh; ) {
-                            int rm = (lo + rh) >>> 1;
-                            if (split <= a[rm + rb])
-                                rh = rm;
-                            else
-                                lo = rm + 1;
-                        }
-                    }
-                    else {
-                        if (rn <= g)
-                            break;
-                        lh = ln;
-                        byte split = a[(rh = rn >>> 1) + rb];
-                        for (int lo = 0; lo < lh; ) {
-                            int lm = (lo + lh) >>> 1;
-                            if (split <= a[lm + lb])
-                                lh = lm;
-                            else
-                                lo = lm + 1;
-                        }
-                    }
-                    Merger m = new Merger(this, a, w, lb + lh, ln - lh,
-                                          rb + rh, rn - rh,
-                                          k + lh + rh, g);
-                    rn = rh;
-                    ln = lh;
-                    addToPendingCount(1);
-                    m.fork();
-                }
-
-                int lf = lb + ln, rf = rb + rn; // index bounds
-                while (lb < lf && rb < rf) {
-                    byte t, al, ar;
-                    if ((al = a[lb]) <= (ar = a[rb])) {
-                        lb++; t = al;
-                    }
-                    else {
-                        rb++; t = ar;
-                    }
-                    w[k++] = t;
-                }
-                if (rb < rf)
-                    System.arraycopy(a, rb, w, k, rf - rb);
-                else if (lb < lf)
-                    System.arraycopy(a, lb, w, k, lf - lb);
-                tryComplete();
-            }
-        }
-    } // FJByte
-
-    /** char support class */
-    static final class FJChar {
-        static final class Sorter extends CountedCompleter<Void> {
-            @java.io.Serial
-            static final long serialVersionUID = 2446542900576103244L;
-            final char[] a, w;
-            final int base, size, wbase, gran;
-            Sorter(CountedCompleter<?> par, char[] a, char[] w, int base,
-                   int size, int wbase, int gran) {
-                super(par);
-                this.a = a; this.w = w; this.base = base; this.size = size;
-                this.wbase = wbase; this.gran = gran;
-            }
-            public final void compute() {
-                CountedCompleter<?> s = this;
-                char[] a = this.a, w = this.w; // localize all params
-                int b = this.base, n = this.size, wb = this.wbase, g = this.gran;
-                while (n > g) {
-                    int h = n >>> 1, q = h >>> 1, u = h + q; // quartiles
-                    Relay fc = new Relay(new Merger(s, w, a, wb, h,
-                                                    wb+h, n-h, b, g));
-                    Relay rc = new Relay(new Merger(fc, a, w, b+h, q,
-                                                    b+u, n-u, wb+h, g));
-                    new Sorter(rc, a, w, b+u, n-u, wb+u, g).fork();
-                    new Sorter(rc, a, w, b+h, q, wb+h, g).fork();;
-                    Relay bc = new Relay(new Merger(fc, a, w, b, q,
-                                                    b+q, h-q, wb, g));
-                    new Sorter(bc, a, w, b+q, h-q, wb+q, g).fork();
-                    s = new EmptyCompleter(bc);
-                    n = q;
-                }
-                DualPivotQuicksort.sort(a, b, b + n - 1, w, wb, n);
-                s.tryComplete();
-            }
-        }
-
-        static final class Merger extends CountedCompleter<Void> {
-            @java.io.Serial
-            static final long serialVersionUID = 2446542900576103244L;
-            final char[] a, w; // main and workspace arrays
-            final int lbase, lsize, rbase, rsize, wbase, gran;
-            Merger(CountedCompleter<?> par, char[] a, char[] w,
-                   int lbase, int lsize, int rbase,
-                   int rsize, int wbase, int gran) {
-                super(par);
-                this.a = a; this.w = w;
-                this.lbase = lbase; this.lsize = lsize;
-                this.rbase = rbase; this.rsize = rsize;
-                this.wbase = wbase; this.gran = gran;
-            }
-
-            public final void compute() {
-                char[] a = this.a, w = this.w; // localize all params
-                int lb = this.lbase, ln = this.lsize, rb = this.rbase,
-                    rn = this.rsize, k = this.wbase, g = this.gran;
-                if (a == null || w == null || lb < 0 || rb < 0 || k < 0)
-                    throw new IllegalStateException(); // hoist checks
-                for (int lh, rh;;) {  // split larger, find point in smaller
-                    if (ln >= rn) {
-                        if (ln <= g)
-                            break;
-                        rh = rn;
-                        char split = a[(lh = ln >>> 1) + lb];
-                        for (int lo = 0; lo < rh; ) {
-                            int rm = (lo + rh) >>> 1;
-                            if (split <= a[rm + rb])
-                                rh = rm;
-                            else
-                                lo = rm + 1;
-                        }
-                    }
-                    else {
-                        if (rn <= g)
-                            break;
-                        lh = ln;
-                        char split = a[(rh = rn >>> 1) + rb];
-                        for (int lo = 0; lo < lh; ) {
-                            int lm = (lo + lh) >>> 1;
-                            if (split <= a[lm + lb])
-                                lh = lm;
-                            else
-                                lo = lm + 1;
-                        }
-                    }
-                    Merger m = new Merger(this, a, w, lb + lh, ln - lh,
-                                          rb + rh, rn - rh,
-                                          k + lh + rh, g);
-                    rn = rh;
-                    ln = lh;
-                    addToPendingCount(1);
-                    m.fork();
-                }
-
-                int lf = lb + ln, rf = rb + rn; // index bounds
-                while (lb < lf && rb < rf) {
-                    char t, al, ar;
-                    if ((al = a[lb]) <= (ar = a[rb])) {
-                        lb++; t = al;
-                    }
-                    else {
-                        rb++; t = ar;
-                    }
-                    w[k++] = t;
-                }
-                if (rb < rf)
-                    System.arraycopy(a, rb, w, k, rf - rb);
-                else if (lb < lf)
-                    System.arraycopy(a, lb, w, k, lf - lb);
-                tryComplete();
-            }
-        }
-    } // FJChar
-
-    /** short support class */
-    static final class FJShort {
-        static final class Sorter extends CountedCompleter<Void> {
-            @java.io.Serial
-            static final long serialVersionUID = 2446542900576103244L;
-            final short[] a, w;
-            final int base, size, wbase, gran;
-            Sorter(CountedCompleter<?> par, short[] a, short[] w, int base,
-                   int size, int wbase, int gran) {
-                super(par);
-                this.a = a; this.w = w; this.base = base; this.size = size;
-                this.wbase = wbase; this.gran = gran;
-            }
-            public final void compute() {
-                CountedCompleter<?> s = this;
-                short[] a = this.a, w = this.w; // localize all params
-                int b = this.base, n = this.size, wb = this.wbase, g = this.gran;
-                while (n > g) {
-                    int h = n >>> 1, q = h >>> 1, u = h + q; // quartiles
-                    Relay fc = new Relay(new Merger(s, w, a, wb, h,
-                                                    wb+h, n-h, b, g));
-                    Relay rc = new Relay(new Merger(fc, a, w, b+h, q,
-                                                    b+u, n-u, wb+h, g));
-                    new Sorter(rc, a, w, b+u, n-u, wb+u, g).fork();
-                    new Sorter(rc, a, w, b+h, q, wb+h, g).fork();;
-                    Relay bc = new Relay(new Merger(fc, a, w, b, q,
-                                                    b+q, h-q, wb, g));
-                    new Sorter(bc, a, w, b+q, h-q, wb+q, g).fork();
-                    s = new EmptyCompleter(bc);
-                    n = q;
-                }
-                DualPivotQuicksort.sort(a, b, b + n - 1, w, wb, n);
-                s.tryComplete();
-            }
-        }
-
-        static final class Merger extends CountedCompleter<Void> {
-            @java.io.Serial
-            static final long serialVersionUID = 2446542900576103244L;
-            final short[] a, w; // main and workspace arrays
-            final int lbase, lsize, rbase, rsize, wbase, gran;
-            Merger(CountedCompleter<?> par, short[] a, short[] w,
-                   int lbase, int lsize, int rbase,
-                   int rsize, int wbase, int gran) {
-                super(par);
-                this.a = a; this.w = w;
-                this.lbase = lbase; this.lsize = lsize;
-                this.rbase = rbase; this.rsize = rsize;
-                this.wbase = wbase; this.gran = gran;
-            }
-
-            public final void compute() {
-                short[] a = this.a, w = this.w; // localize all params
-                int lb = this.lbase, ln = this.lsize, rb = this.rbase,
-                    rn = this.rsize, k = this.wbase, g = this.gran;
-                if (a == null || w == null || lb < 0 || rb < 0 || k < 0)
-                    throw new IllegalStateException(); // hoist checks
-                for (int lh, rh;;) {  // split larger, find point in smaller
-                    if (ln >= rn) {
-                        if (ln <= g)
-                            break;
-                        rh = rn;
-                        short split = a[(lh = ln >>> 1) + lb];
-                        for (int lo = 0; lo < rh; ) {
-                            int rm = (lo + rh) >>> 1;
-                            if (split <= a[rm + rb])
-                                rh = rm;
-                            else
-                                lo = rm + 1;
-                        }
-                    }
-                    else {
-                        if (rn <= g)
-                            break;
-                        lh = ln;
-                        short split = a[(rh = rn >>> 1) + rb];
-                        for (int lo = 0; lo < lh; ) {
-                            int lm = (lo + lh) >>> 1;
-                            if (split <= a[lm + lb])
-                                lh = lm;
-                            else
-                                lo = lm + 1;
-                        }
-                    }
-                    Merger m = new Merger(this, a, w, lb + lh, ln - lh,
-                                          rb + rh, rn - rh,
-                                          k + lh + rh, g);
-                    rn = rh;
-                    ln = lh;
-                    addToPendingCount(1);
-                    m.fork();
-                }
-
-                int lf = lb + ln, rf = rb + rn; // index bounds
-                while (lb < lf && rb < rf) {
-                    short t, al, ar;
-                    if ((al = a[lb]) <= (ar = a[rb])) {
-                        lb++; t = al;
-                    }
-                    else {
-                        rb++; t = ar;
-                    }
-                    w[k++] = t;
-                }
-                if (rb < rf)
-                    System.arraycopy(a, rb, w, k, rf - rb);
-                else if (lb < lf)
-                    System.arraycopy(a, lb, w, k, lf - lb);
-                tryComplete();
-            }
-        }
-    } // FJShort
-
-    /** int support class */
-    static final class FJInt {
-        static final class Sorter extends CountedCompleter<Void> {
-            @java.io.Serial
-            static final long serialVersionUID = 2446542900576103244L;
-            final int[] a, w;
-            final int base, size, wbase, gran;
-            Sorter(CountedCompleter<?> par, int[] a, int[] w, int base,
-                   int size, int wbase, int gran) {
-                super(par);
-                this.a = a; this.w = w; this.base = base; this.size = size;
-                this.wbase = wbase; this.gran = gran;
-            }
-            public final void compute() {
-                CountedCompleter<?> s = this;
-                int[] a = this.a, w = this.w; // localize all params
-                int b = this.base, n = this.size, wb = this.wbase, g = this.gran;
-                while (n > g) {
-                    int h = n >>> 1, q = h >>> 1, u = h + q; // quartiles
-                    Relay fc = new Relay(new Merger(s, w, a, wb, h,
-                                                    wb+h, n-h, b, g));
-                    Relay rc = new Relay(new Merger(fc, a, w, b+h, q,
-                                                    b+u, n-u, wb+h, g));
-                    new Sorter(rc, a, w, b+u, n-u, wb+u, g).fork();
-                    new Sorter(rc, a, w, b+h, q, wb+h, g).fork();;
-                    Relay bc = new Relay(new Merger(fc, a, w, b, q,
-                                                    b+q, h-q, wb, g));
-                    new Sorter(bc, a, w, b+q, h-q, wb+q, g).fork();
-                    s = new EmptyCompleter(bc);
-                    n = q;
-                }
-                DualPivotQuicksort.sort(a, b, b + n - 1, w, wb, n);
-                s.tryComplete();
-            }
-        }
-
-        static final class Merger extends CountedCompleter<Void> {
-            @java.io.Serial
-            static final long serialVersionUID = 2446542900576103244L;
-            final int[] a, w; // main and workspace arrays
-            final int lbase, lsize, rbase, rsize, wbase, gran;
-            Merger(CountedCompleter<?> par, int[] a, int[] w,
-                   int lbase, int lsize, int rbase,
-                   int rsize, int wbase, int gran) {
-                super(par);
-                this.a = a; this.w = w;
-                this.lbase = lbase; this.lsize = lsize;
-                this.rbase = rbase; this.rsize = rsize;
-                this.wbase = wbase; this.gran = gran;
-            }
-
-            public final void compute() {
-                int[] a = this.a, w = this.w; // localize all params
-                int lb = this.lbase, ln = this.lsize, rb = this.rbase,
-                    rn = this.rsize, k = this.wbase, g = this.gran;
-                if (a == null || w == null || lb < 0 || rb < 0 || k < 0)
-                    throw new IllegalStateException(); // hoist checks
-                for (int lh, rh;;) {  // split larger, find point in smaller
-                    if (ln >= rn) {
-                        if (ln <= g)
-                            break;
-                        rh = rn;
-                        int split = a[(lh = ln >>> 1) + lb];
-                        for (int lo = 0; lo < rh; ) {
-                            int rm = (lo + rh) >>> 1;
-                            if (split <= a[rm + rb])
-                                rh = rm;
-                            else
-                                lo = rm + 1;
-                        }
-                    }
-                    else {
-                        if (rn <= g)
-                            break;
-                        lh = ln;
-                        int split = a[(rh = rn >>> 1) + rb];
-                        for (int lo = 0; lo < lh; ) {
-                            int lm = (lo + lh) >>> 1;
-                            if (split <= a[lm + lb])
-                                lh = lm;
-                            else
-                                lo = lm + 1;
-                        }
-                    }
-                    Merger m = new Merger(this, a, w, lb + lh, ln - lh,
-                                          rb + rh, rn - rh,
-                                          k + lh + rh, g);
-                    rn = rh;
-                    ln = lh;
-                    addToPendingCount(1);
-                    m.fork();
-                }
-
-                int lf = lb + ln, rf = rb + rn; // index bounds
-                while (lb < lf && rb < rf) {
-                    int t, al, ar;
-                    if ((al = a[lb]) <= (ar = a[rb])) {
-                        lb++; t = al;
-                    }
-                    else {
-                        rb++; t = ar;
-                    }
-                    w[k++] = t;
-                }
-                if (rb < rf)
-                    System.arraycopy(a, rb, w, k, rf - rb);
-                else if (lb < lf)
-                    System.arraycopy(a, lb, w, k, lf - lb);
-                tryComplete();
-            }
-        }
-    } // FJInt
-
-    /** long support class */
-    static final class FJLong {
-        static final class Sorter extends CountedCompleter<Void> {
-            @java.io.Serial
-            static final long serialVersionUID = 2446542900576103244L;
-            final long[] a, w;
-            final int base, size, wbase, gran;
-            Sorter(CountedCompleter<?> par, long[] a, long[] w, int base,
-                   int size, int wbase, int gran) {
-                super(par);
-                this.a = a; this.w = w; this.base = base; this.size = size;
-                this.wbase = wbase; this.gran = gran;
-            }
-            public final void compute() {
-                CountedCompleter<?> s = this;
-                long[] a = this.a, w = this.w; // localize all params
-                int b = this.base, n = this.size, wb = this.wbase, g = this.gran;
-                while (n > g) {
-                    int h = n >>> 1, q = h >>> 1, u = h + q; // quartiles
-                    Relay fc = new Relay(new Merger(s, w, a, wb, h,
-                                                    wb+h, n-h, b, g));
-                    Relay rc = new Relay(new Merger(fc, a, w, b+h, q,
-                                                    b+u, n-u, wb+h, g));
-                    new Sorter(rc, a, w, b+u, n-u, wb+u, g).fork();
-                    new Sorter(rc, a, w, b+h, q, wb+h, g).fork();;
-                    Relay bc = new Relay(new Merger(fc, a, w, b, q,
-                                                    b+q, h-q, wb, g));
-                    new Sorter(bc, a, w, b+q, h-q, wb+q, g).fork();
-                    s = new EmptyCompleter(bc);
-                    n = q;
-                }
-                DualPivotQuicksort.sort(a, b, b + n - 1, w, wb, n);
-                s.tryComplete();
-            }
-        }
-
-        static final class Merger extends CountedCompleter<Void> {
-            @java.io.Serial
-            static final long serialVersionUID = 2446542900576103244L;
-            final long[] a, w; // main and workspace arrays
-            final int lbase, lsize, rbase, rsize, wbase, gran;
-            Merger(CountedCompleter<?> par, long[] a, long[] w,
-                   int lbase, int lsize, int rbase,
-                   int rsize, int wbase, int gran) {
-                super(par);
-                this.a = a; this.w = w;
-                this.lbase = lbase; this.lsize = lsize;
-                this.rbase = rbase; this.rsize = rsize;
-                this.wbase = wbase; this.gran = gran;
-            }
-
-            public final void compute() {
-                long[] a = this.a, w = this.w; // localize all params
-                int lb = this.lbase, ln = this.lsize, rb = this.rbase,
-                    rn = this.rsize, k = this.wbase, g = this.gran;
-                if (a == null || w == null || lb < 0 || rb < 0 || k < 0)
-                    throw new IllegalStateException(); // hoist checks
-                for (int lh, rh;;) {  // split larger, find point in smaller
-                    if (ln >= rn) {
-                        if (ln <= g)
-                            break;
-                        rh = rn;
-                        long split = a[(lh = ln >>> 1) + lb];
-                        for (int lo = 0; lo < rh; ) {
-                            int rm = (lo + rh) >>> 1;
-                            if (split <= a[rm + rb])
-                                rh = rm;
-                            else
-                                lo = rm + 1;
-                        }
-                    }
-                    else {
-                        if (rn <= g)
-                            break;
-                        lh = ln;
-                        long split = a[(rh = rn >>> 1) + rb];
-                        for (int lo = 0; lo < lh; ) {
-                            int lm = (lo + lh) >>> 1;
-                            if (split <= a[lm + lb])
-                                lh = lm;
-                            else
-                                lo = lm + 1;
-                        }
-                    }
-                    Merger m = new Merger(this, a, w, lb + lh, ln - lh,
-                                          rb + rh, rn - rh,
-                                          k + lh + rh, g);
-                    rn = rh;
-                    ln = lh;
-                    addToPendingCount(1);
-                    m.fork();
-                }
-
-                int lf = lb + ln, rf = rb + rn; // index bounds
-                while (lb < lf && rb < rf) {
-                    long t, al, ar;
-                    if ((al = a[lb]) <= (ar = a[rb])) {
-                        lb++; t = al;
-                    }
-                    else {
-                        rb++; t = ar;
-                    }
-                    w[k++] = t;
-                }
-                if (rb < rf)
-                    System.arraycopy(a, rb, w, k, rf - rb);
-                else if (lb < lf)
-                    System.arraycopy(a, lb, w, k, lf - lb);
-                tryComplete();
-            }
-        }
-    } // FJLong
-
-    /** float support class */
-    static final class FJFloat {
-        static final class Sorter extends CountedCompleter<Void> {
-            @java.io.Serial
-            static final long serialVersionUID = 2446542900576103244L;
-            final float[] a, w;
-            final int base, size, wbase, gran;
-            Sorter(CountedCompleter<?> par, float[] a, float[] w, int base,
-                   int size, int wbase, int gran) {
-                super(par);
-                this.a = a; this.w = w; this.base = base; this.size = size;
-                this.wbase = wbase; this.gran = gran;
-            }
-            public final void compute() {
-                CountedCompleter<?> s = this;
-                float[] a = this.a, w = this.w; // localize all params
-                int b = this.base, n = this.size, wb = this.wbase, g = this.gran;
-                while (n > g) {
-                    int h = n >>> 1, q = h >>> 1, u = h + q; // quartiles
-                    Relay fc = new Relay(new Merger(s, w, a, wb, h,
-                                                    wb+h, n-h, b, g));
-                    Relay rc = new Relay(new Merger(fc, a, w, b+h, q,
-                                                    b+u, n-u, wb+h, g));
-                    new Sorter(rc, a, w, b+u, n-u, wb+u, g).fork();
-                    new Sorter(rc, a, w, b+h, q, wb+h, g).fork();;
-                    Relay bc = new Relay(new Merger(fc, a, w, b, q,
-                                                    b+q, h-q, wb, g));
-                    new Sorter(bc, a, w, b+q, h-q, wb+q, g).fork();
-                    s = new EmptyCompleter(bc);
-                    n = q;
-                }
-                DualPivotQuicksort.sort(a, b, b + n - 1, w, wb, n);
-                s.tryComplete();
-            }
-        }
-
-        static final class Merger extends CountedCompleter<Void> {
-            @java.io.Serial
-            static final long serialVersionUID = 2446542900576103244L;
-            final float[] a, w; // main and workspace arrays
-            final int lbase, lsize, rbase, rsize, wbase, gran;
-            Merger(CountedCompleter<?> par, float[] a, float[] w,
-                   int lbase, int lsize, int rbase,
-                   int rsize, int wbase, int gran) {
-                super(par);
-                this.a = a; this.w = w;
-                this.lbase = lbase; this.lsize = lsize;
-                this.rbase = rbase; this.rsize = rsize;
-                this.wbase = wbase; this.gran = gran;
-            }
-
-            public final void compute() {
-                float[] a = this.a, w = this.w; // localize all params
-                int lb = this.lbase, ln = this.lsize, rb = this.rbase,
-                    rn = this.rsize, k = this.wbase, g = this.gran;
-                if (a == null || w == null || lb < 0 || rb < 0 || k < 0)
-                    throw new IllegalStateException(); // hoist checks
-                for (int lh, rh;;) {  // split larger, find point in smaller
-                    if (ln >= rn) {
-                        if (ln <= g)
-                            break;
-                        rh = rn;
-                        float split = a[(lh = ln >>> 1) + lb];
-                        for (int lo = 0; lo < rh; ) {
-                            int rm = (lo + rh) >>> 1;
-                            if (split <= a[rm + rb])
-                                rh = rm;
-                            else
-                                lo = rm + 1;
-                        }
-                    }
-                    else {
-                        if (rn <= g)
-                            break;
-                        lh = ln;
-                        float split = a[(rh = rn >>> 1) + rb];
-                        for (int lo = 0; lo < lh; ) {
-                            int lm = (lo + lh) >>> 1;
-                            if (split <= a[lm + lb])
-                                lh = lm;
-                            else
-                                lo = lm + 1;
-                        }
-                    }
-                    Merger m = new Merger(this, a, w, lb + lh, ln - lh,
-                                          rb + rh, rn - rh,
-                                          k + lh + rh, g);
-                    rn = rh;
-                    ln = lh;
-                    addToPendingCount(1);
-                    m.fork();
-                }
-
-                int lf = lb + ln, rf = rb + rn; // index bounds
-                while (lb < lf && rb < rf) {
-                    float t, al, ar;
-                    if ((al = a[lb]) <= (ar = a[rb])) {
-                        lb++; t = al;
-                    }
-                    else {
-                        rb++; t = ar;
-                    }
-                    w[k++] = t;
-                }
-                if (rb < rf)
-                    System.arraycopy(a, rb, w, k, rf - rb);
-                else if (lb < lf)
-                    System.arraycopy(a, lb, w, k, lf - lb);
-                tryComplete();
-            }
-        }
-    } // FJFloat
-
-    /** double support class */
-    static final class FJDouble {
-        static final class Sorter extends CountedCompleter<Void> {
-            @java.io.Serial
-            static final long serialVersionUID = 2446542900576103244L;
-            final double[] a, w;
-            final int base, size, wbase, gran;
-            Sorter(CountedCompleter<?> par, double[] a, double[] w, int base,
-                   int size, int wbase, int gran) {
-                super(par);
-                this.a = a; this.w = w; this.base = base; this.size = size;
-                this.wbase = wbase; this.gran = gran;
-            }
-            public final void compute() {
-                CountedCompleter<?> s = this;
-                double[] a = this.a, w = this.w; // localize all params
-                int b = this.base, n = this.size, wb = this.wbase, g = this.gran;
-                while (n > g) {
-                    int h = n >>> 1, q = h >>> 1, u = h + q; // quartiles
-                    Relay fc = new Relay(new Merger(s, w, a, wb, h,
-                                                    wb+h, n-h, b, g));
-                    Relay rc = new Relay(new Merger(fc, a, w, b+h, q,
-                                                    b+u, n-u, wb+h, g));
-                    new Sorter(rc, a, w, b+u, n-u, wb+u, g).fork();
-                    new Sorter(rc, a, w, b+h, q, wb+h, g).fork();;
-                    Relay bc = new Relay(new Merger(fc, a, w, b, q,
-                                                    b+q, h-q, wb, g));
-                    new Sorter(bc, a, w, b+q, h-q, wb+q, g).fork();
-                    s = new EmptyCompleter(bc);
-                    n = q;
-                }
-                DualPivotQuicksort.sort(a, b, b + n - 1, w, wb, n);
-                s.tryComplete();
-            }
-        }
-
-        static final class Merger extends CountedCompleter<Void> {
-            @java.io.Serial
-            static final long serialVersionUID = 2446542900576103244L;
-            final double[] a, w; // main and workspace arrays
-            final int lbase, lsize, rbase, rsize, wbase, gran;
-            Merger(CountedCompleter<?> par, double[] a, double[] w,
-                   int lbase, int lsize, int rbase,
-                   int rsize, int wbase, int gran) {
-                super(par);
-                this.a = a; this.w = w;
-                this.lbase = lbase; this.lsize = lsize;
-                this.rbase = rbase; this.rsize = rsize;
-                this.wbase = wbase; this.gran = gran;
-            }
-
-            public final void compute() {
-                double[] a = this.a, w = this.w; // localize all params
-                int lb = this.lbase, ln = this.lsize, rb = this.rbase,
-                    rn = this.rsize, k = this.wbase, g = this.gran;
-                if (a == null || w == null || lb < 0 || rb < 0 || k < 0)
-                    throw new IllegalStateException(); // hoist checks
-                for (int lh, rh;;) {  // split larger, find point in smaller
-                    if (ln >= rn) {
-                        if (ln <= g)
-                            break;
-                        rh = rn;
-                        double split = a[(lh = ln >>> 1) + lb];
-                        for (int lo = 0; lo < rh; ) {
-                            int rm = (lo + rh) >>> 1;
-                            if (split <= a[rm + rb])
-                                rh = rm;
-                            else
-                                lo = rm + 1;
-                        }
-                    }
-                    else {
-                        if (rn <= g)
-                            break;
-                        lh = ln;
-                        double split = a[(rh = rn >>> 1) + rb];
-                        for (int lo = 0; lo < lh; ) {
-                            int lm = (lo + lh) >>> 1;
-                            if (split <= a[lm + lb])
-                                lh = lm;
-                            else
-                                lo = lm + 1;
-                        }
-                    }
-                    Merger m = new Merger(this, a, w, lb + lh, ln - lh,
-                                          rb + rh, rn - rh,
-                                          k + lh + rh, g);
-                    rn = rh;
-                    ln = lh;
-                    addToPendingCount(1);
-                    m.fork();
-                }
-
-                int lf = lb + ln, rf = rb + rn; // index bounds
-                while (lb < lf && rb < rf) {
-                    double t, al, ar;
-                    if ((al = a[lb]) <= (ar = a[rb])) {
-                        lb++; t = al;
-                    }
-                    else {
-                        rb++; t = ar;
-                    }
-                    w[k++] = t;
-                }
-                if (rb < rf)
-                    System.arraycopy(a, rb, w, k, rf - rb);
-                else if (lb < lf)
-                    System.arraycopy(a, lb, w, k, lf - lb);
-                tryComplete();
-            }
-        }
-    } // FJDouble
-
+    }
 }
--- a/src/java.base/share/classes/java/util/DualPivotQuicksort.java	Tue Nov 12 21:00:08 2019 +0000
+++ b/src/java.base/share/classes/java/util/DualPivotQuicksort.java	Tue Nov 12 13:49:40 2019 -0800
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2009, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2009, 2019, Oracle and/or its affiliates. All rights reserved.
  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  *
  * This code is free software; you can redistribute it and/or modify it
@@ -25,24 +25,28 @@
 
 package java.util;
 
+import java.util.concurrent.CountedCompleter;
+import java.util.concurrent.RecursiveTask;
+
 /**
- * This class implements the Dual-Pivot Quicksort algorithm by
- * Vladimir Yaroslavskiy, Jon Bentley, and Josh Bloch. The algorithm
- * offers O(n log(n)) performance on many data sets that cause other
- * quicksorts to degrade to quadratic performance, and is typically
+ * This class implements powerful and fully optimized versions, both
+ * sequential and parallel, of the Dual-Pivot Quicksort algorithm by
+ * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm
+ * offers O(n log(n)) performance on all data sets, and is typically
  * faster than traditional (one-pivot) Quicksort implementations.
  *
- * All exposed methods are package-private, designed to be invoked
- * from public methods (in class Arrays) after performing any
- * necessary array bounds checks and expanding parameters into the
- * required forms.
+ * There are also additional algorithms, invoked from the Dual-Pivot
+ * Quicksort, such as mixed insertion sort, merging of runs and heap
+ * sort, counting sort and parallel merge sort.
  *
  * @author Vladimir Yaroslavskiy
  * @author Jon Bentley
  * @author Josh Bloch
+ * @author Doug Lea
  *
- * @version 2011.02.11 m765.827.12i:5\7pm
- * @since 1.7
+ * @version 2018.08.18
+ *
+ * @since 1.7 * 14
  */
 final class DualPivotQuicksort {
 
@@ -51,3131 +55,4107 @@
      */
     private DualPivotQuicksort() {}
 
-    /*
-     * Tuning parameters.
+    /**
+     * Max array size to use mixed insertion sort.
+     */
+    private static final int MAX_MIXED_INSERTION_SORT_SIZE = 65;
+
+    /**
+     * Max array size to use insertion sort.
      */
+    private static final int MAX_INSERTION_SORT_SIZE = 44;
+
+    /**
+     * Min array size to perform sorting in parallel.
+     */
+    private static final int MIN_PARALLEL_SORT_SIZE = 4 << 10;
+
+    /**
+     * Min array size to try merging of runs.
+     */
+    private static final int MIN_TRY_MERGE_SIZE = 4 << 10;
 
     /**
-     * The maximum number of runs in merge sort.
+     * Min size of the first run to continue with scanning.
      */
-    private static final int MAX_RUN_COUNT = 67;
+    private static final int MIN_FIRST_RUN_SIZE = 16;
+
+    /**
+     * Min factor for the first runs to continue scanning.
+     */
+    private static final int MIN_FIRST_RUNS_FACTOR = 7;
 
     /**
-     * If the length of an array to be sorted is less than this
-     * constant, Quicksort is used in preference to merge sort.
+     * Max capacity of the index array for tracking runs.
+     */
+    private static final int MAX_RUN_CAPACITY = 5 << 10;
+
+    /**
+     * Min number of runs, required by parallel merging.
      */
-    private static final int QUICKSORT_THRESHOLD = 286;
+    private static final int MIN_RUN_COUNT = 4;
+
+    /**
+     * Min array size to use parallel merging of parts.
+     */
+    private static final int MIN_PARALLEL_MERGE_PARTS_SIZE = 4 << 10;
 
     /**
-     * If the length of an array to be sorted is less than this
-     * constant, insertion sort is used in preference to Quicksort.
+     * Min size of a byte array to use counting sort.
      */
-    private static final int INSERTION_SORT_THRESHOLD = 47;
+    private static final int MIN_BYTE_COUNTING_SORT_SIZE = 64;
 
     /**
-     * If the length of a byte array to be sorted is greater than this
-     * constant, counting sort is used in preference to insertion sort.
+     * Min size of a short or char array to use counting sort.
+     */
+    private static final int MIN_SHORT_OR_CHAR_COUNTING_SORT_SIZE = 1750;
+
+    /**
+     * Threshold of mixed insertion sort is incremented by this value.
      */
-    private static final int COUNTING_SORT_THRESHOLD_FOR_BYTE = 29;
+    private static final int DELTA = 3 << 1;
+
+    /**
+     * Max recursive partitioning depth before using heap sort.
+     */
+    private static final int MAX_RECURSION_DEPTH = 64 * DELTA;
 
     /**
-     * If the length of a short or char array to be sorted is greater
-     * than this constant, counting sort is used in preference to Quicksort.
+     * Calculates the double depth of parallel merging.
+     * Depth is negative, if tasks split before sorting.
+     *
+     * @param parallelism the parallelism level
+     * @param size the target size
+     * @return the depth of parallel merging
      */
-    private static final int COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR = 3200;
-
-    /*
-     * Sorting methods for seven primitive types.
-     */
+    private static int getDepth(int parallelism, int size) {
+        int depth = 0;
+
+        while ((parallelism >>= 3) > 0 && (size >>= 2) > 0) {
+            depth -= 2;
+        }
+        return depth;
+    }
 
     /**
-     * Sorts the specified range of the array using the given
-     * workspace array slice if possible for merging
+     * Sorts the specified range of the array using parallel merge
+     * sort and/or Dual-Pivot Quicksort.
+     *
+     * To balance the faster splitting and parallelism of merge sort
+     * with the faster element partitioning of Quicksort, ranges are
+     * subdivided in tiers such that, if there is enough parallelism,
+     * the four-way parallel merge is started, still ensuring enough
+     * parallelism to process the partitions.
      *
      * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
-     * @param work a workspace array (slice)
-     * @param workBase origin of usable space in work array
-     * @param workLen usable size of work array
+     * @param parallelism the parallelism level
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
      */
-    static void sort(int[] a, int left, int right,
-                     int[] work, int workBase, int workLen) {
-        // Use Quicksort on small arrays
-        if (right - left < QUICKSORT_THRESHOLD) {
-            sort(a, left, right, true);
-            return;
+    static void sort(int[] a, int parallelism, int low, int high) {
+        int size = high - low;
+
+        if (parallelism > 1 && size > MIN_PARALLEL_SORT_SIZE) {
+            int depth = getDepth(parallelism, size >> 12);
+            int[] b = depth == 0 ? null : new int[size];
+            new Sorter(null, a, b, low, size, low, depth).invoke();
+        } else {
+            sort(null, a, 0, low, high);
         }
-
-        /*
-         * Index run[i] is the start of i-th run
-         * (ascending or descending sequence).
-         */
-        int[] run = new int[MAX_RUN_COUNT + 1];
-        int count = 0; run[0] = left;
-
-        // Check if the array is nearly sorted
-        for (int k = left; k < right; run[count] = k) {
-            // Equal items in the beginning of the sequence
-            while (k < right && a[k] == a[k + 1])
-                k++;
-            if (k == right) break;  // Sequence finishes with equal items
-            if (a[k] < a[k + 1]) { // ascending
-                while (++k <= right && a[k - 1] <= a[k]);
-            } else if (a[k] > a[k + 1]) { // descending
-                while (++k <= right && a[k - 1] >= a[k]);
-                // Transform into an ascending sequence
-                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
-                    int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
-                }
+    }
+
+    /**
+     * Sorts the specified array using the Dual-Pivot Quicksort and/or
+     * other sorts in special-cases, possibly with parallel partitions.
+     *
+     * @param sorter parallel context
+     * @param a the array to be sorted
+     * @param bits the combination of recursion depth and bit flag, where
+     *        the right bit "0" indicates that array is the leftmost part
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    static void sort(Sorter sorter, int[] a, int bits, int low, int high) {
+        while (true) {
+            int end = high - 1, size = high - low;
+
+            /*
+             * Run mixed insertion sort on small non-leftmost parts.
+             */
+            if (size < MAX_MIXED_INSERTION_SORT_SIZE + bits && (bits & 1) > 0) {
+                mixedInsertionSort(a, low, high - 3 * ((size >> 5) << 3), high);
+                return;
             }
 
-            // Merge a transformed descending sequence followed by an
-            // ascending sequence
-            if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
-                count--;
+            /*
+             * Invoke insertion sort on small leftmost part.
+             */
+            if (size < MAX_INSERTION_SORT_SIZE) {
+                insertionSort(a, low, high);
+                return;
+            }
+
+            /*
+             * Check if the whole array or large non-leftmost
+             * parts are nearly sorted and then merge runs.
+             */
+            if ((bits == 0 || size > MIN_TRY_MERGE_SIZE && (bits & 1) > 0)
+                    && tryMergeRuns(sorter, a, low, size)) {
+                return;
+            }
+
+            /*
+             * Switch to heap sort if execution
+             * time is becoming quadratic.
+             */
+            if ((bits += DELTA) > MAX_RECURSION_DEPTH) {
+                heapSort(a, low, high);
+                return;
             }
 
             /*
-             * The array is not highly structured,
-             * use Quicksort instead of merge sort.
+             * Use an inexpensive approximation of the golden ratio
+             * to select five sample elements and determine pivots.
+             */
+            int step = (size >> 3) * 3 + 3;
+
+            /*
+             * Five elements around (and including) the central element
+             * will be used for pivot selection as described below. The
+             * unequal choice of spacing these elements was empirically
+             * determined to work well on a wide variety of inputs.
              */
-            if (++count == MAX_RUN_COUNT) {
-                sort(a, left, right, true);
-                return;
+            int e1 = low + step;
+            int e5 = end - step;
+            int e3 = (e1 + e5) >>> 1;
+            int e2 = (e1 + e3) >>> 1;
+            int e4 = (e3 + e5) >>> 1;
+            int a3 = a[e3];
+
+            /*
+             * Sort these elements in place by the combination
+             * of 4-element sorting network and insertion sort.
+             *
+             *    5 ------o-----------o------------
+             *            |           |
+             *    4 ------|-----o-----o-----o------
+             *            |     |           |
+             *    2 ------o-----|-----o-----o------
+             *                  |     |
+             *    1 ------------o-----o------------
+             */
+            if (a[e5] < a[e2]) { int t = a[e5]; a[e5] = a[e2]; a[e2] = t; }
+            if (a[e4] < a[e1]) { int t = a[e4]; a[e4] = a[e1]; a[e1] = t; }
+            if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t; }
+            if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
+            if (a[e4] < a[e2]) { int t = a[e4]; a[e4] = a[e2]; a[e2] = t; }
+
+            if (a3 < a[e2]) {
+                if (a3 < a[e1]) {
+                    a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3;
+                } else {
+                    a[e3] = a[e2]; a[e2] = a3;
+                }
+            } else if (a3 > a[e4]) {
+                if (a3 > a[e5]) {
+                    a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3;
+                } else {
+                    a[e3] = a[e4]; a[e4] = a3;
+                }
             }
-        }
-
-        // These invariants should hold true:
-        //    run[0] = 0
-        //    run[<last>] = right + 1; (terminator)
-
-        if (count == 0) {
-            // A single equal run
-            return;
-        } else if (count == 1 && run[count] > right) {
-            // Either a single ascending or a transformed descending run.
-            // Always check that a final run is a proper terminator, otherwise
-            // we have an unterminated trailing run, to handle downstream.
-            return;
-        }
-        right++;
-        if (run[count] < right) {
-            // Corner case: the final run is not a terminator. This may happen
-            // if a final run is an equals run, or there is a single-element run
-            // at the end. Fix up by adding a proper terminator at the end.
-            // Note that we terminate with (right + 1), incremented earlier.
-            run[++count] = right;
-        }
-
-        // Determine alternation base for merge
-        byte odd = 0;
-        for (int n = 1; (n <<= 1) < count; odd ^= 1);
-
-        // Use or create temporary array b for merging
-        int[] b;                 // temp array; alternates with a
-        int ao, bo;              // array offsets from 'left'
-        int blen = right - left; // space needed for b
-        if (work == null || workLen < blen || workBase + blen > work.length) {
-            work = new int[blen];
-            workBase = 0;
-        }
-        if (odd == 0) {
-            System.arraycopy(a, left, work, workBase, blen);
-            b = a;
-            bo = 0;
-            a = work;
-            ao = workBase - left;
-        } else {
-            b = work;
-            ao = 0;
-            bo = workBase - left;
-        }
-
-        // Merging
-        for (int last; count > 1; count = last) {
-            for (int k = (last = 0) + 2; k <= count; k += 2) {
-                int hi = run[k], mi = run[k - 1];
-                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
-                    if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
-                        b[i + bo] = a[p++ + ao];
-                    } else {
-                        b[i + bo] = a[q++ + ao];
+
+            // Pointers
+            int lower = low; // The index of the last element of the left part
+            int upper = end; // The index of the first element of the right part
+
+            /*
+             * Partitioning with 2 pivots in case of different elements.
+             */
+            if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) {
+
+                /*
+                 * Use the first and fifth of the five sorted elements as
+                 * the pivots. These values are inexpensive approximation
+                 * of tertiles. Note, that pivot1 < pivot2.
+                 */
+                int pivot1 = a[e1];
+                int pivot2 = a[e5];
+
+                /*
+                 * The first and the last elements to be sorted are moved
+                 * to the locations formerly occupied by the pivots. When
+                 * partitioning is completed, the pivots are swapped back
+                 * into their final positions, and excluded from the next
+                 * subsequent sorting.
+                 */
+                a[e1] = a[lower];
+                a[e5] = a[upper];
+
+                /*
+                 * Skip elements, which are less or greater than the pivots.
+                 */
+                while (a[++lower] < pivot1);
+                while (a[--upper] > pivot2);
+
+                /*
+                 * Backward 3-interval partitioning
+                 *
+                 *   left part                 central part          right part
+                 * +------------------------------------------------------------+
+                 * |  < pivot1  |   ?   |  pivot1 <= && <= pivot2  |  > pivot2  |
+                 * +------------------------------------------------------------+
+                 *             ^       ^                            ^
+                 *             |       |                            |
+                 *           lower     k                          upper
+                 *
+                 * Invariants:
+                 *
+                 *              all in (low, lower] < pivot1
+                 *    pivot1 <= all in (k, upper)  <= pivot2
+                 *              all in [upper, end) > pivot2
+                 *
+                 * Pointer k is the last index of ?-part
+                 */
+                for (int unused = --lower, k = ++upper; --k > lower; ) {
+                    int ak = a[k];
+
+                    if (ak < pivot1) { // Move a[k] to the left side
+                        while (lower < k) {
+                            if (a[++lower] >= pivot1) {
+                                if (a[lower] > pivot2) {
+                                    a[k] = a[--upper];
+                                    a[upper] = a[lower];
+                                } else {
+                                    a[k] = a[lower];
+                                }
+                                a[lower] = ak;
+                                break;
+                            }
+                        }
+                    } else if (ak > pivot2) { // Move a[k] to the right side
+                        a[k] = a[--upper];
+                        a[upper] = ak;
                     }
                 }
-                run[++last] = hi;
+
+                /*
+                 * Swap the pivots into their final positions.
+                 */
+                a[low] = a[lower]; a[lower] = pivot1;
+                a[end] = a[upper]; a[upper] = pivot2;
+
+                /*
+                 * Sort non-left parts recursively (possibly in parallel),
+                 * excluding known pivots.
+                 */
+                if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) {
+                    sorter.forkSorter(bits | 1, lower + 1, upper);
+                    sorter.forkSorter(bits | 1, upper + 1, high);
+                } else {
+                    sort(sorter, a, bits | 1, lower + 1, upper);
+                    sort(sorter, a, bits | 1, upper + 1, high);
+                }
+
+            } else { // Use single pivot in case of many equal elements
+
+                /*
+                 * Use the third of the five sorted elements as the pivot.
+                 * This value is inexpensive approximation of the median.
+                 */
+                int pivot = a[e3];
+
+                /*
+                 * The first element to be sorted is moved to the
+                 * location formerly occupied by the pivot. After
+                 * completion of partitioning the pivot is swapped
+                 * back into its final position, and excluded from
+                 * the next subsequent sorting.
+                 */
+                a[e3] = a[lower];
+
+                /*
+                 * Traditional 3-way (Dutch National Flag) partitioning
+                 *
+                 *   left part                 central part    right part
+                 * +------------------------------------------------------+
+                 * |   < pivot   |     ?     |   == pivot   |   > pivot   |
+                 * +------------------------------------------------------+
+                 *              ^           ^                ^
+                 *              |           |                |
+                 *            lower         k              upper
+                 *
+                 * Invariants:
+                 *
+                 *   all in (low, lower] < pivot
+                 *   all in (k, upper)  == pivot
+                 *   all in [upper, end] > pivot
+                 *
+                 * Pointer k is the last index of ?-part
+                 */
+                for (int k = ++upper; --k > lower; ) {
+                    int ak = a[k];
+
+                    if (ak != pivot) {
+                        a[k] = pivot;
+
+                        if (ak < pivot) { // Move a[k] to the left side
+                            while (a[++lower] < pivot);
+
+                            if (a[lower] > pivot) {
+                                a[--upper] = a[lower];
+                            }
+                            a[lower] = ak;
+                        } else { // ak > pivot - Move a[k] to the right side
+                            a[--upper] = ak;
+                        }
+                    }
+                }
+
+                /*
+                 * Swap the pivot into its final position.
+                 */
+                a[low] = a[lower]; a[lower] = pivot;
+
+                /*
+                 * Sort the right part (possibly in parallel), excluding
+                 * known pivot. All elements from the central part are
+                 * equal and therefore already sorted.
+                 */
+                if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) {
+                    sorter.forkSorter(bits | 1, upper, high);
+                } else {
+                    sort(sorter, a, bits | 1, upper, high);
+                }
             }
-            if ((count & 1) != 0) {
-                for (int i = right, lo = run[count - 1]; --i >= lo;
-                    b[i + bo] = a[i + ao]
-                );
-                run[++last] = right;
-            }
-            int[] t = a; a = b; b = t;
-            int o = ao; ao = bo; bo = o;
+            high = lower; // Iterate along the left part
         }
     }
 
     /**
-     * Sorts the specified range of the array by Dual-Pivot Quicksort.
+     * Sorts the specified range of the array using mixed insertion sort.
+     *
+     * Mixed insertion sort is combination of simple insertion sort,
+     * pin insertion sort and pair insertion sort.
+     *
+     * In the context of Dual-Pivot Quicksort, the pivot element
+     * from the left part plays the role of sentinel, because it
+     * is less than any elements from the given part. Therefore,
+     * expensive check of the left range can be skipped on each
+     * iteration unless it is the leftmost call.
      *
      * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
-     * @param leftmost indicates if this part is the leftmost in the range
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param end the index of the last element for simple insertion sort
+     * @param high the index of the last element, exclusive, to be sorted
      */
-    private static void sort(int[] a, int left, int right, boolean leftmost) {
-        int length = right - left + 1;
-
-        // Use insertion sort on tiny arrays
-        if (length < INSERTION_SORT_THRESHOLD) {
-            if (leftmost) {
-                /*
-                 * Traditional (without sentinel) insertion sort,
-                 * optimized for server VM, is used in case of
-                 * the leftmost part.
-                 */
-                for (int i = left, j = i; i < right; j = ++i) {
-                    int ai = a[i + 1];
-                    while (ai < a[j]) {
-                        a[j + 1] = a[j];
-                        if (j-- == left) {
-                            break;
-                        }
-                    }
-                    a[j + 1] = ai;
-                }
-            } else {
-                /*
-                 * Skip the longest ascending sequence.
-                 */
-                do {
-                    if (left >= right) {
-                        return;
-                    }
-                } while (a[++left] >= a[left - 1]);
-
-                /*
-                 * Every element from adjoining part plays the role
-                 * of sentinel, therefore this allows us to avoid the
-                 * left range check on each iteration. Moreover, we use
-                 * the more optimized algorithm, so called pair insertion
-                 * sort, which is faster (in the context of Quicksort)
-                 * than traditional implementation of insertion sort.
-                 */
-                for (int k = left; ++left <= right; k = ++left) {
-                    int a1 = a[k], a2 = a[left];
-
-                    if (a1 < a2) {
-                        a2 = a1; a1 = a[left];
-                    }
-                    while (a1 < a[--k]) {
-                        a[k + 2] = a[k];
-                    }
-                    a[++k + 1] = a1;
-
-                    while (a2 < a[--k]) {
-                        a[k + 1] = a[k];
-                    }
-                    a[k + 1] = a2;
-                }
-                int last = a[right];
-
-                while (last < a[--right]) {
-                    a[right + 1] = a[right];
-                }
-                a[right + 1] = last;
-            }
-            return;
-        }
-
-        // Inexpensive approximation of length / 7
-        int seventh = (length >> 3) + (length >> 6) + 1;
-
-        /*
-         * Sort five evenly spaced elements around (and including) the
-         * center element in the range. These elements will be used for
-         * pivot selection as described below. The choice for spacing
-         * these elements was empirically determined to work well on
-         * a wide variety of inputs.
-         */
-        int e3 = (left + right) >>> 1; // The midpoint
-        int e2 = e3 - seventh;
-        int e1 = e2 - seventh;
-        int e4 = e3 + seventh;
-        int e5 = e4 + seventh;
-
-        // Sort these elements using insertion sort
-        if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
-
-        if (a[e3] < a[e2]) { int t = a[e3]; a[e3] = a[e2]; a[e2] = t;
-            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-        }
-        if (a[e4] < a[e3]) { int t = a[e4]; a[e4] = a[e3]; a[e3] = t;
-            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
-                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-            }
-        }
-        if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t;
-            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
-                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
-                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-                }
-            }
-        }
-
-        // Pointers
-        int less  = left;  // The index of the first element of center part
-        int great = right; // The index before the first element of right part
-
-        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
-            /*
-             * Use the second and fourth of the five sorted elements as pivots.
-             * These values are inexpensive approximations of the first and
-             * second terciles of the array. Note that pivot1 <= pivot2.
-             */
-            int pivot1 = a[e2];
-            int pivot2 = a[e4];
+    private static void mixedInsertionSort(int[] a, int low, int end, int high) {
+        if (end == high) {
 
             /*
-             * The first and the last elements to be sorted are moved to the
-             * locations formerly occupied by the pivots. When partitioning
-             * is complete, the pivots are swapped back into their final
-             * positions, and excluded from subsequent sorting.
+             * Invoke simple insertion sort on tiny array.
              */
-            a[e2] = a[left];
-            a[e4] = a[right];
-
-            /*
-             * Skip elements, which are less or greater than pivot values.
-             */
-            while (a[++less] < pivot1);
-            while (a[--great] > pivot2);
+            for (int i; ++low < end; ) {
+                int ai = a[i = low];
+
+                while (ai < a[--i]) {
+                    a[i + 1] = a[i];
+                }
+                a[i + 1] = ai;
+            }
+        } else {
 
             /*
-             * Partitioning:
-             *
-             *   left part           center part                   right part
-             * +--------------------------------------------------------------+
-             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
-             * +--------------------------------------------------------------+
-             *               ^                          ^       ^
-             *               |                          |       |
-             *              less                        k     great
-             *
-             * Invariants:
-             *
-             *              all in (left, less)   < pivot1
-             *    pivot1 <= all in [less, k)     <= pivot2
-             *              all in (great, right) > pivot2
+             * Start with pin insertion sort on small part.
              *
-             * Pointer k is the first index of ?-part.
-             */
-            outer:
-            for (int k = less - 1; ++k <= great; ) {
-                int ak = a[k];
-                if (ak < pivot1) { // Move a[k] to left part
-                    a[k] = a[less];
-                    /*
-                     * Here and below we use "a[i] = b; i++;" instead
-                     * of "a[i++] = b;" due to performance issue.
-                     */
-                    a[less] = ak;
-                    ++less;
-                } else if (ak > pivot2) { // Move a[k] to right part
-                    while (a[great] > pivot2) {
-                        if (great-- == k) {
-                            break outer;
-                        }
-                    }
-                    if (a[great] < pivot1) { // a[great] <= pivot2
-                        a[k] = a[less];
-                        a[less] = a[great];
-                        ++less;
-                    } else { // pivot1 <= a[great] <= pivot2
-                        a[k] = a[great];
-                    }
-                    /*
-                     * Here and below we use "a[i] = b; i--;" instead
-                     * of "a[i--] = b;" due to performance issue.
-                     */
-                    a[great] = ak;
-                    --great;
-                }
-            }
-
-            // Swap pivots into their final positions
-            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
-            a[right] = a[great + 1]; a[great + 1] = pivot2;
-
-            // Sort left and right parts recursively, excluding known pivots
-            sort(a, left, less - 2, leftmost);
-            sort(a, great + 2, right, false);
-
-            /*
-             * If center part is too large (comprises > 4/7 of the array),
-             * swap internal pivot values to ends.
+             * Pin insertion sort is extended simple insertion sort.
+             * The main idea of this sort is to put elements larger
+             * than an element called pin to the end of array (the
+             * proper area for such elements). It avoids expensive
+             * movements of these elements through the whole array.
              */
-            if (less < e1 && e5 < great) {
-                /*
-                 * Skip elements, which are equal to pivot values.
-                 */
-                while (a[less] == pivot1) {
-                    ++less;
-                }
-
-                while (a[great] == pivot2) {
-                    --great;
-                }
-
-                /*
-                 * Partitioning:
-                 *
-                 *   left part         center part                  right part
-                 * +----------------------------------------------------------+
-                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
-                 * +----------------------------------------------------------+
-                 *              ^                        ^       ^
-                 *              |                        |       |
-                 *             less                      k     great
-                 *
-                 * Invariants:
-                 *
-                 *              all in (*,  less) == pivot1
-                 *     pivot1 < all in [less,  k)  < pivot2
-                 *              all in (great, *) == pivot2
-                 *
-                 * Pointer k is the first index of ?-part.
-                 */
-                outer:
-                for (int k = less - 1; ++k <= great; ) {
-                    int ak = a[k];
-                    if (ak == pivot1) { // Move a[k] to left part
-                        a[k] = a[less];
-                        a[less] = ak;
-                        ++less;
-                    } else if (ak == pivot2) { // Move a[k] to right part
-                        while (a[great] == pivot2) {
-                            if (great-- == k) {
-                                break outer;
-                            }
-                        }
-                        if (a[great] == pivot1) { // a[great] < pivot2
-                            a[k] = a[less];
-                            /*
-                             * Even though a[great] equals to pivot1, the
-                             * assignment a[less] = pivot1 may be incorrect,
-                             * if a[great] and pivot1 are floating-point zeros
-                             * of different signs. Therefore in float and
-                             * double sorting methods we have to use more
-                             * accurate assignment a[less] = a[great].
-                             */
-                            a[less] = pivot1;
-                            ++less;
-                        } else { // pivot1 < a[great] < pivot2
-                            a[k] = a[great];
-                        }
-                        a[great] = ak;
-                        --great;
+            int pin = a[end];
+
+            for (int i, p = high; ++low < end; ) {
+                int ai = a[i = low];
+
+                if (ai < a[i - 1]) { // Small element
+
+                    /*
+                     * Insert small element into sorted part.
+                     */
+                    a[i] = a[--i];
+
+                    while (ai < a[--i]) {
+                        a[i + 1] = a[i];
                     }
-                }
-            }
-
-            // Sort center part recursively
-            sort(a, less, great, false);
-
-        } else { // Partitioning with one pivot
-            /*
-             * Use the third of the five sorted elements as pivot.
-             * This value is inexpensive approximation of the median.
-             */
-            int pivot = a[e3];
-
-            /*
-             * Partitioning degenerates to the traditional 3-way
-             * (or "Dutch National Flag") schema:
-             *
-             *   left part    center part              right part
-             * +-------------------------------------------------+
-             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
-             * +-------------------------------------------------+
-             *              ^              ^        ^
-             *              |              |        |
-             *             less            k      great
-             *
-             * Invariants:
-             *
-             *   all in (left, less)   < pivot
-             *   all in [less, k)     == pivot
-             *   all in (great, right) > pivot
-             *
-             * Pointer k is the first index of ?-part.
-             */
-            for (int k = less; k <= great; ++k) {
-                if (a[k] == pivot) {
-                    continue;
-                }
-                int ak = a[k];
-                if (ak < pivot) { // Move a[k] to left part
-                    a[k] = a[less];
-                    a[less] = ak;
-                    ++less;
-                } else { // a[k] > pivot - Move a[k] to right part
-                    while (a[great] > pivot) {
-                        --great;
+                    a[i + 1] = ai;
+
+                } else if (p > i && ai > pin) { // Large element
+
+                    /*
+                     * Find element smaller than pin.
+                     */
+                    while (a[--p] > pin);
+
+                    /*
+                     * Swap it with large element.
+                     */
+                    if (p > i) {
+                        ai = a[p];
+                        a[p] = a[i];
                     }
-                    if (a[great] < pivot) { // a[great] <= pivot
-                        a[k] = a[less];
-                        a[less] = a[great];
-                        ++less;
-                    } else { // a[great] == pivot
-                        /*
-                         * Even though a[great] equals to pivot, the
-                         * assignment a[k] = pivot may be incorrect,
-                         * if a[great] and pivot are floating-point
-                         * zeros of different signs. Therefore in float
-                         * and double sorting methods we have to use
-                         * more accurate assignment a[k] = a[great].
-                         */
-                        a[k] = pivot;
+
+                    /*
+                     * Insert small element into sorted part.
+                     */
+                    while (ai < a[--i]) {
+                        a[i + 1] = a[i];
                     }
-                    a[great] = ak;
-                    --great;
+                    a[i + 1] = ai;
                 }
             }
 
             /*
-             * Sort left and right parts recursively.
-             * All elements from center part are equal
-             * and, therefore, already sorted.
+             * Continue with pair insertion sort on remain part.
              */
-            sort(a, left, less - 1, leftmost);
-            sort(a, great + 1, right, false);
+            for (int i; low < high; ++low) {
+                int a1 = a[i = low], a2 = a[++low];
+
+                /*
+                 * Insert two elements per iteration: at first, insert the
+                 * larger element and then insert the smaller element, but
+                 * from the position where the larger element was inserted.
+                 */
+                if (a1 > a2) {
+
+                    while (a1 < a[--i]) {
+                        a[i + 2] = a[i];
+                    }
+                    a[++i + 1] = a1;
+
+                    while (a2 < a[--i]) {
+                        a[i + 1] = a[i];
+                    }
+                    a[i + 1] = a2;
+
+                } else if (a1 < a[i - 1]) {
+
+                    while (a2 < a[--i]) {
+                        a[i + 2] = a[i];
+                    }
+                    a[++i + 1] = a2;
+
+                    while (a1 < a[--i]) {
+                        a[i + 1] = a[i];
+                    }
+                    a[i + 1] = a1;
+                }
+            }
+        }
+    }
+
+    /**
+     * Sorts the specified range of the array using insertion sort.
+     *
+     * @param a the array to be sorted
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    private static void insertionSort(int[] a, int low, int high) {
+        for (int i, k = low; ++k < high; ) {
+            int ai = a[i = k];
+
+            if (ai < a[i - 1]) {
+                while (--i >= low && ai < a[i]) {
+                    a[i + 1] = a[i];
+                }
+                a[i + 1] = ai;
+            }
+        }
+    }
+
+    /**
+     * Sorts the specified range of the array using heap sort.
+     *
+     * @param a the array to be sorted
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    private static void heapSort(int[] a, int low, int high) {
+        for (int k = (low + high) >>> 1; k > low; ) {
+            pushDown(a, --k, a[k], low, high);
+        }
+        while (--high > low) {
+            int max = a[low];
+            pushDown(a, low, a[high], low, high);
+            a[high] = max;
         }
     }
 
     /**
-     * Sorts the specified range of the array using the given
-     * workspace array slice if possible for merging
+     * Pushes specified element down during heap sort.
      *
-     * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
-     * @param work a workspace array (slice)
-     * @param workBase origin of usable space in work array
-     * @param workLen usable size of work array
+     * @param a the given array
+     * @param p the start index
+     * @param value the given element
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
      */
-    static void sort(long[] a, int left, int right,
-                     long[] work, int workBase, int workLen) {
-        // Use Quicksort on small arrays
-        if (right - left < QUICKSORT_THRESHOLD) {
-            sort(a, left, right, true);
-            return;
-        }
-
-        /*
-         * Index run[i] is the start of i-th run
-         * (ascending or descending sequence).
-         */
-        int[] run = new int[MAX_RUN_COUNT + 1];
-        int count = 0; run[0] = left;
-
-        // Check if the array is nearly sorted
-        for (int k = left; k < right; run[count] = k) {
-            // Equal items in the beginning of the sequence
-            while (k < right && a[k] == a[k + 1])
-                k++;
-            if (k == right) break;  // Sequence finishes with equal items
-            if (a[k] < a[k + 1]) { // ascending
-                while (++k <= right && a[k - 1] <= a[k]);
-            } else if (a[k] > a[k + 1]) { // descending
-                while (++k <= right && a[k - 1] >= a[k]);
-                // Transform into an ascending sequence
-                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
-                    long t = a[lo]; a[lo] = a[hi]; a[hi] = t;
-                }
+    private static void pushDown(int[] a, int p, int value, int low, int high) {
+        for (int k ;; a[p] = a[p = k]) {
+            k = (p << 1) - low + 2; // Index of the right child
+
+            if (k > high) {
+                break;
             }
-
-            // Merge a transformed descending sequence followed by an
-            // ascending sequence
-            if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
-                count--;
+            if (k == high || a[k] < a[k - 1]) {
+                --k;
             }
-
-            /*
-             * The array is not highly structured,
-             * use Quicksort instead of merge sort.
-             */
-            if (++count == MAX_RUN_COUNT) {
-                sort(a, left, right, true);
-                return;
+            if (a[k] <= value) {
+                break;
             }
         }
-
-        // These invariants should hold true:
-        //    run[0] = 0
-        //    run[<last>] = right + 1; (terminator)
-
-        if (count == 0) {
-            // A single equal run
-            return;
-        } else if (count == 1 && run[count] > right) {
-            // Either a single ascending or a transformed descending run.
-            // Always check that a final run is a proper terminator, otherwise
-            // we have an unterminated trailing run, to handle downstream.
-            return;
-        }
-        right++;
-        if (run[count] < right) {
-            // Corner case: the final run is not a terminator. This may happen
-            // if a final run is an equals run, or there is a single-element run
-            // at the end. Fix up by adding a proper terminator at the end.
-            // Note that we terminate with (right + 1), incremented earlier.
-            run[++count] = right;
-        }
-
-        // Determine alternation base for merge
-        byte odd = 0;
-        for (int n = 1; (n <<= 1) < count; odd ^= 1);
-
-        // Use or create temporary array b for merging
-        long[] b;                 // temp array; alternates with a
-        int ao, bo;              // array offsets from 'left'
-        int blen = right - left; // space needed for b
-        if (work == null || workLen < blen || workBase + blen > work.length) {
-            work = new long[blen];
-            workBase = 0;
-        }
-        if (odd == 0) {
-            System.arraycopy(a, left, work, workBase, blen);
-            b = a;
-            bo = 0;
-            a = work;
-            ao = workBase - left;
-        } else {
-            b = work;
-            ao = 0;
-            bo = workBase - left;
-        }
-
-        // Merging
-        for (int last; count > 1; count = last) {
-            for (int k = (last = 0) + 2; k <= count; k += 2) {
-                int hi = run[k], mi = run[k - 1];
-                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
-                    if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
-                        b[i + bo] = a[p++ + ao];
-                    } else {
-                        b[i + bo] = a[q++ + ao];
-                    }
-                }
-                run[++last] = hi;
-            }
-            if ((count & 1) != 0) {
-                for (int i = right, lo = run[count - 1]; --i >= lo;
-                    b[i + bo] = a[i + ao]
-                );
-                run[++last] = right;
-            }
-            long[] t = a; a = b; b = t;
-            int o = ao; ao = bo; bo = o;
-        }
+        a[p] = value;
     }
 
     /**
-     * Sorts the specified range of the array by Dual-Pivot Quicksort.
+     * Tries to sort the specified range of the array.
      *
+     * @param sorter parallel context
      * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
-     * @param leftmost indicates if this part is the leftmost in the range
+     * @param low the index of the first element to be sorted
+     * @param size the array size
+     * @return true if finally sorted, false otherwise
      */
-    private static void sort(long[] a, int left, int right, boolean leftmost) {
-        int length = right - left + 1;
-
-        // Use insertion sort on tiny arrays
-        if (length < INSERTION_SORT_THRESHOLD) {
-            if (leftmost) {
-                /*
-                 * Traditional (without sentinel) insertion sort,
-                 * optimized for server VM, is used in case of
-                 * the leftmost part.
-                 */
-                for (int i = left, j = i; i < right; j = ++i) {
-                    long ai = a[i + 1];
-                    while (ai < a[j]) {
-                        a[j + 1] = a[j];
-                        if (j-- == left) {
-                            break;
-                        }
-                    }
-                    a[j + 1] = ai;
-                }
-            } else {
-                /*
-                 * Skip the longest ascending sequence.
-                 */
-                do {
-                    if (left >= right) {
-                        return;
-                    }
-                } while (a[++left] >= a[left - 1]);
-
-                /*
-                 * Every element from adjoining part plays the role
-                 * of sentinel, therefore this allows us to avoid the
-                 * left range check on each iteration. Moreover, we use
-                 * the more optimized algorithm, so called pair insertion
-                 * sort, which is faster (in the context of Quicksort)
-                 * than traditional implementation of insertion sort.
-                 */
-                for (int k = left; ++left <= right; k = ++left) {
-                    long a1 = a[k], a2 = a[left];
-
-                    if (a1 < a2) {
-                        a2 = a1; a1 = a[left];
-                    }
-                    while (a1 < a[--k]) {
-                        a[k + 2] = a[k];
-                    }
-                    a[++k + 1] = a1;
-
-                    while (a2 < a[--k]) {
-                        a[k + 1] = a[k];
-                    }
-                    a[k + 1] = a2;
-                }
-                long last = a[right];
-
-                while (last < a[--right]) {
-                    a[right + 1] = a[right];
-                }
-                a[right + 1] = last;
-            }
-            return;
-        }
-
-        // Inexpensive approximation of length / 7
-        int seventh = (length >> 3) + (length >> 6) + 1;
+    private static boolean tryMergeRuns(Sorter sorter, int[] a, int low, int size) {
 
         /*
-         * Sort five evenly spaced elements around (and including) the
-         * center element in the range. These elements will be used for
-         * pivot selection as described below. The choice for spacing
-         * these elements was empirically determined to work well on
-         * a wide variety of inputs.
+         * The run array is constructed only if initial runs are
+         * long enough to continue, run[i] then holds start index
+         * of the i-th sequence of elements in non-descending order.
          */
-        int e3 = (left + right) >>> 1; // The midpoint
-        int e2 = e3 - seventh;
-        int e1 = e2 - seventh;
-        int e4 = e3 + seventh;
-        int e5 = e4 + seventh;
-
-        // Sort these elements using insertion sort
-        if (a[e2] < a[e1]) { long t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
-
-        if (a[e3] < a[e2]) { long t = a[e3]; a[e3] = a[e2]; a[e2] = t;
-            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-        }
-        if (a[e4] < a[e3]) { long t = a[e4]; a[e4] = a[e3]; a[e3] = t;
-            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
-                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-            }
-        }
-        if (a[e5] < a[e4]) { long t = a[e5]; a[e5] = a[e4]; a[e4] = t;
-            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
-                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
-                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-                }
-            }
-        }
-
-        // Pointers
-        int less  = left;  // The index of the first element of center part
-        int great = right; // The index before the first element of right part
-
-        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
-            /*
-             * Use the second and fourth of the five sorted elements as pivots.
-             * These values are inexpensive approximations of the first and
-             * second terciles of the array. Note that pivot1 <= pivot2.
-             */
-            long pivot1 = a[e2];
-            long pivot2 = a[e4];
-
-            /*
-             * The first and the last elements to be sorted are moved to the
-             * locations formerly occupied by the pivots. When partitioning
-             * is complete, the pivots are swapped back into their final
-             * positions, and excluded from subsequent sorting.
-             */
-            a[e2] = a[left];
-            a[e4] = a[right];
-
-            /*
-             * Skip elements, which are less or greater than pivot values.
-             */
-            while (a[++less] < pivot1);
-            while (a[--great] > pivot2);
+        int[] run = null;
+        int high = low + size;
+        int count = 1, last = low;
+
+        /*
+         * Identify all possible runs.
+         */
+        for (int k = low + 1; k < high; ) {
 
             /*
-             * Partitioning:
-             *
-             *   left part           center part                   right part
-             * +--------------------------------------------------------------+
-             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
-             * +--------------------------------------------------------------+
-             *               ^                          ^       ^
-             *               |                          |       |
-             *              less                        k     great
-             *
-             * Invariants:
-             *
-             *              all in (left, less)   < pivot1
-             *    pivot1 <= all in [less, k)     <= pivot2
-             *              all in (great, right) > pivot2
-             *
-             * Pointer k is the first index of ?-part.
+             * Find the end index of the current run.
              */
-            outer:
-            for (int k = less - 1; ++k <= great; ) {
-                long ak = a[k];
-                if (ak < pivot1) { // Move a[k] to left part
-                    a[k] = a[less];
-                    /*
-                     * Here and below we use "a[i] = b; i++;" instead
-                     * of "a[i++] = b;" due to performance issue.
-                     */
-                    a[less] = ak;
-                    ++less;
-                } else if (ak > pivot2) { // Move a[k] to right part
-                    while (a[great] > pivot2) {
-                        if (great-- == k) {
-                            break outer;
-                        }
-                    }
-                    if (a[great] < pivot1) { // a[great] <= pivot2
-                        a[k] = a[less];
-                        a[less] = a[great];
-                        ++less;
-                    } else { // pivot1 <= a[great] <= pivot2
-                        a[k] = a[great];
-                    }
-                    /*
-                     * Here and below we use "a[i] = b; i--;" instead
-                     * of "a[i--] = b;" due to performance issue.
-                     */
-                    a[great] = ak;
-                    --great;
-                }
-            }
-
-            // Swap pivots into their final positions
-            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
-            a[right] = a[great + 1]; a[great + 1] = pivot2;
-
-            // Sort left and right parts recursively, excluding known pivots
-            sort(a, left, less - 2, leftmost);
-            sort(a, great + 2, right, false);
-
-            /*
-             * If center part is too large (comprises > 4/7 of the array),
-             * swap internal pivot values to ends.
-             */
-            if (less < e1 && e5 < great) {
-                /*
-                 * Skip elements, which are equal to pivot values.
-                 */
-                while (a[less] == pivot1) {
-                    ++less;
-                }
-
-                while (a[great] == pivot2) {
-                    --great;
+            if (a[k - 1] < a[k]) {
+
+                // Identify ascending sequence
+                while (++k < high && a[k - 1] <= a[k]);
+
+            } else if (a[k - 1] > a[k]) {
+
+                // Identify descending sequence
+                while (++k < high && a[k - 1] >= a[k]);
+
+                // Reverse into ascending order
+                for (int i = last - 1, j = k; ++i < --j && a[i] > a[j]; ) {
+                    int ai = a[i]; a[i] = a[j]; a[j] = ai;
                 }
-
-                /*
-                 * Partitioning:
-                 *
-                 *   left part         center part                  right part
-                 * +----------------------------------------------------------+
-                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
-                 * +----------------------------------------------------------+
-                 *              ^                        ^       ^
-                 *              |                        |       |
-                 *             less                      k     great
-                 *
-                 * Invariants:
-                 *
-                 *              all in (*,  less) == pivot1
-                 *     pivot1 < all in [less,  k)  < pivot2
-                 *              all in (great, *) == pivot2
-                 *
-                 * Pointer k is the first index of ?-part.
-                 */
-                outer:
-                for (int k = less - 1; ++k <= great; ) {
-                    long ak = a[k];
-                    if (ak == pivot1) { // Move a[k] to left part
-                        a[k] = a[less];
-                        a[less] = ak;
-                        ++less;
-                    } else if (ak == pivot2) { // Move a[k] to right part
-                        while (a[great] == pivot2) {
-                            if (great-- == k) {
-                                break outer;
-                            }
-                        }
-                        if (a[great] == pivot1) { // a[great] < pivot2
-                            a[k] = a[less];
-                            /*
-                             * Even though a[great] equals to pivot1, the
-                             * assignment a[less] = pivot1 may be incorrect,
-                             * if a[great] and pivot1 are floating-point zeros
-                             * of different signs. Therefore in float and
-                             * double sorting methods we have to use more
-                             * accurate assignment a[less] = a[great].
-                             */
-                            a[less] = pivot1;
-                            ++less;
-                        } else { // pivot1 < a[great] < pivot2
-                            a[k] = a[great];
-                        }
-                        a[great] = ak;
-                        --great;
-                    }
-                }
-            }
-
-            // Sort center part recursively
-            sort(a, less, great, false);
-
-        } else { // Partitioning with one pivot
-            /*
-             * Use the third of the five sorted elements as pivot.
-             * This value is inexpensive approximation of the median.
-             */
-            long pivot = a[e3];
-
-            /*
-             * Partitioning degenerates to the traditional 3-way
-             * (or "Dutch National Flag") schema:
-             *
-             *   left part    center part              right part
-             * +-------------------------------------------------+
-             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
-             * +-------------------------------------------------+
-             *              ^              ^        ^
-             *              |              |        |
-             *             less            k      great
-             *
-             * Invariants:
-             *
-             *   all in (left, less)   < pivot
-             *   all in [less, k)     == pivot
-             *   all in (great, right) > pivot
-             *
-             * Pointer k is the first index of ?-part.
-             */
-            for (int k = less; k <= great; ++k) {
-                if (a[k] == pivot) {
+            } else { // Identify constant sequence
+                for (int ak = a[k]; ++k < high && ak == a[k]; );
+
+                if (k < high) {
                     continue;
                 }
-                long ak = a[k];
-                if (ak < pivot) { // Move a[k] to left part
-                    a[k] = a[less];
-                    a[less] = ak;
-                    ++less;
-                } else { // a[k] > pivot - Move a[k] to right part
-                    while (a[great] > pivot) {
-                        --great;
-                    }
-                    if (a[great] < pivot) { // a[great] <= pivot
-                        a[k] = a[less];
-                        a[less] = a[great];
-                        ++less;
-                    } else { // a[great] == pivot
-                        /*
-                         * Even though a[great] equals to pivot, the
-                         * assignment a[k] = pivot may be incorrect,
-                         * if a[great] and pivot are floating-point
-                         * zeros of different signs. Therefore in float
-                         * and double sorting methods we have to use
-                         * more accurate assignment a[k] = a[great].
-                         */
-                        a[k] = pivot;
-                    }
-                    a[great] = ak;
-                    --great;
-                }
             }
 
             /*
-             * Sort left and right parts recursively.
-             * All elements from center part are equal
-             * and, therefore, already sorted.
+             * Check special cases.
              */
-            sort(a, left, less - 1, leftmost);
-            sort(a, great + 1, right, false);
+            if (run == null) {
+                if (k == high) {
+
+                    /*
+                     * The array is monotonous sequence,
+                     * and therefore already sorted.
+                     */
+                    return true;
+                }
+
+                if (k - low < MIN_FIRST_RUN_SIZE) {
+
+                    /*
+                     * The first run is too small
+                     * to proceed with scanning.
+                     */
+                    return false;
+                }
+
+                run = new int[((size >> 10) | 0x7F) & 0x3FF];
+                run[0] = low;
+
+            } else if (a[last - 1] > a[last]) {
+
+                if (count > (k - low) >> MIN_FIRST_RUNS_FACTOR) {
+
+                    /*
+                     * The first runs are not long
+                     * enough to continue scanning.
+                     */
+                    return false;
+                }
+
+                if (++count == MAX_RUN_CAPACITY) {
+
+                    /*
+                     * Array is not highly structured.
+                     */
+                    return false;
+                }
+
+                if (count == run.length) {
+
+                    /*
+                     * Increase capacity of index array.
+                     */
+                    run = Arrays.copyOf(run, count << 1);
+                }
+            }
+            run[count] = (last = k);
+        }
+
+        /*
+         * Merge runs of highly structured array.
+         */
+        if (count > 1) {
+            int[] b; int offset = low;
+
+            if (sorter == null || (b = (int[]) sorter.b) == null) {
+                b = new int[size];
+            } else {
+                offset = sorter.offset;
+            }
+            mergeRuns(a, b, offset, 1, sorter != null, run, 0, count);
+        }
+        return true;
+    }
+
+    /**
+     * Merges the specified runs.
+     *
+     * @param a the source array
+     * @param b the temporary buffer used in merging
+     * @param offset the start index in the source, inclusive
+     * @param aim specifies merging: to source ( > 0), buffer ( < 0) or any ( == 0)
+     * @param parallel indicates whether merging is performed in parallel
+     * @param run the start indexes of the runs, inclusive
+     * @param lo the start index of the first run, inclusive
+     * @param hi the start index of the last run, inclusive
+     * @return the destination where runs are merged
+     */
+    private static int[] mergeRuns(int[] a, int[] b, int offset,
+            int aim, boolean parallel, int[] run, int lo, int hi) {
+
+        if (hi - lo == 1) {
+            if (aim >= 0) {
+                return a;
+            }
+            for (int i = run[hi], j = i - offset, low = run[lo]; i > low;
+                b[--j] = a[--i]
+            );
+            return b;
+        }
+
+        /*
+         * Split into approximately equal parts.
+         */
+        int mi = lo, rmi = (run[lo] + run[hi]) >>> 1;
+        while (run[++mi + 1] <= rmi);
+
+        /*
+         * Merge the left and right parts.
+         */
+        int[] a1, a2;
+
+        if (parallel && hi - lo > MIN_RUN_COUNT) {
+            RunMerger merger = new RunMerger(a, b, offset, 0, run, mi, hi).forkMe();
+            a1 = mergeRuns(a, b, offset, -aim, true, run, lo, mi);
+            a2 = (int[]) merger.getDestination();
+        } else {
+            a1 = mergeRuns(a, b, offset, -aim, false, run, lo, mi);
+            a2 = mergeRuns(a, b, offset,    0, false, run, mi, hi);
+        }
+
+        int[] dst = a1 == a ? b : a;
+
+        int k   = a1 == a ? run[lo] - offset : run[lo];
+        int lo1 = a1 == b ? run[lo] - offset : run[lo];
+        int hi1 = a1 == b ? run[mi] - offset : run[mi];
+        int lo2 = a2 == b ? run[mi] - offset : run[mi];
+        int hi2 = a2 == b ? run[hi] - offset : run[hi];
+
+        if (parallel) {
+            new Merger(null, dst, k, a1, lo1, hi1, a2, lo2, hi2).invoke();
+        } else {
+            mergeParts(null, dst, k, a1, lo1, hi1, a2, lo2, hi2);
+        }
+        return dst;
+    }
+
+    /**
+     * Merges the sorted parts.
+     *
+     * @param merger parallel context
+     * @param dst the destination where parts are merged
+     * @param k the start index of the destination, inclusive
+     * @param a1 the first part
+     * @param lo1 the start index of the first part, inclusive
+     * @param hi1 the end index of the first part, exclusive
+     * @param a2 the second part
+     * @param lo2 the start index of the second part, inclusive
+     * @param hi2 the end index of the second part, exclusive
+     */
+    private static void mergeParts(Merger merger, int[] dst, int k,
+            int[] a1, int lo1, int hi1, int[] a2, int lo2, int hi2) {
+
+        if (merger != null && a1 == a2) {
+
+            while (true) {
+
+                /*
+                 * The first part must be larger.
+                 */
+                if (hi1 - lo1 < hi2 - lo2) {
+                    int lo = lo1; lo1 = lo2; lo2 = lo;
+                    int hi = hi1; hi1 = hi2; hi2 = hi;
+                }
+
+                /*
+                 * Small parts will be merged sequentially.
+                 */
+                if (hi1 - lo1 < MIN_PARALLEL_MERGE_PARTS_SIZE) {
+                    break;
+                }
+
+                /*
+                 * Find the median of the larger part.
+                 */
+                int mi1 = (lo1 + hi1) >>> 1;
+                int key = a1[mi1];
+                int mi2 = hi2;
+
+                /*
+                 * Partition the smaller part.
+                 */
+                for (int loo = lo2; loo < mi2; ) {
+                    int t = (loo + mi2) >>> 1;
+
+                    if (key > a2[t]) {
+                        loo = t + 1;
+                    } else {
+                        mi2 = t;
+                    }
+                }
+
+                int d = mi2 - lo2 + mi1 - lo1;
+
+                /*
+                 * Merge the right sub-parts in parallel.
+                 */
+                merger.forkMerger(dst, k + d, a1, mi1, hi1, a2, mi2, hi2);
+
+                /*
+                 * Process the sub-left parts.
+                 */
+                hi1 = mi1;
+                hi2 = mi2;
+            }
+        }
+
+        /*
+         * Merge small parts sequentially.
+         */
+        while (lo1 < hi1 && lo2 < hi2) {
+            dst[k++] = a1[lo1] < a2[lo2] ? a1[lo1++] : a2[lo2++];
+        }
+        if (dst != a1 || k < lo1) {
+            while (lo1 < hi1) {
+                dst[k++] = a1[lo1++];
+            }
+        }
+        if (dst != a2 || k < lo2) {
+            while (lo2 < hi2) {
+                dst[k++] = a2[lo2++];
+            }
+        }
+    }
+
+// [long]
+
+    /**
+     * Sorts the specified range of the array using parallel merge
+     * sort and/or Dual-Pivot Quicksort.
+     *
+     * To balance the faster splitting and parallelism of merge sort
+     * with the faster element partitioning of Quicksort, ranges are
+     * subdivided in tiers such that, if there is enough parallelism,
+     * the four-way parallel merge is started, still ensuring enough
+     * parallelism to process the partitions.
+     *
+     * @param a the array to be sorted
+     * @param parallelism the parallelism level
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    static void sort(long[] a, int parallelism, int low, int high) {
+        int size = high - low;
+
+        if (parallelism > 1 && size > MIN_PARALLEL_SORT_SIZE) {
+            int depth = getDepth(parallelism, size >> 12);
+            long[] b = depth == 0 ? null : new long[size];
+            new Sorter(null, a, b, low, size, low, depth).invoke();
+        } else {
+            sort(null, a, 0, low, high);
         }
     }
 
     /**
-     * Sorts the specified range of the array using the given
-     * workspace array slice if possible for merging
+     * Sorts the specified array using the Dual-Pivot Quicksort and/or
+     * other sorts in special-cases, possibly with parallel partitions.
      *
-     * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
-     * @param work a workspace array (slice)
-     * @param workBase origin of usable space in work array
-     * @param workLen usable size of work array
-     */
-    static void sort(short[] a, int left, int right,
-                     short[] work, int workBase, int workLen) {
-        // Use counting sort on large arrays
-        if (right - left > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) {
-            int[] count = new int[NUM_SHORT_VALUES];
-
-            for (int i = left - 1; ++i <= right;
-                count[a[i] - Short.MIN_VALUE]++
-            );
-            for (int i = NUM_SHORT_VALUES, k = right + 1; k > left; ) {
-                while (count[--i] == 0);
-                short value = (short) (i + Short.MIN_VALUE);
-                int s = count[i];
-
-                do {
-                    a[--k] = value;
-                } while (--s > 0);
-            }
-        } else { // Use Dual-Pivot Quicksort on small arrays
-            doSort(a, left, right, work, workBase, workLen);
-        }
-    }
-
-    /** The number of distinct short values. */
-    private static final int NUM_SHORT_VALUES = 1 << 16;
-
-    /**
-     * Sorts the specified range of the array.
-     *
+     * @param sorter parallel context
      * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
-     * @param work a workspace array (slice)
-     * @param workBase origin of usable space in work array
-     * @param workLen usable size of work array
+     * @param bits the combination of recursion depth and bit flag, where
+     *        the right bit "0" indicates that array is the leftmost part
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
      */
-    private static void doSort(short[] a, int left, int right,
-                               short[] work, int workBase, int workLen) {
-        // Use Quicksort on small arrays
-        if (right - left < QUICKSORT_THRESHOLD) {
-            sort(a, left, right, true);
-            return;
-        }
-
-        /*
-         * Index run[i] is the start of i-th run
-         * (ascending or descending sequence).
-         */
-        int[] run = new int[MAX_RUN_COUNT + 1];
-        int count = 0; run[0] = left;
-
-        // Check if the array is nearly sorted
-        for (int k = left; k < right; run[count] = k) {
-            // Equal items in the beginning of the sequence
-            while (k < right && a[k] == a[k + 1])
-                k++;
-            if (k == right) break;  // Sequence finishes with equal items
-            if (a[k] < a[k + 1]) { // ascending
-                while (++k <= right && a[k - 1] <= a[k]);
-            } else if (a[k] > a[k + 1]) { // descending
-                while (++k <= right && a[k - 1] >= a[k]);
-                // Transform into an ascending sequence
-                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
-                    short t = a[lo]; a[lo] = a[hi]; a[hi] = t;
-                }
+    static void sort(Sorter sorter, long[] a, int bits, int low, int high) {
+        while (true) {
+            int end = high - 1, size = high - low;
+
+            /*
+             * Run mixed insertion sort on small non-leftmost parts.
+             */
+            if (size < MAX_MIXED_INSERTION_SORT_SIZE + bits && (bits & 1) > 0) {
+                mixedInsertionSort(a, low, high - 3 * ((size >> 5) << 3), high);
+                return;
             }
 
-            // Merge a transformed descending sequence followed by an
-            // ascending sequence
-            if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
-                count--;
+            /*
+             * Invoke insertion sort on small leftmost part.
+             */
+            if (size < MAX_INSERTION_SORT_SIZE) {
+                insertionSort(a, low, high);
+                return;
+            }
+
+            /*
+             * Check if the whole array or large non-leftmost
+             * parts are nearly sorted and then merge runs.
+             */
+            if ((bits == 0 || size > MIN_TRY_MERGE_SIZE && (bits & 1) > 0)
+                    && tryMergeRuns(sorter, a, low, size)) {
+                return;
+            }
+
+            /*
+             * Switch to heap sort if execution
+             * time is becoming quadratic.
+             */
+            if ((bits += DELTA) > MAX_RECURSION_DEPTH) {
+                heapSort(a, low, high);
+                return;
             }
 
             /*
-             * The array is not highly structured,
-             * use Quicksort instead of merge sort.
+             * Use an inexpensive approximation of the golden ratio
+             * to select five sample elements and determine pivots.
+             */
+            int step = (size >> 3) * 3 + 3;
+
+            /*
+             * Five elements around (and including) the central element
+             * will be used for pivot selection as described below. The
+             * unequal choice of spacing these elements was empirically
+             * determined to work well on a wide variety of inputs.
              */
-            if (++count == MAX_RUN_COUNT) {
-                sort(a, left, right, true);
-                return;
+            int e1 = low + step;
+            int e5 = end - step;
+            int e3 = (e1 + e5) >>> 1;
+            int e2 = (e1 + e3) >>> 1;
+            int e4 = (e3 + e5) >>> 1;
+            long a3 = a[e3];
+
+            /*
+             * Sort these elements in place by the combination
+             * of 4-element sorting network and insertion sort.
+             *
+             *    5 ------o-----------o------------
+             *            |           |
+             *    4 ------|-----o-----o-----o------
+             *            |     |           |
+             *    2 ------o-----|-----o-----o------
+             *                  |     |
+             *    1 ------------o-----o------------
+             */
+            if (a[e5] < a[e2]) { long t = a[e5]; a[e5] = a[e2]; a[e2] = t; }
+            if (a[e4] < a[e1]) { long t = a[e4]; a[e4] = a[e1]; a[e1] = t; }
+            if (a[e5] < a[e4]) { long t = a[e5]; a[e5] = a[e4]; a[e4] = t; }
+            if (a[e2] < a[e1]) { long t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
+            if (a[e4] < a[e2]) { long t = a[e4]; a[e4] = a[e2]; a[e2] = t; }
+
+            if (a3 < a[e2]) {
+                if (a3 < a[e1]) {
+                    a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3;
+                } else {
+                    a[e3] = a[e2]; a[e2] = a3;
+                }
+            } else if (a3 > a[e4]) {
+                if (a3 > a[e5]) {
+                    a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3;
+                } else {
+                    a[e3] = a[e4]; a[e4] = a3;
+                }
             }
-        }
-
-        // These invariants should hold true:
-        //    run[0] = 0
-        //    run[<last>] = right + 1; (terminator)
-
-        if (count == 0) {
-            // A single equal run
-            return;
-        } else if (count == 1 && run[count] > right) {
-            // Either a single ascending or a transformed descending run.
-            // Always check that a final run is a proper terminator, otherwise
-            // we have an unterminated trailing run, to handle downstream.
-            return;
-        }
-        right++;
-        if (run[count] < right) {
-            // Corner case: the final run is not a terminator. This may happen
-            // if a final run is an equals run, or there is a single-element run
-            // at the end. Fix up by adding a proper terminator at the end.
-            // Note that we terminate with (right + 1), incremented earlier.
-            run[++count] = right;
-        }
-
-        // Determine alternation base for merge
-        byte odd = 0;
-        for (int n = 1; (n <<= 1) < count; odd ^= 1);
-
-        // Use or create temporary array b for merging
-        short[] b;                 // temp array; alternates with a
-        int ao, bo;              // array offsets from 'left'
-        int blen = right - left; // space needed for b
-        if (work == null || workLen < blen || workBase + blen > work.length) {
-            work = new short[blen];
-            workBase = 0;
-        }
-        if (odd == 0) {
-            System.arraycopy(a, left, work, workBase, blen);
-            b = a;
-            bo = 0;
-            a = work;
-            ao = workBase - left;
-        } else {
-            b = work;
-            ao = 0;
-            bo = workBase - left;
-        }
-
-        // Merging
-        for (int last; count > 1; count = last) {
-            for (int k = (last = 0) + 2; k <= count; k += 2) {
-                int hi = run[k], mi = run[k - 1];
-                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
-                    if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
-                        b[i + bo] = a[p++ + ao];
-                    } else {
-                        b[i + bo] = a[q++ + ao];
+
+            // Pointers
+            int lower = low; // The index of the last element of the left part
+            int upper = end; // The index of the first element of the right part
+
+            /*
+             * Partitioning with 2 pivots in case of different elements.
+             */
+            if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) {
+
+                /*
+                 * Use the first and fifth of the five sorted elements as
+                 * the pivots. These values are inexpensive approximation
+                 * of tertiles. Note, that pivot1 < pivot2.
+                 */
+                long pivot1 = a[e1];
+                long pivot2 = a[e5];
+
+                /*
+                 * The first and the last elements to be sorted are moved
+                 * to the locations formerly occupied by the pivots. When
+                 * partitioning is completed, the pivots are swapped back
+                 * into their final positions, and excluded from the next
+                 * subsequent sorting.
+                 */
+                a[e1] = a[lower];
+                a[e5] = a[upper];
+
+                /*
+                 * Skip elements, which are less or greater than the pivots.
+                 */
+                while (a[++lower] < pivot1);
+                while (a[--upper] > pivot2);
+
+                /*
+                 * Backward 3-interval partitioning
+                 *
+                 *   left part                 central part          right part
+                 * +------------------------------------------------------------+
+                 * |  < pivot1  |   ?   |  pivot1 <= && <= pivot2  |  > pivot2  |
+                 * +------------------------------------------------------------+
+                 *             ^       ^                            ^
+                 *             |       |                            |
+                 *           lower     k                          upper
+                 *
+                 * Invariants:
+                 *
+                 *              all in (low, lower] < pivot1
+                 *    pivot1 <= all in (k, upper)  <= pivot2
+                 *              all in [upper, end) > pivot2
+                 *
+                 * Pointer k is the last index of ?-part
+                 */
+                for (int unused = --lower, k = ++upper; --k > lower; ) {
+                    long ak = a[k];
+
+                    if (ak < pivot1) { // Move a[k] to the left side
+                        while (lower < k) {
+                            if (a[++lower] >= pivot1) {
+                                if (a[lower] > pivot2) {
+                                    a[k] = a[--upper];
+                                    a[upper] = a[lower];
+                                } else {
+                                    a[k] = a[lower];
+                                }
+                                a[lower] = ak;
+                                break;
+                            }
+                        }
+                    } else if (ak > pivot2) { // Move a[k] to the right side
+                        a[k] = a[--upper];
+                        a[upper] = ak;
                     }
                 }
-                run[++last] = hi;
+
+                /*
+                 * Swap the pivots into their final positions.
+                 */
+                a[low] = a[lower]; a[lower] = pivot1;
+                a[end] = a[upper]; a[upper] = pivot2;
+
+                /*
+                 * Sort non-left parts recursively (possibly in parallel),
+                 * excluding known pivots.
+                 */
+                if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) {
+                    sorter.forkSorter(bits | 1, lower + 1, upper);
+                    sorter.forkSorter(bits | 1, upper + 1, high);
+                } else {
+                    sort(sorter, a, bits | 1, lower + 1, upper);
+                    sort(sorter, a, bits | 1, upper + 1, high);
+                }
+
+            } else { // Use single pivot in case of many equal elements
+
+                /*
+                 * Use the third of the five sorted elements as the pivot.
+                 * This value is inexpensive approximation of the median.
+                 */
+                long pivot = a[e3];
+
+                /*
+                 * The first element to be sorted is moved to the
+                 * location formerly occupied by the pivot. After
+                 * completion of partitioning the pivot is swapped
+                 * back into its final position, and excluded from
+                 * the next subsequent sorting.
+                 */
+                a[e3] = a[lower];
+
+                /*
+                 * Traditional 3-way (Dutch National Flag) partitioning
+                 *
+                 *   left part                 central part    right part
+                 * +------------------------------------------------------+
+                 * |   < pivot   |     ?     |   == pivot   |   > pivot   |
+                 * +------------------------------------------------------+
+                 *              ^           ^                ^
+                 *              |           |                |
+                 *            lower         k              upper
+                 *
+                 * Invariants:
+                 *
+                 *   all in (low, lower] < pivot
+                 *   all in (k, upper)  == pivot
+                 *   all in [upper, end] > pivot
+                 *
+                 * Pointer k is the last index of ?-part
+                 */
+                for (int k = ++upper; --k > lower; ) {
+                    long ak = a[k];
+
+                    if (ak != pivot) {
+                        a[k] = pivot;
+
+                        if (ak < pivot) { // Move a[k] to the left side
+                            while (a[++lower] < pivot);
+
+                            if (a[lower] > pivot) {
+                                a[--upper] = a[lower];
+                            }
+                            a[lower] = ak;
+                        } else { // ak > pivot - Move a[k] to the right side
+                            a[--upper] = ak;
+                        }
+                    }
+                }
+
+                /*
+                 * Swap the pivot into its final position.
+                 */
+                a[low] = a[lower]; a[lower] = pivot;
+
+                /*
+                 * Sort the right part (possibly in parallel), excluding
+                 * known pivot. All elements from the central part are
+                 * equal and therefore already sorted.
+                 */
+                if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) {
+                    sorter.forkSorter(bits | 1, upper, high);
+                } else {
+                    sort(sorter, a, bits | 1, upper, high);
+                }
             }
-            if ((count & 1) != 0) {
-                for (int i = right, lo = run[count - 1]; --i >= lo;
-                    b[i + bo] = a[i + ao]
-                );
-                run[++last] = right;
-            }
-            short[] t = a; a = b; b = t;
-            int o = ao; ao = bo; bo = o;
+            high = lower; // Iterate along the left part
         }
     }
 
     /**
-     * Sorts the specified range of the array by Dual-Pivot Quicksort.
+     * Sorts the specified range of the array using mixed insertion sort.
+     *
+     * Mixed insertion sort is combination of simple insertion sort,
+     * pin insertion sort and pair insertion sort.
+     *
+     * In the context of Dual-Pivot Quicksort, the pivot element
+     * from the left part plays the role of sentinel, because it
+     * is less than any elements from the given part. Therefore,
+     * expensive check of the left range can be skipped on each
+     * iteration unless it is the leftmost call.
      *
      * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
-     * @param leftmost indicates if this part is the leftmost in the range
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param end the index of the last element for simple insertion sort
+     * @param high the index of the last element, exclusive, to be sorted
      */
-    private static void sort(short[] a, int left, int right, boolean leftmost) {
-        int length = right - left + 1;
-
-        // Use insertion sort on tiny arrays
-        if (length < INSERTION_SORT_THRESHOLD) {
-            if (leftmost) {
-                /*
-                 * Traditional (without sentinel) insertion sort,
-                 * optimized for server VM, is used in case of
-                 * the leftmost part.
-                 */
-                for (int i = left, j = i; i < right; j = ++i) {
-                    short ai = a[i + 1];
-                    while (ai < a[j]) {
-                        a[j + 1] = a[j];
-                        if (j-- == left) {
-                            break;
-                        }
-                    }
-                    a[j + 1] = ai;
-                }
-            } else {
-                /*
-                 * Skip the longest ascending sequence.
-                 */
-                do {
-                    if (left >= right) {
-                        return;
-                    }
-                } while (a[++left] >= a[left - 1]);
-
-                /*
-                 * Every element from adjoining part plays the role
-                 * of sentinel, therefore this allows us to avoid the
-                 * left range check on each iteration. Moreover, we use
-                 * the more optimized algorithm, so called pair insertion
-                 * sort, which is faster (in the context of Quicksort)
-                 * than traditional implementation of insertion sort.
-                 */
-                for (int k = left; ++left <= right; k = ++left) {
-                    short a1 = a[k], a2 = a[left];
-
-                    if (a1 < a2) {
-                        a2 = a1; a1 = a[left];
-                    }
-                    while (a1 < a[--k]) {
-                        a[k + 2] = a[k];
-                    }
-                    a[++k + 1] = a1;
-
-                    while (a2 < a[--k]) {
-                        a[k + 1] = a[k];
-                    }
-                    a[k + 1] = a2;
-                }
-                short last = a[right];
-
-                while (last < a[--right]) {
-                    a[right + 1] = a[right];
-                }
-                a[right + 1] = last;
-            }
-            return;
-        }
-
-        // Inexpensive approximation of length / 7
-        int seventh = (length >> 3) + (length >> 6) + 1;
-
-        /*
-         * Sort five evenly spaced elements around (and including) the
-         * center element in the range. These elements will be used for
-         * pivot selection as described below. The choice for spacing
-         * these elements was empirically determined to work well on
-         * a wide variety of inputs.
-         */
-        int e3 = (left + right) >>> 1; // The midpoint
-        int e2 = e3 - seventh;
-        int e1 = e2 - seventh;
-        int e4 = e3 + seventh;
-        int e5 = e4 + seventh;
-
-        // Sort these elements using insertion sort
-        if (a[e2] < a[e1]) { short t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
-
-        if (a[e3] < a[e2]) { short t = a[e3]; a[e3] = a[e2]; a[e2] = t;
-            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-        }
-        if (a[e4] < a[e3]) { short t = a[e4]; a[e4] = a[e3]; a[e3] = t;
-            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
-                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-            }
-        }
-        if (a[e5] < a[e4]) { short t = a[e5]; a[e5] = a[e4]; a[e4] = t;
-            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
-                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
-                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-                }
-            }
-        }
-
-        // Pointers
-        int less  = left;  // The index of the first element of center part
-        int great = right; // The index before the first element of right part
-
-        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
-            /*
-             * Use the second and fourth of the five sorted elements as pivots.
-             * These values are inexpensive approximations of the first and
-             * second terciles of the array. Note that pivot1 <= pivot2.
-             */
-            short pivot1 = a[e2];
-            short pivot2 = a[e4];
+    private static void mixedInsertionSort(long[] a, int low, int end, int high) {
+        if (end == high) {
 
             /*
-             * The first and the last elements to be sorted are moved to the
-             * locations formerly occupied by the pivots. When partitioning
-             * is complete, the pivots are swapped back into their final
-             * positions, and excluded from subsequent sorting.
+             * Invoke simple insertion sort on tiny array.
              */
-            a[e2] = a[left];
-            a[e4] = a[right];
-
-            /*
-             * Skip elements, which are less or greater than pivot values.
-             */
-            while (a[++less] < pivot1);
-            while (a[--great] > pivot2);
+            for (int i; ++low < end; ) {
+                long ai = a[i = low];
+
+                while (ai < a[--i]) {
+                    a[i + 1] = a[i];
+                }
+                a[i + 1] = ai;
+            }
+        } else {
 
             /*
-             * Partitioning:
-             *
-             *   left part           center part                   right part
-             * +--------------------------------------------------------------+
-             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
-             * +--------------------------------------------------------------+
-             *               ^                          ^       ^
-             *               |                          |       |
-             *              less                        k     great
-             *
-             * Invariants:
-             *
-             *              all in (left, less)   < pivot1
-             *    pivot1 <= all in [less, k)     <= pivot2
-             *              all in (great, right) > pivot2
+             * Start with pin insertion sort on small part.
              *
-             * Pointer k is the first index of ?-part.
-             */
-            outer:
-            for (int k = less - 1; ++k <= great; ) {
-                short ak = a[k];
-                if (ak < pivot1) { // Move a[k] to left part
-                    a[k] = a[less];
-                    /*
-                     * Here and below we use "a[i] = b; i++;" instead
-                     * of "a[i++] = b;" due to performance issue.
-                     */
-                    a[less] = ak;
-                    ++less;
-                } else if (ak > pivot2) { // Move a[k] to right part
-                    while (a[great] > pivot2) {
-                        if (great-- == k) {
-                            break outer;
-                        }
-                    }
-                    if (a[great] < pivot1) { // a[great] <= pivot2
-                        a[k] = a[less];
-                        a[less] = a[great];
-                        ++less;
-                    } else { // pivot1 <= a[great] <= pivot2
-                        a[k] = a[great];
-                    }
-                    /*
-                     * Here and below we use "a[i] = b; i--;" instead
-                     * of "a[i--] = b;" due to performance issue.
-                     */
-                    a[great] = ak;
-                    --great;
-                }
-            }
-
-            // Swap pivots into their final positions
-            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
-            a[right] = a[great + 1]; a[great + 1] = pivot2;
-
-            // Sort left and right parts recursively, excluding known pivots
-            sort(a, left, less - 2, leftmost);
-            sort(a, great + 2, right, false);
-
-            /*
-             * If center part is too large (comprises > 4/7 of the array),
-             * swap internal pivot values to ends.
+             * Pin insertion sort is extended simple insertion sort.
+             * The main idea of this sort is to put elements larger
+             * than an element called pin to the end of array (the
+             * proper area for such elements). It avoids expensive
+             * movements of these elements through the whole array.
              */
-            if (less < e1 && e5 < great) {
-                /*
-                 * Skip elements, which are equal to pivot values.
-                 */
-                while (a[less] == pivot1) {
-                    ++less;
-                }
-
-                while (a[great] == pivot2) {
-                    --great;
-                }
-
-                /*
-                 * Partitioning:
-                 *
-                 *   left part         center part                  right part
-                 * +----------------------------------------------------------+
-                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
-                 * +----------------------------------------------------------+
-                 *              ^                        ^       ^
-                 *              |                        |       |
-                 *             less                      k     great
-                 *
-                 * Invariants:
-                 *
-                 *              all in (*,  less) == pivot1
-                 *     pivot1 < all in [less,  k)  < pivot2
-                 *              all in (great, *) == pivot2
-                 *
-                 * Pointer k is the first index of ?-part.
-                 */
-                outer:
-                for (int k = less - 1; ++k <= great; ) {
-                    short ak = a[k];
-                    if (ak == pivot1) { // Move a[k] to left part
-                        a[k] = a[less];
-                        a[less] = ak;
-                        ++less;
-                    } else if (ak == pivot2) { // Move a[k] to right part
-                        while (a[great] == pivot2) {
-                            if (great-- == k) {
-                                break outer;
-                            }
-                        }
-                        if (a[great] == pivot1) { // a[great] < pivot2
-                            a[k] = a[less];
-                            /*
-                             * Even though a[great] equals to pivot1, the
-                             * assignment a[less] = pivot1 may be incorrect,
-                             * if a[great] and pivot1 are floating-point zeros
-                             * of different signs. Therefore in float and
-                             * double sorting methods we have to use more
-                             * accurate assignment a[less] = a[great].
-                             */
-                            a[less] = pivot1;
-                            ++less;
-                        } else { // pivot1 < a[great] < pivot2
-                            a[k] = a[great];
-                        }
-                        a[great] = ak;
-                        --great;
+            long pin = a[end];
+
+            for (int i, p = high; ++low < end; ) {
+                long ai = a[i = low];
+
+                if (ai < a[i - 1]) { // Small element
+
+                    /*
+                     * Insert small element into sorted part.
+                     */
+                    a[i] = a[--i];
+
+                    while (ai < a[--i]) {
+                        a[i + 1] = a[i];
                     }
-                }
-            }
-
-            // Sort center part recursively
-            sort(a, less, great, false);
-
-        } else { // Partitioning with one pivot
-            /*
-             * Use the third of the five sorted elements as pivot.
-             * This value is inexpensive approximation of the median.
-             */
-            short pivot = a[e3];
-
-            /*
-             * Partitioning degenerates to the traditional 3-way
-             * (or "Dutch National Flag") schema:
-             *
-             *   left part    center part              right part
-             * +-------------------------------------------------+
-             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
-             * +-------------------------------------------------+
-             *              ^              ^        ^
-             *              |              |        |
-             *             less            k      great
-             *
-             * Invariants:
-             *
-             *   all in (left, less)   < pivot
-             *   all in [less, k)     == pivot
-             *   all in (great, right) > pivot
-             *
-             * Pointer k is the first index of ?-part.
-             */
-            for (int k = less; k <= great; ++k) {
-                if (a[k] == pivot) {
-                    continue;
-                }
-                short ak = a[k];
-                if (ak < pivot) { // Move a[k] to left part
-                    a[k] = a[less];
-                    a[less] = ak;
-                    ++less;
-                } else { // a[k] > pivot - Move a[k] to right part
-                    while (a[great] > pivot) {
-                        --great;
+                    a[i + 1] = ai;
+
+                } else if (p > i && ai > pin) { // Large element
+
+                    /*
+                     * Find element smaller than pin.
+                     */
+                    while (a[--p] > pin);
+
+                    /*
+                     * Swap it with large element.
+                     */
+                    if (p > i) {
+                        ai = a[p];
+                        a[p] = a[i];
                     }
-                    if (a[great] < pivot) { // a[great] <= pivot
-                        a[k] = a[less];
-                        a[less] = a[great];
-                        ++less;
-                    } else { // a[great] == pivot
-                        /*
-                         * Even though a[great] equals to pivot, the
-                         * assignment a[k] = pivot may be incorrect,
-                         * if a[great] and pivot are floating-point
-                         * zeros of different signs. Therefore in float
-                         * and double sorting methods we have to use
-                         * more accurate assignment a[k] = a[great].
-                         */
-                        a[k] = pivot;
+
+                    /*
+                     * Insert small element into sorted part.
+                     */
+                    while (ai < a[--i]) {
+                        a[i + 1] = a[i];
                     }
-                    a[great] = ak;
-                    --great;
+                    a[i + 1] = ai;
                 }
             }
 
             /*
-             * Sort left and right parts recursively.
-             * All elements from center part are equal
-             * and, therefore, already sorted.
+             * Continue with pair insertion sort on remain part.
              */
-            sort(a, left, less - 1, leftmost);
-            sort(a, great + 1, right, false);
+            for (int i; low < high; ++low) {
+                long a1 = a[i = low], a2 = a[++low];
+
+                /*
+                 * Insert two elements per iteration: at first, insert the
+                 * larger element and then insert the smaller element, but
+                 * from the position where the larger element was inserted.
+                 */
+                if (a1 > a2) {
+
+                    while (a1 < a[--i]) {
+                        a[i + 2] = a[i];
+                    }
+                    a[++i + 1] = a1;
+
+                    while (a2 < a[--i]) {
+                        a[i + 1] = a[i];
+                    }
+                    a[i + 1] = a2;
+
+                } else if (a1 < a[i - 1]) {
+
+                    while (a2 < a[--i]) {
+                        a[i + 2] = a[i];
+                    }
+                    a[++i + 1] = a2;
+
+                    while (a1 < a[--i]) {
+                        a[i + 1] = a[i];
+                    }
+                    a[i + 1] = a1;
+                }
+            }
+        }
+    }
+
+    /**
+     * Sorts the specified range of the array using insertion sort.
+     *
+     * @param a the array to be sorted
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    private static void insertionSort(long[] a, int low, int high) {
+        for (int i, k = low; ++k < high; ) {
+            long ai = a[i = k];
+
+            if (ai < a[i - 1]) {
+                while (--i >= low && ai < a[i]) {
+                    a[i + 1] = a[i];
+                }
+                a[i + 1] = ai;
+            }
+        }
+    }
+
+    /**
+     * Sorts the specified range of the array using heap sort.
+     *
+     * @param a the array to be sorted
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    private static void heapSort(long[] a, int low, int high) {
+        for (int k = (low + high) >>> 1; k > low; ) {
+            pushDown(a, --k, a[k], low, high);
+        }
+        while (--high > low) {
+            long max = a[low];
+            pushDown(a, low, a[high], low, high);
+            a[high] = max;
         }
     }
 
     /**
-     * Sorts the specified range of the array using the given
-     * workspace array slice if possible for merging
+     * Pushes specified element down during heap sort.
      *
-     * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
-     * @param work a workspace array (slice)
-     * @param workBase origin of usable space in work array
-     * @param workLen usable size of work array
+     * @param a the given array
+     * @param p the start index
+     * @param value the given element
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
      */
-    static void sort(char[] a, int left, int right,
-                     char[] work, int workBase, int workLen) {
-        // Use counting sort on large arrays
-        if (right - left > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) {
-            int[] count = new int[NUM_CHAR_VALUES];
-
-            for (int i = left - 1; ++i <= right;
-                count[a[i]]++
-            );
-            for (int i = NUM_CHAR_VALUES, k = right + 1; k > left; ) {
-                while (count[--i] == 0);
-                char value = (char) i;
-                int s = count[i];
-
-                do {
-                    a[--k] = value;
-                } while (--s > 0);
+    private static void pushDown(long[] a, int p, long value, int low, int high) {
+        for (int k ;; a[p] = a[p = k]) {
+            k = (p << 1) - low + 2; // Index of the right child
+
+            if (k > high) {
+                break;
             }
-        } else { // Use Dual-Pivot Quicksort on small arrays
-            doSort(a, left, right, work, workBase, workLen);
+            if (k == high || a[k] < a[k - 1]) {
+                --k;
+            }
+            if (a[k] <= value) {
+                break;
+            }
         }
+        a[p] = value;
     }
 
-    /** The number of distinct char values. */
-    private static final int NUM_CHAR_VALUES = 1 << 16;
-
     /**
-     * Sorts the specified range of the array.
+     * Tries to sort the specified range of the array.
      *
+     * @param sorter parallel context
      * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
-     * @param work a workspace array (slice)
-     * @param workBase origin of usable space in work array
-     * @param workLen usable size of work array
+     * @param low the index of the first element to be sorted
+     * @param size the array size
+     * @return true if finally sorted, false otherwise
      */
-    private static void doSort(char[] a, int left, int right,
-                               char[] work, int workBase, int workLen) {
-        // Use Quicksort on small arrays
-        if (right - left < QUICKSORT_THRESHOLD) {
-            sort(a, left, right, true);
-            return;
+    private static boolean tryMergeRuns(Sorter sorter, long[] a, int low, int size) {
+
+        /*
+         * The run array is constructed only if initial runs are
+         * long enough to continue, run[i] then holds start index
+         * of the i-th sequence of elements in non-descending order.
+         */
+        int[] run = null;
+        int high = low + size;
+        int count = 1, last = low;
+
+        /*
+         * Identify all possible runs.
+         */
+        for (int k = low + 1; k < high; ) {
+
+            /*
+             * Find the end index of the current run.
+             */
+            if (a[k - 1] < a[k]) {
+
+                // Identify ascending sequence
+                while (++k < high && a[k - 1] <= a[k]);
+
+            } else if (a[k - 1] > a[k]) {
+
+                // Identify descending sequence
+                while (++k < high && a[k - 1] >= a[k]);
+
+                // Reverse into ascending order
+                for (int i = last - 1, j = k; ++i < --j && a[i] > a[j]; ) {
+                    long ai = a[i]; a[i] = a[j]; a[j] = ai;
+                }
+            } else { // Identify constant sequence
+                for (long ak = a[k]; ++k < high && ak == a[k]; );
+
+                if (k < high) {
+                    continue;
+                }
+            }
+
+            /*
+             * Check special cases.
+             */
+            if (run == null) {
+                if (k == high) {
+
+                    /*
+                     * The array is monotonous sequence,
+                     * and therefore already sorted.
+                     */
+                    return true;
+                }
+
+                if (k - low < MIN_FIRST_RUN_SIZE) {
+
+                    /*
+                     * The first run is too small
+                     * to proceed with scanning.
+                     */
+                    return false;
+                }
+
+                run = new int[((size >> 10) | 0x7F) & 0x3FF];
+                run[0] = low;
+
+            } else if (a[last - 1] > a[last]) {
+
+                if (count > (k - low) >> MIN_FIRST_RUNS_FACTOR) {
+
+                    /*
+                     * The first runs are not long
+                     * enough to continue scanning.
+                     */
+                    return false;
+                }
+
+                if (++count == MAX_RUN_CAPACITY) {
+
+                    /*
+                     * Array is not highly structured.
+                     */
+                    return false;
+                }
+
+                if (count == run.length) {
+
+                    /*
+                     * Increase capacity of index array.
+                     */
+                    run = Arrays.copyOf(run, count << 1);
+                }
+            }
+            run[count] = (last = k);
         }
 
         /*
-         * Index run[i] is the start of i-th run
-         * (ascending or descending sequence).
+         * Merge runs of highly structured array.
+         */
+        if (count > 1) {
+            long[] b; int offset = low;
+
+            if (sorter == null || (b = (long[]) sorter.b) == null) {
+                b = new long[size];
+            } else {
+                offset = sorter.offset;
+            }
+            mergeRuns(a, b, offset, 1, sorter != null, run, 0, count);
+        }
+        return true;
+    }
+
+    /**
+     * Merges the specified runs.
+     *
+     * @param a the source array
+     * @param b the temporary buffer used in merging
+     * @param offset the start index in the source, inclusive
+     * @param aim specifies merging: to source ( > 0), buffer ( < 0) or any ( == 0)
+     * @param parallel indicates whether merging is performed in parallel
+     * @param run the start indexes of the runs, inclusive
+     * @param lo the start index of the first run, inclusive
+     * @param hi the start index of the last run, inclusive
+     * @return the destination where runs are merged
+     */
+    private static long[] mergeRuns(long[] a, long[] b, int offset,
+            int aim, boolean parallel, int[] run, int lo, int hi) {
+
+        if (hi - lo == 1) {
+            if (aim >= 0) {
+                return a;
+            }
+            for (int i = run[hi], j = i - offset, low = run[lo]; i > low;
+                b[--j] = a[--i]
+            );
+            return b;
+        }
+
+        /*
+         * Split into approximately equal parts.
+         */
+        int mi = lo, rmi = (run[lo] + run[hi]) >>> 1;
+        while (run[++mi + 1] <= rmi);
+
+        /*
+         * Merge the left and right parts.
          */
-        int[] run = new int[MAX_RUN_COUNT + 1];
-        int count = 0; run[0] = left;
-
-        // Check if the array is nearly sorted
-        for (int k = left; k < right; run[count] = k) {
-            // Equal items in the beginning of the sequence
-            while (k < right && a[k] == a[k + 1])
-                k++;
-            if (k == right) break;  // Sequence finishes with equal items
-            if (a[k] < a[k + 1]) { // ascending
-                while (++k <= right && a[k - 1] <= a[k]);
-            } else if (a[k] > a[k + 1]) { // descending
-                while (++k <= right && a[k - 1] >= a[k]);
-                // Transform into an ascending sequence
-                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
-                    char t = a[lo]; a[lo] = a[hi]; a[hi] = t;
+        long[] a1, a2;
+
+        if (parallel && hi - lo > MIN_RUN_COUNT) {
+            RunMerger merger = new RunMerger(a, b, offset, 0, run, mi, hi).forkMe();
+            a1 = mergeRuns(a, b, offset, -aim, true, run, lo, mi);
+            a2 = (long[]) merger.getDestination();
+        } else {
+            a1 = mergeRuns(a, b, offset, -aim, false, run, lo, mi);
+            a2 = mergeRuns(a, b, offset,    0, false, run, mi, hi);
+        }
+
+        long[] dst = a1 == a ? b : a;
+
+        int k   = a1 == a ? run[lo] - offset : run[lo];
+        int lo1 = a1 == b ? run[lo] - offset : run[lo];
+        int hi1 = a1 == b ? run[mi] - offset : run[mi];
+        int lo2 = a2 == b ? run[mi] - offset : run[mi];
+        int hi2 = a2 == b ? run[hi] - offset : run[hi];
+
+        if (parallel) {
+            new Merger(null, dst, k, a1, lo1, hi1, a2, lo2, hi2).invoke();
+        } else {
+            mergeParts(null, dst, k, a1, lo1, hi1, a2, lo2, hi2);
+        }
+        return dst;
+    }
+
+    /**
+     * Merges the sorted parts.
+     *
+     * @param merger parallel context
+     * @param dst the destination where parts are merged
+     * @param k the start index of the destination, inclusive
+     * @param a1 the first part
+     * @param lo1 the start index of the first part, inclusive
+     * @param hi1 the end index of the first part, exclusive
+     * @param a2 the second part
+     * @param lo2 the start index of the second part, inclusive
+     * @param hi2 the end index of the second part, exclusive
+     */
+    private static void mergeParts(Merger merger, long[] dst, int k,
+            long[] a1, int lo1, int hi1, long[] a2, int lo2, int hi2) {
+
+        if (merger != null && a1 == a2) {
+
+            while (true) {
+
+                /*
+                 * The first part must be larger.
+                 */
+                if (hi1 - lo1 < hi2 - lo2) {
+                    int lo = lo1; lo1 = lo2; lo2 = lo;
+                    int hi = hi1; hi1 = hi2; hi2 = hi;
                 }
-            }
-
-            // Merge a transformed descending sequence followed by an
-            // ascending sequence
-            if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
-                count--;
-            }
-
-            /*
-             * The array is not highly structured,
-             * use Quicksort instead of merge sort.
-             */
-            if (++count == MAX_RUN_COUNT) {
-                sort(a, left, right, true);
-                return;
+
+                /*
+                 * Small parts will be merged sequentially.
+                 */
+                if (hi1 - lo1 < MIN_PARALLEL_MERGE_PARTS_SIZE) {
+                    break;
+                }
+
+                /*
+                 * Find the median of the larger part.
+                 */
+                int mi1 = (lo1 + hi1) >>> 1;
+                long key = a1[mi1];
+                int mi2 = hi2;
+
+                /*
+                 * Partition the smaller part.
+                 */
+                for (int loo = lo2; loo < mi2; ) {
+                    int t = (loo + mi2) >>> 1;
+
+                    if (key > a2[t]) {
+                        loo = t + 1;
+                    } else {
+                        mi2 = t;
+                    }
+                }
+
+                int d = mi2 - lo2 + mi1 - lo1;
+
+                /*
+                 * Merge the right sub-parts in parallel.
+                 */
+                merger.forkMerger(dst, k + d, a1, mi1, hi1, a2, mi2, hi2);
+
+                /*
+                 * Process the sub-left parts.
+                 */
+                hi1 = mi1;
+                hi2 = mi2;
             }
         }
 
-        // These invariants should hold true:
-        //    run[0] = 0
-        //    run[<last>] = right + 1; (terminator)
-
-        if (count == 0) {
-            // A single equal run
-            return;
-        } else if (count == 1 && run[count] > right) {
-            // Either a single ascending or a transformed descending run.
-            // Always check that a final run is a proper terminator, otherwise
-            // we have an unterminated trailing run, to handle downstream.
-            return;
+        /*
+         * Merge small parts sequentially.
+         */
+        while (lo1 < hi1 && lo2 < hi2) {
+            dst[k++] = a1[lo1] < a2[lo2] ? a1[lo1++] : a2[lo2++];
         }
-        right++;
-        if (run[count] < right) {
-            // Corner case: the final run is not a terminator. This may happen
-            // if a final run is an equals run, or there is a single-element run
-            // at the end. Fix up by adding a proper terminator at the end.
-            // Note that we terminate with (right + 1), incremented earlier.
-            run[++count] = right;
+        if (dst != a1 || k < lo1) {
+            while (lo1 < hi1) {
+                dst[k++] = a1[lo1++];
+            }
         }
-
-        // Determine alternation base for merge
-        byte odd = 0;
-        for (int n = 1; (n <<= 1) < count; odd ^= 1);
-
-        // Use or create temporary array b for merging
-        char[] b;                 // temp array; alternates with a
-        int ao, bo;              // array offsets from 'left'
-        int blen = right - left; // space needed for b
-        if (work == null || workLen < blen || workBase + blen > work.length) {
-            work = new char[blen];
-            workBase = 0;
+        if (dst != a2 || k < lo2) {
+            while (lo2 < hi2) {
+                dst[k++] = a2[lo2++];
+            }
         }
-        if (odd == 0) {
-            System.arraycopy(a, left, work, workBase, blen);
-            b = a;
-            bo = 0;
-            a = work;
-            ao = workBase - left;
+    }
+
+// [byte]
+
+    /**
+     * Sorts the specified range of the array using
+     * counting sort or insertion sort.
+     *
+     * @param a the array to be sorted
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    static void sort(byte[] a, int low, int high) {
+        if (high - low > MIN_BYTE_COUNTING_SORT_SIZE) {
+            countingSort(a, low, high);
         } else {
-            b = work;
-            ao = 0;
-            bo = workBase - left;
-        }
-
-        // Merging
-        for (int last; count > 1; count = last) {
-            for (int k = (last = 0) + 2; k <= count; k += 2) {
-                int hi = run[k], mi = run[k - 1];
-                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
-                    if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
-                        b[i + bo] = a[p++ + ao];
-                    } else {
-                        b[i + bo] = a[q++ + ao];
-                    }
-                }
-                run[++last] = hi;
-            }
-            if ((count & 1) != 0) {
-                for (int i = right, lo = run[count - 1]; --i >= lo;
-                    b[i + bo] = a[i + ao]
-                );
-                run[++last] = right;
-            }
-            char[] t = a; a = b; b = t;
-            int o = ao; ao = bo; bo = o;
+            insertionSort(a, low, high);
         }
     }
 
     /**
-     * Sorts the specified range of the array by Dual-Pivot Quicksort.
+     * Sorts the specified range of the array using insertion sort.
+     *
+     * @param a the array to be sorted
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    private static void insertionSort(byte[] a, int low, int high) {
+        for (int i, k = low; ++k < high; ) {
+            byte ai = a[i = k];
+
+            if (ai < a[i - 1]) {
+                while (--i >= low && ai < a[i]) {
+                    a[i + 1] = a[i];
+                }
+                a[i + 1] = ai;
+            }
+        }
+    }
+
+    /**
+     * The number of distinct byte values.
+     */
+    private static final int NUM_BYTE_VALUES = 1 << 8;
+
+    /**
+     * Max index of byte counter.
+     */
+    private static final int MAX_BYTE_INDEX = Byte.MAX_VALUE + NUM_BYTE_VALUES + 1;
+
+    /**
+     * Sorts the specified range of the array using counting sort.
+     *
+     * @param a the array to be sorted
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    private static void countingSort(byte[] a, int low, int high) {
+        int[] count = new int[NUM_BYTE_VALUES];
+
+        /*
+         * Compute a histogram with the number of each values.
+         */
+        for (int i = high; i > low; ++count[a[--i] & 0xFF]);
+
+        /*
+         * Place values on their final positions.
+         */
+        if (high - low > NUM_BYTE_VALUES) {
+            for (int i = MAX_BYTE_INDEX; --i > Byte.MAX_VALUE; ) {
+                int value = i & 0xFF;
+
+                for (low = high - count[value]; high > low;
+                    a[--high] = (byte) value
+                );
+            }
+        } else {
+            for (int i = MAX_BYTE_INDEX; high > low; ) {
+                while (count[--i & 0xFF] == 0);
+
+                int value = i & 0xFF;
+                int c = count[value];
+
+                do {
+                    a[--high] = (byte) value;
+                } while (--c > 0);
+            }
+        }
+    }
+
+// [char]
+
+    /**
+     * Sorts the specified range of the array using
+     * counting sort or Dual-Pivot Quicksort.
      *
      * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
-     * @param leftmost indicates if this part is the leftmost in the range
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    static void sort(char[] a, int low, int high) {
+        if (high - low > MIN_SHORT_OR_CHAR_COUNTING_SORT_SIZE) {
+            countingSort(a, low, high);
+        } else {
+            sort(a, 0, low, high);
+        }
+    }
+
+    /**
+     * Sorts the specified array using the Dual-Pivot Quicksort and/or
+     * other sorts in special-cases, possibly with parallel partitions.
+     *
+     * @param a the array to be sorted
+     * @param bits the combination of recursion depth and bit flag, where
+     *        the right bit "0" indicates that array is the leftmost part
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
      */
-    private static void sort(char[] a, int left, int right, boolean leftmost) {
-        int length = right - left + 1;
-
-        // Use insertion sort on tiny arrays
-        if (length < INSERTION_SORT_THRESHOLD) {
-            if (leftmost) {
-                /*
-                 * Traditional (without sentinel) insertion sort,
-                 * optimized for server VM, is used in case of
-                 * the leftmost part.
-                 */
-                for (int i = left, j = i; i < right; j = ++i) {
-                    char ai = a[i + 1];
-                    while (ai < a[j]) {
-                        a[j + 1] = a[j];
-                        if (j-- == left) {
-                            break;
-                        }
-                    }
-                    a[j + 1] = ai;
+    static void sort(char[] a, int bits, int low, int high) {
+        while (true) {
+            int end = high - 1, size = high - low;
+
+            /*
+             * Invoke insertion sort on small leftmost part.
+             */
+            if (size < MAX_INSERTION_SORT_SIZE) {
+                insertionSort(a, low, high);
+                return;
+            }
+
+            /*
+             * Switch to counting sort if execution
+             * time is becoming quadratic.
+             */
+            if ((bits += DELTA) > MAX_RECURSION_DEPTH) {
+                countingSort(a, low, high);
+                return;
+            }
+
+            /*
+             * Use an inexpensive approximation of the golden ratio
+             * to select five sample elements and determine pivots.
+             */
+            int step = (size >> 3) * 3 + 3;
+
+            /*
+             * Five elements around (and including) the central element
+             * will be used for pivot selection as described below. The
+             * unequal choice of spacing these elements was empirically
+             * determined to work well on a wide variety of inputs.
+             */
+            int e1 = low + step;
+            int e5 = end - step;
+            int e3 = (e1 + e5) >>> 1;
+            int e2 = (e1 + e3) >>> 1;
+            int e4 = (e3 + e5) >>> 1;
+            char a3 = a[e3];
+
+            /*
+             * Sort these elements in place by the combination
+             * of 4-element sorting network and insertion sort.
+             *
+             *    5 ------o-----------o------------
+             *            |           |
+             *    4 ------|-----o-----o-----o------
+             *            |     |           |
+             *    2 ------o-----|-----o-----o------
+             *                  |     |
+             *    1 ------------o-----o------------
+             */
+            if (a[e5] < a[e2]) { char t = a[e5]; a[e5] = a[e2]; a[e2] = t; }
+            if (a[e4] < a[e1]) { char t = a[e4]; a[e4] = a[e1]; a[e1] = t; }
+            if (a[e5] < a[e4]) { char t = a[e5]; a[e5] = a[e4]; a[e4] = t; }
+            if (a[e2] < a[e1]) { char t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
+            if (a[e4] < a[e2]) { char t = a[e4]; a[e4] = a[e2]; a[e2] = t; }
+
+            if (a3 < a[e2]) {
+                if (a3 < a[e1]) {
+                    a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3;
+                } else {
+                    a[e3] = a[e2]; a[e2] = a3;
                 }
-            } else {
-                /*
-                 * Skip the longest ascending sequence.
-                 */
-                do {
-                    if (left >= right) {
-                        return;
-                    }
-                } while (a[++left] >= a[left - 1]);
-
-                /*
-                 * Every element from adjoining part plays the role
-                 * of sentinel, therefore this allows us to avoid the
-                 * left range check on each iteration. Moreover, we use
-                 * the more optimized algorithm, so called pair insertion
-                 * sort, which is faster (in the context of Quicksort)
-                 * than traditional implementation of insertion sort.
-                 */
-                for (int k = left; ++left <= right; k = ++left) {
-                    char a1 = a[k], a2 = a[left];
-
-                    if (a1 < a2) {
-                        a2 = a1; a1 = a[left];
-                    }
-                    while (a1 < a[--k]) {
-                        a[k + 2] = a[k];
-                    }
-                    a[++k + 1] = a1;
-
-                    while (a2 < a[--k]) {
-                        a[k + 1] = a[k];
-                    }
-                    a[k + 1] = a2;
-                }
-                char last = a[right];
-
-                while (last < a[--right]) {
-                    a[right + 1] = a[right];
-                }
-                a[right + 1] = last;
-            }
-            return;
-        }
-
-        // Inexpensive approximation of length / 7
-        int seventh = (length >> 3) + (length >> 6) + 1;
-
-        /*
-         * Sort five evenly spaced elements around (and including) the
-         * center element in the range. These elements will be used for
-         * pivot selection as described below. The choice for spacing
-         * these elements was empirically determined to work well on
-         * a wide variety of inputs.
-         */
-        int e3 = (left + right) >>> 1; // The midpoint
-        int e2 = e3 - seventh;
-        int e1 = e2 - seventh;
-        int e4 = e3 + seventh;
-        int e5 = e4 + seventh;
-
-        // Sort these elements using insertion sort
-        if (a[e2] < a[e1]) { char t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
-
-        if (a[e3] < a[e2]) { char t = a[e3]; a[e3] = a[e2]; a[e2] = t;
-            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-        }
-        if (a[e4] < a[e3]) { char t = a[e4]; a[e4] = a[e3]; a[e3] = t;
-            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
-                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-            }
-        }
-        if (a[e5] < a[e4]) { char t = a[e5]; a[e5] = a[e4]; a[e4] = t;
-            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
-                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
-                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
+            } else if (a3 > a[e4]) {
+                if (a3 > a[e5]) {
+                    a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3;
+                } else {
+                    a[e3] = a[e4]; a[e4] = a3;
                 }
             }
-        }
-
-        // Pointers
-        int less  = left;  // The index of the first element of center part
-        int great = right; // The index before the first element of right part
-
-        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
-            /*
-             * Use the second and fourth of the five sorted elements as pivots.
-             * These values are inexpensive approximations of the first and
-             * second terciles of the array. Note that pivot1 <= pivot2.
-             */
-            char pivot1 = a[e2];
-            char pivot2 = a[e4];
-
-            /*
-             * The first and the last elements to be sorted are moved to the
-             * locations formerly occupied by the pivots. When partitioning
-             * is complete, the pivots are swapped back into their final
-             * positions, and excluded from subsequent sorting.
-             */
-            a[e2] = a[left];
-            a[e4] = a[right];
-
-            /*
-             * Skip elements, which are less or greater than pivot values.
-             */
-            while (a[++less] < pivot1);
-            while (a[--great] > pivot2);
+
+            // Pointers
+            int lower = low; // The index of the last element of the left part
+            int upper = end; // The index of the first element of the right part
 
             /*
-             * Partitioning:
-             *
-             *   left part           center part                   right part
-             * +--------------------------------------------------------------+
-             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
-             * +--------------------------------------------------------------+
-             *               ^                          ^       ^
-             *               |                          |       |
-             *              less                        k     great
-             *
-             * Invariants:
-             *
-             *              all in (left, less)   < pivot1
-             *    pivot1 <= all in [less, k)     <= pivot2
-             *              all in (great, right) > pivot2
-             *
-             * Pointer k is the first index of ?-part.
+             * Partitioning with 2 pivots in case of different elements.
              */
-            outer:
-            for (int k = less - 1; ++k <= great; ) {
-                char ak = a[k];
-                if (ak < pivot1) { // Move a[k] to left part
-                    a[k] = a[less];
-                    /*
-                     * Here and below we use "a[i] = b; i++;" instead
-                     * of "a[i++] = b;" due to performance issue.
-                     */
-                    a[less] = ak;
-                    ++less;
-                } else if (ak > pivot2) { // Move a[k] to right part
-                    while (a[great] > pivot2) {
-                        if (great-- == k) {
-                            break outer;
+            if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) {
+
+                /*
+                 * Use the first and fifth of the five sorted elements as
+                 * the pivots. These values are inexpensive approximation
+                 * of tertiles. Note, that pivot1 < pivot2.
+                 */
+                char pivot1 = a[e1];
+                char pivot2 = a[e5];
+
+                /*
+                 * The first and the last elements to be sorted are moved
+                 * to the locations formerly occupied by the pivots. When
+                 * partitioning is completed, the pivots are swapped back
+                 * into their final positions, and excluded from the next
+                 * subsequent sorting.
+                 */
+                a[e1] = a[lower];
+                a[e5] = a[upper];
+
+                /*
+                 * Skip elements, which are less or greater than the pivots.
+                 */
+                while (a[++lower] < pivot1);
+                while (a[--upper] > pivot2);
+
+                /*
+                 * Backward 3-interval partitioning
+                 *
+                 *   left part                 central part          right part
+                 * +------------------------------------------------------------+
+                 * |  < pivot1  |   ?   |  pivot1 <= && <= pivot2  |  > pivot2  |
+                 * +------------------------------------------------------------+
+                 *             ^       ^                            ^
+                 *             |       |                            |
+                 *           lower     k                          upper
+                 *
+                 * Invariants:
+                 *
+                 *              all in (low, lower] < pivot1
+                 *    pivot1 <= all in (k, upper)  <= pivot2
+                 *              all in [upper, end) > pivot2
+                 *
+                 * Pointer k is the last index of ?-part
+                 */
+                for (int unused = --lower, k = ++upper; --k > lower; ) {
+                    char ak = a[k];
+
+                    if (ak < pivot1) { // Move a[k] to the left side
+                        while (lower < k) {
+                            if (a[++lower] >= pivot1) {
+                                if (a[lower] > pivot2) {
+                                    a[k] = a[--upper];
+                                    a[upper] = a[lower];
+                                } else {
+                                    a[k] = a[lower];
+                                }
+                                a[lower] = ak;
+                                break;
+                            }
                         }
+                    } else if (ak > pivot2) { // Move a[k] to the right side
+                        a[k] = a[--upper];
+                        a[upper] = ak;
                     }
-                    if (a[great] < pivot1) { // a[great] <= pivot2
-                        a[k] = a[less];
-                        a[less] = a[great];
-                        ++less;
-                    } else { // pivot1 <= a[great] <= pivot2
-                        a[k] = a[great];
-                    }
-                    /*
-                     * Here and below we use "a[i] = b; i--;" instead
-                     * of "a[i--] = b;" due to performance issue.
-                     */
-                    a[great] = ak;
-                    --great;
-                }
-            }
-
-            // Swap pivots into their final positions
-            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
-            a[right] = a[great + 1]; a[great + 1] = pivot2;
-
-            // Sort left and right parts recursively, excluding known pivots
-            sort(a, left, less - 2, leftmost);
-            sort(a, great + 2, right, false);
-
-            /*
-             * If center part is too large (comprises > 4/7 of the array),
-             * swap internal pivot values to ends.
-             */
-            if (less < e1 && e5 < great) {
-                /*
-                 * Skip elements, which are equal to pivot values.
-                 */
-                while (a[less] == pivot1) {
-                    ++less;
-                }
-
-                while (a[great] == pivot2) {
-                    --great;
                 }
 
                 /*
-                 * Partitioning:
+                 * Swap the pivots into their final positions.
+                 */
+                a[low] = a[lower]; a[lower] = pivot1;
+                a[end] = a[upper]; a[upper] = pivot2;
+
+                /*
+                 * Sort non-left parts recursively,
+                 * excluding known pivots.
+                 */
+                sort(a, bits | 1, lower + 1, upper);
+                sort(a, bits | 1, upper + 1, high);
+
+            } else { // Use single pivot in case of many equal elements
+
+                /*
+                 * Use the third of the five sorted elements as the pivot.
+                 * This value is inexpensive approximation of the median.
+                 */
+                char pivot = a[e3];
+
+                /*
+                 * The first element to be sorted is moved to the
+                 * location formerly occupied by the pivot. After
+                 * completion of partitioning the pivot is swapped
+                 * back into its final position, and excluded from
+                 * the next subsequent sorting.
+                 */
+                a[e3] = a[lower];
+
+                /*
+                 * Traditional 3-way (Dutch National Flag) partitioning
                  *
-                 *   left part         center part                  right part
-                 * +----------------------------------------------------------+
-                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
-                 * +----------------------------------------------------------+
-                 *              ^                        ^       ^
-                 *              |                        |       |
-                 *             less                      k     great
+                 *   left part                 central part    right part
+                 * +------------------------------------------------------+
+                 * |   < pivot   |     ?     |   == pivot   |   > pivot   |
+                 * +------------------------------------------------------+
+                 *              ^           ^                ^
+                 *              |           |                |
+                 *            lower         k              upper
                  *
                  * Invariants:
                  *
-                 *              all in (*,  less) == pivot1
-                 *     pivot1 < all in [less,  k)  < pivot2
-                 *              all in (great, *) == pivot2
+                 *   all in (low, lower] < pivot
+                 *   all in (k, upper)  == pivot
+                 *   all in [upper, end] > pivot
                  *
-                 * Pointer k is the first index of ?-part.
+                 * Pointer k is the last index of ?-part
                  */
-                outer:
-                for (int k = less - 1; ++k <= great; ) {
+                for (int k = ++upper; --k > lower; ) {
                     char ak = a[k];
-                    if (ak == pivot1) { // Move a[k] to left part
-                        a[k] = a[less];
-                        a[less] = ak;
-                        ++less;
-                    } else if (ak == pivot2) { // Move a[k] to right part
-                        while (a[great] == pivot2) {
-                            if (great-- == k) {
-                                break outer;
+
+                    if (ak != pivot) {
+                        a[k] = pivot;
+
+                        if (ak < pivot) { // Move a[k] to the left side
+                            while (a[++lower] < pivot);
+
+                            if (a[lower] > pivot) {
+                                a[--upper] = a[lower];
                             }
+                            a[lower] = ak;
+                        } else { // ak > pivot - Move a[k] to the right side
+                            a[--upper] = ak;
                         }
-                        if (a[great] == pivot1) { // a[great] < pivot2
-                            a[k] = a[less];
-                            /*
-                             * Even though a[great] equals to pivot1, the
-                             * assignment a[less] = pivot1 may be incorrect,
-                             * if a[great] and pivot1 are floating-point zeros
-                             * of different signs. Therefore in float and
-                             * double sorting methods we have to use more
-                             * accurate assignment a[less] = a[great].
-                             */
-                            a[less] = pivot1;
-                            ++less;
-                        } else { // pivot1 < a[great] < pivot2
-                            a[k] = a[great];
-                        }
-                        a[great] = ak;
-                        --great;
                     }
                 }
+
+                /*
+                 * Swap the pivot into its final position.
+                 */
+                a[low] = a[lower]; a[lower] = pivot;
+
+                /*
+                 * Sort the right part, excluding known pivot.
+                 * All elements from the central part are
+                 * equal and therefore already sorted.
+                 */
+                sort(a, bits | 1, upper, high);
             }
-
-            // Sort center part recursively
-            sort(a, less, great, false);
-
-        } else { // Partitioning with one pivot
-            /*
-             * Use the third of the five sorted elements as pivot.
-             * This value is inexpensive approximation of the median.
-             */
-            char pivot = a[e3];
-
-            /*
-             * Partitioning degenerates to the traditional 3-way
-             * (or "Dutch National Flag") schema:
-             *
-             *   left part    center part              right part
-             * +-------------------------------------------------+
-             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
-             * +-------------------------------------------------+
-             *              ^              ^        ^
-             *              |              |        |
-             *             less            k      great
-             *
-             * Invariants:
-             *
-             *   all in (left, less)   < pivot
-             *   all in [less, k)     == pivot
-             *   all in (great, right) > pivot
-             *
-             * Pointer k is the first index of ?-part.
-             */
-            for (int k = less; k <= great; ++k) {
-                if (a[k] == pivot) {
-                    continue;
-                }
-                char ak = a[k];
-                if (ak < pivot) { // Move a[k] to left part
-                    a[k] = a[less];
-                    a[less] = ak;
-                    ++less;
-                } else { // a[k] > pivot - Move a[k] to right part
-                    while (a[great] > pivot) {
-                        --great;
-                    }
-                    if (a[great] < pivot) { // a[great] <= pivot
-                        a[k] = a[less];
-                        a[less] = a[great];
-                        ++less;
-                    } else { // a[great] == pivot
-                        /*
-                         * Even though a[great] equals to pivot, the
-                         * assignment a[k] = pivot may be incorrect,
-                         * if a[great] and pivot are floating-point
-                         * zeros of different signs. Therefore in float
-                         * and double sorting methods we have to use
-                         * more accurate assignment a[k] = a[great].
-                         */
-                        a[k] = pivot;
-                    }
-                    a[great] = ak;
-                    --great;
-                }
-            }
-
-            /*
-             * Sort left and right parts recursively.
-             * All elements from center part are equal
-             * and, therefore, already sorted.
-             */
-            sort(a, left, less - 1, leftmost);
-            sort(a, great + 1, right, false);
+            high = lower; // Iterate along the left part
         }
     }
 
-    /** The number of distinct byte values. */
-    private static final int NUM_BYTE_VALUES = 1 << 8;
-
     /**
-     * Sorts the specified range of the array.
+     * Sorts the specified range of the array using insertion sort.
      *
      * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
      */
-    static void sort(byte[] a, int left, int right) {
-        // Use counting sort on large arrays
-        if (right - left > COUNTING_SORT_THRESHOLD_FOR_BYTE) {
-            int[] count = new int[NUM_BYTE_VALUES];
-
-            for (int i = left - 1; ++i <= right;
-                count[a[i] - Byte.MIN_VALUE]++
-            );
-            for (int i = NUM_BYTE_VALUES, k = right + 1; k > left; ) {
-                while (count[--i] == 0);
-                byte value = (byte) (i + Byte.MIN_VALUE);
-                int s = count[i];
-
-                do {
-                    a[--k] = value;
-                } while (--s > 0);
-            }
-        } else { // Use insertion sort on small arrays
-            for (int i = left, j = i; i < right; j = ++i) {
-                byte ai = a[i + 1];
-                while (ai < a[j]) {
-                    a[j + 1] = a[j];
-                    if (j-- == left) {
-                        break;
-                    }
+    private static void insertionSort(char[] a, int low, int high) {
+        for (int i, k = low; ++k < high; ) {
+            char ai = a[i = k];
+
+            if (ai < a[i - 1]) {
+                while (--i >= low && ai < a[i]) {
+                    a[i + 1] = a[i];
                 }
-                a[j + 1] = ai;
+                a[i + 1] = ai;
             }
         }
     }
 
     /**
-     * Sorts the specified range of the array using the given
-     * workspace array slice if possible for merging
+     * The number of distinct char values.
+     */
+    private static final int NUM_CHAR_VALUES = 1 << 16;
+
+    /**
+     * Sorts the specified range of the array using counting sort.
+     *
+     * @param a the array to be sorted
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    private static void countingSort(char[] a, int low, int high) {
+        int[] count = new int[NUM_CHAR_VALUES];
+
+        /*
+         * Compute a histogram with the number of each values.
+         */
+        for (int i = high; i > low; ++count[a[--i]]);
+
+        /*
+         * Place values on their final positions.
+         */
+        if (high - low > NUM_CHAR_VALUES) {
+            for (int i = NUM_CHAR_VALUES; i > 0; ) {
+                for (low = high - count[--i]; high > low;
+                    a[--high] = (char) i
+                );
+            }
+        } else {
+            for (int i = NUM_CHAR_VALUES; high > low; ) {
+                while (count[--i] == 0);
+                int c = count[i];
+
+                do {
+                    a[--high] = (char) i;
+                } while (--c > 0);
+            }
+        }
+    }
+
+// [short]
+
+    /**
+     * Sorts the specified range of the array using
+     * counting sort or Dual-Pivot Quicksort.
+     *
+     * @param a the array to be sorted
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    static void sort(short[] a, int low, int high) {
+        if (high - low > MIN_SHORT_OR_CHAR_COUNTING_SORT_SIZE) {
+            countingSort(a, low, high);
+        } else {
+            sort(a, 0, low, high);
+        }
+    }
+
+    /**
+     * Sorts the specified array using the Dual-Pivot Quicksort and/or
+     * other sorts in special-cases, possibly with parallel partitions.
      *
      * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
-     * @param work a workspace array (slice)
-     * @param workBase origin of usable space in work array
-     * @param workLen usable size of work array
+     * @param bits the combination of recursion depth and bit flag, where
+     *        the right bit "0" indicates that array is the leftmost part
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
      */
-    static void sort(float[] a, int left, int right,
-                     float[] work, int workBase, int workLen) {
+    static void sort(short[] a, int bits, int low, int high) {
+        while (true) {
+            int end = high - 1, size = high - low;
+
+            /*
+             * Invoke insertion sort on small leftmost part.
+             */
+            if (size < MAX_INSERTION_SORT_SIZE) {
+                insertionSort(a, low, high);
+                return;
+            }
+
+            /*
+             * Switch to counting sort if execution
+             * time is becoming quadratic.
+             */
+            if ((bits += DELTA) > MAX_RECURSION_DEPTH) {
+                countingSort(a, low, high);
+                return;
+            }
+
+            /*
+             * Use an inexpensive approximation of the golden ratio
+             * to select five sample elements and determine pivots.
+             */
+            int step = (size >> 3) * 3 + 3;
+
+            /*
+             * Five elements around (and including) the central element
+             * will be used for pivot selection as described below. The
+             * unequal choice of spacing these elements was empirically
+             * determined to work well on a wide variety of inputs.
+             */
+            int e1 = low + step;
+            int e5 = end - step;
+            int e3 = (e1 + e5) >>> 1;
+            int e2 = (e1 + e3) >>> 1;
+            int e4 = (e3 + e5) >>> 1;
+            short a3 = a[e3];
+
+            /*
+             * Sort these elements in place by the combination
+             * of 4-element sorting network and insertion sort.
+             *
+             *    5 ------o-----------o------------
+             *            |           |
+             *    4 ------|-----o-----o-----o------
+             *            |     |           |
+             *    2 ------o-----|-----o-----o------
+             *                  |     |
+             *    1 ------------o-----o------------
+             */
+            if (a[e5] < a[e2]) { short t = a[e5]; a[e5] = a[e2]; a[e2] = t; }
+            if (a[e4] < a[e1]) { short t = a[e4]; a[e4] = a[e1]; a[e1] = t; }
+            if (a[e5] < a[e4]) { short t = a[e5]; a[e5] = a[e4]; a[e4] = t; }
+            if (a[e2] < a[e1]) { short t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
+            if (a[e4] < a[e2]) { short t = a[e4]; a[e4] = a[e2]; a[e2] = t; }
+
+            if (a3 < a[e2]) {
+                if (a3 < a[e1]) {
+                    a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3;
+                } else {
+                    a[e3] = a[e2]; a[e2] = a3;
+                }
+            } else if (a3 > a[e4]) {
+                if (a3 > a[e5]) {
+                    a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3;
+                } else {
+                    a[e3] = a[e4]; a[e4] = a3;
+                }
+            }
+
+            // Pointers
+            int lower = low; // The index of the last element of the left part
+            int upper = end; // The index of the first element of the right part
+
+            /*
+             * Partitioning with 2 pivots in case of different elements.
+             */
+            if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) {
+
+                /*
+                 * Use the first and fifth of the five sorted elements as
+                 * the pivots. These values are inexpensive approximation
+                 * of tertiles. Note, that pivot1 < pivot2.
+                 */
+                short pivot1 = a[e1];
+                short pivot2 = a[e5];
+
+                /*
+                 * The first and the last elements to be sorted are moved
+                 * to the locations formerly occupied by the pivots. When
+                 * partitioning is completed, the pivots are swapped back
+                 * into their final positions, and excluded from the next
+                 * subsequent sorting.
+                 */
+                a[e1] = a[lower];
+                a[e5] = a[upper];
+
+                /*
+                 * Skip elements, which are less or greater than the pivots.
+                 */
+                while (a[++lower] < pivot1);
+                while (a[--upper] > pivot2);
+
+                /*
+                 * Backward 3-interval partitioning
+                 *
+                 *   left part                 central part          right part
+                 * +------------------------------------------------------------+
+                 * |  < pivot1  |   ?   |  pivot1 <= && <= pivot2  |  > pivot2  |
+                 * +------------------------------------------------------------+
+                 *             ^       ^                            ^
+                 *             |       |                            |
+                 *           lower     k                          upper
+                 *
+                 * Invariants:
+                 *
+                 *              all in (low, lower] < pivot1
+                 *    pivot1 <= all in (k, upper)  <= pivot2
+                 *              all in [upper, end) > pivot2
+                 *
+                 * Pointer k is the last index of ?-part
+                 */
+                for (int unused = --lower, k = ++upper; --k > lower; ) {
+                    short ak = a[k];
+
+                    if (ak < pivot1) { // Move a[k] to the left side
+                        while (lower < k) {
+                            if (a[++lower] >= pivot1) {
+                                if (a[lower] > pivot2) {
+                                    a[k] = a[--upper];
+                                    a[upper] = a[lower];
+                                } else {
+                                    a[k] = a[lower];
+                                }
+                                a[lower] = ak;
+                                break;
+                            }
+                        }
+                    } else if (ak > pivot2) { // Move a[k] to the right side
+                        a[k] = a[--upper];
+                        a[upper] = ak;
+                    }
+                }
+
+                /*
+                 * Swap the pivots into their final positions.
+                 */
+                a[low] = a[lower]; a[lower] = pivot1;
+                a[end] = a[upper]; a[upper] = pivot2;
+
+                /*
+                 * Sort non-left parts recursively,
+                 * excluding known pivots.
+                 */
+                sort(a, bits | 1, lower + 1, upper);
+                sort(a, bits | 1, upper + 1, high);
+
+            } else { // Use single pivot in case of many equal elements
+
+                /*
+                 * Use the third of the five sorted elements as the pivot.
+                 * This value is inexpensive approximation of the median.
+                 */
+                short pivot = a[e3];
+
+                /*
+                 * The first element to be sorted is moved to the
+                 * location formerly occupied by the pivot. After
+                 * completion of partitioning the pivot is swapped
+                 * back into its final position, and excluded from
+                 * the next subsequent sorting.
+                 */
+                a[e3] = a[lower];
+
+                /*
+                 * Traditional 3-way (Dutch National Flag) partitioning
+                 *
+                 *   left part                 central part    right part
+                 * +------------------------------------------------------+
+                 * |   < pivot   |     ?     |   == pivot   |   > pivot   |
+                 * +------------------------------------------------------+
+                 *              ^           ^                ^
+                 *              |           |                |
+                 *            lower         k              upper
+                 *
+                 * Invariants:
+                 *
+                 *   all in (low, lower] < pivot
+                 *   all in (k, upper)  == pivot
+                 *   all in [upper, end] > pivot
+                 *
+                 * Pointer k is the last index of ?-part
+                 */
+                for (int k = ++upper; --k > lower; ) {
+                    short ak = a[k];
+
+                    if (ak != pivot) {
+                        a[k] = pivot;
+
+                        if (ak < pivot) { // Move a[k] to the left side
+                            while (a[++lower] < pivot);
+
+                            if (a[lower] > pivot) {
+                                a[--upper] = a[lower];
+                            }
+                            a[lower] = ak;
+                        } else { // ak > pivot - Move a[k] to the right side
+                            a[--upper] = ak;
+                        }
+                    }
+                }
+
+                /*
+                 * Swap the pivot into its final position.
+                 */
+                a[low] = a[lower]; a[lower] = pivot;
+
+                /*
+                 * Sort the right part, excluding known pivot.
+                 * All elements from the central part are
+                 * equal and therefore already sorted.
+                 */
+                sort(a, bits | 1, upper, high);
+            }
+            high = lower; // Iterate along the left part
+        }
+    }
+
+    /**
+     * Sorts the specified range of the array using insertion sort.
+     *
+     * @param a the array to be sorted
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    private static void insertionSort(short[] a, int low, int high) {
+        for (int i, k = low; ++k < high; ) {
+            short ai = a[i = k];
+
+            if (ai < a[i - 1]) {
+                while (--i >= low && ai < a[i]) {
+                    a[i + 1] = a[i];
+                }
+                a[i + 1] = ai;
+            }
+        }
+    }
+
+    /**
+     * The number of distinct short values.
+     */
+    private static final int NUM_SHORT_VALUES = 1 << 16;
+
+    /**
+     * Max index of short counter.
+     */
+    private static final int MAX_SHORT_INDEX = Short.MAX_VALUE + NUM_SHORT_VALUES + 1;
+
+    /**
+     * Sorts the specified range of the array using counting sort.
+     *
+     * @param a the array to be sorted
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    private static void countingSort(short[] a, int low, int high) {
+        int[] count = new int[NUM_SHORT_VALUES];
+
         /*
-         * Phase 1: Move NaNs to the end of the array.
+         * Compute a histogram with the number of each values.
+         */
+        for (int i = high; i > low; ++count[a[--i] & 0xFFFF]);
+
+        /*
+         * Place values on their final positions.
          */
-        while (left <= right && Float.isNaN(a[right])) {
-            --right;
+        if (high - low > NUM_SHORT_VALUES) {
+            for (int i = MAX_SHORT_INDEX; --i > Short.MAX_VALUE; ) {
+                int value = i & 0xFFFF;
+
+                for (low = high - count[value]; high > low;
+                    a[--high] = (short) value
+                );
+            }
+        } else {
+            for (int i = MAX_SHORT_INDEX; high > low; ) {
+                while (count[--i & 0xFFFF] == 0);
+
+                int value = i & 0xFFFF;
+                int c = count[value];
+
+                do {
+                    a[--high] = (short) value;
+                } while (--c > 0);
+            }
         }
-        for (int k = right; --k >= left; ) {
-            float ak = a[k];
-            if (ak != ak) { // a[k] is NaN
-                a[k] = a[right];
-                a[right] = ak;
-                --right;
+    }
+
+// [float]
+
+    /**
+     * Sorts the specified range of the array using parallel merge
+     * sort and/or Dual-Pivot Quicksort.
+     *
+     * To balance the faster splitting and parallelism of merge sort
+     * with the faster element partitioning of Quicksort, ranges are
+     * subdivided in tiers such that, if there is enough parallelism,
+     * the four-way parallel merge is started, still ensuring enough
+     * parallelism to process the partitions.
+     *
+     * @param a the array to be sorted
+     * @param parallelism the parallelism level
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    static void sort(float[] a, int parallelism, int low, int high) {
+        /*
+         * Phase 1. Count the number of negative zero -0.0f,
+         * turn them into positive zero, and move all NaNs
+         * to the end of the array.
+         */
+        int numNegativeZero = 0;
+
+        for (int k = high; k > low; ) {
+            float ak = a[--k];
+
+            if (ak == 0.0f && Float.floatToRawIntBits(ak) < 0) { // ak is -0.0f
+                numNegativeZero += 1;
+                a[k] = 0.0f;
+            } else if (ak != ak) { // ak is NaN
+                a[k] = a[--high];
+                a[high] = ak;
             }
         }
 
         /*
-         * Phase 2: Sort everything except NaNs (which are already in place).
+         * Phase 2. Sort everything except NaNs,
+         * which are already in place.
          */
-        doSort(a, left, right, work, workBase, workLen);
-
-        /*
-         * Phase 3: Place negative zeros before positive zeros.
-         */
-        int hi = right;
+        int size = high - low;
+
+        if (parallelism > 1 && size > MIN_PARALLEL_SORT_SIZE) {
+            int depth = getDepth(parallelism, size >> 12);
+            float[] b = depth == 0 ? null : new float[size];
+            new Sorter(null, a, b, low, size, low, depth).invoke();
+        } else {
+            sort(null, a, 0, low, high);
+        }
 
         /*
-         * Find the first zero, or first positive, or last negative element.
+         * Phase 3. Turn positive zero 0.0f
+         * back into negative zero -0.0f.
          */
-        while (left < hi) {
-            int middle = (left + hi) >>> 1;
-            float middleValue = a[middle];
-
-            if (middleValue < 0.0f) {
-                left = middle + 1;
+        if (++numNegativeZero == 1) {
+            return;
+        }
+
+        /*
+         * Find the position one less than
+         * the index of the first zero.
+         */
+        while (low <= high) {
+            int middle = (low + high) >>> 1;
+
+            if (a[middle] < 0) {
+                low = middle + 1;
             } else {
-                hi = middle;
+                high = middle - 1;
             }
         }
 
         /*
-         * Skip the last negative value (if any) or all leading negative zeros.
+         * Replace the required number of 0.0f by -0.0f.
          */
-        while (left <= right && Float.floatToRawIntBits(a[left]) < 0) {
-            ++left;
+        while (--numNegativeZero > 0) {
+            a[++high] = -0.0f;
         }
-
-        /*
-         * Move negative zeros to the beginning of the sub-range.
-         *
-         * Partitioning:
-         *
-         * +----------------------------------------------------+
-         * |   < 0.0   |   -0.0   |   0.0   |   ?  ( >= 0.0 )   |
-         * +----------------------------------------------------+
-         *              ^          ^         ^
-         *              |          |         |
-         *             left        p         k
-         *
-         * Invariants:
-         *
-         *   all in (*,  left)  <  0.0
-         *   all in [left,  p) == -0.0
-         *   all in [p,     k) ==  0.0
-         *   all in [k, right] >=  0.0
-         *
-         * Pointer k is the first index of ?-part.
-         */
-        for (int k = left, p = left - 1; ++k <= right; ) {
-            float ak = a[k];
-            if (ak != 0.0f) {
-                break;
+    }
+
+    /**
+     * Sorts the specified array using the Dual-Pivot Quicksort and/or
+     * other sorts in special-cases, possibly with parallel partitions.
+     *
+     * @param sorter parallel context
+     * @param a the array to be sorted
+     * @param bits the combination of recursion depth and bit flag, where
+     *        the right bit "0" indicates that array is the leftmost part
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    static void sort(Sorter sorter, float[] a, int bits, int low, int high) {
+        while (true) {
+            int end = high - 1, size = high - low;
+
+            /*
+             * Run mixed insertion sort on small non-leftmost parts.
+             */
+            if (size < MAX_MIXED_INSERTION_SORT_SIZE + bits && (bits & 1) > 0) {
+                mixedInsertionSort(a, low, high - 3 * ((size >> 5) << 3), high);
+                return;
+            }
+
+            /*
+             * Invoke insertion sort on small leftmost part.
+             */
+            if (size < MAX_INSERTION_SORT_SIZE) {
+                insertionSort(a, low, high);
+                return;
+            }
+
+            /*
+             * Check if the whole array or large non-leftmost
+             * parts are nearly sorted and then merge runs.
+             */
+            if ((bits == 0 || size > MIN_TRY_MERGE_SIZE && (bits & 1) > 0)
+                    && tryMergeRuns(sorter, a, low, size)) {
+                return;
+            }
+
+            /*
+             * Switch to heap sort if execution
+             * time is becoming quadratic.
+             */
+            if ((bits += DELTA) > MAX_RECURSION_DEPTH) {
+                heapSort(a, low, high);
+                return;
+            }
+
+            /*
+             * Use an inexpensive approximation of the golden ratio
+             * to select five sample elements and determine pivots.
+             */
+            int step = (size >> 3) * 3 + 3;
+
+            /*
+             * Five elements around (and including) the central element
+             * will be used for pivot selection as described below. The
+             * unequal choice of spacing these elements was empirically
+             * determined to work well on a wide variety of inputs.
+             */
+            int e1 = low + step;
+            int e5 = end - step;
+            int e3 = (e1 + e5) >>> 1;
+            int e2 = (e1 + e3) >>> 1;
+            int e4 = (e3 + e5) >>> 1;
+            float a3 = a[e3];
+
+            /*
+             * Sort these elements in place by the combination
+             * of 4-element sorting network and insertion sort.
+             *
+             *    5 ------o-----------o------------
+             *            |           |
+             *    4 ------|-----o-----o-----o------
+             *            |     |           |
+             *    2 ------o-----|-----o-----o------
+             *                  |     |
+             *    1 ------------o-----o------------
+             */
+            if (a[e5] < a[e2]) { float t = a[e5]; a[e5] = a[e2]; a[e2] = t; }
+            if (a[e4] < a[e1]) { float t = a[e4]; a[e4] = a[e1]; a[e1] = t; }
+            if (a[e5] < a[e4]) { float t = a[e5]; a[e5] = a[e4]; a[e4] = t; }
+            if (a[e2] < a[e1]) { float t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
+            if (a[e4] < a[e2]) { float t = a[e4]; a[e4] = a[e2]; a[e2] = t; }
+
+            if (a3 < a[e2]) {
+                if (a3 < a[e1]) {
+                    a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3;
+                } else {
+                    a[e3] = a[e2]; a[e2] = a3;
+                }
+            } else if (a3 > a[e4]) {
+                if (a3 > a[e5]) {
+                    a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3;
+                } else {
+                    a[e3] = a[e4]; a[e4] = a3;
+                }
             }
-            if (Float.floatToRawIntBits(ak) < 0) { // ak is -0.0f
-                a[k] = 0.0f;
-                a[++p] = -0.0f;
+
+            // Pointers
+            int lower = low; // The index of the last element of the left part
+            int upper = end; // The index of the first element of the right part
+
+            /*
+             * Partitioning with 2 pivots in case of different elements.
+             */
+            if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) {
+
+                /*
+                 * Use the first and fifth of the five sorted elements as
+                 * the pivots. These values are inexpensive approximation
+                 * of tertiles. Note, that pivot1 < pivot2.
+                 */
+                float pivot1 = a[e1];
+                float pivot2 = a[e5];
+
+                /*
+                 * The first and the last elements to be sorted are moved
+                 * to the locations formerly occupied by the pivots. When
+                 * partitioning is completed, the pivots are swapped back
+                 * into their final positions, and excluded from the next
+                 * subsequent sorting.
+                 */
+                a[e1] = a[lower];
+                a[e5] = a[upper];
+
+                /*
+                 * Skip elements, which are less or greater than the pivots.
+                 */
+                while (a[++lower] < pivot1);
+                while (a[--upper] > pivot2);
+
+                /*
+                 * Backward 3-interval partitioning
+                 *
+                 *   left part                 central part          right part
+                 * +------------------------------------------------------------+
+                 * |  < pivot1  |   ?   |  pivot1 <= && <= pivot2  |  > pivot2  |
+                 * +------------------------------------------------------------+
+                 *             ^       ^                            ^
+                 *             |       |                            |
+                 *           lower     k                          upper
+                 *
+                 * Invariants:
+                 *
+                 *              all in (low, lower] < pivot1
+                 *    pivot1 <= all in (k, upper)  <= pivot2
+                 *              all in [upper, end) > pivot2
+                 *
+                 * Pointer k is the last index of ?-part
+                 */
+                for (int unused = --lower, k = ++upper; --k > lower; ) {
+                    float ak = a[k];
+
+                    if (ak < pivot1) { // Move a[k] to the left side
+                        while (lower < k) {
+                            if (a[++lower] >= pivot1) {
+                                if (a[lower] > pivot2) {
+                                    a[k] = a[--upper];
+                                    a[upper] = a[lower];
+                                } else {
+                                    a[k] = a[lower];
+                                }
+                                a[lower] = ak;
+                                break;
+                            }
+                        }
+                    } else if (ak > pivot2) { // Move a[k] to the right side
+                        a[k] = a[--upper];
+                        a[upper] = ak;
+                    }
+                }
+
+                /*
+                 * Swap the pivots into their final positions.
+                 */
+                a[low] = a[lower]; a[lower] = pivot1;
+                a[end] = a[upper]; a[upper] = pivot2;
+
+                /*
+                 * Sort non-left parts recursively (possibly in parallel),
+                 * excluding known pivots.
+                 */
+                if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) {
+                    sorter.forkSorter(bits | 1, lower + 1, upper);
+                    sorter.forkSorter(bits | 1, upper + 1, high);
+                } else {
+                    sort(sorter, a, bits | 1, lower + 1, upper);
+                    sort(sorter, a, bits | 1, upper + 1, high);
+                }
+
+            } else { // Use single pivot in case of many equal elements
+
+                /*
+                 * Use the third of the five sorted elements as the pivot.
+                 * This value is inexpensive approximation of the median.
+                 */
+                float pivot = a[e3];
+
+                /*
+                 * The first element to be sorted is moved to the
+                 * location formerly occupied by the pivot. After
+                 * completion of partitioning the pivot is swapped
+                 * back into its final position, and excluded from
+                 * the next subsequent sorting.
+                 */
+                a[e3] = a[lower];
+
+                /*
+                 * Traditional 3-way (Dutch National Flag) partitioning
+                 *
+                 *   left part                 central part    right part
+                 * +------------------------------------------------------+
+                 * |   < pivot   |     ?     |   == pivot   |   > pivot   |
+                 * +------------------------------------------------------+
+                 *              ^           ^                ^
+                 *              |           |                |
+                 *            lower         k              upper
+                 *
+                 * Invariants:
+                 *
+                 *   all in (low, lower] < pivot
+                 *   all in (k, upper)  == pivot
+                 *   all in [upper, end] > pivot
+                 *
+                 * Pointer k is the last index of ?-part
+                 */
+                for (int k = ++upper; --k > lower; ) {
+                    float ak = a[k];
+
+                    if (ak != pivot) {
+                        a[k] = pivot;
+
+                        if (ak < pivot) { // Move a[k] to the left side
+                            while (a[++lower] < pivot);
+
+                            if (a[lower] > pivot) {
+                                a[--upper] = a[lower];
+                            }
+                            a[lower] = ak;
+                        } else { // ak > pivot - Move a[k] to the right side
+                            a[--upper] = ak;
+                        }
+                    }
+                }
+
+                /*
+                 * Swap the pivot into its final position.
+                 */
+                a[low] = a[lower]; a[lower] = pivot;
+
+                /*
+                 * Sort the right part (possibly in parallel), excluding
+                 * known pivot. All elements from the central part are
+                 * equal and therefore already sorted.
+                 */
+                if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) {
+                    sorter.forkSorter(bits | 1, upper, high);
+                } else {
+                    sort(sorter, a, bits | 1, upper, high);
+                }
+            }
+            high = lower; // Iterate along the left part
+        }
+    }
+
+    /**
+     * Sorts the specified range of the array using mixed insertion sort.
+     *
+     * Mixed insertion sort is combination of simple insertion sort,
+     * pin insertion sort and pair insertion sort.
+     *
+     * In the context of Dual-Pivot Quicksort, the pivot element
+     * from the left part plays the role of sentinel, because it
+     * is less than any elements from the given part. Therefore,
+     * expensive check of the left range can be skipped on each
+     * iteration unless it is the leftmost call.
+     *
+     * @param a the array to be sorted
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param end the index of the last element for simple insertion sort
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    private static void mixedInsertionSort(float[] a, int low, int end, int high) {
+        if (end == high) {
+
+            /*
+             * Invoke simple insertion sort on tiny array.
+             */
+            for (int i; ++low < end; ) {
+                float ai = a[i = low];
+
+                while (ai < a[--i]) {
+                    a[i + 1] = a[i];
+                }
+                a[i + 1] = ai;
+            }
+        } else {
+
+            /*
+             * Start with pin insertion sort on small part.
+             *
+             * Pin insertion sort is extended simple insertion sort.
+             * The main idea of this sort is to put elements larger
+             * than an element called pin to the end of array (the
+             * proper area for such elements). It avoids expensive
+             * movements of these elements through the whole array.
+             */
+            float pin = a[end];
+
+            for (int i, p = high; ++low < end; ) {
+                float ai = a[i = low];
+
+                if (ai < a[i - 1]) { // Small element
+
+                    /*
+                     * Insert small element into sorted part.
+                     */
+                    a[i] = a[--i];
+
+                    while (ai < a[--i]) {
+                        a[i + 1] = a[i];
+                    }
+                    a[i + 1] = ai;
+
+                } else if (p > i && ai > pin) { // Large element
+
+                    /*
+                     * Find element smaller than pin.
+                     */
+                    while (a[--p] > pin);
+
+                    /*
+                     * Swap it with large element.
+                     */
+                    if (p > i) {
+                        ai = a[p];
+                        a[p] = a[i];
+                    }
+
+                    /*
+                     * Insert small element into sorted part.
+                     */
+                    while (ai < a[--i]) {
+                        a[i + 1] = a[i];
+                    }
+                    a[i + 1] = ai;
+                }
+            }
+
+            /*
+             * Continue with pair insertion sort on remain part.
+             */
+            for (int i; low < high; ++low) {
+                float a1 = a[i = low], a2 = a[++low];
+
+                /*
+                 * Insert two elements per iteration: at first, insert the
+                 * larger element and then insert the smaller element, but
+                 * from the position where the larger element was inserted.
+                 */
+                if (a1 > a2) {
+
+                    while (a1 < a[--i]) {
+                        a[i + 2] = a[i];
+                    }
+                    a[++i + 1] = a1;
+
+                    while (a2 < a[--i]) {
+                        a[i + 1] = a[i];
+                    }
+                    a[i + 1] = a2;
+
+                } else if (a1 < a[i - 1]) {
+
+                    while (a2 < a[--i]) {
+                        a[i + 2] = a[i];
+                    }
+                    a[++i + 1] = a2;
+
+                    while (a1 < a[--i]) {
+                        a[i + 1] = a[i];
+                    }
+                    a[i + 1] = a1;
+                }
+            }
+        }
+    }
+
+    /**
+     * Sorts the specified range of the array using insertion sort.
+     *
+     * @param a the array to be sorted
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    private static void insertionSort(float[] a, int low, int high) {
+        for (int i, k = low; ++k < high; ) {
+            float ai = a[i = k];
+
+            if (ai < a[i - 1]) {
+                while (--i >= low && ai < a[i]) {
+                    a[i + 1] = a[i];
+                }
+                a[i + 1] = ai;
             }
         }
     }
 
     /**
-     * Sorts the specified range of the array.
+     * Sorts the specified range of the array using heap sort.
      *
      * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
-     * @param work a workspace array (slice)
-     * @param workBase origin of usable space in work array
-     * @param workLen usable size of work array
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
      */
-    private static void doSort(float[] a, int left, int right,
-                               float[] work, int workBase, int workLen) {
-        // Use Quicksort on small arrays
-        if (right - left < QUICKSORT_THRESHOLD) {
-            sort(a, left, right, true);
-            return;
-        }
-
-        /*
-         * Index run[i] is the start of i-th run
-         * (ascending or descending sequence).
-         */
-        int[] run = new int[MAX_RUN_COUNT + 1];
-        int count = 0; run[0] = left;
-
-        // Check if the array is nearly sorted
-        for (int k = left; k < right; run[count] = k) {
-            // Equal items in the beginning of the sequence
-            while (k < right && a[k] == a[k + 1])
-                k++;
-            if (k == right) break;  // Sequence finishes with equal items
-            if (a[k] < a[k + 1]) { // ascending
-                while (++k <= right && a[k - 1] <= a[k]);
-            } else if (a[k] > a[k + 1]) { // descending
-                while (++k <= right && a[k - 1] >= a[k]);
-                // Transform into an ascending sequence
-                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
-                    float t = a[lo]; a[lo] = a[hi]; a[hi] = t;
-                }
-            }
-
-            // Merge a transformed descending sequence followed by an
-            // ascending sequence
-            if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
-                count--;
-            }
-
-            /*
-             * The array is not highly structured,
-             * use Quicksort instead of merge sort.
-             */
-            if (++count == MAX_RUN_COUNT) {
-                sort(a, left, right, true);
-                return;
-            }
+    private static void heapSort(float[] a, int low, int high) {
+        for (int k = (low + high) >>> 1; k > low; ) {
+            pushDown(a, --k, a[k], low, high);
         }
-
-        // These invariants should hold true:
-        //    run[0] = 0
-        //    run[<last>] = right + 1; (terminator)
-
-        if (count == 0) {
-            // A single equal run
-            return;
-        } else if (count == 1 && run[count] > right) {
-            // Either a single ascending or a transformed descending run.
-            // Always check that a final run is a proper terminator, otherwise
-            // we have an unterminated trailing run, to handle downstream.
-            return;
-        }
-        right++;
-        if (run[count] < right) {
-            // Corner case: the final run is not a terminator. This may happen
-            // if a final run is an equals run, or there is a single-element run
-            // at the end. Fix up by adding a proper terminator at the end.
-            // Note that we terminate with (right + 1), incremented earlier.
-            run[++count] = right;
-        }
-
-        // Determine alternation base for merge
-        byte odd = 0;
-        for (int n = 1; (n <<= 1) < count; odd ^= 1);
-
-        // Use or create temporary array b for merging
-        float[] b;                 // temp array; alternates with a
-        int ao, bo;              // array offsets from 'left'
-        int blen = right - left; // space needed for b
-        if (work == null || workLen < blen || workBase + blen > work.length) {
-            work = new float[blen];
-            workBase = 0;
-        }
-        if (odd == 0) {
-            System.arraycopy(a, left, work, workBase, blen);
-            b = a;
-            bo = 0;
-            a = work;
-            ao = workBase - left;
-        } else {
-            b = work;
-            ao = 0;
-            bo = workBase - left;
-        }
-
-        // Merging
-        for (int last; count > 1; count = last) {
-            for (int k = (last = 0) + 2; k <= count; k += 2) {
-                int hi = run[k], mi = run[k - 1];
-                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
-                    if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
-                        b[i + bo] = a[p++ + ao];
-                    } else {
-                        b[i + bo] = a[q++ + ao];
-                    }
-                }
-                run[++last] = hi;
-            }
-            if ((count & 1) != 0) {
-                for (int i = right, lo = run[count - 1]; --i >= lo;
-                    b[i + bo] = a[i + ao]
-                );
-                run[++last] = right;
-            }
-            float[] t = a; a = b; b = t;
-            int o = ao; ao = bo; bo = o;
+        while (--high > low) {
+            float max = a[low];
+            pushDown(a, low, a[high], low, high);
+            a[high] = max;
         }
     }
 
     /**
-     * Sorts the specified range of the array by Dual-Pivot Quicksort.
+     * Pushes specified element down during heap sort.
      *
-     * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
-     * @param leftmost indicates if this part is the leftmost in the range
+     * @param a the given array
+     * @param p the start index
+     * @param value the given element
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
      */
-    private static void sort(float[] a, int left, int right, boolean leftmost) {
-        int length = right - left + 1;
-
-        // Use insertion sort on tiny arrays
-        if (length < INSERTION_SORT_THRESHOLD) {
-            if (leftmost) {
-                /*
-                 * Traditional (without sentinel) insertion sort,
-                 * optimized for server VM, is used in case of
-                 * the leftmost part.
-                 */
-                for (int i = left, j = i; i < right; j = ++i) {
-                    float ai = a[i + 1];
-                    while (ai < a[j]) {
-                        a[j + 1] = a[j];
-                        if (j-- == left) {
-                            break;
-                        }
-                    }
-                    a[j + 1] = ai;
-                }
-            } else {
-                /*
-                 * Skip the longest ascending sequence.
-                 */
-                do {
-                    if (left >= right) {
-                        return;
-                    }
-                } while (a[++left] >= a[left - 1]);
-
-                /*
-                 * Every element from adjoining part plays the role
-                 * of sentinel, therefore this allows us to avoid the
-                 * left range check on each iteration. Moreover, we use
-                 * the more optimized algorithm, so called pair insertion
-                 * sort, which is faster (in the context of Quicksort)
-                 * than traditional implementation of insertion sort.
-                 */
-                for (int k = left; ++left <= right; k = ++left) {
-                    float a1 = a[k], a2 = a[left];
-
-                    if (a1 < a2) {
-                        a2 = a1; a1 = a[left];
-                    }
-                    while (a1 < a[--k]) {
-                        a[k + 2] = a[k];
-                    }
-                    a[++k + 1] = a1;
-
-                    while (a2 < a[--k]) {
-                        a[k + 1] = a[k];
-                    }
-                    a[k + 1] = a2;
-                }
-                float last = a[right];
-
-                while (last < a[--right]) {
-                    a[right + 1] = a[right];
-                }
-                a[right + 1] = last;
+    private static void pushDown(float[] a, int p, float value, int low, int high) {
+        for (int k ;; a[p] = a[p = k]) {
+            k = (p << 1) - low + 2; // Index of the right child
+
+            if (k > high) {
+                break;
+            }
+            if (k == high || a[k] < a[k - 1]) {
+                --k;
+            }
+            if (a[k] <= value) {
+                break;
             }
-            return;
         }
-
-        // Inexpensive approximation of length / 7
-        int seventh = (length >> 3) + (length >> 6) + 1;
+        a[p] = value;
+    }
+
+    /**
+     * Tries to sort the specified range of the array.
+     *
+     * @param sorter parallel context
+     * @param a the array to be sorted
+     * @param low the index of the first element to be sorted
+     * @param size the array size
+     * @return true if finally sorted, false otherwise
+     */
+    private static boolean tryMergeRuns(Sorter sorter, float[] a, int low, int size) {
 
         /*
-         * Sort five evenly spaced elements around (and including) the
-         * center element in the range. These elements will be used for
-         * pivot selection as described below. The choice for spacing
-         * these elements was empirically determined to work well on
-         * a wide variety of inputs.
+         * The run array is constructed only if initial runs are
+         * long enough to continue, run[i] then holds start index
+         * of the i-th sequence of elements in non-descending order.
          */
-        int e3 = (left + right) >>> 1; // The midpoint
-        int e2 = e3 - seventh;
-        int e1 = e2 - seventh;
-        int e4 = e3 + seventh;
-        int e5 = e4 + seventh;
-
-        // Sort these elements using insertion sort
-        if (a[e2] < a[e1]) { float t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
-
-        if (a[e3] < a[e2]) { float t = a[e3]; a[e3] = a[e2]; a[e2] = t;
-            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-        }
-        if (a[e4] < a[e3]) { float t = a[e4]; a[e4] = a[e3]; a[e3] = t;
-            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
-                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-            }
-        }
-        if (a[e5] < a[e4]) { float t = a[e5]; a[e5] = a[e4]; a[e4] = t;
-            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
-                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
-                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-                }
-            }
-        }
-
-        // Pointers
-        int less  = left;  // The index of the first element of center part
-        int great = right; // The index before the first element of right part
-
-        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
-            /*
-             * Use the second and fourth of the five sorted elements as pivots.
-             * These values are inexpensive approximations of the first and
-             * second terciles of the array. Note that pivot1 <= pivot2.
-             */
-            float pivot1 = a[e2];
-            float pivot2 = a[e4];
-
-            /*
-             * The first and the last elements to be sorted are moved to the
-             * locations formerly occupied by the pivots. When partitioning
-             * is complete, the pivots are swapped back into their final
-             * positions, and excluded from subsequent sorting.
-             */
-            a[e2] = a[left];
-            a[e4] = a[right];
-
-            /*
-             * Skip elements, which are less or greater than pivot values.
-             */
-            while (a[++less] < pivot1);
-            while (a[--great] > pivot2);
+        int[] run = null;
+        int high = low + size;
+        int count = 1, last = low;
+
+        /*
+         * Identify all possible runs.
+         */
+        for (int k = low + 1; k < high; ) {
 
             /*
-             * Partitioning:
-             *
-             *   left part           center part                   right part
-             * +--------------------------------------------------------------+
-             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
-             * +--------------------------------------------------------------+
-             *               ^                          ^       ^
-             *               |                          |       |
-             *              less                        k     great
-             *
-             * Invariants:
-             *
-             *              all in (left, less)   < pivot1
-             *    pivot1 <= all in [less, k)     <= pivot2
-             *              all in (great, right) > pivot2
-             *
-             * Pointer k is the first index of ?-part.
+             * Find the end index of the current run.
              */
-            outer:
-            for (int k = less - 1; ++k <= great; ) {
-                float ak = a[k];
-                if (ak < pivot1) { // Move a[k] to left part
-                    a[k] = a[less];
-                    /*
-                     * Here and below we use "a[i] = b; i++;" instead
-                     * of "a[i++] = b;" due to performance issue.
-                     */
-                    a[less] = ak;
-                    ++less;
-                } else if (ak > pivot2) { // Move a[k] to right part
-                    while (a[great] > pivot2) {
-                        if (great-- == k) {
-                            break outer;
-                        }
-                    }
-                    if (a[great] < pivot1) { // a[great] <= pivot2
-                        a[k] = a[less];
-                        a[less] = a[great];
-                        ++less;
-                    } else { // pivot1 <= a[great] <= pivot2
-                        a[k] = a[great];
-                    }
-                    /*
-                     * Here and below we use "a[i] = b; i--;" instead
-                     * of "a[i--] = b;" due to performance issue.
-                     */
-                    a[great] = ak;
-                    --great;
-                }
-            }
-
-            // Swap pivots into their final positions
-            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
-            a[right] = a[great + 1]; a[great + 1] = pivot2;
-
-            // Sort left and right parts recursively, excluding known pivots
-            sort(a, left, less - 2, leftmost);
-            sort(a, great + 2, right, false);
-
-            /*
-             * If center part is too large (comprises > 4/7 of the array),
-             * swap internal pivot values to ends.
-             */
-            if (less < e1 && e5 < great) {
-                /*
-                 * Skip elements, which are equal to pivot values.
-                 */
-                while (a[less] == pivot1) {
-                    ++less;
-                }
-
-                while (a[great] == pivot2) {
-                    --great;
+            if (a[k - 1] < a[k]) {
+
+                // Identify ascending sequence
+                while (++k < high && a[k - 1] <= a[k]);
+
+            } else if (a[k - 1] > a[k]) {
+
+                // Identify descending sequence
+                while (++k < high && a[k - 1] >= a[k]);
+
+                // Reverse into ascending order
+                for (int i = last - 1, j = k; ++i < --j && a[i] > a[j]; ) {
+                    float ai = a[i]; a[i] = a[j]; a[j] = ai;
                 }
-
-                /*
-                 * Partitioning:
-                 *
-                 *   left part         center part                  right part
-                 * +----------------------------------------------------------+
-                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
-                 * +----------------------------------------------------------+
-                 *              ^                        ^       ^
-                 *              |                        |       |
-                 *             less                      k     great
-                 *
-                 * Invariants:
-                 *
-                 *              all in (*,  less) == pivot1
-                 *     pivot1 < all in [less,  k)  < pivot2
-                 *              all in (great, *) == pivot2
-                 *
-                 * Pointer k is the first index of ?-part.
-                 */
-                outer:
-                for (int k = less - 1; ++k <= great; ) {
-                    float ak = a[k];
-                    if (ak == pivot1) { // Move a[k] to left part
-                        a[k] = a[less];
-                        a[less] = ak;
-                        ++less;
-                    } else if (ak == pivot2) { // Move a[k] to right part
-                        while (a[great] == pivot2) {
-                            if (great-- == k) {
-                                break outer;
-                            }
-                        }
-                        if (a[great] == pivot1) { // a[great] < pivot2
-                            a[k] = a[less];
-                            /*
-                             * Even though a[great] equals to pivot1, the
-                             * assignment a[less] = pivot1 may be incorrect,
-                             * if a[great] and pivot1 are floating-point zeros
-                             * of different signs. Therefore in float and
-                             * double sorting methods we have to use more
-                             * accurate assignment a[less] = a[great].
-                             */
-                            a[less] = a[great];
-                            ++less;
-                        } else { // pivot1 < a[great] < pivot2
-                            a[k] = a[great];
-                        }
-                        a[great] = ak;
-                        --great;
-                    }
-                }
-            }
-
-            // Sort center part recursively
-            sort(a, less, great, false);
-
-        } else { // Partitioning with one pivot
-            /*
-             * Use the third of the five sorted elements as pivot.
-             * This value is inexpensive approximation of the median.
-             */
-            float pivot = a[e3];
-
-            /*
-             * Partitioning degenerates to the traditional 3-way
-             * (or "Dutch National Flag") schema:
-             *
-             *   left part    center part              right part
-             * +-------------------------------------------------+
-             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
-             * +-------------------------------------------------+
-             *              ^              ^        ^
-             *              |              |        |
-             *             less            k      great
-             *
-             * Invariants:
-             *
-             *   all in (left, less)   < pivot
-             *   all in [less, k)     == pivot
-             *   all in (great, right) > pivot
-             *
-             * Pointer k is the first index of ?-part.
-             */
-            for (int k = less; k <= great; ++k) {
-                if (a[k] == pivot) {
+            } else { // Identify constant sequence
+                for (float ak = a[k]; ++k < high && ak == a[k]; );
+
+                if (k < high) {
                     continue;
                 }
-                float ak = a[k];
-                if (ak < pivot) { // Move a[k] to left part
-                    a[k] = a[less];
-                    a[less] = ak;
-                    ++less;
-                } else { // a[k] > pivot - Move a[k] to right part
-                    while (a[great] > pivot) {
-                        --great;
-                    }
-                    if (a[great] < pivot) { // a[great] <= pivot
-                        a[k] = a[less];
-                        a[less] = a[great];
-                        ++less;
-                    } else { // a[great] == pivot
-                        /*
-                         * Even though a[great] equals to pivot, the
-                         * assignment a[k] = pivot may be incorrect,
-                         * if a[great] and pivot are floating-point
-                         * zeros of different signs. Therefore in float
-                         * and double sorting methods we have to use
-                         * more accurate assignment a[k] = a[great].
-                         */
-                        a[k] = a[great];
-                    }
-                    a[great] = ak;
-                    --great;
-                }
             }
 
             /*
-             * Sort left and right parts recursively.
-             * All elements from center part are equal
-             * and, therefore, already sorted.
+             * Check special cases.
              */
-            sort(a, left, less - 1, leftmost);
-            sort(a, great + 1, right, false);
+            if (run == null) {
+                if (k == high) {
+
+                    /*
+                     * The array is monotonous sequence,
+                     * and therefore already sorted.
+                     */
+                    return true;
+                }
+
+                if (k - low < MIN_FIRST_RUN_SIZE) {
+
+                    /*
+                     * The first run is too small
+                     * to proceed with scanning.
+                     */
+                    return false;
+                }
+
+                run = new int[((size >> 10) | 0x7F) & 0x3FF];
+                run[0] = low;
+
+            } else if (a[last - 1] > a[last]) {
+
+                if (count > (k - low) >> MIN_FIRST_RUNS_FACTOR) {
+
+                    /*
+                     * The first runs are not long
+                     * enough to continue scanning.
+                     */
+                    return false;
+                }
+
+                if (++count == MAX_RUN_CAPACITY) {
+
+                    /*
+                     * Array is not highly structured.
+                     */
+                    return false;
+                }
+
+                if (count == run.length) {
+
+                    /*
+                     * Increase capacity of index array.
+                     */
+                    run = Arrays.copyOf(run, count << 1);
+                }
+            }
+            run[count] = (last = k);
         }
+
+        /*
+         * Merge runs of highly structured array.
+         */
+        if (count > 1) {
+            float[] b; int offset = low;
+
+            if (sorter == null || (b = (float[]) sorter.b) == null) {
+                b = new float[size];
+            } else {
+                offset = sorter.offset;
+            }
+            mergeRuns(a, b, offset, 1, sorter != null, run, 0, count);
+        }
+        return true;
+    }
+
+    /**
+     * Merges the specified runs.
+     *
+     * @param a the source array
+     * @param b the temporary buffer used in merging
+     * @param offset the start index in the source, inclusive
+     * @param aim specifies merging: to source ( > 0), buffer ( < 0) or any ( == 0)
+     * @param parallel indicates whether merging is performed in parallel
+     * @param run the start indexes of the runs, inclusive
+     * @param lo the start index of the first run, inclusive
+     * @param hi the start index of the last run, inclusive
+     * @return the destination where runs are merged
+     */
+    private static float[] mergeRuns(float[] a, float[] b, int offset,
+            int aim, boolean parallel, int[] run, int lo, int hi) {
+
+        if (hi - lo == 1) {
+            if (aim >= 0) {
+                return a;
+            }
+            for (int i = run[hi], j = i - offset, low = run[lo]; i > low;
+                b[--j] = a[--i]
+            );
+            return b;
+        }
+
+        /*
+         * Split into approximately equal parts.
+         */
+        int mi = lo, rmi = (run[lo] + run[hi]) >>> 1;
+        while (run[++mi + 1] <= rmi);
+
+        /*
+         * Merge the left and right parts.
+         */
+        float[] a1, a2;
+
+        if (parallel && hi - lo > MIN_RUN_COUNT) {
+            RunMerger merger = new RunMerger(a, b, offset, 0, run, mi, hi).forkMe();
+            a1 = mergeRuns(a, b, offset, -aim, true, run, lo, mi);
+            a2 = (float[]) merger.getDestination();
+        } else {
+            a1 = mergeRuns(a, b, offset, -aim, false, run, lo, mi);
+            a2 = mergeRuns(a, b, offset,    0, false, run, mi, hi);
+        }
+
+        float[] dst = a1 == a ? b : a;
+
+        int k   = a1 == a ? run[lo] - offset : run[lo];
+        int lo1 = a1 == b ? run[lo] - offset : run[lo];
+        int hi1 = a1 == b ? run[mi] - offset : run[mi];
+        int lo2 = a2 == b ? run[mi] - offset : run[mi];
+        int hi2 = a2 == b ? run[hi] - offset : run[hi];
+
+        if (parallel) {
+            new Merger(null, dst, k, a1, lo1, hi1, a2, lo2, hi2).invoke();
+        } else {
+            mergeParts(null, dst, k, a1, lo1, hi1, a2, lo2, hi2);
+        }
+        return dst;
     }
 
     /**
-     * Sorts the specified range of the array using the given
-     * workspace array slice if possible for merging
+     * Merges the sorted parts.
+     *
+     * @param merger parallel context
+     * @param dst the destination where parts are merged
+     * @param k the start index of the destination, inclusive
+     * @param a1 the first part
+     * @param lo1 the start index of the first part, inclusive
+     * @param hi1 the end index of the first part, exclusive
+     * @param a2 the second part
+     * @param lo2 the start index of the second part, inclusive
+     * @param hi2 the end index of the second part, exclusive
+     */
+    private static void mergeParts(Merger merger, float[] dst, int k,
+            float[] a1, int lo1, int hi1, float[] a2, int lo2, int hi2) {
+
+        if (merger != null && a1 == a2) {
+
+            while (true) {
+
+                /*
+                 * The first part must be larger.
+                 */
+                if (hi1 - lo1 < hi2 - lo2) {
+                    int lo = lo1; lo1 = lo2; lo2 = lo;
+                    int hi = hi1; hi1 = hi2; hi2 = hi;
+                }
+
+                /*
+                 * Small parts will be merged sequentially.
+                 */
+                if (hi1 - lo1 < MIN_PARALLEL_MERGE_PARTS_SIZE) {
+                    break;
+                }
+
+                /*
+                 * Find the median of the larger part.
+                 */
+                int mi1 = (lo1 + hi1) >>> 1;
+                float key = a1[mi1];
+                int mi2 = hi2;
+
+                /*
+                 * Partition the smaller part.
+                 */
+                for (int loo = lo2; loo < mi2; ) {
+                    int t = (loo + mi2) >>> 1;
+
+                    if (key > a2[t]) {
+                        loo = t + 1;
+                    } else {
+                        mi2 = t;
+                    }
+                }
+
+                int d = mi2 - lo2 + mi1 - lo1;
+
+                /*
+                 * Merge the right sub-parts in parallel.
+                 */
+                merger.forkMerger(dst, k + d, a1, mi1, hi1, a2, mi2, hi2);
+
+                /*
+                 * Process the sub-left parts.
+                 */
+                hi1 = mi1;
+                hi2 = mi2;
+            }
+        }
+
+        /*
+         * Merge small parts sequentially.
+         */
+        while (lo1 < hi1 && lo2 < hi2) {
+            dst[k++] = a1[lo1] < a2[lo2] ? a1[lo1++] : a2[lo2++];
+        }
+        if (dst != a1 || k < lo1) {
+            while (lo1 < hi1) {
+                dst[k++] = a1[lo1++];
+            }
+        }
+        if (dst != a2 || k < lo2) {
+            while (lo2 < hi2) {
+                dst[k++] = a2[lo2++];
+            }
+        }
+    }
+
+// [double]
+
+    /**
+     * Sorts the specified range of the array using parallel merge
+     * sort and/or Dual-Pivot Quicksort.
+     *
+     * To balance the faster splitting and parallelism of merge sort
+     * with the faster element partitioning of Quicksort, ranges are
+     * subdivided in tiers such that, if there is enough parallelism,
+     * the four-way parallel merge is started, still ensuring enough
+     * parallelism to process the partitions.
      *
      * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
-     * @param work a workspace array (slice)
-     * @param workBase origin of usable space in work array
-     * @param workLen usable size of work array
+     * @param parallelism the parallelism level
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
      */
-    static void sort(double[] a, int left, int right,
-                     double[] work, int workBase, int workLen) {
+    static void sort(double[] a, int parallelism, int low, int high) {
+        /*
+         * Phase 1. Count the number of negative zero -0.0d,
+         * turn them into positive zero, and move all NaNs
+         * to the end of the array.
+         */
+        int numNegativeZero = 0;
+
+        for (int k = high; k > low; ) {
+            double ak = a[--k];
+
+            if (ak == 0.0d && Double.doubleToRawLongBits(ak) < 0) { // ak is -0.0d
+                numNegativeZero += 1;
+                a[k] = 0.0d;
+            } else if (ak != ak) { // ak is NaN
+                a[k] = a[--high];
+                a[high] = ak;
+            }
+        }
+
         /*
-         * Phase 1: Move NaNs to the end of the array.
+         * Phase 2. Sort everything except NaNs,
+         * which are already in place.
          */
-        while (left <= right && Double.isNaN(a[right])) {
-            --right;
+        int size = high - low;
+
+        if (parallelism > 1 && size > MIN_PARALLEL_SORT_SIZE) {
+            int depth = getDepth(parallelism, size >> 12);
+            double[] b = depth == 0 ? null : new double[size];
+            new Sorter(null, a, b, low, size, low, depth).invoke();
+        } else {
+            sort(null, a, 0, low, high);
         }
-        for (int k = right; --k >= left; ) {
-            double ak = a[k];
-            if (ak != ak) { // a[k] is NaN
-                a[k] = a[right];
-                a[right] = ak;
-                --right;
+
+        /*
+         * Phase 3. Turn positive zero 0.0d
+         * back into negative zero -0.0d.
+         */
+        if (++numNegativeZero == 1) {
+            return;
+        }
+
+        /*
+         * Find the position one less than
+         * the index of the first zero.
+         */
+        while (low <= high) {
+            int middle = (low + high) >>> 1;
+
+            if (a[middle] < 0) {
+                low = middle + 1;
+            } else {
+                high = middle - 1;
             }
         }
 
         /*
-         * Phase 2: Sort everything except NaNs (which are already in place).
-         */
-        doSort(a, left, right, work, workBase, workLen);
-
-        /*
-         * Phase 3: Place negative zeros before positive zeros.
-         */
-        int hi = right;
-
-        /*
-         * Find the first zero, or first positive, or last negative element.
+         * Replace the required number of 0.0d by -0.0d.
          */
-        while (left < hi) {
-            int middle = (left + hi) >>> 1;
-            double middleValue = a[middle];
-
-            if (middleValue < 0.0d) {
-                left = middle + 1;
-            } else {
-                hi = middle;
-            }
-        }
-
-        /*
-         * Skip the last negative value (if any) or all leading negative zeros.
-         */
-        while (left <= right && Double.doubleToRawLongBits(a[left]) < 0) {
-            ++left;
+        while (--numNegativeZero > 0) {
+            a[++high] = -0.0d;
         }
-
-        /*
-         * Move negative zeros to the beginning of the sub-range.
-         *
-         * Partitioning:
-         *
-         * +----------------------------------------------------+
-         * |   < 0.0   |   -0.0   |   0.0   |   ?  ( >= 0.0 )   |
-         * +----------------------------------------------------+
-         *              ^          ^         ^
-         *              |          |         |
-         *             left        p         k
-         *
-         * Invariants:
-         *
-         *   all in (*,  left)  <  0.0
-         *   all in [left,  p) == -0.0
-         *   all in [p,     k) ==  0.0
-         *   all in [k, right] >=  0.0
-         *
-         * Pointer k is the first index of ?-part.
-         */
-        for (int k = left, p = left - 1; ++k <= right; ) {
-            double ak = a[k];
-            if (ak != 0.0d) {
-                break;
+    }
+
+    /**
+     * Sorts the specified array using the Dual-Pivot Quicksort and/or
+     * other sorts in special-cases, possibly with parallel partitions.
+     *
+     * @param sorter parallel context
+     * @param a the array to be sorted
+     * @param bits the combination of recursion depth and bit flag, where
+     *        the right bit "0" indicates that array is the leftmost part
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    static void sort(Sorter sorter, double[] a, int bits, int low, int high) {
+        while (true) {
+            int end = high - 1, size = high - low;
+
+            /*
+             * Run mixed insertion sort on small non-leftmost parts.
+             */
+            if (size < MAX_MIXED_INSERTION_SORT_SIZE + bits && (bits & 1) > 0) {
+                mixedInsertionSort(a, low, high - 3 * ((size >> 5) << 3), high);
+                return;
+            }
+
+            /*
+             * Invoke insertion sort on small leftmost part.
+             */
+            if (size < MAX_INSERTION_SORT_SIZE) {
+                insertionSort(a, low, high);
+                return;
+            }
+
+            /*
+             * Check if the whole array or large non-leftmost
+             * parts are nearly sorted and then merge runs.
+             */
+            if ((bits == 0 || size > MIN_TRY_MERGE_SIZE && (bits & 1) > 0)
+                    && tryMergeRuns(sorter, a, low, size)) {
+                return;
+            }
+
+            /*
+             * Switch to heap sort if execution
+             * time is becoming quadratic.
+             */
+            if ((bits += DELTA) > MAX_RECURSION_DEPTH) {
+                heapSort(a, low, high);
+                return;
+            }
+
+            /*
+             * Use an inexpensive approximation of the golden ratio
+             * to select five sample elements and determine pivots.
+             */
+            int step = (size >> 3) * 3 + 3;
+
+            /*
+             * Five elements around (and including) the central element
+             * will be used for pivot selection as described below. The
+             * unequal choice of spacing these elements was empirically
+             * determined to work well on a wide variety of inputs.
+             */
+            int e1 = low + step;
+            int e5 = end - step;
+            int e3 = (e1 + e5) >>> 1;
+            int e2 = (e1 + e3) >>> 1;
+            int e4 = (e3 + e5) >>> 1;
+            double a3 = a[e3];
+
+            /*
+             * Sort these elements in place by the combination
+             * of 4-element sorting network and insertion sort.
+             *
+             *    5 ------o-----------o------------
+             *            |           |
+             *    4 ------|-----o-----o-----o------
+             *            |     |           |
+             *    2 ------o-----|-----o-----o------
+             *                  |     |
+             *    1 ------------o-----o------------
+             */
+            if (a[e5] < a[e2]) { double t = a[e5]; a[e5] = a[e2]; a[e2] = t; }
+            if (a[e4] < a[e1]) { double t = a[e4]; a[e4] = a[e1]; a[e1] = t; }
+            if (a[e5] < a[e4]) { double t = a[e5]; a[e5] = a[e4]; a[e4] = t; }
+            if (a[e2] < a[e1]) { double t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
+            if (a[e4] < a[e2]) { double t = a[e4]; a[e4] = a[e2]; a[e2] = t; }
+
+            if (a3 < a[e2]) {
+                if (a3 < a[e1]) {
+                    a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3;
+                } else {
+                    a[e3] = a[e2]; a[e2] = a3;
+                }
+            } else if (a3 > a[e4]) {
+                if (a3 > a[e5]) {
+                    a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3;
+                } else {
+                    a[e3] = a[e4]; a[e4] = a3;
+                }
             }
-            if (Double.doubleToRawLongBits(ak) < 0) { // ak is -0.0d
-                a[k] = 0.0d;
-                a[++p] = -0.0d;
+
+            // Pointers
+            int lower = low; // The index of the last element of the left part
+            int upper = end; // The index of the first element of the right part
+
+            /*
+             * Partitioning with 2 pivots in case of different elements.
+             */
+            if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) {
+
+                /*
+                 * Use the first and fifth of the five sorted elements as
+                 * the pivots. These values are inexpensive approximation
+                 * of tertiles. Note, that pivot1 < pivot2.
+                 */
+                double pivot1 = a[e1];
+                double pivot2 = a[e5];
+
+                /*
+                 * The first and the last elements to be sorted are moved
+                 * to the locations formerly occupied by the pivots. When
+                 * partitioning is completed, the pivots are swapped back
+                 * into their final positions, and excluded from the next
+                 * subsequent sorting.
+                 */
+                a[e1] = a[lower];
+                a[e5] = a[upper];
+
+                /*
+                 * Skip elements, which are less or greater than the pivots.
+                 */
+                while (a[++lower] < pivot1);
+                while (a[--upper] > pivot2);
+
+                /*
+                 * Backward 3-interval partitioning
+                 *
+                 *   left part                 central part          right part
+                 * +------------------------------------------------------------+
+                 * |  < pivot1  |   ?   |  pivot1 <= && <= pivot2  |  > pivot2  |
+                 * +------------------------------------------------------------+
+                 *             ^       ^                            ^
+                 *             |       |                            |
+                 *           lower     k                          upper
+                 *
+                 * Invariants:
+                 *
+                 *              all in (low, lower] < pivot1
+                 *    pivot1 <= all in (k, upper)  <= pivot2
+                 *              all in [upper, end) > pivot2
+                 *
+                 * Pointer k is the last index of ?-part
+                 */
+                for (int unused = --lower, k = ++upper; --k > lower; ) {
+                    double ak = a[k];
+
+                    if (ak < pivot1) { // Move a[k] to the left side
+                        while (lower < k) {
+                            if (a[++lower] >= pivot1) {
+                                if (a[lower] > pivot2) {
+                                    a[k] = a[--upper];
+                                    a[upper] = a[lower];
+                                } else {
+                                    a[k] = a[lower];
+                                }
+                                a[lower] = ak;
+                                break;
+                            }
+                        }
+                    } else if (ak > pivot2) { // Move a[k] to the right side
+                        a[k] = a[--upper];
+                        a[upper] = ak;
+                    }
+                }
+
+                /*
+                 * Swap the pivots into their final positions.
+                 */
+                a[low] = a[lower]; a[lower] = pivot1;
+                a[end] = a[upper]; a[upper] = pivot2;
+
+                /*
+                 * Sort non-left parts recursively (possibly in parallel),
+                 * excluding known pivots.
+                 */
+                if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) {
+                    sorter.forkSorter(bits | 1, lower + 1, upper);
+                    sorter.forkSorter(bits | 1, upper + 1, high);
+                } else {
+                    sort(sorter, a, bits | 1, lower + 1, upper);
+                    sort(sorter, a, bits | 1, upper + 1, high);
+                }
+
+            } else { // Use single pivot in case of many equal elements
+
+                /*
+                 * Use the third of the five sorted elements as the pivot.
+                 * This value is inexpensive approximation of the median.
+                 */
+                double pivot = a[e3];
+
+                /*
+                 * The first element to be sorted is moved to the
+                 * location formerly occupied by the pivot. After
+                 * completion of partitioning the pivot is swapped
+                 * back into its final position, and excluded from
+                 * the next subsequent sorting.
+                 */
+                a[e3] = a[lower];
+
+                /*
+                 * Traditional 3-way (Dutch National Flag) partitioning
+                 *
+                 *   left part                 central part    right part
+                 * +------------------------------------------------------+
+                 * |   < pivot   |     ?     |   == pivot   |   > pivot   |
+                 * +------------------------------------------------------+
+                 *              ^           ^                ^
+                 *              |           |                |
+                 *            lower         k              upper
+                 *
+                 * Invariants:
+                 *
+                 *   all in (low, lower] < pivot
+                 *   all in (k, upper)  == pivot
+                 *   all in [upper, end] > pivot
+                 *
+                 * Pointer k is the last index of ?-part
+                 */
+                for (int k = ++upper; --k > lower; ) {
+                    double ak = a[k];
+
+                    if (ak != pivot) {
+                        a[k] = pivot;
+
+                        if (ak < pivot) { // Move a[k] to the left side
+                            while (a[++lower] < pivot);
+
+                            if (a[lower] > pivot) {
+                                a[--upper] = a[lower];
+                            }
+                            a[lower] = ak;
+                        } else { // ak > pivot - Move a[k] to the right side
+                            a[--upper] = ak;
+                        }
+                    }
+                }
+
+                /*
+                 * Swap the pivot into its final position.
+                 */
+                a[low] = a[lower]; a[lower] = pivot;
+
+                /*
+                 * Sort the right part (possibly in parallel), excluding
+                 * known pivot. All elements from the central part are
+                 * equal and therefore already sorted.
+                 */
+                if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) {
+                    sorter.forkSorter(bits | 1, upper, high);
+                } else {
+                    sort(sorter, a, bits | 1, upper, high);
+                }
+            }
+            high = lower; // Iterate along the left part
+        }
+    }
+
+    /**
+     * Sorts the specified range of the array using mixed insertion sort.
+     *
+     * Mixed insertion sort is combination of simple insertion sort,
+     * pin insertion sort and pair insertion sort.
+     *
+     * In the context of Dual-Pivot Quicksort, the pivot element
+     * from the left part plays the role of sentinel, because it
+     * is less than any elements from the given part. Therefore,
+     * expensive check of the left range can be skipped on each
+     * iteration unless it is the leftmost call.
+     *
+     * @param a the array to be sorted
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param end the index of the last element for simple insertion sort
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    private static void mixedInsertionSort(double[] a, int low, int end, int high) {
+        if (end == high) {
+
+            /*
+             * Invoke simple insertion sort on tiny array.
+             */
+            for (int i; ++low < end; ) {
+                double ai = a[i = low];
+
+                while (ai < a[--i]) {
+                    a[i + 1] = a[i];
+                }
+                a[i + 1] = ai;
+            }
+        } else {
+
+            /*
+             * Start with pin insertion sort on small part.
+             *
+             * Pin insertion sort is extended simple insertion sort.
+             * The main idea of this sort is to put elements larger
+             * than an element called pin to the end of array (the
+             * proper area for such elements). It avoids expensive
+             * movements of these elements through the whole array.
+             */
+            double pin = a[end];
+
+            for (int i, p = high; ++low < end; ) {
+                double ai = a[i = low];
+
+                if (ai < a[i - 1]) { // Small element
+
+                    /*
+                     * Insert small element into sorted part.
+                     */
+                    a[i] = a[--i];
+
+                    while (ai < a[--i]) {
+                        a[i + 1] = a[i];
+                    }
+                    a[i + 1] = ai;
+
+                } else if (p > i && ai > pin) { // Large element
+
+                    /*
+                     * Find element smaller than pin.
+                     */
+                    while (a[--p] > pin);
+
+                    /*
+                     * Swap it with large element.
+                     */
+                    if (p > i) {
+                        ai = a[p];
+                        a[p] = a[i];
+                    }
+
+                    /*
+                     * Insert small element into sorted part.
+                     */
+                    while (ai < a[--i]) {
+                        a[i + 1] = a[i];
+                    }
+                    a[i + 1] = ai;
+                }
+            }
+
+            /*
+             * Continue with pair insertion sort on remain part.
+             */
+            for (int i; low < high; ++low) {
+                double a1 = a[i = low], a2 = a[++low];
+
+                /*
+                 * Insert two elements per iteration: at first, insert the
+                 * larger element and then insert the smaller element, but
+                 * from the position where the larger element was inserted.
+                 */
+                if (a1 > a2) {
+
+                    while (a1 < a[--i]) {
+                        a[i + 2] = a[i];
+                    }
+                    a[++i + 1] = a1;
+
+                    while (a2 < a[--i]) {
+                        a[i + 1] = a[i];
+                    }
+                    a[i + 1] = a2;
+
+                } else if (a1 < a[i - 1]) {
+
+                    while (a2 < a[--i]) {
+                        a[i + 2] = a[i];
+                    }
+                    a[++i + 1] = a2;
+
+                    while (a1 < a[--i]) {
+                        a[i + 1] = a[i];
+                    }
+                    a[i + 1] = a1;
+                }
             }
         }
     }
 
     /**
-     * Sorts the specified range of the array.
+     * Sorts the specified range of the array using insertion sort.
      *
      * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
-     * @param work a workspace array (slice)
-     * @param workBase origin of usable space in work array
-     * @param workLen usable size of work array
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
      */
-    private static void doSort(double[] a, int left, int right,
-                               double[] work, int workBase, int workLen) {
-        // Use Quicksort on small arrays
-        if (right - left < QUICKSORT_THRESHOLD) {
-            sort(a, left, right, true);
-            return;
-        }
-
-        /*
-         * Index run[i] is the start of i-th run
-         * (ascending or descending sequence).
-         */
-        int[] run = new int[MAX_RUN_COUNT + 1];
-        int count = 0; run[0] = left;
-
-        // Check if the array is nearly sorted
-        for (int k = left; k < right; run[count] = k) {
-            // Equal items in the beginning of the sequence
-            while (k < right && a[k] == a[k + 1])
-                k++;
-            if (k == right) break;  // Sequence finishes with equal items
-            if (a[k] < a[k + 1]) { // ascending
-                while (++k <= right && a[k - 1] <= a[k]);
-            } else if (a[k] > a[k + 1]) { // descending
-                while (++k <= right && a[k - 1] >= a[k]);
-                // Transform into an ascending sequence
-                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
-                    double t = a[lo]; a[lo] = a[hi]; a[hi] = t;
+    private static void insertionSort(double[] a, int low, int high) {
+        for (int i, k = low; ++k < high; ) {
+            double ai = a[i = k];
+
+            if (ai < a[i - 1]) {
+                while (--i >= low && ai < a[i]) {
+                    a[i + 1] = a[i];
                 }
-            }
-
-            // Merge a transformed descending sequence followed by an
-            // ascending sequence
-            if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
-                count--;
-            }
-
-            /*
-             * The array is not highly structured,
-             * use Quicksort instead of merge sort.
-             */
-            if (++count == MAX_RUN_COUNT) {
-                sort(a, left, right, true);
-                return;
+                a[i + 1] = ai;
             }
         }
-
-        // These invariants should hold true:
-        //    run[0] = 0
-        //    run[<last>] = right + 1; (terminator)
-
-        if (count == 0) {
-            // A single equal run
-            return;
-        } else if (count == 1 && run[count] > right) {
-            // Either a single ascending or a transformed descending run.
-            // Always check that a final run is a proper terminator, otherwise
-            // we have an unterminated trailing run, to handle downstream.
-            return;
-        }
-        right++;
-        if (run[count] < right) {
-            // Corner case: the final run is not a terminator. This may happen
-            // if a final run is an equals run, or there is a single-element run
-            // at the end. Fix up by adding a proper terminator at the end.
-            // Note that we terminate with (right + 1), incremented earlier.
-            run[++count] = right;
+    }
+
+    /**
+     * Sorts the specified range of the array using heap sort.
+     *
+     * @param a the array to be sorted
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
+     */
+    private static void heapSort(double[] a, int low, int high) {
+        for (int k = (low + high) >>> 1; k > low; ) {
+            pushDown(a, --k, a[k], low, high);
         }
-
-        // Determine alternation base for merge
-        byte odd = 0;
-        for (int n = 1; (n <<= 1) < count; odd ^= 1);
-
-        // Use or create temporary array b for merging
-        double[] b;                 // temp array; alternates with a
-        int ao, bo;              // array offsets from 'left'
-        int blen = right - left; // space needed for b
-        if (work == null || workLen < blen || workBase + blen > work.length) {
-            work = new double[blen];
-            workBase = 0;
-        }
-        if (odd == 0) {
-            System.arraycopy(a, left, work, workBase, blen);
-            b = a;
-            bo = 0;
-            a = work;
-            ao = workBase - left;
-        } else {
-            b = work;
-            ao = 0;
-            bo = workBase - left;
-        }
-
-        // Merging
-        for (int last; count > 1; count = last) {
-            for (int k = (last = 0) + 2; k <= count; k += 2) {
-                int hi = run[k], mi = run[k - 1];
-                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
-                    if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
-                        b[i + bo] = a[p++ + ao];
-                    } else {
-                        b[i + bo] = a[q++ + ao];
-                    }
-                }
-                run[++last] = hi;
-            }
-            if ((count & 1) != 0) {
-                for (int i = right, lo = run[count - 1]; --i >= lo;
-                    b[i + bo] = a[i + ao]
-                );
-                run[++last] = right;
-            }
-            double[] t = a; a = b; b = t;
-            int o = ao; ao = bo; bo = o;
+        while (--high > low) {
+            double max = a[low];
+            pushDown(a, low, a[high], low, high);
+            a[high] = max;
         }
     }
 
     /**
-     * Sorts the specified range of the array by Dual-Pivot Quicksort.
+     * Pushes specified element down during heap sort.
      *
-     * @param a the array to be sorted
-     * @param left the index of the first element, inclusive, to be sorted
-     * @param right the index of the last element, inclusive, to be sorted
-     * @param leftmost indicates if this part is the leftmost in the range
+     * @param a the given array
+     * @param p the start index
+     * @param value the given element
+     * @param low the index of the first element, inclusive, to be sorted
+     * @param high the index of the last element, exclusive, to be sorted
      */
-    private static void sort(double[] a, int left, int right, boolean leftmost) {
-        int length = right - left + 1;
-
-        // Use insertion sort on tiny arrays
-        if (length < INSERTION_SORT_THRESHOLD) {
-            if (leftmost) {
-                /*
-                 * Traditional (without sentinel) insertion sort,
-                 * optimized for server VM, is used in case of
-                 * the leftmost part.
-                 */
-                for (int i = left, j = i; i < right; j = ++i) {
-                    double ai = a[i + 1];
-                    while (ai < a[j]) {
-                        a[j + 1] = a[j];
-                        if (j-- == left) {
-                            break;
-                        }
-                    }
-                    a[j + 1] = ai;
-                }
-            } else {
-                /*
-                 * Skip the longest ascending sequence.
-                 */
-                do {
-                    if (left >= right) {
-                        return;
-                    }
-                } while (a[++left] >= a[left - 1]);
-
-                /*
-                 * Every element from adjoining part plays the role
-                 * of sentinel, therefore this allows us to avoid the
-                 * left range check on each iteration. Moreover, we use
-                 * the more optimized algorithm, so called pair insertion
-                 * sort, which is faster (in the context of Quicksort)
-                 * than traditional implementation of insertion sort.
-                 */
-                for (int k = left; ++left <= right; k = ++left) {
-                    double a1 = a[k], a2 = a[left];
-
-                    if (a1 < a2) {
-                        a2 = a1; a1 = a[left];
-                    }
-                    while (a1 < a[--k]) {
-                        a[k + 2] = a[k];
-                    }
-                    a[++k + 1] = a1;
-
-                    while (a2 < a[--k]) {
-                        a[k + 1] = a[k];
-                    }
-                    a[k + 1] = a2;
-                }
-                double last = a[right];
-
-                while (last < a[--right]) {
-                    a[right + 1] = a[right];
-                }
-                a[right + 1] = last;
+    private static void pushDown(double[] a, int p, double value, int low, int high) {
+        for (int k ;; a[p] = a[p = k]) {
+            k = (p << 1) - low + 2; // Index of the right child
+
+            if (k > high) {
+                break;
+            }
+            if (k == high || a[k] < a[k - 1]) {
+                --k;
+            }
+            if (a[k] <= value) {
+                break;
             }
-            return;
         }
-
-        // Inexpensive approximation of length / 7
-        int seventh = (length >> 3) + (length >> 6) + 1;
+        a[p] = value;
+    }
+
+    /**
+     * Tries to sort the specified range of the array.
+     *
+     * @param sorter parallel context
+     * @param a the array to be sorted
+     * @param low the index of the first element to be sorted
+     * @param size the array size
+     * @return true if finally sorted, false otherwise
+     */
+    private static boolean tryMergeRuns(Sorter sorter, double[] a, int low, int size) {
 
         /*
-         * Sort five evenly spaced elements around (and including) the
-         * center element in the range. These elements will be used for
-         * pivot selection as described below. The choice for spacing
-         * these elements was empirically determined to work well on
-         * a wide variety of inputs.
+         * The run array is constructed only if initial runs are
+         * long enough to continue, run[i] then holds start index
+         * of the i-th sequence of elements in non-descending order.
          */
-        int e3 = (left + right) >>> 1; // The midpoint
-        int e2 = e3 - seventh;
-        int e1 = e2 - seventh;
-        int e4 = e3 + seventh;
-        int e5 = e4 + seventh;
-
-        // Sort these elements using insertion sort
-        if (a[e2] < a[e1]) { double t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
-
-        if (a[e3] < a[e2]) { double t = a[e3]; a[e3] = a[e2]; a[e2] = t;
-            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-        }
-        if (a[e4] < a[e3]) { double t = a[e4]; a[e4] = a[e3]; a[e3] = t;
-            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
-                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-            }
-        }
-        if (a[e5] < a[e4]) { double t = a[e5]; a[e5] = a[e4]; a[e4] = t;
-            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
-                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
-                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
-                }
-            }
-        }
-
-        // Pointers
-        int less  = left;  // The index of the first element of center part
-        int great = right; // The index before the first element of right part
-
-        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
-            /*
-             * Use the second and fourth of the five sorted elements as pivots.
-             * These values are inexpensive approximations of the first and
-             * second terciles of the array. Note that pivot1 <= pivot2.
-             */
-            double pivot1 = a[e2];
-            double pivot2 = a[e4];
-
-            /*
-             * The first and the last elements to be sorted are moved to the
-             * locations formerly occupied by the pivots. When partitioning
-             * is complete, the pivots are swapped back into their final
-             * positions, and excluded from subsequent sorting.
-             */
-            a[e2] = a[left];
-            a[e4] = a[right];
-
-            /*
-             * Skip elements, which are less or greater than pivot values.
-             */
-            while (a[++less] < pivot1);
-            while (a[--great] > pivot2);
+        int[] run = null;
+        int high = low + size;
+        int count = 1, last = low;
+
+        /*
+         * Identify all possible runs.
+         */
+        for (int k = low + 1; k < high; ) {
 
             /*
-             * Partitioning:
-             *
-             *   left part           center part                   right part
-             * +--------------------------------------------------------------+
-             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
-             * +--------------------------------------------------------------+
-             *               ^                          ^       ^
-             *               |                          |       |
-             *              less                        k     great
-             *
-             * Invariants:
-             *
-             *              all in (left, less)   < pivot1
-             *    pivot1 <= all in [less, k)     <= pivot2
-             *              all in (great, right) > pivot2
-             *
-             * Pointer k is the first index of ?-part.
+             * Find the end index of the current run.
              */
-            outer:
-            for (int k = less - 1; ++k <= great; ) {
-                double ak = a[k];
-                if (ak < pivot1) { // Move a[k] to left part
-                    a[k] = a[less];
-                    /*
-                     * Here and below we use "a[i] = b; i++;" instead
-                     * of "a[i++] = b;" due to performance issue.
-                     */
-                    a[less] = ak;
-                    ++less;
-                } else if (ak > pivot2) { // Move a[k] to right part
-                    while (a[great] > pivot2) {
-                        if (great-- == k) {
-                            break outer;
-                        }
-                    }
-                    if (a[great] < pivot1) { // a[great] <= pivot2
-                        a[k] = a[less];
-                        a[less] = a[great];
-                        ++less;
-                    } else { // pivot1 <= a[great] <= pivot2
-                        a[k] = a[great];
-                    }
-                    /*
-                     * Here and below we use "a[i] = b; i--;" instead
-                     * of "a[i--] = b;" due to performance issue.
-                     */
-                    a[great] = ak;
-                    --great;
-                }
-            }
-
-            // Swap pivots into their final positions
-            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
-            a[right] = a[great + 1]; a[great + 1] = pivot2;
-
-            // Sort left and right parts recursively, excluding known pivots
-            sort(a, left, less - 2, leftmost);
-            sort(a, great + 2, right, false);
-
-            /*
-             * If center part is too large (comprises > 4/7 of the array),
-             * swap internal pivot values to ends.
-             */
-            if (less < e1 && e5 < great) {
-                /*
-                 * Skip elements, which are equal to pivot values.
-                 */
-                while (a[less] == pivot1) {
-                    ++less;
-                }
-
-                while (a[great] == pivot2) {
-                    --great;
+            if (a[k - 1] < a[k]) {
+
+                // Identify ascending sequence
+                while (++k < high && a[k - 1] <= a[k]);
+
+            } else if (a[k - 1] > a[k]) {
+
+                // Identify descending sequence
+                while (++k < high && a[k - 1] >= a[k]);
+
+                // Reverse into ascending order
+                for (int i = last - 1, j = k; ++i < --j && a[i] > a[j]; ) {
+                    double ai = a[i]; a[i] = a[j]; a[j] = ai;
                 }
-
-                /*
-                 * Partitioning:
-                 *
-                 *   left part         center part                  right part
-                 * +----------------------------------------------------------+
-                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
-                 * +----------------------------------------------------------+
-                 *              ^                        ^       ^
-                 *              |                        |       |
-                 *             less                      k     great
-                 *
-                 * Invariants:
-                 *
-                 *              all in (*,  less) == pivot1
-                 *     pivot1 < all in [less,  k)  < pivot2
-                 *              all in (great, *) == pivot2
-                 *
-                 * Pointer k is the first index of ?-part.
-                 */
-                outer:
-                for (int k = less - 1; ++k <= great; ) {
-                    double ak = a[k];
-                    if (ak == pivot1) { // Move a[k] to left part
-                        a[k] = a[less];
-                        a[less] = ak;
-                        ++less;
-                    } else if (ak == pivot2) { // Move a[k] to right part
-                        while (a[great] == pivot2) {
-                            if (great-- == k) {
-                                break outer;
-                            }
-                        }
-                        if (a[great] == pivot1) { // a[great] < pivot2
-                            a[k] = a[less];
-                            /*
-                             * Even though a[great] equals to pivot1, the
-                             * assignment a[less] = pivot1 may be incorrect,
-                             * if a[great] and pivot1 are floating-point zeros
-                             * of different signs. Therefore in float and
-                             * double sorting methods we have to use more
-                             * accurate assignment a[less] = a[great].
-                             */
-                            a[less] = a[great];
-                            ++less;
-                        } else { // pivot1 < a[great] < pivot2
-                            a[k] = a[great];
-                        }
-                        a[great] = ak;
-                        --great;
-                    }
-                }
-            }
-
-            // Sort center part recursively
-            sort(a, less, great, false);
-
-        } else { // Partitioning with one pivot
-            /*
-             * Use the third of the five sorted elements as pivot.
-             * This value is inexpensive approximation of the median.
-             */
-            double pivot = a[e3];
-
-            /*
-             * Partitioning degenerates to the traditional 3-way
-             * (or "Dutch National Flag") schema:
-             *
-             *   left part    center part              right part
-             * +-------------------------------------------------+
-             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
-             * +-------------------------------------------------+
-             *              ^              ^        ^
-             *              |              |        |
-             *             less            k      great
-             *
-             * Invariants:
-             *
-             *   all in (left, less)   < pivot
-             *   all in [less, k)     == pivot
-             *   all in (great, right) > pivot
-             *
-             * Pointer k is the first index of ?-part.
-             */
-            for (int k = less; k <= great; ++k) {
-                if (a[k] == pivot) {
+            } else { // Identify constant sequence
+                for (double ak = a[k]; ++k < high && ak == a[k]; );
+
+                if (k < high) {
                     continue;
                 }
-                double ak = a[k];
-                if (ak < pivot) { // Move a[k] to left part
-                    a[k] = a[less];
-                    a[less] = ak;
-                    ++less;
-                } else { // a[k] > pivot - Move a[k] to right part
-                    while (a[great] > pivot) {
-                        --great;
-                    }
-                    if (a[great] < pivot) { // a[great] <= pivot
-                        a[k] = a[less];
-                        a[less] = a[great];
-                        ++less;
-                    } else { // a[great] == pivot
-                        /*
-                         * Even though a[great] equals to pivot, the
-                         * assignment a[k] = pivot may be incorrect,
-                         * if a[great] and pivot are floating-point
-                         * zeros of different signs. Therefore in float
-                         * and double sorting methods we have to use
-                         * more accurate assignment a[k] = a[great].
-                         */
-                        a[k] = a[great];
-                    }
-                    a[great] = ak;
-                    --great;
-                }
             }
 
             /*
-             * Sort left and right parts recursively.
-             * All elements from center part are equal
-             * and, therefore, already sorted.
+             * Check special cases.
              */
-            sort(a, left, less - 1, leftmost);
-            sort(a, great + 1, right, false);
+            if (run == null) {
+                if (k == high) {
+
+                    /*
+                     * The array is monotonous sequence,
+                     * and therefore already sorted.
+                     */
+                    return true;
+                }
+
+                if (k - low < MIN_FIRST_RUN_SIZE) {
+
+                    /*
+                     * The first run is too small
+                     * to proceed with scanning.
+                     */
+                    return false;
+                }
+
+                run = new int[((size >> 10) | 0x7F) & 0x3FF];
+                run[0] = low;
+
+            } else if (a[last - 1] > a[last]) {
+
+                if (count > (k - low) >> MIN_FIRST_RUNS_FACTOR) {
+
+                    /*
+                     * The first runs are not long
+                     * enough to continue scanning.
+                     */
+                    return false;
+                }
+
+                if (++count == MAX_RUN_CAPACITY) {
+
+                    /*
+                     * Array is not highly structured.
+                     */
+                    return false;
+                }
+
+                if (count == run.length) {
+
+                    /*
+                     * Increase capacity of index array.
+                     */
+                    run = Arrays.copyOf(run, count << 1);
+                }
+            }
+            run[count] = (last = k);
+        }
+
+        /*
+         * Merge runs of highly structured array.
+         */
+        if (count > 1) {
+            double[] b; int offset = low;
+
+            if (sorter == null || (b = (double[]) sorter.b) == null) {
+                b = new double[size];
+            } else {
+                offset = sorter.offset;
+            }
+            mergeRuns(a, b, offset, 1, sorter != null, run, 0, count);
+        }
+        return true;
+    }
+
+    /**
+     * Merges the specified runs.
+     *
+     * @param a the source array
+     * @param b the temporary buffer used in merging
+     * @param offset the start index in the source, inclusive
+     * @param aim specifies merging: to source ( > 0), buffer ( < 0) or any ( == 0)
+     * @param parallel indicates whether merging is performed in parallel
+     * @param run the start indexes of the runs, inclusive
+     * @param lo the start index of the first run, inclusive
+     * @param hi the start index of the last run, inclusive
+     * @return the destination where runs are merged
+     */
+    private static double[] mergeRuns(double[] a, double[] b, int offset,
+            int aim, boolean parallel, int[] run, int lo, int hi) {
+
+        if (hi - lo == 1) {
+            if (aim >= 0) {
+                return a;
+            }
+            for (int i = run[hi], j = i - offset, low = run[lo]; i > low;
+                b[--j] = a[--i]
+            );
+            return b;
+        }
+
+        /*
+         * Split into approximately equal parts.
+         */
+        int mi = lo, rmi = (run[lo] + run[hi]) >>> 1;
+        while (run[++mi + 1] <= rmi);
+
+        /*
+         * Merge the left and right parts.
+         */
+        double[] a1, a2;
+
+        if (parallel && hi - lo > MIN_RUN_COUNT) {
+            RunMerger merger = new RunMerger(a, b, offset, 0, run, mi, hi).forkMe();
+            a1 = mergeRuns(a, b, offset, -aim, true, run, lo, mi);
+            a2 = (double[]) merger.getDestination();
+        } else {
+            a1 = mergeRuns(a, b, offset, -aim, false, run, lo, mi);
+            a2 = mergeRuns(a, b, offset,    0, false, run, mi, hi);
+        }
+
+        double[] dst = a1 == a ? b : a;
+
+        int k   = a1 == a ? run[lo] - offset : run[lo];
+        int lo1 = a1 == b ? run[lo] - offset : run[lo];
+        int hi1 = a1 == b ? run[mi] - offset : run[mi];
+        int lo2 = a2 == b ? run[mi] - offset : run[mi];
+        int hi2 = a2 == b ? run[hi] - offset : run[hi];
+
+        if (parallel) {
+            new Merger(null, dst, k, a1, lo1, hi1, a2, lo2, hi2).invoke();
+        } else {
+            mergeParts(null, dst, k, a1, lo1, hi1, a2, lo2, hi2);
+        }
+        return dst;
+    }
+
+    /**
+     * Merges the sorted parts.
+     *
+     * @param merger parallel context
+     * @param dst the destination where parts are merged
+     * @param k the start index of the destination, inclusive
+     * @param a1 the first part
+     * @param lo1 the start index of the first part, inclusive
+     * @param hi1 the end index of the first part, exclusive
+     * @param a2 the second part
+     * @param lo2 the start index of the second part, inclusive
+     * @param hi2 the end index of the second part, exclusive
+     */
+    private static void mergeParts(Merger merger, double[] dst, int k,
+            double[] a1, int lo1, int hi1, double[] a2, int lo2, int hi2) {
+
+        if (merger != null && a1 == a2) {
+
+            while (true) {
+
+                /*
+                 * The first part must be larger.
+                 */
+                if (hi1 - lo1 < hi2 - lo2) {
+                    int lo = lo1; lo1 = lo2; lo2 = lo;
+                    int hi = hi1; hi1 = hi2; hi2 = hi;
+                }
+
+                /*
+                 * Small parts will be merged sequentially.
+                 */
+                if (hi1 - lo1 < MIN_PARALLEL_MERGE_PARTS_SIZE) {
+                    break;
+                }
+
+                /*
+                 * Find the median of the larger part.
+                 */
+                int mi1 = (lo1 + hi1) >>> 1;
+                double key = a1[mi1];
+                int mi2 = hi2;
+
+                /*
+                 * Partition the smaller part.
+                 */
+                for (int loo = lo2; loo < mi2; ) {
+                    int t = (loo + mi2) >>> 1;
+
+                    if (key > a2[t]) {
+                        loo = t + 1;
+                    } else {
+                        mi2 = t;
+                    }
+                }
+
+                int d = mi2 - lo2 + mi1 - lo1;
+
+                /*
+                 * Merge the right sub-parts in parallel.
+                 */
+                merger.forkMerger(dst, k + d, a1, mi1, hi1, a2, mi2, hi2);
+
+                /*
+                 * Process the sub-left parts.
+                 */
+                hi1 = mi1;
+                hi2 = mi2;
+            }
+        }
+
+        /*
+         * Merge small parts sequentially.
+         */
+        while (lo1 < hi1 && lo2 < hi2) {
+            dst[k++] = a1[lo1] < a2[lo2] ? a1[lo1++] : a2[lo2++];
+        }
+        if (dst != a1 || k < lo1) {
+            while (lo1 < hi1) {
+                dst[k++] = a1[lo1++];
+            }
+        }
+        if (dst != a2 || k < lo2) {
+            while (lo2 < hi2) {
+                dst[k++] = a2[lo2++];
+            }
+        }
+    }
+
+// [class]
+
+    /**
+     * This class implements parallel sorting.
+     */
+    private static final class Sorter extends CountedCompleter<Void> {
+        private static final long serialVersionUID = 20180818L;
+        private final Object a, b;
+        private final int low, size, offset, depth;
+
+        private Sorter(CountedCompleter<?> parent,
+                Object a, Object b, int low, int size, int offset, int depth) {
+            super(parent);
+            this.a = a;
+            this.b = b;
+            this.low = low;
+            this.size = size;
+            this.offset = offset;
+            this.depth = depth;
+        }
+
+        @Override
+        public final void compute() {
+            if (depth < 0) {
+                setPendingCount(2);
+                int half = size >> 1;
+                new Sorter(this, b, a, low, half, offset, depth + 1).fork();
+                new Sorter(this, b, a, low + half, size - half, offset, depth + 1).compute();
+            } else {
+                if (a instanceof int[]) {
+                    sort(this, (int[]) a, depth, low, low + size);
+                } else if (a instanceof long[]) {
+                    sort(this, (long[]) a, depth, low, low + size);
+                } else if (a instanceof float[]) {
+                    sort(this, (float[]) a, depth, low, low + size);
+                } else if (a instanceof double[]) {
+                    sort(this, (double[]) a, depth, low, low + size);
+                } else {
+                    throw new IllegalArgumentException(
+                        "Unknown type of array: " + a.getClass().getName());
+                }
+            }
+            tryComplete();
+        }
+
+        @Override
+        public final void onCompletion(CountedCompleter<?> caller) {
+            if (depth < 0) {
+                int mi = low + (size >> 1);
+                boolean src = (depth & 1) == 0;
+
+                new Merger(null,
+                    a,
+                    src ? low : low - offset,
+                    b,
+                    src ? low - offset : low,
+                    src ? mi - offset : mi,
+                    b,
+                    src ? mi - offset : mi,
+                    src ? low + size - offset : low + size
+                ).invoke();
+            }
+        }
+
+        private void forkSorter(int depth, int low, int high) {
+            addToPendingCount(1);
+            Object a = this.a; // Use local variable for performance
+            new Sorter(this, a, b, low, high - low, offset, depth).fork();
+        }
+    }
+
+    /**
+     * This class implements parallel merging.
+     */
+    private static final class Merger extends CountedCompleter<Void> {
+        private static final long serialVersionUID = 20180818L;
+        private final Object dst, a1, a2;
+        private final int k, lo1, hi1, lo2, hi2;
+
+        private Merger(CountedCompleter<?> parent, Object dst, int k,
+                Object a1, int lo1, int hi1, Object a2, int lo2, int hi2) {
+            super(parent);
+            this.dst = dst;
+            this.k = k;
+            this.a1 = a1;
+            this.lo1 = lo1;
+            this.hi1 = hi1;
+            this.a2 = a2;
+            this.lo2 = lo2;
+            this.hi2 = hi2;
+        }
+
+        @Override
+        public final void compute() {
+            if (dst instanceof int[]) {
+                mergeParts(this, (int[]) dst, k,
+                    (int[]) a1, lo1, hi1, (int[]) a2, lo2, hi2);
+            } else if (dst instanceof long[]) {
+                mergeParts(this, (long[]) dst, k,
+                    (long[]) a1, lo1, hi1, (long[]) a2, lo2, hi2);
+            } else if (dst instanceof float[]) {
+                mergeParts(this, (float[]) dst, k,
+                    (float[]) a1, lo1, hi1, (float[]) a2, lo2, hi2);
+            } else if (dst instanceof double[]) {
+                mergeParts(this, (double[]) dst, k,
+                    (double[]) a1, lo1, hi1, (double[]) a2, lo2, hi2);
+            } else {
+                throw new IllegalArgumentException(
+                    "Unknown type of array: " + dst.getClass().getName());
+            }
+            propagateCompletion();
+        }
+
+        private void forkMerger(Object dst, int k,
+                Object a1, int lo1, int hi1, Object a2, int lo2, int hi2) {
+            addToPendingCount(1);
+            new Merger(this, dst, k, a1, lo1, hi1, a2, lo2, hi2).fork();
+        }
+    }
+
+    /**
+     * This class implements parallel merging of runs.
+     */
+    private static final class RunMerger extends RecursiveTask<Object> {
+        private static final long serialVersionUID = 20180818L;
+        private final Object a, b;
+        private final int[] run;
+        private final int offset, aim, lo, hi;
+
+        private RunMerger(Object a, Object b, int offset,
+                int aim, int[] run, int lo, int hi) {
+            this.a = a;
+            this.b = b;
+            this.offset = offset;
+            this.aim = aim;
+            this.run = run;
+            this.lo = lo;
+            this.hi = hi;
+        }
+
+        @Override
+        protected final Object compute() {
+            if (a instanceof int[]) {
+                return mergeRuns((int[]) a, (int[]) b, offset, aim, true, run, lo, hi);
+            }
+            if (a instanceof long[]) {
+                return mergeRuns((long[]) a, (long[]) b, offset, aim, true, run, lo, hi);
+            }
+            if (a instanceof float[]) {
+                return mergeRuns((float[]) a, (float[]) b, offset, aim, true, run, lo, hi);
+            }
+            if (a instanceof double[]) {
+                return mergeRuns((double[]) a, (double[]) b, offset, aim, true, run, lo, hi);
+            }
+            throw new IllegalArgumentException(
+                "Unknown type of array: " + a.getClass().getName());
+        }
+
+        private RunMerger forkMe() {
+            fork();
+            return this;
+        }
+
+        private Object getDestination() {
+            join();
+            return getRawResult();
         }
     }
 }
--- a/test/jdk/java/util/Arrays/ParallelSorting.java	Tue Nov 12 21:00:08 2019 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2067 +0,0 @@
-/*
- * Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/* Adapted from test/java/util/Arrays/Sorting.java
- *
- * Where that test checks Arrays.sort against manual quicksort routines,
- * this test checks parallelSort against either Arrays.sort or manual
- * quicksort routines.
- */
-
-/*
- * @test
- * @bug 8003981
- * @run main ParallelSorting -shortrun
- * @summary Exercise Arrays.parallelSort (adapted from test Sorting)
- *
- * @author Vladimir Yaroslavskiy
- * @author Jon Bentley
- * @author Josh Bloch
- */
-
-import java.util.Arrays;
-import java.util.Random;
-import java.io.PrintStream;
-import java.util.Comparator;
-
-public class ParallelSorting {
-    private static final PrintStream out = System.out;
-    private static final PrintStream err = System.err;
-
-    // Array lengths used in a long run (default)
-    private static final int[] LONG_RUN_LENGTHS = {
-        1000, 10000, 100000, 1000000 };
-
-    // Array lengths used in a short run
-    private static final int[] SHORT_RUN_LENGTHS = {
-        5000, 9000, 10000, 12000 };
-
-    // Random initial values used in a long run (default)
-    private static final long[] LONG_RUN_RANDOMS = { 666, 0xC0FFEE, 999 };
-
-    // Random initial values used in a short run
-    private static final long[] SHORT_RUN_RANDOMS = { 666 };
-
-    public static void main(String[] args) {
-        boolean shortRun = args.length > 0 && args[0].equals("-shortrun");
-        long start = System.currentTimeMillis();
-
-        if (shortRun) {
-            testAndCheck(SHORT_RUN_LENGTHS, SHORT_RUN_RANDOMS);
-        } else {
-            testAndCheck(LONG_RUN_LENGTHS, LONG_RUN_RANDOMS);
-        }
-        long end = System.currentTimeMillis();
-
-        out.format("PASSED in %d sec.\n", Math.round((end - start) / 1E3));
-    }
-
-    private static void testAndCheck(int[] lengths, long[] randoms) {
-        testEmptyAndNullIntArray();
-        testEmptyAndNullLongArray();
-        testEmptyAndNullShortArray();
-        testEmptyAndNullCharArray();
-        testEmptyAndNullByteArray();
-        testEmptyAndNullFloatArray();
-        testEmptyAndNullDoubleArray();
-
-        for (int length : lengths) {
-            testMergeSort(length);
-            testAndCheckRange(length);
-            testAndCheckSubArray(length);
-        }
-        for (long seed : randoms) {
-            for (int length : lengths) {
-                testAndCheckWithInsertionSort(length, new MyRandom(seed));
-                testAndCheckWithCheckSum(length, new MyRandom(seed));
-                testAndCheckWithScrambling(length, new MyRandom(seed));
-                testAndCheckFloat(length, new MyRandom(seed));
-                testAndCheckDouble(length, new MyRandom(seed));
-                testStable(length, new MyRandom(seed));
-            }
-        }
-    }
-
-    private static void testEmptyAndNullIntArray() {
-        ourDescription = "Check empty and null array";
-        Arrays.parallelSort(new int[]{});
-        Arrays.parallelSort(new int[]{}, 0, 0);
-
-        try {
-            Arrays.parallelSort((int[]) null);
-        } catch (NullPointerException expected) {
-            try {
-                Arrays.parallelSort((int[]) null, 0, 0);
-            } catch (NullPointerException expected2) {
-                return;
-            }
-            failed("Arrays.parallelSort(int[],fromIndex,toIndex) shouldn't " +
-                "catch null array");
-        }
-        failed("Arrays.parallelSort(int[]) shouldn't catch null array");
-    }
-
-    private static void testEmptyAndNullLongArray() {
-        ourDescription = "Check empty and null array";
-        Arrays.parallelSort(new long[]{});
-        Arrays.parallelSort(new long[]{}, 0, 0);
-
-        try {
-            Arrays.parallelSort((long[]) null);
-        } catch (NullPointerException expected) {
-            try {
-                Arrays.parallelSort((long[]) null, 0, 0);
-            } catch (NullPointerException expected2) {
-                return;
-            }
-            failed("Arrays.parallelSort(long[],fromIndex,toIndex) shouldn't " +
-                "catch null array");
-        }
-        failed("Arrays.parallelSort(long[]) shouldn't catch null array");
-    }
-
-    private static void testEmptyAndNullShortArray() {
-        ourDescription = "Check empty and null array";
-        Arrays.parallelSort(new short[]{});
-        Arrays.parallelSort(new short[]{}, 0, 0);
-
-        try {
-            Arrays.parallelSort((short[]) null);
-        } catch (NullPointerException expected) {
-            try {
-                Arrays.parallelSort((short[]) null, 0, 0);
-            } catch (NullPointerException expected2) {
-                return;
-            }
-            failed("Arrays.parallelSort(short[],fromIndex,toIndex) shouldn't " +
-                "catch null array");
-        }
-        failed("Arrays.parallelSort(short[]) shouldn't catch null array");
-    }
-
-    private static void testEmptyAndNullCharArray() {
-        ourDescription = "Check empty and null array";
-        Arrays.parallelSort(new char[]{});
-        Arrays.parallelSort(new char[]{}, 0, 0);
-
-        try {
-            Arrays.parallelSort((char[]) null);
-        } catch (NullPointerException expected) {
-            try {
-                Arrays.parallelSort((char[]) null, 0, 0);
-            } catch (NullPointerException expected2) {
-                return;
-            }
-            failed("Arrays.parallelSort(char[],fromIndex,toIndex) shouldn't " +
-                "catch null array");
-        }
-        failed("Arrays.parallelSort(char[]) shouldn't catch null array");
-    }
-
-    private static void testEmptyAndNullByteArray() {
-        ourDescription = "Check empty and null array";
-        Arrays.parallelSort(new byte[]{});
-        Arrays.parallelSort(new byte[]{}, 0, 0);
-
-        try {
-            Arrays.parallelSort((byte[]) null);
-        } catch (NullPointerException expected) {
-            try {
-                Arrays.parallelSort((byte[]) null, 0, 0);
-            } catch (NullPointerException expected2) {
-                return;
-            }
-            failed("Arrays.parallelSort(byte[],fromIndex,toIndex) shouldn't " +
-                "catch null array");
-        }
-        failed("Arrays.parallelSort(byte[]) shouldn't catch null array");
-    }
-
-    private static void testEmptyAndNullFloatArray() {
-        ourDescription = "Check empty and null array";
-        Arrays.parallelSort(new float[]{});
-        Arrays.parallelSort(new float[]{}, 0, 0);
-
-        try {
-            Arrays.parallelSort((float[]) null);
-        } catch (NullPointerException expected) {
-            try {
-                Arrays.parallelSort((float[]) null, 0, 0);
-            } catch (NullPointerException expected2) {
-                return;
-            }
-            failed("Arrays.parallelSort(float[],fromIndex,toIndex) shouldn't " +
-                "catch null array");
-        }
-        failed("Arrays.parallelSort(float[]) shouldn't catch null array");
-    }
-
-    private static void testEmptyAndNullDoubleArray() {
-        ourDescription = "Check empty and null array";
-        Arrays.parallelSort(new double[]{});
-        Arrays.parallelSort(new double[]{}, 0, 0);
-
-        try {
-            Arrays.parallelSort((double[]) null);
-        } catch (NullPointerException expected) {
-            try {
-                Arrays.parallelSort((double[]) null, 0, 0);
-            } catch (NullPointerException expected2) {
-                return;
-            }
-            failed("Arrays.parallelSort(double[],fromIndex,toIndex) shouldn't " +
-                "catch null array");
-        }
-        failed("Arrays.parallelSort(double[]) shouldn't catch null array");
-    }
-
-    private static void testAndCheckSubArray(int length) {
-        ourDescription = "Check sorting of subarray";
-        int[] golden = new int[length];
-        boolean newLine = false;
-
-        for (int m = 1; m < length / 2; m *= 2) {
-            newLine = true;
-            int fromIndex = m;
-            int toIndex = length - m;
-
-            prepareSubArray(golden, fromIndex, toIndex, m);
-            int[] test = golden.clone();
-
-            for (TypeConverter converter : TypeConverter.values()) {
-                out.println("Test 'subarray': " + converter +
-                   " length = " + length + ", m = " + m);
-                Object convertedGolden = converter.convert(golden);
-                Object convertedTest = converter.convert(test);
-                sortSubArray(convertedTest, fromIndex, toIndex);
-                checkSubArray(convertedTest, fromIndex, toIndex, m);
-            }
-        }
-        if (newLine) {
-            out.println();
-        }
-    }
-
-    private static void testAndCheckRange(int length) {
-        ourDescription = "Check range check";
-        int[] golden = new int[length];
-
-        for (int m = 1; m < 2 * length; m *= 2) {
-            for (int i = 1; i <= length; i++) {
-                golden[i - 1] = i % m + m % i;
-            }
-            for (TypeConverter converter : TypeConverter.values()) {
-                out.println("Test 'range': " + converter +
-                   ", length = " + length + ", m = " + m);
-                Object convertedGolden = converter.convert(golden);
-                checkRange(convertedGolden, m);
-            }
-        }
-        out.println();
-    }
-
-    private static void testStable(int length, MyRandom random) {
-        ourDescription = "Check if sorting is stable";
-        Pair[] a = build(length, random);
-
-        out.println("Test 'stable': " + "random = " + random.getSeed() +
-            ", length = " + length);
-        Arrays.parallelSort(a);
-        checkSorted(a);
-        checkStable(a);
-        out.println();
-
-        a = build(length, random);
-
-        out.println("Test 'stable' comparator: " + "random = " + random.getSeed() +
-            ", length = " + length);
-        Arrays.parallelSort(a, pairCmp);
-        checkSorted(a);
-        checkStable(a);
-        out.println();
-
-    }
-
-    private static void checkSorted(Pair[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i].getKey() > a[i + 1].getKey()) {
-                failedSort(i, "" + a[i].getKey(), "" + a[i + 1].getKey());
-            }
-        }
-    }
-
-    private static void checkStable(Pair[] a) {
-        for (int i = 0; i < a.length / 4; ) {
-            int key1 = a[i].getKey();
-            int value1 = a[i++].getValue();
-            int key2 = a[i].getKey();
-            int value2 = a[i++].getValue();
-            int key3 = a[i].getKey();
-            int value3 = a[i++].getValue();
-            int key4 = a[i].getKey();
-            int value4 = a[i++].getValue();
-
-            if (!(key1 == key2 && key2 == key3 && key3 == key4)) {
-                failed("On position " + i + " keys are different " +
-                    key1 + ", " + key2 + ", " + key3 + ", " + key4);
-            }
-            if (!(value1 < value2 && value2 < value3 && value3 < value4)) {
-                failed("Sorting is not stable at position " + i +
-                    ". Second values have been changed: " +  value1 + ", " +
-                    value2 + ", " + value3 + ", " + value4);
-            }
-        }
-    }
-
-    private static Pair[] build(int length, Random random) {
-        Pair[] a = new Pair[length * 4];
-
-        for (int i = 0; i < a.length; ) {
-            int key = random.nextInt();
-            a[i++] = new Pair(key, 1);
-            a[i++] = new Pair(key, 2);
-            a[i++] = new Pair(key, 3);
-            a[i++] = new Pair(key, 4);
-        }
-        return a;
-    }
-
-    private static Comparator<Pair> pairCmp = new Comparator<Pair>() {
-        public int compare(Pair p1, Pair p2) {
-            return p1.compareTo(p2);
-        }
-    };
-
-    private static final class Pair implements Comparable<Pair> {
-        Pair(int key, int value) {
-            myKey = key;
-            myValue = value;
-        }
-
-        int getKey() {
-            return myKey;
-        }
-
-        int getValue() {
-            return myValue;
-        }
-
-        public int compareTo(Pair pair) {
-            if (myKey < pair.myKey) {
-                return -1;
-            }
-            if (myKey > pair.myKey) {
-                return 1;
-            }
-            return 0;
-        }
-
-        @Override
-        public String toString() {
-            return "(" + myKey + ", " + myValue + ")";
-        }
-
-        private int myKey;
-        private int myValue;
-    }
-
-
-    private static void testAndCheckWithInsertionSort(int length, MyRandom random) {
-        if (length > 1000) {
-            return;
-        }
-        ourDescription = "Check sorting with insertion sort";
-        int[] golden = new int[length];
-
-        for (int m = 1; m < 2 * length; m *= 2) {
-            for (UnsortedBuilder builder : UnsortedBuilder.values()) {
-                builder.build(golden, m, random);
-                int[] test = golden.clone();
-
-                for (TypeConverter converter : TypeConverter.values()) {
-                    out.println("Test 'insertion sort': " + converter +
-                        " " + builder + "random = " + random.getSeed() +
-                        ", length = " + length + ", m = " + m);
-                    Object convertedGolden = converter.convert(golden);
-                    Object convertedTest1 = converter.convert(test);
-                    Object convertedTest2 = converter.convert(test);
-                    sort(convertedTest1);
-                    sortByInsertionSort(convertedTest2);
-                    compare(convertedTest1, convertedTest2);
-                }
-            }
-        }
-        out.println();
-    }
-
-    private static void testMergeSort(int length) {
-        if (length < 1000) {
-            return;
-        }
-        ourDescription = "Check merge sorting";
-        int[] golden = new int[length];
-        int period = 67; // java.util.DualPivotQuicksort.MAX_RUN_COUNT
-
-        for (int m = period - 2; m <= period + 2; m++) {
-            for (MergeBuilder builder : MergeBuilder.values()) {
-                builder.build(golden, m);
-                int[] test = golden.clone();
-
-                for (TypeConverter converter : TypeConverter.values()) {
-                    out.println("Test 'merge sort': " + converter + " " +
-                        builder + "length = " + length + ", m = " + m);
-                    Object convertedGolden = converter.convert(golden);
-                    sort(convertedGolden);
-                    checkSorted(convertedGolden);
-                }
-            }
-        }
-        out.println();
-    }
-
-    private static void testAndCheckWithCheckSum(int length, MyRandom random) {
-        ourDescription = "Check sorting with check sum";
-        int[] golden = new int[length];
-
-        for (int m = 1; m < 2 * length; m *= 2) {
-            for (UnsortedBuilder builder : UnsortedBuilder.values()) {
-                builder.build(golden, m, random);
-                int[] test = golden.clone();
-
-                for (TypeConverter converter : TypeConverter.values()) {
-                    out.println("Test 'check sum': " + converter +
-                        " " + builder + "random = " + random.getSeed() +
-                        ", length = " + length + ", m = " + m);
-                    Object convertedGolden = converter.convert(golden);
-                    Object convertedTest = converter.convert(test);
-                    sort(convertedTest);
-                    checkWithCheckSum(convertedTest, convertedGolden);
-                }
-            }
-        }
-        out.println();
-    }
-
-    private static void testAndCheckWithScrambling(int length, MyRandom random) {
-        ourDescription = "Check sorting with scrambling";
-        int[] golden = new int[length];
-
-        for (int m = 1; m <= 7; m++) {
-            if (m > length) {
-                break;
-            }
-            for (SortedBuilder builder : SortedBuilder.values()) {
-                builder.build(golden, m);
-                int[] test = golden.clone();
-                scramble(test, random);
-
-                for (TypeConverter converter : TypeConverter.values()) {
-                    out.println("Test 'scrambling': " + converter +
-                       " " + builder + "random = " + random.getSeed() +
-                       ", length = " + length + ", m = " + m);
-                    Object convertedGolden = converter.convert(golden);
-                    Object convertedTest = converter.convert(test);
-                    sort(convertedTest);
-                    compare(convertedTest, convertedGolden);
-                }
-            }
-        }
-        out.println();
-    }
-
-    private static void testAndCheckFloat(int length, MyRandom random) {
-        ourDescription = "Check float sorting";
-        float[] golden = new float[length];
-        final int MAX = 10;
-        boolean newLine = false;
-
-        for (int a = 0; a <= MAX; a++) {
-            for (int g = 0; g <= MAX; g++) {
-                for (int z = 0; z <= MAX; z++) {
-                    for (int n = 0; n <= MAX; n++) {
-                        for (int p = 0; p <= MAX; p++) {
-                            if (a + g + z + n + p > length) {
-                                continue;
-                            }
-                            if (a + g + z + n + p < length) {
-                                continue;
-                            }
-                            for (FloatBuilder builder : FloatBuilder.values()) {
-                                out.println("Test 'float': random = " + random.getSeed() +
-                                   ", length = " + length + ", a = " + a + ", g = " +
-                                   g + ", z = " + z + ", n = " + n + ", p = " + p);
-                                builder.build(golden, a, g, z, n, p, random);
-                                float[] test = golden.clone();
-                                scramble(test, random);
-                                sort(test);
-                                compare(test, golden, a, n, g);
-                            }
-                            newLine = true;
-                        }
-                    }
-                }
-            }
-        }
-        if (newLine) {
-            out.println();
-        }
-    }
-
-    private static void testAndCheckDouble(int length, MyRandom random) {
-        ourDescription = "Check double sorting";
-        double[] golden = new double[length];
-        final int MAX = 10;
-        boolean newLine = false;
-
-        for (int a = 0; a <= MAX; a++) {
-            for (int g = 0; g <= MAX; g++) {
-                for (int z = 0; z <= MAX; z++) {
-                    for (int n = 0; n <= MAX; n++) {
-                        for (int p = 0; p <= MAX; p++) {
-                            if (a + g + z + n + p > length) {
-                                continue;
-                            }
-                            if (a + g + z + n + p < length) {
-                                continue;
-                            }
-                            for (DoubleBuilder builder : DoubleBuilder.values()) {
-                                out.println("Test 'double': random = " + random.getSeed() +
-                                   ", length = " + length + ", a = " + a + ", g = " +
-                                   g + ", z = " + z + ", n = " + n + ", p = " + p);
-                                builder.build(golden, a, g, z, n, p, random);
-                                double[] test = golden.clone();
-                                scramble(test, random);
-                                sort(test);
-                                compare(test, golden, a, n, g);
-                            }
-                            newLine = true;
-                        }
-                    }
-                }
-            }
-        }
-        if (newLine) {
-            out.println();
-        }
-    }
-
-    private static void prepareSubArray(int[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            a[i] = 0xDEDA;
-        }
-        int middle = (fromIndex + toIndex) >>> 1;
-        int k = 0;
-
-        for (int i = fromIndex; i < middle; i++) {
-            a[i] = k++;
-        }
-        for (int i = middle; i < toIndex; i++) {
-            a[i] = k--;
-        }
-        for (int i = toIndex; i < a.length; i++) {
-            a[i] = 0xBABA;
-        }
-    }
-
-    private static void scramble(int[] a, Random random) {
-        for (int i = 0; i < a.length * 7; i++) {
-            swap(a, random.nextInt(a.length), random.nextInt(a.length));
-        }
-    }
-
-    private static void scramble(float[] a, Random random) {
-        for (int i = 0; i < a.length * 7; i++) {
-            swap(a, random.nextInt(a.length), random.nextInt(a.length));
-        }
-    }
-
-    private static void scramble(double[] a, Random random) {
-        for (int i = 0; i < a.length * 7; i++) {
-            swap(a, random.nextInt(a.length), random.nextInt(a.length));
-        }
-    }
-
-    private static void swap(int[] a, int i, int j) {
-        int t = a[i];
-        a[i] = a[j];
-        a[j] = t;
-    }
-
-    private static void swap(float[] a, int i, int j) {
-        float t = a[i];
-        a[i] = a[j];
-        a[j] = t;
-    }
-
-    private static void swap(double[] a, int i, int j) {
-        double t = a[i];
-        a[i] = a[j];
-        a[j] = t;
-    }
-
-    private static enum TypeConverter {
-        INT {
-            Object convert(int[] a) {
-                return a.clone();
-            }
-        },
-        LONG {
-            Object convert(int[] a) {
-                long[] b = new long[a.length];
-
-                for (int i = 0; i < a.length; i++) {
-                    b[i] = (long) a[i];
-                }
-                return b;
-            }
-        },
-        BYTE {
-            Object convert(int[] a) {
-                byte[] b = new byte[a.length];
-
-                for (int i = 0; i < a.length; i++) {
-                    b[i] = (byte) a[i];
-                }
-                return b;
-            }
-        },
-        SHORT {
-            Object convert(int[] a) {
-                short[] b = new short[a.length];
-
-                for (int i = 0; i < a.length; i++) {
-                    b[i] = (short) a[i];
-                }
-                return b;
-            }
-        },
-        CHAR {
-            Object convert(int[] a) {
-                char[] b = new char[a.length];
-
-                for (int i = 0; i < a.length; i++) {
-                    b[i] = (char) a[i];
-                }
-                return b;
-            }
-        },
-        FLOAT {
-            Object convert(int[] a) {
-                float[] b = new float[a.length];
-
-                for (int i = 0; i < a.length; i++) {
-                    b[i] = (float) a[i];
-                }
-                return b;
-            }
-        },
-        DOUBLE {
-            Object convert(int[] a) {
-                double[] b = new double[a.length];
-
-                for (int i = 0; i < a.length; i++) {
-                    b[i] = (double) a[i];
-                }
-                return b;
-            }
-        },
-        INTEGER {
-            Object convert(int[] a) {
-                Integer[] b = new Integer[a.length];
-
-                for (int i = 0; i < a.length; i++) {
-                    b[i] = new Integer(a[i]);
-                }
-                return b;
-            }
-        };
-
-        abstract Object convert(int[] a);
-
-        @Override public String toString() {
-            String name = name();
-
-            for (int i = name.length(); i < 9; i++) {
-                name += " ";
-            }
-            return name;
-        }
-    }
-
-    private static enum FloatBuilder {
-        SIMPLE {
-            void build(float[] x, int a, int g, int z, int n, int p, Random random) {
-                int fromIndex = 0;
-                float negativeValue = -random.nextFloat();
-                float positiveValue =  random.nextFloat();
-
-                writeValue(x, negativeValue, fromIndex, n);
-                fromIndex += n;
-
-                writeValue(x, -0.0f, fromIndex, g);
-                fromIndex += g;
-
-                writeValue(x, 0.0f, fromIndex, z);
-                fromIndex += z;
-
-                writeValue(x, positiveValue, fromIndex, p);
-                fromIndex += p;
-
-                writeValue(x, Float.NaN, fromIndex, a);
-            }
-        };
-
-        abstract void build(float[] x, int a, int g, int z, int n, int p, Random random);
-    }
-
-    private static enum DoubleBuilder {
-        SIMPLE {
-            void build(double[] x, int a, int g, int z, int n, int p, Random random) {
-                int fromIndex = 0;
-                double negativeValue = -random.nextFloat();
-                double positiveValue =  random.nextFloat();
-
-                writeValue(x, negativeValue, fromIndex, n);
-                fromIndex += n;
-
-                writeValue(x, -0.0d, fromIndex, g);
-                fromIndex += g;
-
-                writeValue(x, 0.0d, fromIndex, z);
-                fromIndex += z;
-
-                writeValue(x, positiveValue, fromIndex, p);
-                fromIndex += p;
-
-                writeValue(x, Double.NaN, fromIndex, a);
-            }
-        };
-
-        abstract void build(double[] x, int a, int g, int z, int n, int p, Random random);
-    }
-
-    private static void writeValue(float[] a, float value, int fromIndex, int count) {
-        for (int i = fromIndex; i < fromIndex + count; i++) {
-            a[i] = value;
-        }
-    }
-
-    private static void compare(float[] a, float[] b, int numNaN, int numNeg, int numNegZero) {
-        for (int i = a.length - numNaN; i < a.length; i++) {
-            if (a[i] == a[i]) {
-                failed("On position " + i + " must be NaN instead of " + a[i]);
-            }
-        }
-        final int NEGATIVE_ZERO = Float.floatToIntBits(-0.0f);
-
-        for (int i = numNeg; i < numNeg + numNegZero; i++) {
-            if (NEGATIVE_ZERO != Float.floatToIntBits(a[i])) {
-                failed("On position " + i + " must be -0.0 instead of " + a[i]);
-            }
-        }
-        for (int i = 0; i < a.length - numNaN; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
-
-    private static void writeValue(double[] a, double value, int fromIndex, int count) {
-        for (int i = fromIndex; i < fromIndex + count; i++) {
-            a[i] = value;
-        }
-    }
-
-    private static void compare(double[] a, double[] b, int numNaN, int numNeg, int numNegZero) {
-        for (int i = a.length - numNaN; i < a.length; i++) {
-            if (a[i] == a[i]) {
-                failed("On position " + i + " must be NaN instead of " + a[i]);
-            }
-        }
-        final long NEGATIVE_ZERO = Double.doubleToLongBits(-0.0d);
-
-        for (int i = numNeg; i < numNeg + numNegZero; i++) {
-            if (NEGATIVE_ZERO != Double.doubleToLongBits(a[i])) {
-                failed("On position " + i + " must be -0.0 instead of " + a[i]);
-            }
-        }
-        for (int i = 0; i < a.length - numNaN; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
-
-    private static enum SortedBuilder {
-        REPEATED {
-            void build(int[] a, int m) {
-                int period = a.length / m;
-                int i = 0;
-                int k = 0;
-
-                while (true) {
-                    for (int t = 1; t <= period; t++) {
-                        if (i >= a.length) {
-                            return;
-                        }
-                        a[i++] = k;
-                    }
-                    if (i >= a.length) {
-                        return;
-                    }
-                    k++;
-                }
-            }
-        },
-        ORGAN_PIPES {
-            void build(int[] a, int m) {
-                int i = 0;
-                int k = m;
-
-                while (true) {
-                    for (int t = 1; t <= m; t++) {
-                        if (i >= a.length) {
-                            return;
-                        }
-                        a[i++] = k;
-                    }
-                }
-            }
-        };
-
-        abstract void build(int[] a, int m);
-
-        @Override public String toString() {
-            String name = name();
-
-            for (int i = name.length(); i < 12; i++) {
-                name += " ";
-            }
-            return name;
-        }
-    }
-
-    private static enum MergeBuilder {
-        ASCENDING {
-            void build(int[] a, int m) {
-                int period = a.length / m;
-                int v = 1, i = 0;
-
-                for (int k = 0; k < m; k++) {
-                    v = 1;
-                    for (int p = 0; p < period; p++) {
-                        a[i++] = v++;
-                    }
-                }
-                for (int j = i; j < a.length - 1; j++) {
-                    a[j] = v++;
-                }
-                a[a.length - 1] = 0;
-            }
-        },
-        DESCENDING {
-            void build(int[] a, int m) {
-                int period = a.length / m;
-                int v = -1, i = 0;
-
-                for (int k = 0; k < m; k++) {
-                    v = -1;
-                    for (int p = 0; p < period; p++) {
-                        a[i++] = v--;
-                    }
-                }
-                for (int j = i; j < a.length - 1; j++) {
-                    a[j] = v--;
-                }
-                a[a.length - 1] = 0;
-            }
-        };
-
-        abstract void build(int[] a, int m);
-
-        @Override public String toString() {
-            String name = name();
-
-            for (int i = name.length(); i < 12; i++) {
-                name += " ";
-            }
-            return name;
-        }
-    }
-
-    private static enum UnsortedBuilder {
-        RANDOM {
-            void build(int[] a, int m, Random random) {
-                for (int i = 0; i < a.length; i++) {
-                    a[i] = random.nextInt();
-                }
-            }
-        },
-        ASCENDING {
-            void build(int[] a, int m, Random random) {
-                for (int i = 0; i < a.length; i++) {
-                    a[i] = m + i;
-                }
-            }
-        },
-        DESCENDING {
-            void build(int[] a, int m, Random random) {
-                for (int i = 0; i < a.length; i++) {
-                    a[i] = a.length - m - i;
-                }
-            }
-        },
-        ALL_EQUAL {
-            void build(int[] a, int m, Random random) {
-                for (int i = 0; i < a.length; i++) {
-                    a[i] = m;
-                }
-            }
-        },
-        SAW {
-            void build(int[] a, int m, Random random) {
-                int incCount = 1;
-                int decCount = a.length;
-                int i = 0;
-                int period = m--;
-
-                while (true) {
-                    for (int k = 1; k <= period; k++) {
-                        if (i >= a.length) {
-                            return;
-                        }
-                        a[i++] = incCount++;
-                    }
-                    period += m;
-
-                    for (int k = 1; k <= period; k++) {
-                        if (i >= a.length) {
-                            return;
-                        }
-                        a[i++] = decCount--;
-                    }
-                    period += m;
-                }
-            }
-        },
-        REPEATED {
-            void build(int[] a, int m, Random random) {
-                for (int i = 0; i < a.length; i++) {
-                    a[i] = i % m;
-                }
-            }
-        },
-        DUPLICATED {
-            void build(int[] a, int m, Random random) {
-                for (int i = 0; i < a.length; i++) {
-                    a[i] = random.nextInt(m);
-                }
-            }
-        },
-        ORGAN_PIPES {
-            void build(int[] a, int m, Random random) {
-                int middle = a.length / (m + 1);
-
-                for (int i = 0; i < middle; i++) {
-                    a[i] = i;
-                }
-                for (int i = middle; i < a.length; i++) {
-                    a[i] = a.length - i - 1;
-                }
-            }
-        },
-        STAGGER {
-            void build(int[] a, int m, Random random) {
-                for (int i = 0; i < a.length; i++) {
-                    a[i] = (i * m + i) % a.length;
-                }
-            }
-        },
-        PLATEAU {
-            void build(int[] a, int m, Random random) {
-                for (int i = 0; i < a.length; i++) {
-                    a[i] = Math.min(i, m);
-                }
-            }
-        },
-        SHUFFLE {
-            void build(int[] a, int m, Random random) {
-                int x = 0, y = 0;
-                for (int i = 0; i < a.length; i++) {
-                    a[i] = random.nextBoolean() ? (x += 2) : (y += 2);
-                }
-            }
-        };
-
-        abstract void build(int[] a, int m, Random random);
-
-        @Override public String toString() {
-            String name = name();
-
-            for (int i = name.length(); i < 12; i++) {
-                name += " ";
-            }
-            return name;
-        }
-    }
-
-    private static void checkWithCheckSum(Object test, Object golden) {
-        checkSorted(test);
-        checkCheckSum(test, golden);
-    }
-
-    private static void failed(String message) {
-        err.format("\n*** TEST FAILED - %s.\n\n%s.\n\n", ourDescription, message);
-        throw new RuntimeException("Test failed - see log file for details");
-    }
-
-    private static void failedSort(int index, String value1, String value2) {
-        failed("Array is not sorted at " + index + "-th position: " +
-            value1 + " and " + value2);
-    }
-
-    private static void failedCompare(int index, String value1, String value2) {
-        failed("On position " + index + " must be " + value2 + " instead of " + value1);
-    }
-
-    private static void compare(Object test, Object golden) {
-        if (test instanceof int[]) {
-            compare((int[]) test, (int[]) golden);
-        } else if (test instanceof long[]) {
-            compare((long[]) test, (long[]) golden);
-        } else if (test instanceof short[]) {
-            compare((short[]) test, (short[]) golden);
-        } else if (test instanceof byte[]) {
-            compare((byte[]) test, (byte[]) golden);
-        } else if (test instanceof char[]) {
-            compare((char[]) test, (char[]) golden);
-        } else if (test instanceof float[]) {
-            compare((float[]) test, (float[]) golden);
-        } else if (test instanceof double[]) {
-            compare((double[]) test, (double[]) golden);
-        } else if (test instanceof Integer[]) {
-            compare((Integer[]) test, (Integer[]) golden);
-        } else {
-            failed("Unknow type of array: " + test + " of class " +
-                test.getClass().getName());
-        }
-    }
-
-    private static void compare(int[] a, int[] b) {
-        for (int i = 0; i < a.length; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
-
-    private static void compare(long[] a, long[] b) {
-        for (int i = 0; i < a.length; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
-
-    private static void compare(short[] a, short[] b) {
-        for (int i = 0; i < a.length; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
-
-    private static void compare(byte[] a, byte[] b) {
-        for (int i = 0; i < a.length; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
-
-    private static void compare(char[] a, char[] b) {
-        for (int i = 0; i < a.length; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
-
-    private static void compare(float[] a, float[] b) {
-        for (int i = 0; i < a.length; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
-
-    private static void compare(double[] a, double[] b) {
-        for (int i = 0; i < a.length; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
-
-    private static void compare(Integer[] a, Integer[] b) {
-        for (int i = 0; i < a.length; i++) {
-            if (a[i].compareTo(b[i]) != 0) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
-
-    private static void checkSorted(Object object) {
-        if (object instanceof int[]) {
-            checkSorted((int[]) object);
-        } else if (object instanceof long[]) {
-            checkSorted((long[]) object);
-        } else if (object instanceof short[]) {
-            checkSorted((short[]) object);
-        } else if (object instanceof byte[]) {
-            checkSorted((byte[]) object);
-        } else if (object instanceof char[]) {
-            checkSorted((char[]) object);
-        } else if (object instanceof float[]) {
-            checkSorted((float[]) object);
-        } else if (object instanceof double[]) {
-            checkSorted((double[]) object);
-        } else if (object instanceof Integer[]) {
-            checkSorted((Integer[]) object);
-        } else {
-            failed("Unknow type of array: " + object + " of class " +
-                object.getClass().getName());
-        }
-    }
-
-    private static void checkSorted(int[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-    }
-
-    private static void checkSorted(long[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-    }
-
-    private static void checkSorted(short[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-    }
-
-    private static void checkSorted(byte[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-    }
-
-    private static void checkSorted(char[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-    }
-
-    private static void checkSorted(float[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-    }
-
-    private static void checkSorted(double[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-    }
-
-    private static void checkSorted(Integer[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i].intValue() > a[i + 1].intValue()) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-    }
-
-    private static void checkCheckSum(Object test, Object golden) {
-        if (checkSumXor(test) != checkSumXor(golden)) {
-            failed("Original and sorted arrays are not identical [xor]");
-        }
-        if (checkSumPlus(test) != checkSumPlus(golden)) {
-            failed("Original and sorted arrays are not identical [plus]");
-        }
-    }
-
-    private static int checkSumXor(Object object) {
-        if (object instanceof int[]) {
-            return checkSumXor((int[]) object);
-        } else if (object instanceof long[]) {
-            return checkSumXor((long[]) object);
-        } else if (object instanceof short[]) {
-            return checkSumXor((short[]) object);
-        } else if (object instanceof byte[]) {
-            return checkSumXor((byte[]) object);
-        } else if (object instanceof char[]) {
-            return checkSumXor((char[]) object);
-        } else if (object instanceof float[]) {
-            return checkSumXor((float[]) object);
-        } else if (object instanceof double[]) {
-            return checkSumXor((double[]) object);
-        } else if (object instanceof Integer[]) {
-            return checkSumXor((Integer[]) object);
-        } else {
-            failed("Unknow type of array: " + object + " of class " +
-                object.getClass().getName());
-            return -1;
-        }
-    }
-
-    private static int checkSumXor(Integer[] a) {
-        int checkSum = 0;
-
-        for (Integer e : a) {
-            checkSum ^= e.intValue();
-        }
-        return checkSum;
-    }
-
-    private static int checkSumXor(int[] a) {
-        int checkSum = 0;
-
-        for (int e : a) {
-            checkSum ^= e;
-        }
-        return checkSum;
-    }
-
-    private static int checkSumXor(long[] a) {
-        long checkSum = 0;
-
-        for (long e : a) {
-            checkSum ^= e;
-        }
-        return (int) checkSum;
-    }
-
-    private static int checkSumXor(short[] a) {
-        short checkSum = 0;
-
-        for (short e : a) {
-            checkSum ^= e;
-        }
-        return (int) checkSum;
-    }
-
-    private static int checkSumXor(byte[] a) {
-        byte checkSum = 0;
-
-        for (byte e : a) {
-            checkSum ^= e;
-        }
-        return (int) checkSum;
-    }
-
-    private static int checkSumXor(char[] a) {
-        char checkSum = 0;
-
-        for (char e : a) {
-            checkSum ^= e;
-        }
-        return (int) checkSum;
-    }
-
-    private static int checkSumXor(float[] a) {
-        int checkSum = 0;
-
-        for (float e : a) {
-            checkSum ^= (int) e;
-        }
-        return checkSum;
-    }
-
-    private static int checkSumXor(double[] a) {
-        int checkSum = 0;
-
-        for (double e : a) {
-            checkSum ^= (int) e;
-        }
-        return checkSum;
-    }
-
-    private static int checkSumPlus(Object object) {
-        if (object instanceof int[]) {
-            return checkSumPlus((int[]) object);
-        } else if (object instanceof long[]) {
-            return checkSumPlus((long[]) object);
-        } else if (object instanceof short[]) {
-            return checkSumPlus((short[]) object);
-        } else if (object instanceof byte[]) {
-            return checkSumPlus((byte[]) object);
-        } else if (object instanceof char[]) {
-            return checkSumPlus((char[]) object);
-        } else if (object instanceof float[]) {
-            return checkSumPlus((float[]) object);
-        } else if (object instanceof double[]) {
-            return checkSumPlus((double[]) object);
-        } else if (object instanceof Integer[]) {
-            return checkSumPlus((Integer[]) object);
-        } else {
-            failed("Unknow type of array: " + object + " of class " +
-                object.getClass().getName());
-            return -1;
-        }
-    }
-
-    private static int checkSumPlus(int[] a) {
-        int checkSum = 0;
-
-        for (int e : a) {
-            checkSum += e;
-        }
-        return checkSum;
-    }
-
-    private static int checkSumPlus(long[] a) {
-        long checkSum = 0;
-
-        for (long e : a) {
-            checkSum += e;
-        }
-        return (int) checkSum;
-    }
-
-    private static int checkSumPlus(short[] a) {
-        short checkSum = 0;
-
-        for (short e : a) {
-            checkSum += e;
-        }
-        return (int) checkSum;
-    }
-
-    private static int checkSumPlus(byte[] a) {
-        byte checkSum = 0;
-
-        for (byte e : a) {
-            checkSum += e;
-        }
-        return (int) checkSum;
-    }
-
-    private static int checkSumPlus(char[] a) {
-        char checkSum = 0;
-
-        for (char e : a) {
-            checkSum += e;
-        }
-        return (int) checkSum;
-    }
-
-    private static int checkSumPlus(float[] a) {
-        int checkSum = 0;
-
-        for (float e : a) {
-            checkSum += (int) e;
-        }
-        return checkSum;
-    }
-
-    private static int checkSumPlus(double[] a) {
-        int checkSum = 0;
-
-        for (double e : a) {
-            checkSum += (int) e;
-        }
-        return checkSum;
-    }
-
-    private static int checkSumPlus(Integer[] a) {
-        int checkSum = 0;
-
-        for (Integer e : a) {
-            checkSum += e.intValue();
-        }
-        return checkSum;
-    }
-
-    private static void sortByInsertionSort(Object object) {
-        if (object instanceof int[]) {
-            sortByInsertionSort((int[]) object);
-        } else if (object instanceof long[]) {
-            sortByInsertionSort((long[]) object);
-        } else if (object instanceof short[]) {
-            sortByInsertionSort((short[]) object);
-        } else if (object instanceof byte[]) {
-            sortByInsertionSort((byte[]) object);
-        } else if (object instanceof char[]) {
-            sortByInsertionSort((char[]) object);
-        } else if (object instanceof float[]) {
-            sortByInsertionSort((float[]) object);
-        } else if (object instanceof double[]) {
-            sortByInsertionSort((double[]) object);
-        } else if (object instanceof Integer[]) {
-            sortByInsertionSort((Integer[]) object);
-        } else {
-            failed("Unknow type of array: " + object + " of class " +
-                object.getClass().getName());
-        }
-    }
-
-    private static void sortByInsertionSort(int[] a) {
-        for (int j, i = 1; i < a.length; i++) {
-            int ai = a[i];
-            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
-                a[j + 1] = a[j];
-            }
-            a[j + 1] = ai;
-        }
-    }
-
-    private static void sortByInsertionSort(long[] a) {
-        for (int j, i = 1; i < a.length; i++) {
-            long ai = a[i];
-            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
-                a[j + 1] = a[j];
-            }
-            a[j + 1] = ai;
-        }
-    }
-
-    private static void sortByInsertionSort(short[] a) {
-        for (int j, i = 1; i < a.length; i++) {
-            short ai = a[i];
-            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
-                a[j + 1] = a[j];
-            }
-            a[j + 1] = ai;
-        }
-    }
-
-    private static void sortByInsertionSort(byte[] a) {
-        for (int j, i = 1; i < a.length; i++) {
-            byte ai = a[i];
-            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
-                a[j + 1] = a[j];
-            }
-            a[j + 1] = ai;
-        }
-    }
-
-    private static void sortByInsertionSort(char[] a) {
-        for (int j, i = 1; i < a.length; i++) {
-            char ai = a[i];
-            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
-                a[j + 1] = a[j];
-            }
-            a[j + 1] = ai;
-        }
-    }
-
-    private static void sortByInsertionSort(float[] a) {
-        for (int j, i = 1; i < a.length; i++) {
-            float ai = a[i];
-            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
-                a[j + 1] = a[j];
-            }
-            a[j + 1] = ai;
-        }
-    }
-
-    private static void sortByInsertionSort(double[] a) {
-        for (int j, i = 1; i < a.length; i++) {
-            double ai = a[i];
-            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
-                a[j + 1] = a[j];
-            }
-            a[j + 1] = ai;
-        }
-    }
-
-    private static void sortByInsertionSort(Integer[] a) {
-        for (int j, i = 1; i < a.length; i++) {
-            Integer ai = a[i];
-            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
-                a[j + 1] = a[j];
-            }
-            a[j + 1] = ai;
-        }
-    }
-
-    private static void sort(Object object) {
-        if (object instanceof int[]) {
-            Arrays.parallelSort((int[]) object);
-        } else if (object instanceof long[]) {
-            Arrays.parallelSort((long[]) object);
-        } else if (object instanceof short[]) {
-            Arrays.parallelSort((short[]) object);
-        } else if (object instanceof byte[]) {
-            Arrays.parallelSort((byte[]) object);
-        } else if (object instanceof char[]) {
-            Arrays.parallelSort((char[]) object);
-        } else if (object instanceof float[]) {
-            Arrays.parallelSort((float[]) object);
-        } else if (object instanceof double[]) {
-            Arrays.parallelSort((double[]) object);
-        } else if (object instanceof Integer[]) {
-            Arrays.parallelSort((Integer[]) object);
-        } else {
-            failed("Unknow type of array: " + object + " of class " +
-                object.getClass().getName());
-        }
-    }
-
-    private static void sortSubArray(Object object, int fromIndex, int toIndex) {
-        if (object instanceof int[]) {
-            Arrays.parallelSort((int[]) object, fromIndex, toIndex);
-        } else if (object instanceof long[]) {
-            Arrays.parallelSort((long[]) object, fromIndex, toIndex);
-        } else if (object instanceof short[]) {
-            Arrays.parallelSort((short[]) object, fromIndex, toIndex);
-        } else if (object instanceof byte[]) {
-            Arrays.parallelSort((byte[]) object, fromIndex, toIndex);
-        } else if (object instanceof char[]) {
-            Arrays.parallelSort((char[]) object, fromIndex, toIndex);
-        } else if (object instanceof float[]) {
-            Arrays.parallelSort((float[]) object, fromIndex, toIndex);
-        } else if (object instanceof double[]) {
-            Arrays.parallelSort((double[]) object, fromIndex, toIndex);
-        } else if (object instanceof Integer[]) {
-            Arrays.parallelSort((Integer[]) object, fromIndex, toIndex);
-        } else {
-            failed("Unknow type of array: " + object + " of class " +
-                object.getClass().getName());
-        }
-    }
-
-    private static void checkSubArray(Object object, int fromIndex, int toIndex, int m) {
-        if (object instanceof int[]) {
-            checkSubArray((int[]) object, fromIndex, toIndex, m);
-        } else if (object instanceof long[]) {
-            checkSubArray((long[]) object, fromIndex, toIndex, m);
-        } else if (object instanceof short[]) {
-            checkSubArray((short[]) object, fromIndex, toIndex, m);
-        } else if (object instanceof byte[]) {
-            checkSubArray((byte[]) object, fromIndex, toIndex, m);
-        } else if (object instanceof char[]) {
-            checkSubArray((char[]) object, fromIndex, toIndex, m);
-        } else if (object instanceof float[]) {
-            checkSubArray((float[]) object, fromIndex, toIndex, m);
-        } else if (object instanceof double[]) {
-            checkSubArray((double[]) object, fromIndex, toIndex, m);
-        } else if (object instanceof Integer[]) {
-            checkSubArray((Integer[]) object, fromIndex, toIndex, m);
-        } else {
-            failed("Unknow type of array: " + object + " of class " +
-                object.getClass().getName());
-        }
-    }
-
-    private static void checkSubArray(Integer[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            if (a[i].intValue() != 0xDEDA) {
-                failed("Range sort changes left element on position " + i +
-                    ": " + a[i] + ", must be " + 0xDEDA);
-            }
-        }
-
-        for (int i = fromIndex; i < toIndex - 1; i++) {
-            if (a[i].intValue() > a[i + 1].intValue()) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-
-        for (int i = toIndex; i < a.length; i++) {
-            if (a[i].intValue() != 0xBABA) {
-                failed("Range sort changes right element on position " + i +
-                    ": " + a[i] + ", must be " + 0xBABA);
-            }
-        }
-    }
-
-    private static void checkSubArray(int[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            if (a[i] != 0xDEDA) {
-                failed("Range sort changes left element on position " + i +
-                    ": " + a[i] + ", must be " + 0xDEDA);
-            }
-        }
-
-        for (int i = fromIndex; i < toIndex - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-
-        for (int i = toIndex; i < a.length; i++) {
-            if (a[i] != 0xBABA) {
-                failed("Range sort changes right element on position " + i +
-                    ": " + a[i] + ", must be " + 0xBABA);
-            }
-        }
-    }
-
-    private static void checkSubArray(byte[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            if (a[i] != (byte) 0xDEDA) {
-                failed("Range sort changes left element on position " + i +
-                    ": " + a[i] + ", must be " + 0xDEDA);
-            }
-        }
-
-        for (int i = fromIndex; i < toIndex - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-
-        for (int i = toIndex; i < a.length; i++) {
-            if (a[i] != (byte) 0xBABA) {
-                failed("Range sort changes right element on position " + i +
-                    ": " + a[i] + ", must be " + 0xBABA);
-            }
-        }
-    }
-
-    private static void checkSubArray(long[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            if (a[i] != (long) 0xDEDA) {
-                failed("Range sort changes left element on position " + i +
-                    ": " + a[i] + ", must be " + 0xDEDA);
-            }
-        }
-
-        for (int i = fromIndex; i < toIndex - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-
-        for (int i = toIndex; i < a.length; i++) {
-            if (a[i] != (long) 0xBABA) {
-                failed("Range sort changes right element on position " + i +
-                    ": " + a[i] + ", must be " + 0xBABA);
-            }
-        }
-    }
-
-    private static void checkSubArray(char[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            if (a[i] != (char) 0xDEDA) {
-                failed("Range sort changes left element on position " + i +
-                    ": " + a[i] + ", must be " + 0xDEDA);
-            }
-        }
-
-        for (int i = fromIndex; i < toIndex - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-
-        for (int i = toIndex; i < a.length; i++) {
-            if (a[i] != (char) 0xBABA) {
-                failed("Range sort changes right element on position " + i +
-                    ": " + a[i] + ", must be " + 0xBABA);
-            }
-        }
-    }
-
-    private static void checkSubArray(short[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            if (a[i] != (short) 0xDEDA) {
-                failed("Range sort changes left element on position " + i +
-                    ": " + a[i] + ", must be " + 0xDEDA);
-            }
-        }
-
-        for (int i = fromIndex; i < toIndex - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-
-        for (int i = toIndex; i < a.length; i++) {
-            if (a[i] != (short) 0xBABA) {
-                failed("Range sort changes right element on position " + i +
-                    ": " + a[i] + ", must be " + 0xBABA);
-            }
-        }
-    }
-
-    private static void checkSubArray(float[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            if (a[i] != (float) 0xDEDA) {
-                failed("Range sort changes left element on position " + i +
-                    ": " + a[i] + ", must be " + 0xDEDA);
-            }
-        }
-
-        for (int i = fromIndex; i < toIndex - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-
-        for (int i = toIndex; i < a.length; i++) {
-            if (a[i] != (float) 0xBABA) {
-                failed("Range sort changes right element on position " + i +
-                    ": " + a[i] + ", must be " + 0xBABA);
-            }
-        }
-    }
-
-    private static void checkSubArray(double[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            if (a[i] != (double) 0xDEDA) {
-                failed("Range sort changes left element on position " + i +
-                    ": " + a[i] + ", must be " + 0xDEDA);
-            }
-        }
-
-        for (int i = fromIndex; i < toIndex - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-
-        for (int i = toIndex; i < a.length; i++) {
-            if (a[i] != (double) 0xBABA) {
-                failed("Range sort changes right element on position " + i +
-                    ": " + a[i] + ", must be " + 0xBABA);
-            }
-        }
-    }
-
-    private static void checkRange(Object object, int m) {
-        if (object instanceof int[]) {
-            checkRange((int[]) object, m);
-        } else if (object instanceof long[]) {
-            checkRange((long[]) object, m);
-        } else if (object instanceof short[]) {
-            checkRange((short[]) object, m);
-        } else if (object instanceof byte[]) {
-            checkRange((byte[]) object, m);
-        } else if (object instanceof char[]) {
-            checkRange((char[]) object, m);
-        } else if (object instanceof float[]) {
-            checkRange((float[]) object, m);
-        } else if (object instanceof double[]) {
-            checkRange((double[]) object, m);
-        } else if (object instanceof Integer[]) {
-            checkRange((Integer[]) object, m);
-        } else {
-            failed("Unknow type of array: " + object + " of class " +
-                object.getClass().getName());
-        }
-    }
-
-    private static void checkRange(Integer[] a, int m) {
-        try {
-            Arrays.parallelSort(a, m + 1, m);
-
-            failed("ParallelSort does not throw IllegalArgumentException " +
-                " as expected: fromIndex = " + (m + 1) +
-                " toIndex = " + m);
-        }
-        catch (IllegalArgumentException iae) {
-            try {
-                Arrays.parallelSort(a, -m, a.length);
-
-                failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
-                    " as expected: fromIndex = " + (-m));
-            }
-            catch (ArrayIndexOutOfBoundsException aoe) {
-                try {
-                    Arrays.parallelSort(a, 0, a.length + m);
-
-                    failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
-                        " as expected: toIndex = " + (a.length + m));
-                }
-                catch (ArrayIndexOutOfBoundsException aie) {
-                    return;
-                }
-            }
-        }
-    }
-
-    private static void checkRange(int[] a, int m) {
-        try {
-            Arrays.parallelSort(a, m + 1, m);
-
-            failed("ParallelSort does not throw IllegalArgumentException " +
-                " as expected: fromIndex = " + (m + 1) +
-                " toIndex = " + m);
-        }
-        catch (IllegalArgumentException iae) {
-            try {
-                Arrays.parallelSort(a, -m, a.length);
-
-                failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
-                    " as expected: fromIndex = " + (-m));
-            }
-            catch (ArrayIndexOutOfBoundsException aoe) {
-                try {
-                    Arrays.parallelSort(a, 0, a.length + m);
-
-                    failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
-                        " as expected: toIndex = " + (a.length + m));
-                }
-                catch (ArrayIndexOutOfBoundsException aie) {
-                    return;
-                }
-            }
-        }
-    }
-
-    private static void checkRange(long[] a, int m) {
-        try {
-            Arrays.parallelSort(a, m + 1, m);
-
-            failed("ParallelSort does not throw IllegalArgumentException " +
-                " as expected: fromIndex = " + (m + 1) +
-                " toIndex = " + m);
-        }
-        catch (IllegalArgumentException iae) {
-            try {
-                Arrays.parallelSort(a, -m, a.length);
-
-                failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
-                    " as expected: fromIndex = " + (-m));
-            }
-            catch (ArrayIndexOutOfBoundsException aoe) {
-                try {
-                    Arrays.parallelSort(a, 0, a.length + m);
-
-                    failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
-                        " as expected: toIndex = " + (a.length + m));
-                }
-                catch (ArrayIndexOutOfBoundsException aie) {
-                    return;
-                }
-            }
-        }
-    }
-
-    private static void checkRange(byte[] a, int m) {
-        try {
-            Arrays.parallelSort(a, m + 1, m);
-
-            failed("ParallelSort does not throw IllegalArgumentException " +
-                " as expected: fromIndex = " + (m + 1) +
-                " toIndex = " + m);
-        }
-        catch (IllegalArgumentException iae) {
-            try {
-                Arrays.parallelSort(a, -m, a.length);
-
-                failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
-                    " as expected: fromIndex = " + (-m));
-            }
-            catch (ArrayIndexOutOfBoundsException aoe) {
-                try {
-                    Arrays.parallelSort(a, 0, a.length + m);
-
-                    failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
-                        " as expected: toIndex = " + (a.length + m));
-                }
-                catch (ArrayIndexOutOfBoundsException aie) {
-                    return;
-                }
-            }
-        }
-    }
-
-    private static void checkRange(short[] a, int m) {
-        try {
-            Arrays.parallelSort(a, m + 1, m);
-
-            failed("ParallelSort does not throw IllegalArgumentException " +
-                " as expected: fromIndex = " + (m + 1) +
-                " toIndex = " + m);
-        }
-        catch (IllegalArgumentException iae) {
-            try {
-                Arrays.parallelSort(a, -m, a.length);
-
-                failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
-                    " as expected: fromIndex = " + (-m));
-            }
-            catch (ArrayIndexOutOfBoundsException aoe) {
-                try {
-                    Arrays.parallelSort(a, 0, a.length + m);
-
-                    failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
-                        " as expected: toIndex = " + (a.length + m));
-                }
-                catch (ArrayIndexOutOfBoundsException aie) {
-                    return;
-                }
-            }
-        }
-    }
-
-    private static void checkRange(char[] a, int m) {
-        try {
-            Arrays.parallelSort(a, m + 1, m);
-
-            failed("ParallelSort does not throw IllegalArgumentException " +
-                " as expected: fromIndex = " + (m + 1) +
-                " toIndex = " + m);
-        }
-        catch (IllegalArgumentException iae) {
-            try {
-                Arrays.parallelSort(a, -m, a.length);
-
-                failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
-                    " as expected: fromIndex = " + (-m));
-            }
-            catch (ArrayIndexOutOfBoundsException aoe) {
-                try {
-                    Arrays.parallelSort(a, 0, a.length + m);
-
-                    failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
-                        " as expected: toIndex = " + (a.length + m));
-                }
-                catch (ArrayIndexOutOfBoundsException aie) {
-                    return;
-                }
-            }
-        }
-    }
-
-    private static void checkRange(float[] a, int m) {
-        try {
-            Arrays.parallelSort(a, m + 1, m);
-
-            failed("ParallelSort does not throw IllegalArgumentException " +
-                " as expected: fromIndex = " + (m + 1) +
-                " toIndex = " + m);
-        }
-        catch (IllegalArgumentException iae) {
-            try {
-                Arrays.parallelSort(a, -m, a.length);
-
-                failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
-                    " as expected: fromIndex = " + (-m));
-            }
-            catch (ArrayIndexOutOfBoundsException aoe) {
-                try {
-                    Arrays.parallelSort(a, 0, a.length + m);
-
-                    failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
-                        " as expected: toIndex = " + (a.length + m));
-                }
-                catch (ArrayIndexOutOfBoundsException aie) {
-                    return;
-                }
-            }
-        }
-    }
-
-    private static void checkRange(double[] a, int m) {
-        try {
-            Arrays.parallelSort(a, m + 1, m);
-
-            failed("ParallelSort does not throw IllegalArgumentException " +
-                " as expected: fromIndex = " + (m + 1) +
-                " toIndex = " + m);
-        }
-        catch (IllegalArgumentException iae) {
-            try {
-                Arrays.parallelSort(a, -m, a.length);
-
-                failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
-                    " as expected: fromIndex = " + (-m));
-            }
-            catch (ArrayIndexOutOfBoundsException aoe) {
-                try {
-                    Arrays.parallelSort(a, 0, a.length + m);
-
-                    failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
-                        " as expected: toIndex = " + (a.length + m));
-                }
-                catch (ArrayIndexOutOfBoundsException aie) {
-                    return;
-                }
-            }
-        }
-    }
-
-    private static void outArray(Object[] a) {
-        for (int i = 0; i < a.length; i++) {
-            out.print(a[i] + " ");
-        }
-        out.println();
-    }
-
-    private static void outArray(int[] a) {
-        for (int i = 0; i < a.length; i++) {
-            out.print(a[i] + " ");
-        }
-        out.println();
-    }
-
-    private static void outArray(float[] a) {
-        for (int i = 0; i < a.length; i++) {
-            out.print(a[i] + " ");
-        }
-        out.println();
-    }
-
-    private static void outArray(double[] a) {
-        for (int i = 0; i < a.length; i++) {
-            out.print(a[i] + " ");
-        }
-        out.println();
-    }
-
-    private static class MyRandom extends Random {
-        MyRandom(long seed) {
-            super(seed);
-            mySeed = seed;
-        }
-
-        long getSeed() {
-            return mySeed;
-        }
-
-        private long mySeed;
-    }
-
-    private static String ourDescription;
-}
--- a/test/jdk/java/util/Arrays/Sorting.java	Tue Nov 12 21:00:08 2019 +0000
+++ b/test/jdk/java/util/Arrays/Sorting.java	Tue Nov 12 13:49:40 2019 -0800
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2009, 2011, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2009, 2019, Oracle and/or its affiliates. All rights reserved.
  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  *
  * This code is free software; you can redistribute it and/or modify it
@@ -23,277 +23,329 @@
 
 /*
  * @test
- * @bug 6880672 6896573 6899694 6976036 7013585 7018258
- * @summary Exercise Arrays.sort
+ * @compile/module=java.base java/util/SortingHelper.java
+ * @bug 6880672 6896573 6899694 6976036 7013585 7018258 8003981 8226297
  * @build Sorting
  * @run main Sorting -shortrun
+ * @summary Exercise Arrays.sort, Arrays.parallelSort
  *
  * @author Vladimir Yaroslavskiy
  * @author Jon Bentley
  * @author Josh Bloch
  */
 
-import java.util.Arrays;
+import java.io.PrintStream;
+import java.util.Comparator;
 import java.util.Random;
-import java.io.PrintStream;
+import java.util.SortingHelper;
 
 public class Sorting {
+
     private static final PrintStream out = System.out;
     private static final PrintStream err = System.err;
 
     // Array lengths used in a long run (default)
     private static final int[] LONG_RUN_LENGTHS = {
-        1, 2, 3, 5, 8, 13, 21, 34, 55, 100, 1000, 10000, 100000, 1000000 };
+        1, 3, 8, 21, 55, 100, 1_000, 10_000, 100_000 };
 
     // Array lengths used in a short run
     private static final int[] SHORT_RUN_LENGTHS = {
-        1, 2, 3, 21, 55, 1000, 10000 };
+        1, 8, 55, 100, 10_000 };
 
     // Random initial values used in a long run (default)
-    private static final long[] LONG_RUN_RANDOMS = { 666, 0xC0FFEE, 999 };
+    private static final TestRandom[] LONG_RUN_RANDOMS = {
+        TestRandom.BABA, TestRandom.DEDA, TestRandom.C0FFEE };
 
     // Random initial values used in a short run
-    private static final long[] SHORT_RUN_RANDOMS = { 666 };
+    private static final TestRandom[] SHORT_RUN_RANDOMS = {
+        TestRandom.C0FFEE };
+
+    // Constants used in subarray sorting
+    private static final int A380 = 0xA380;
+    private static final int B747 = 0xB747;
+
+    private final SortingHelper sortingHelper;
+    private final TestRandom[] randoms;
+    private final int[] lengths;
+    private Object[] gold;
+    private Object[] test;
 
     public static void main(String[] args) {
+        long start = System.currentTimeMillis();
         boolean shortRun = args.length > 0 && args[0].equals("-shortrun");
-        long start = System.currentTimeMillis();
+
+        int[] lengths = shortRun ? SHORT_RUN_LENGTHS : LONG_RUN_LENGTHS;
+        TestRandom[] randoms = shortRun ? SHORT_RUN_RANDOMS : LONG_RUN_RANDOMS;
 
-        if (shortRun) {
-            testAndCheck(SHORT_RUN_LENGTHS, SHORT_RUN_RANDOMS);
-        } else {
-            testAndCheck(LONG_RUN_LENGTHS, LONG_RUN_RANDOMS);
-        }
+        new Sorting(SortingHelper.DUAL_PIVOT_QUICKSORT, randoms, lengths).testCore();
+        new Sorting(SortingHelper.PARALLEL_SORT, randoms, lengths).testCore();
+        new Sorting(SortingHelper.HEAP_SORT, randoms, lengths).testBasic();
+        new Sorting(SortingHelper.ARRAYS_SORT, randoms, lengths).testAll();
+        new Sorting(SortingHelper.ARRAYS_PARALLEL_SORT, randoms, lengths).testAll();
+
         long end = System.currentTimeMillis();
-
-        out.format("PASSED in %d sec.\n", Math.round((end - start) / 1E3));
+        out.format("PASSED in %d sec.\n", (end - start) / 1000);
     }
 
-    private static void testAndCheck(int[] lengths, long[] randoms) {
-        testEmptyAndNullIntArray();
-        testEmptyAndNullLongArray();
-        testEmptyAndNullShortArray();
-        testEmptyAndNullCharArray();
-        testEmptyAndNullByteArray();
-        testEmptyAndNullFloatArray();
-        testEmptyAndNullDoubleArray();
+    private Sorting(SortingHelper sortingHelper, TestRandom[] randoms, int[] lengths) {
+        this.sortingHelper = sortingHelper;
+        this.randoms = randoms;
+        this.lengths = lengths;
+    }
+
+    private void testBasic() {
+        testEmptyArray();
 
         for (int length : lengths) {
-            testMergeSort(length);
-            testAndCheckRange(length);
-            testAndCheckSubArray(length);
+            createData(length);
+            testBasic(length);
         }
-        for (long seed : randoms) {
-            for (int length : lengths) {
-                testAndCheckWithInsertionSort(length, new MyRandom(seed));
-                testAndCheckWithCheckSum(length, new MyRandom(seed));
-                testAndCheckWithScrambling(length, new MyRandom(seed));
-                testAndCheckFloat(length, new MyRandom(seed));
-                testAndCheckDouble(length, new MyRandom(seed));
-                testStable(length, new MyRandom(seed));
-            }
+    }
+
+    private void testBasic(int length) {
+        for (TestRandom random : randoms) {
+            testWithInsertionSort(length, random);
+            testWithCheckSum(length, random);
+            testWithScrambling(length, random);
         }
     }
 
-    private static void testEmptyAndNullIntArray() {
-        ourDescription = "Check empty and null array";
-        Arrays.sort(new int[] {});
-        Arrays.sort(new int[] {}, 0, 0);
+    private void testCore() {
+        for (int length : lengths) {
+            createData(length);
+            testCore(length);
+        }
+    }
+
+    private void testCore(int length) {
+        testBasic(length);
 
-        try {
-            Arrays.sort((int[]) null);
-        } catch (NullPointerException expected) {
-            try {
-                Arrays.sort((int[]) null, 0, 0);
-            } catch (NullPointerException expected2) {
-                return;
-            }
-            failed("Arrays.sort(int[],fromIndex,toIndex) shouldn't " +
-                "catch null array");
+        for (TestRandom random : randoms) {
+            testMergingSort(length, random);
+            testSubArray(length, random);
+            testNegativeZero(length, random);
+            testFloatingPointSorting(length, random);
         }
-        failed("Arrays.sort(int[]) shouldn't catch null array");
+    }
+
+    private void testAll() {
+        for (int length : lengths) {
+            createData(length);
+            testAll(length);
+        }
+    }
+
+    private void testAll(int length) {
+        testCore(length);
+
+        for (TestRandom random : randoms) {
+            testRange(length, random);
+            testStability(length, random);
+        }
     }
 
-    private static void testEmptyAndNullLongArray() {
-        ourDescription = "Check empty and null array";
-        Arrays.sort(new long[] {});
-        Arrays.sort(new long[] {}, 0, 0);
+    private void testEmptyArray() {
+        testEmptyAndNullIntArray();
+        testEmptyAndNullLongArray();
+        testEmptyAndNullByteArray();
+        testEmptyAndNullCharArray();
+        testEmptyAndNullShortArray();
+        testEmptyAndNullFloatArray();
+        testEmptyAndNullDoubleArray();
+    }
+
+    private void testStability(int length, TestRandom random) {
+        printTestName("Test stability", random, length);
+
+        Pair[] a = build(length, random);
+        sortingHelper.sort(a);
+        checkSorted(a);
+        checkStable(a);
+
+        a = build(length, random);
+        sortingHelper.sort(a, pairComparator);
+        checkSorted(a);
+        checkStable(a);
+
+        out.println();
+    }
+
+    private void testEmptyAndNullIntArray() {
+        sortingHelper.sort(new int[] {});
+        sortingHelper.sort(new int[] {}, 0, 0);
 
         try {
-            Arrays.sort((long[]) null);
+            sortingHelper.sort(null);
         } catch (NullPointerException expected) {
             try {
-                Arrays.sort((long[]) null, 0, 0);
-            } catch (NullPointerException expected2) {
-                return;
-            }
-            failed("Arrays.sort(long[],fromIndex,toIndex) shouldn't " +
-                "catch null array");
-        }
-        failed("Arrays.sort(long[]) shouldn't catch null array");
-    }
-
-    private static void testEmptyAndNullShortArray() {
-        ourDescription = "Check empty and null array";
-        Arrays.sort(new short[] {});
-        Arrays.sort(new short[] {}, 0, 0);
-
-        try {
-            Arrays.sort((short[]) null);
-        } catch (NullPointerException expected) {
-            try {
-                Arrays.sort((short[]) null, 0, 0);
+                sortingHelper.sort(null, 0, 0);
             } catch (NullPointerException expected2) {
                 return;
             }
-            failed("Arrays.sort(short[],fromIndex,toIndex) shouldn't " +
+            fail(sortingHelper + "(int[],fromIndex,toIndex) shouldn't " +
                 "catch null array");
         }
-        failed("Arrays.sort(short[]) shouldn't catch null array");
+        fail(sortingHelper + "(int[]) shouldn't catch null array");
     }
 
-    private static void testEmptyAndNullCharArray() {
-        ourDescription = "Check empty and null array";
-        Arrays.sort(new char[] {});
-        Arrays.sort(new char[] {}, 0, 0);
+    private void testEmptyAndNullLongArray() {
+        sortingHelper.sort(new long[] {});
+        sortingHelper.sort(new long[] {}, 0, 0);
 
         try {
-            Arrays.sort((char[]) null);
+            sortingHelper.sort(null);
         } catch (NullPointerException expected) {
             try {
-                Arrays.sort((char[]) null, 0, 0);
+                sortingHelper.sort(null, 0, 0);
             } catch (NullPointerException expected2) {
                 return;
             }
-            failed("Arrays.sort(char[],fromIndex,toIndex) shouldn't " +
+            fail(sortingHelper + "(long[],fromIndex,toIndex) shouldn't " +
                 "catch null array");
         }
-        failed("Arrays.sort(char[]) shouldn't catch null array");
+        fail(sortingHelper + "(long[]) shouldn't catch null array");
     }
 
-    private static void testEmptyAndNullByteArray() {
-        ourDescription = "Check empty and null array";
-        Arrays.sort(new byte[] {});
-        Arrays.sort(new byte[] {}, 0, 0);
+    private void testEmptyAndNullByteArray() {
+        sortingHelper.sort(new byte[] {});
+        sortingHelper.sort(new byte[] {}, 0, 0);
 
         try {
-            Arrays.sort((byte[]) null);
+            sortingHelper.sort(null);
         } catch (NullPointerException expected) {
             try {
-                Arrays.sort((byte[]) null, 0, 0);
+                sortingHelper.sort(null, 0, 0);
             } catch (NullPointerException expected2) {
                 return;
             }
-            failed("Arrays.sort(byte[],fromIndex,toIndex) shouldn't " +
+            fail(sortingHelper + "(byte[],fromIndex,toIndex) shouldn't " +
                 "catch null array");
         }
-        failed("Arrays.sort(byte[]) shouldn't catch null array");
+        fail(sortingHelper + "(byte[]) shouldn't catch null array");
     }
 
-    private static void testEmptyAndNullFloatArray() {
-        ourDescription = "Check empty and null array";
-        Arrays.sort(new float[] {});
-        Arrays.sort(new float[] {}, 0, 0);
+    private void testEmptyAndNullCharArray() {
+        sortingHelper.sort(new char[] {});
+        sortingHelper.sort(new char[] {}, 0, 0);
 
         try {
-            Arrays.sort((float[]) null);
+            sortingHelper.sort(null);
         } catch (NullPointerException expected) {
             try {
-                Arrays.sort((float[]) null, 0, 0);
+                sortingHelper.sort(null, 0, 0);
             } catch (NullPointerException expected2) {
                 return;
             }
-            failed("Arrays.sort(float[],fromIndex,toIndex) shouldn't " +
+            fail(sortingHelper + "(char[],fromIndex,toIndex) shouldn't " +
                 "catch null array");
         }
-        failed("Arrays.sort(float[]) shouldn't catch null array");
+        fail(sortingHelper + "(char[]) shouldn't catch null array");
     }
 
-    private static void testEmptyAndNullDoubleArray() {
-        ourDescription = "Check empty and null array";
-        Arrays.sort(new double[] {});
-        Arrays.sort(new double[] {}, 0, 0);
+    private void testEmptyAndNullShortArray() {
+        sortingHelper.sort(new short[] {});
+        sortingHelper.sort(new short[] {}, 0, 0);
 
         try {
-            Arrays.sort((double[]) null);
+            sortingHelper.sort(null);
         } catch (NullPointerException expected) {
             try {
-                Arrays.sort((double[]) null, 0, 0);
+                sortingHelper.sort(null, 0, 0);
+            } catch (NullPointerException expected2) {
+                return;
+            }
+            fail(sortingHelper + "(short[],fromIndex,toIndex) shouldn't " +
+                "catch null array");
+        }
+        fail(sortingHelper + "(short[]) shouldn't catch null array");
+    }
+
+    private void testEmptyAndNullFloatArray() {
+        sortingHelper.sort(new float[] {});
+        sortingHelper.sort(new float[] {}, 0, 0);
+
+        try {
+            sortingHelper.sort(null);
+        } catch (NullPointerException expected) {
+            try {
+                sortingHelper.sort(null, 0, 0);
             } catch (NullPointerException expected2) {
                 return;
             }
-            failed("Arrays.sort(double[],fromIndex,toIndex) shouldn't " +
+            fail(sortingHelper + "(float[],fromIndex,toIndex) shouldn't " +
                 "catch null array");
         }
-        failed("Arrays.sort(double[]) shouldn't catch null array");
+        fail(sortingHelper + "(float[]) shouldn't catch null array");
     }
 
-    private static void testAndCheckSubArray(int length) {
-        ourDescription = "Check sorting of subarray";
-        int[] golden = new int[length];
-        boolean newLine = false;
+    private void testEmptyAndNullDoubleArray() {
+        sortingHelper.sort(new double[] {});
+        sortingHelper.sort(new double[] {}, 0, 0);
 
-        for (int m = 1; m < length / 2; m *= 2) {
-            newLine = true;
+        try {
+            sortingHelper.sort(null);
+        } catch (NullPointerException expected) {
+            try {
+                sortingHelper.sort(null, 0, 0);
+            } catch (NullPointerException expected2) {
+                return;
+            }
+            fail(sortingHelper + "(double[],fromIndex,toIndex) shouldn't " +
+                "catch null array");
+        }
+        fail(sortingHelper + "(double[]) shouldn't catch null array");
+    }
+
+    private void testSubArray(int length, TestRandom random) {
+        if (length < 4) {
+            return;
+        }
+        for (int m = 1; m < length / 2; m <<= 1) {
             int fromIndex = m;
             int toIndex = length - m;
 
-            prepareSubArray(golden, fromIndex, toIndex, m);
-            int[] test = golden.clone();
+            prepareSubArray((int[]) gold[0], fromIndex, toIndex);
+            convertData(length);
 
-            for (TypeConverter converter : TypeConverter.values()) {
-                out.println("Test 'subarray': " + converter +
-                   " length = " + length + ", m = " + m);
-                Object convertedGolden = converter.convert(golden);
-                Object convertedTest = converter.convert(test);
-                sortSubArray(convertedTest, fromIndex, toIndex);
-                checkSubArray(convertedTest, fromIndex, toIndex, m);
-            }
-        }
-        if (newLine) {
-            out.println();
-        }
-    }
-
-    private static void testAndCheckRange(int length) {
-        ourDescription = "Check range check";
-        int[] golden = new int[length];
-
-        for (int m = 1; m < 2 * length; m *= 2) {
-            for (int i = 1; i <= length; i++) {
-                golden[i - 1] = i % m + m % i;
-            }
-            for (TypeConverter converter : TypeConverter.values()) {
-                out.println("Test 'range': " + converter +
-                   ", length = " + length + ", m = " + m);
-                Object convertedGolden = converter.convert(golden);
-                checkRange(convertedGolden, m);
+            for (int i = 0; i < test.length; i++) {
+                printTestName("Test subarray", random, length,
+                    ", m = " + m + ", " + getType(i));
+                sortingHelper.sort(test[i], fromIndex, toIndex);
+                checkSubArray(test[i], fromIndex, toIndex);
             }
         }
         out.println();
     }
 
-    private static void testStable(int length, MyRandom random) {
-        ourDescription = "Check if sorting is stable";
-        Pair[] a = build(length, random);
+    private void testRange(int length, TestRandom random) {
+        if (length < 2) {
+            return;
+        }
+        for (int m = 1; m < length; m <<= 1) {
+            for (int i = 1; i <= length; i++) {
+                ((int[]) gold[0]) [i - 1] = i % m + m % i;
+            }
+            convertData(length);
 
-        out.println("Test 'stable': " + "random = " + random.getSeed() +
-            ", length = " + length);
-        Arrays.sort(a);
-        checkSorted(a);
-        checkStable(a);
+            for (int i = 0; i < test.length; i++) {
+                printTestName("Test range check", random, length,
+                    ", m = " + m + ", " + getType(i));
+                checkRange(test[i], m);
+            }
+        }
         out.println();
     }
 
-    private static void checkSorted(Pair[] a) {
+    private void checkSorted(Pair[] a) {
         for (int i = 0; i < a.length - 1; i++) {
             if (a[i].getKey() > a[i + 1].getKey()) {
-                failedSort(i, "" + a[i].getKey(), "" + a[i + 1].getKey());
+                fail("Array is not sorted at " + i + "-th position: " +
+                    a[i].getKey() + " and " + a[i + 1].getKey());
             }
         }
     }
 
-    private static void checkStable(Pair[] a) {
+    private void checkStable(Pair[] a) {
         for (int i = 0; i < a.length / 4; ) {
             int key1 = a[i].getKey();
             int value1 = a[i++].getValue();
@@ -305,18 +357,18 @@
             int value4 = a[i++].getValue();
 
             if (!(key1 == key2 && key2 == key3 && key3 == key4)) {
-                failed("On position " + i + " keys are different " +
-                    key1 + ", " + key2 + ", " + key3 + ", " + key4);
+                fail("Keys are different " + key1 + ", " + key2 + ", " +
+                    key3 + ", " + key4 + " at position " + i);
             }
             if (!(value1 < value2 && value2 < value3 && value3 < value4)) {
-                failed("Sorting is not stable at position " + i +
-                    ". Second values have been changed: " +  value1 + ", " +
+                fail("Sorting is not stable at position " + i +
+                    ". Second values have been changed: " + value1 + ", " +
                     value2 + ", " + value3 + ", " + value4);
             }
         }
     }
 
-    private static Pair[] build(int length, Random random) {
+    private Pair[] build(int length, Random random) {
         Pair[] a = new Pair[length * 4];
 
         for (int i = 0; i < a.length; ) {
@@ -329,222 +381,151 @@
         return a;
     }
 
-    private static final class Pair implements Comparable<Pair> {
-        Pair(int key, int value) {
-            myKey = key;
-            myValue = value;
-        }
-
-        int getKey() {
-            return myKey;
-        }
-
-        int getValue() {
-            return myValue;
-        }
-
-        public int compareTo(Pair pair) {
-            if (myKey < pair.myKey) {
-                return -1;
-            }
-            if (myKey > pair.myKey) {
-                return 1;
-            }
-            return 0;
-        }
-
-        @Override
-        public String toString() {
-            return "(" + myKey + ", " + myValue + ")";
-        }
-
-        private int myKey;
-        private int myValue;
-    }
-
-
-    private static void testAndCheckWithInsertionSort(int length, MyRandom random) {
+    private void testWithInsertionSort(int length, TestRandom random) {
         if (length > 1000) {
             return;
         }
-        ourDescription = "Check sorting with insertion sort";
-        int[] golden = new int[length];
-
-        for (int m = 1; m < 2 * length; m *= 2) {
+        for (int m = 1; m <= length; m <<= 1) {
             for (UnsortedBuilder builder : UnsortedBuilder.values()) {
-                builder.build(golden, m, random);
-                int[] test = golden.clone();
+                builder.build((int[]) gold[0], m, random);
+                convertData(length);
 
-                for (TypeConverter converter : TypeConverter.values()) {
-                    out.println("Test 'insertion sort': " + converter +
-                        " " + builder + "random = " + random.getSeed() +
-                        ", length = " + length + ", m = " + m);
-                    Object convertedGolden = converter.convert(golden);
-                    Object convertedTest1 = converter.convert(test);
-                    Object convertedTest2 = converter.convert(test);
-                    sort(convertedTest1);
-                    sortByInsertionSort(convertedTest2);
-                    compare(convertedTest1, convertedTest2);
+                for (int i = 0; i < test.length; i++) {
+                    printTestName("Test with insertion sort", random, length,
+                        ", m = " + m + ", " + getType(i) + " " + builder);
+                    sortingHelper.sort(test[i]);
+                    sortByInsertionSort(gold[i]);
+                    compare(test[i], gold[i]);
                 }
             }
         }
         out.println();
     }
 
-    private static void testMergeSort(int length) {
-        if (length < 1000) {
+    private void testMergingSort(int length, TestRandom random) {
+        if (length < (4 << 10)) { // DualPivotQuicksort.MIN_TRY_MERGE_SIZE
             return;
         }
-        ourDescription = "Check merge sorting";
-        int[] golden = new int[length];
-        int period = 67; // java.util.DualPivotQuicksort.MAX_RUN_COUNT
+        final int PERIOD = 50;
+
+        for (int m = PERIOD - 2; m <= PERIOD + 2; m++) {
+            for (MergingBuilder builder : MergingBuilder.values()) {
+                builder.build((int[]) gold[0], m);
+                convertData(length);
 
-        for (int m = period - 2; m <= period + 2; m++) {
-            for (MergeBuilder builder : MergeBuilder.values()) {
-                builder.build(golden, m);
-                int[] test = golden.clone();
+                for (int i = 0; i < test.length; i++) {
+                    printTestName("Test merging sort", random, length,
+                        ", m = " + m + ", " +  getType(i) + " " + builder);
+                    sortingHelper.sort(test[i]);
+                    checkSorted(test[i]);
+                }
+            }
+        }
+        out.println();
+    }
 
-                for (TypeConverter converter : TypeConverter.values()) {
-                    out.println("Test 'merge sort': " + converter + " " +
-                        builder + "length = " + length + ", m = " + m);
-                    Object convertedGolden = converter.convert(golden);
-                    sort(convertedGolden);
-                    checkSorted(convertedGolden);
+    private void testWithCheckSum(int length, TestRandom random) {
+        for (int m = 1; m <= length; m <<= 1) {
+            for (UnsortedBuilder builder : UnsortedBuilder.values()) {
+                builder.build((int[]) gold[0], m, random);
+                convertData(length);
+
+                for (int i = 0; i < test.length; i++) {
+                    printTestName("Test with check sum", random, length,
+                        ", m = " + m + ", " + getType(i) + " " + builder);
+                    sortingHelper.sort(test[i]);
+                    checkWithCheckSum(test[i], gold[i]);
                 }
             }
         }
         out.println();
     }
 
-    private static void testAndCheckWithCheckSum(int length, MyRandom random) {
-        ourDescription = "Check sorting with check sum";
-        int[] golden = new int[length];
-
-        for (int m = 1; m < 2 * length; m *= 2) {
-            for (UnsortedBuilder builder : UnsortedBuilder.values()) {
-                builder.build(golden, m, random);
-                int[] test = golden.clone();
+    private void testWithScrambling(int length, TestRandom random) {
+        for (int m = 1; m <= length; m <<= 1) {
+            for (SortedBuilder builder : SortedBuilder.values()) {
+                builder.build((int[]) gold[0], m);
+                convertData(length);
 
-                for (TypeConverter converter : TypeConverter.values()) {
-                    out.println("Test 'check sum': " + converter +
-                        " " + builder + "random = " + random.getSeed() +
-                        ", length = " + length + ", m = " + m);
-                    Object convertedGolden = converter.convert(golden);
-                    Object convertedTest = converter.convert(test);
-                    sort(convertedTest);
-                    checkWithCheckSum(convertedTest, convertedGolden);
-                }
-            }
-        }
-        out.println();
-    }
-
-    private static void testAndCheckWithScrambling(int length, MyRandom random) {
-        ourDescription = "Check sorting with scrambling";
-        int[] golden = new int[length];
-
-        for (int m = 1; m <= 7; m++) {
-            if (m > length) {
-                break;
-            }
-            for (SortedBuilder builder : SortedBuilder.values()) {
-                builder.build(golden, m);
-                int[] test = golden.clone();
-                scramble(test, random);
-
-                for (TypeConverter converter : TypeConverter.values()) {
-                    out.println("Test 'scrambling': " + converter +
-                       " " + builder + "random = " + random.getSeed() +
-                       ", length = " + length + ", m = " + m);
-                    Object convertedGolden = converter.convert(golden);
-                    Object convertedTest = converter.convert(test);
-                    sort(convertedTest);
-                    compare(convertedTest, convertedGolden);
+                for (int i = 0; i < test.length; i++) {
+                    printTestName("Test with scrambling", random, length,
+                        ", m = " + m + ", " + getType(i) + " " + builder);
+                    scramble(test[i], random);
+                    sortingHelper.sort(test[i]);
+                    compare(test[i], gold[i]);
                 }
             }
         }
         out.println();
     }
 
-    private static void testAndCheckFloat(int length, MyRandom random) {
-        ourDescription = "Check float sorting";
-        float[] golden = new float[length];
-        final int MAX = 10;
-        boolean newLine = false;
+    private void testNegativeZero(int length, TestRandom random) {
+        for (int i = 5; i < test.length; i++) {
+            printTestName("Test negative zero -0.0", random, length, " " + getType(i));
+
+            NegativeZeroBuilder builder = NegativeZeroBuilder.values() [i - 5];
+            builder.build(test[i], random);
+
+            sortingHelper.sort(test[i]);
+            checkNegativeZero(test[i]);
+        }
+        out.println();
+    }
 
-        for (int a = 0; a <= MAX; a++) {
-            for (int g = 0; g <= MAX; g++) {
-                for (int z = 0; z <= MAX; z++) {
-                    for (int n = 0; n <= MAX; n++) {
-                        for (int p = 0; p <= MAX; p++) {
-                            if (a + g + z + n + p > length) {
+    private void testFloatingPointSorting(int length, TestRandom random) {
+        if (length < 2) {
+            return;
+        }
+        final int MAX = 13;
+
+        for (int a = 0; a < MAX; a++) {
+            for (int g = 0; g < MAX; g++) {
+                for (int z = 0; z < MAX; z++) {
+                    for (int n = 0; n < MAX; n++) {
+                        for (int p = 0; p < MAX; p++) {
+                            if (a + g + z + n + p != length) {
                                 continue;
                             }
-                            if (a + g + z + n + p < length) {
-                                continue;
+                            for (int i = 5; i < test.length; i++) {
+                                printTestName("Test float-pointing sorting", random, length,
+                                    ", a = " + a + ", g = " + g + ", z = " + z +
+                                    ", n = " + n + ", p = " + p + ", " + getType(i));
+                                FloatingPointBuilder builder = FloatingPointBuilder.values()[i - 5];
+                                builder.build(gold[i], a, g, z, n, p, random);
+                                copy(test[i], gold[i]);
+                                scramble(test[i], random);
+                                sortingHelper.sort(test[i]);
+                                compare(test[i], gold[i], a, n, g);
                             }
-                            for (FloatBuilder builder : FloatBuilder.values()) {
-                                out.println("Test 'float': random = " + random.getSeed() +
-                                   ", length = " + length + ", a = " + a + ", g = " +
-                                   g + ", z = " + z + ", n = " + n + ", p = " + p);
-                                builder.build(golden, a, g, z, n, p, random);
-                                float[] test = golden.clone();
-                                scramble(test, random);
-                                sort(test);
-                                compare(test, golden, a, n, g);
-                            }
-                            newLine = true;
                         }
                     }
                 }
             }
         }
-        if (newLine) {
-            out.println();
+
+        for (int m = 13; m > 4; m--) {
+            int t = length / m;
+            int g = t, z = t, n = t, p = t;
+            int a = length - g - z - n - p;
+
+            for (int i = 5; i < test.length; i++) {
+                printTestName("Test float-pointing sorting", random, length,
+                    ", a = " + a + ", g = " + g + ", z = " + z +
+                    ", n = " + n + ", p = " + p + ", " + getType(i));
+                FloatingPointBuilder builder = FloatingPointBuilder.values() [i - 5];
+                builder.build(gold[i], a, g, z, n, p, random);
+                copy(test[i], gold[i]);
+                scramble(test[i], random);
+                sortingHelper.sort(test[i]);
+                compare(test[i], gold[i], a, n, g);
+            }
         }
+        out.println();
     }
 
-    private static void testAndCheckDouble(int length, MyRandom random) {
-        ourDescription = "Check double sorting";
-        double[] golden = new double[length];
-        final int MAX = 10;
-        boolean newLine = false;
-
-        for (int a = 0; a <= MAX; a++) {
-            for (int g = 0; g <= MAX; g++) {
-                for (int z = 0; z <= MAX; z++) {
-                    for (int n = 0; n <= MAX; n++) {
-                        for (int p = 0; p <= MAX; p++) {
-                            if (a + g + z + n + p > length) {
-                                continue;
-                            }
-                            if (a + g + z + n + p < length) {
-                                continue;
-                            }
-                            for (DoubleBuilder builder : DoubleBuilder.values()) {
-                                out.println("Test 'double': random = " + random.getSeed() +
-                                   ", length = " + length + ", a = " + a + ", g = " +
-                                   g + ", z = " + z + ", n = " + n + ", p = " + p);
-                                builder.build(golden, a, g, z, n, p, random);
-                                double[] test = golden.clone();
-                                scramble(test, random);
-                                sort(test);
-                                compare(test, golden, a, n, g);
-                            }
-                            newLine = true;
-                        }
-                    }
-                }
-            }
-        }
-        if (newLine) {
-            out.println();
-        }
-    }
-
-    private static void prepareSubArray(int[] a, int fromIndex, int toIndex, int m) {
+    private void prepareSubArray(int[] a, int fromIndex, int toIndex) {
         for (int i = 0; i < fromIndex; i++) {
-            a[i] = 0xDEDA;
+            a[i] = A380;
         }
         int middle = (fromIndex + toIndex) >>> 1;
         int k = 0;
@@ -552,338 +533,1112 @@
         for (int i = fromIndex; i < middle; i++) {
             a[i] = k++;
         }
+
         for (int i = middle; i < toIndex; i++) {
             a[i] = k--;
         }
+
         for (int i = toIndex; i < a.length; i++) {
-            a[i] = 0xBABA;
+            a[i] = B747;
         }
     }
 
-    private static void scramble(int[] a, Random random) {
+    private void scramble(Object a, Random random) {
+        if (a instanceof int[]) {
+            scramble((int[]) a, random);
+        } else if (a instanceof long[]) {
+            scramble((long[]) a, random);
+        } else if (a instanceof byte[]) {
+            scramble((byte[]) a, random);
+        } else if (a instanceof char[]) {
+            scramble((char[]) a, random);
+        } else if (a instanceof short[]) {
+            scramble((short[]) a, random);
+        } else if (a instanceof float[]) {
+            scramble((float[]) a, random);
+        } else if (a instanceof double[]) {
+            scramble((double[]) a, random);
+        } else {
+            fail("Unknown type of array: " + a.getClass().getName());
+        }
+    }
+
+    private void scramble(int[] a, Random random) {
         for (int i = 0; i < a.length * 7; i++) {
             swap(a, random.nextInt(a.length), random.nextInt(a.length));
         }
     }
 
-    private static void scramble(float[] a, Random random) {
+    private void scramble(long[] a, Random random) {
+        for (int i = 0; i < a.length * 7; i++) {
+            swap(a, random.nextInt(a.length), random.nextInt(a.length));
+        }
+    }
+
+    private void scramble(byte[] a, Random random) {
         for (int i = 0; i < a.length * 7; i++) {
             swap(a, random.nextInt(a.length), random.nextInt(a.length));
         }
     }
 
-    private static void scramble(double[] a, Random random) {
+    private void scramble(char[] a, Random random) {
+        for (int i = 0; i < a.length * 7; i++) {
+            swap(a, random.nextInt(a.length), random.nextInt(a.length));
+        }
+    }
+
+    private void scramble(short[] a, Random random) {
+        for (int i = 0; i < a.length * 7; i++) {
+            swap(a, random.nextInt(a.length), random.nextInt(a.length));
+        }
+    }
+
+    private void scramble(float[] a, Random random) {
+        for (int i = 0; i < a.length * 7; i++) {
+            swap(a, random.nextInt(a.length), random.nextInt(a.length));
+        }
+    }
+
+    private void scramble(double[] a, Random random) {
         for (int i = 0; i < a.length * 7; i++) {
             swap(a, random.nextInt(a.length), random.nextInt(a.length));
         }
     }
 
-    private static void swap(int[] a, int i, int j) {
-        int t = a[i];
-        a[i] = a[j];
-        a[j] = t;
+    private void swap(int[] a, int i, int j) {
+        int t = a[i]; a[i] = a[j]; a[j] = t;
+    }
+
+    private void swap(long[] a, int i, int j) {
+        long t = a[i]; a[i] = a[j]; a[j] = t;
     }
 
-    private static void swap(float[] a, int i, int j) {
-        float t = a[i];
-        a[i] = a[j];
-        a[j] = t;
+    private void swap(byte[] a, int i, int j) {
+        byte t = a[i]; a[i] = a[j]; a[j] = t;
     }
 
-    private static void swap(double[] a, int i, int j) {
-        double t = a[i];
-        a[i] = a[j];
-        a[j] = t;
+    private void swap(char[] a, int i, int j) {
+        char t = a[i]; a[i] = a[j]; a[j] = t;
+    }
+
+    private void swap(short[] a, int i, int j) {
+        short t = a[i]; a[i] = a[j]; a[j] = t;
     }
 
-    private static enum TypeConverter {
-        INT {
-            Object convert(int[] a) {
-                return a.clone();
-            }
-        },
-        LONG {
-            Object convert(int[] a) {
-                long[] b = new long[a.length];
-
-                for (int i = 0; i < a.length; i++) {
-                    b[i] = (long) a[i];
-                }
-                return b;
-            }
-        },
-        BYTE {
-            Object convert(int[] a) {
-                byte[] b = new byte[a.length];
+    private void swap(float[] a, int i, int j) {
+        float t = a[i]; a[i] = a[j]; a[j] = t;
+    }
 
-                for (int i = 0; i < a.length; i++) {
-                    b[i] = (byte) a[i];
-                }
-                return b;
-            }
-        },
-        SHORT {
-            Object convert(int[] a) {
-                short[] b = new short[a.length];
+    private void swap(double[] a, int i, int j) {
+        double t = a[i]; a[i] = a[j]; a[j] = t;
+    }
 
-                for (int i = 0; i < a.length; i++) {
-                    b[i] = (short) a[i];
-                }
-                return b;
-            }
-        },
-        CHAR {
-            Object convert(int[] a) {
-                char[] b = new char[a.length];
+    private void checkWithCheckSum(Object test, Object gold) {
+        checkSorted(test);
+        checkCheckSum(test, gold);
+    }
 
-                for (int i = 0; i < a.length; i++) {
-                    b[i] = (char) a[i];
-                }
-                return b;
-            }
-        },
-        FLOAT {
-            Object convert(int[] a) {
-                float[] b = new float[a.length];
-
-                for (int i = 0; i < a.length; i++) {
-                    b[i] = (float) a[i];
-                }
-                return b;
-            }
-        },
-        DOUBLE {
-            Object convert(int[] a) {
-                double[] b = new double[a.length];
+    private void fail(String message) {
+        err.format("\n*** TEST FAILED ***\n\n%s\n\n", message);
+        throw new RuntimeException("Test failed");
+    }
 
-                for (int i = 0; i < a.length; i++) {
-                    b[i] = (double) a[i];
-                }
-                return b;
-            }
-        },
-        INTEGER {
-            Object convert(int[] a) {
-                Integer[] b = new Integer[a.length];
-
-                for (int i = 0; i < a.length; i++) {
-                    b[i] = new Integer(a[i]);
-                }
-                return b;
-            }
-        };
-
-        abstract Object convert(int[] a);
-
-        @Override public String toString() {
-            String name = name();
-
-            for (int i = name.length(); i < 9; i++) {
-                name += " ";
-            }
-            return name;
+    private void checkNegativeZero(Object a) {
+        if (a instanceof float[]) {
+            checkNegativeZero((float[]) a);
+        } else if (a instanceof double[]) {
+            checkNegativeZero((double[]) a);
+        } else {
+            fail("Unknown type of array: " + a.getClass().getName());
         }
     }
 
-    private static enum FloatBuilder {
-        SIMPLE {
-            void build(float[] x, int a, int g, int z, int n, int p, Random random) {
-                int fromIndex = 0;
-                float negativeValue = -random.nextFloat();
-                float positiveValue =  random.nextFloat();
-
-                writeValue(x, negativeValue, fromIndex, n);
-                fromIndex += n;
-
-                writeValue(x, -0.0f, fromIndex, g);
-                fromIndex += g;
-
-                writeValue(x, 0.0f, fromIndex, z);
-                fromIndex += z;
-
-                writeValue(x, positiveValue, fromIndex, p);
-                fromIndex += p;
-
-                writeValue(x, Float.NaN, fromIndex, a);
+    private void checkNegativeZero(float[] a) {
+        for (int i = 0; i < a.length - 1; i++) {
+            if (Float.floatToRawIntBits(a[i]) == 0 && Float.floatToRawIntBits(a[i + 1]) < 0) {
+                fail(a[i] + " before " + a[i + 1] + " at position " + i);
             }
-        };
-
-        abstract void build(float[] x, int a, int g, int z, int n, int p, Random random);
-    }
-
-    private static enum DoubleBuilder {
-        SIMPLE {
-            void build(double[] x, int a, int g, int z, int n, int p, Random random) {
-                int fromIndex = 0;
-                double negativeValue = -random.nextFloat();
-                double positiveValue =  random.nextFloat();
-
-                writeValue(x, negativeValue, fromIndex, n);
-                fromIndex += n;
-
-                writeValue(x, -0.0d, fromIndex, g);
-                fromIndex += g;
-
-                writeValue(x, 0.0d, fromIndex, z);
-                fromIndex += z;
-
-                writeValue(x, positiveValue, fromIndex, p);
-                fromIndex += p;
-
-                writeValue(x, Double.NaN, fromIndex, a);
-            }
-        };
-
-        abstract void build(double[] x, int a, int g, int z, int n, int p, Random random);
-    }
-
-    private static void writeValue(float[] a, float value, int fromIndex, int count) {
-        for (int i = fromIndex; i < fromIndex + count; i++) {
-            a[i] = value;
         }
     }
 
-    private static void compare(float[] a, float[] b, int numNaN, int numNeg, int numNegZero) {
+    private void checkNegativeZero(double[] a) {
+        for (int i = 0; i < a.length - 1; i++) {
+            if (Double.doubleToRawLongBits(a[i]) == 0 && Double.doubleToRawLongBits(a[i + 1]) < 0) {
+                fail(a[i] + " before " + a[i + 1] + " at position " + i);
+            }
+        }
+    }
+
+    private void compare(Object a, Object b, int numNaN, int numNeg, int numNegZero) {
+        if (a instanceof float[]) {
+            compare((float[]) a, (float[]) b, numNaN, numNeg, numNegZero);
+        } else if (a instanceof double[]) {
+            compare((double[]) a, (double[]) b, numNaN, numNeg, numNegZero);
+        } else {
+            fail("Unknown type of array: " + a.getClass().getName());
+        }
+    }
+
+    private void compare(float[] a, float[] b, int numNaN, int numNeg, int numNegZero) {
         for (int i = a.length - numNaN; i < a.length; i++) {
             if (a[i] == a[i]) {
-                failed("On position " + i + " must be NaN instead of " + a[i]);
+                fail("There must be NaN instead of " + a[i] + " at position " + i);
             }
         }
         final int NEGATIVE_ZERO = Float.floatToIntBits(-0.0f);
 
         for (int i = numNeg; i < numNeg + numNegZero; i++) {
             if (NEGATIVE_ZERO != Float.floatToIntBits(a[i])) {
-                failed("On position " + i + " must be -0.0 instead of " + a[i]);
+                fail("There must be -0.0 instead of " + a[i] + " at position " + i);
             }
         }
+
         for (int i = 0; i < a.length - numNaN; i++) {
             if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
+                fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i);
             }
         }
     }
 
-    private static void writeValue(double[] a, double value, int fromIndex, int count) {
-        for (int i = fromIndex; i < fromIndex + count; i++) {
-            a[i] = value;
-        }
-    }
-
-    private static void compare(double[] a, double[] b, int numNaN, int numNeg, int numNegZero) {
+    private void compare(double[] a, double[] b, int numNaN, int numNeg, int numNegZero) {
         for (int i = a.length - numNaN; i < a.length; i++) {
             if (a[i] == a[i]) {
-                failed("On position " + i + " must be NaN instead of " + a[i]);
+                fail("There must be NaN instead of " + a[i] + " at position " + i);
             }
         }
         final long NEGATIVE_ZERO = Double.doubleToLongBits(-0.0d);
 
         for (int i = numNeg; i < numNeg + numNegZero; i++) {
             if (NEGATIVE_ZERO != Double.doubleToLongBits(a[i])) {
-                failed("On position " + i + " must be -0.0 instead of " + a[i]);
+                fail("There must be -0.0 instead of " + a[i] + " at position " + i);
+            }
+        }
+
+        for (int i = 0; i < a.length - numNaN; i++) {
+            if (a[i] != b[i]) {
+                fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i);
+            }
+        }
+    }
+
+    private void compare(Object a, Object b) {
+        if (a instanceof int[]) {
+            compare((int[]) a, (int[]) b);
+        } else if (a instanceof long[]) {
+            compare((long[]) a, (long[]) b);
+        } else if (a instanceof byte[]) {
+            compare((byte[]) a, (byte[]) b);
+        } else if (a instanceof char[]) {
+            compare((char[]) a, (char[]) b);
+        } else if (a instanceof short[]) {
+            compare((short[]) a, (short[]) b);
+        } else if (a instanceof float[]) {
+            compare((float[]) a, (float[]) b);
+        } else if (a instanceof double[]) {
+            compare((double[]) a, (double[]) b);
+        } else {
+            fail("Unknown type of array: " + a.getClass().getName());
+        }
+    }
+
+    private void compare(int[] a, int[] b) {
+        for (int i = 0; i < a.length; i++) {
+            if (a[i] != b[i]) {
+                fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i);
+            }
+        }
+    }
+
+    private void compare(long[] a, long[] b) {
+        for (int i = 0; i < a.length; i++) {
+            if (a[i] != b[i]) {
+                fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i);
+            }
+        }
+    }
+
+    private void compare(byte[] a, byte[] b) {
+        for (int i = 0; i < a.length; i++) {
+            if (a[i] != b[i]) {
+                fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i);
+            }
+        }
+    }
+
+    private void compare(char[] a, char[] b) {
+        for (int i = 0; i < a.length; i++) {
+            if (a[i] != b[i]) {
+                fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i);
+            }
+        }
+    }
+
+    private void compare(short[] a, short[] b) {
+        for (int i = 0; i < a.length; i++) {
+            if (a[i] != b[i]) {
+                fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i);
+            }
+        }
+    }
+
+    private void compare(float[] a, float[] b) {
+        for (int i = 0; i < a.length; i++) {
+            if (a[i] != b[i]) {
+                fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i);
+            }
+        }
+    }
+
+    private void compare(double[] a, double[] b) {
+        for (int i = 0; i < a.length; i++) {
+            if (a[i] != b[i]) {
+                fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i);
             }
         }
-        for (int i = 0; i < a.length - numNaN; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
+    }
+
+    private String getType(int i) {
+        Object a = test[i];
+
+        if (a instanceof int[]) {
+            return "INT   ";
+        }
+        if (a instanceof long[]) {
+            return "LONG  ";
+        }
+        if (a instanceof byte[]) {
+            return "BYTE  ";
+        }
+        if (a instanceof char[]) {
+            return "CHAR  ";
+        }
+        if (a instanceof short[]) {
+            return "SHORT ";
+        }
+        if (a instanceof float[]) {
+            return "FLOAT ";
+        }
+        if (a instanceof double[]) {
+            return "DOUBLE";
+        }
+        fail("Unknown type of array: " + a.getClass().getName());
+        return null;
+    }
+
+    private void checkSorted(Object a) {
+        if (a instanceof int[]) {
+            checkSorted((int[]) a);
+        } else if (a instanceof long[]) {
+            checkSorted((long[]) a);
+        } else if (a instanceof byte[]) {
+            checkSorted((byte[]) a);
+        } else if (a instanceof char[]) {
+            checkSorted((char[]) a);
+        } else if (a instanceof short[]) {
+            checkSorted((short[]) a);
+        } else if (a instanceof float[]) {
+            checkSorted((float[]) a);
+        } else if (a instanceof double[]) {
+            checkSorted((double[]) a);
+        } else {
+            fail("Unknown type of array: " + a.getClass().getName());
+        }
+    }
+
+    private void checkSorted(int[] a) {
+        for (int i = 0; i < a.length - 1; i++) {
+            if (a[i] > a[i + 1]) {
+                fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]);
+            }
+        }
+    }
+
+    private void checkSorted(long[] a) {
+        for (int i = 0; i < a.length - 1; i++) {
+            if (a[i] > a[i + 1]) {
+                fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]);
+            }
+        }
+    }
+
+    private void checkSorted(byte[] a) {
+        for (int i = 0; i < a.length - 1; i++) {
+            if (a[i] > a[i + 1]) {
+                fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]);
+            }
+        }
+    }
+
+    private void checkSorted(char[] a) {
+        for (int i = 0; i < a.length - 1; i++) {
+            if (a[i] > a[i + 1]) {
+                fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]);
+            }
+        }
+    }
+
+    private void checkSorted(short[] a) {
+        for (int i = 0; i < a.length - 1; i++) {
+            if (a[i] > a[i + 1]) {
+                fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]);
+            }
+        }
+    }
+
+    private void checkSorted(float[] a) {
+        for (int i = 0; i < a.length - 1; i++) {
+            if (a[i] > a[i + 1]) {
+                fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]);
+            }
+        }
+    }
+
+    private void checkSorted(double[] a) {
+        for (int i = 0; i < a.length - 1; i++) {
+            if (a[i] > a[i + 1]) {
+                fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]);
             }
         }
     }
 
-    private static enum SortedBuilder {
-        REPEATED {
-            void build(int[] a, int m) {
-                int period = a.length / m;
-                int i = 0;
-                int k = 0;
+    private void checkCheckSum(Object test, Object gold) {
+        if (checkSumXor(test) != checkSumXor(gold)) {
+            fail("Original and sorted arrays are not identical [^]");
+        }
+        if (checkSumPlus(test) != checkSumPlus(gold)) {
+            fail("Original and sorted arrays are not identical [+]");
+        }
+    }
+
+    private int checkSumXor(Object a) {
+        if (a instanceof int[]) {
+            return checkSumXor((int[]) a);
+        }
+        if (a instanceof long[]) {
+            return checkSumXor((long[]) a);
+        }
+        if (a instanceof byte[]) {
+            return checkSumXor((byte[]) a);
+        }
+        if (a instanceof char[]) {
+            return checkSumXor((char[]) a);
+        }
+        if (a instanceof short[]) {
+            return checkSumXor((short[]) a);
+        }
+        if (a instanceof float[]) {
+            return checkSumXor((float[]) a);
+        }
+        if (a instanceof double[]) {
+            return checkSumXor((double[]) a);
+        }
+        fail("Unknown type of array: " + a.getClass().getName());
+        return -1;
+    }
+
+    private int checkSumXor(int[] a) {
+        int checkSum = 0;
+
+        for (int e : a) {
+            checkSum ^= e;
+        }
+        return checkSum;
+    }
+
+    private int checkSumXor(long[] a) {
+        long checkSum = 0;
+
+        for (long e : a) {
+            checkSum ^= e;
+        }
+        return (int) checkSum;
+    }
+
+    private int checkSumXor(byte[] a) {
+        byte checkSum = 0;
+
+        for (byte e : a) {
+            checkSum ^= e;
+        }
+        return (int) checkSum;
+    }
+
+    private int checkSumXor(char[] a) {
+        char checkSum = 0;
+
+        for (char e : a) {
+            checkSum ^= e;
+        }
+        return (int) checkSum;
+    }
+
+    private int checkSumXor(short[] a) {
+        short checkSum = 0;
+
+        for (short e : a) {
+            checkSum ^= e;
+        }
+        return (int) checkSum;
+    }
+
+    private int checkSumXor(float[] a) {
+        int checkSum = 0;
+
+        for (float e : a) {
+            checkSum ^= (int) e;
+        }
+        return checkSum;
+    }
+
+    private int checkSumXor(double[] a) {
+        int checkSum = 0;
+
+        for (double e : a) {
+            checkSum ^= (int) e;
+        }
+        return checkSum;
+    }
+
+    private int checkSumPlus(Object a) {
+        if (a instanceof int[]) {
+            return checkSumPlus((int[]) a);
+        }
+        if (a instanceof long[]) {
+            return checkSumPlus((long[]) a);
+        }
+        if (a instanceof byte[]) {
+            return checkSumPlus((byte[]) a);
+        }
+        if (a instanceof char[]) {
+            return checkSumPlus((char[]) a);
+        }
+        if (a instanceof short[]) {
+            return checkSumPlus((short[]) a);
+        }
+        if (a instanceof float[]) {
+            return checkSumPlus((float[]) a);
+        }
+        if (a instanceof double[]) {
+            return checkSumPlus((double[]) a);
+        }
+        fail("Unknown type of array: " + a.getClass().getName());
+        return -1;
+    }
+
+    private int checkSumPlus(int[] a) {
+        int checkSum = 0;
+
+        for (int e : a) {
+            checkSum += e;
+        }
+        return checkSum;
+    }
+
+    private int checkSumPlus(long[] a) {
+        long checkSum = 0;
+
+        for (long e : a) {
+            checkSum += e;
+        }
+        return (int) checkSum;
+    }
+
+    private int checkSumPlus(byte[] a) {
+        byte checkSum = 0;
+
+        for (byte e : a) {
+            checkSum += e;
+        }
+        return (int) checkSum;
+    }
+
+    private int checkSumPlus(char[] a) {
+        char checkSum = 0;
+
+        for (char e : a) {
+            checkSum += e;
+        }
+        return (int) checkSum;
+    }
+
+    private int checkSumPlus(short[] a) {
+        short checkSum = 0;
+
+        for (short e : a) {
+            checkSum += e;
+        }
+        return (int) checkSum;
+    }
+
+    private int checkSumPlus(float[] a) {
+        int checkSum = 0;
+
+        for (float e : a) {
+            checkSum += (int) e;
+        }
+        return checkSum;
+    }
+
+    private int checkSumPlus(double[] a) {
+        int checkSum = 0;
+
+        for (double e : a) {
+            checkSum += (int) e;
+        }
+        return checkSum;
+    }
+
+    private void sortByInsertionSort(Object a) {
+        if (a instanceof int[]) {
+            sortByInsertionSort((int[]) a);
+        } else if (a instanceof long[]) {
+            sortByInsertionSort((long[]) a);
+        } else if (a instanceof byte[]) {
+            sortByInsertionSort((byte[]) a);
+        } else if (a instanceof char[]) {
+            sortByInsertionSort((char[]) a);
+        } else if (a instanceof short[]) {
+            sortByInsertionSort((short[]) a);
+        } else if (a instanceof float[]) {
+            sortByInsertionSort((float[]) a);
+        } else if (a instanceof double[]) {
+            sortByInsertionSort((double[]) a);
+        } else {
+            fail("Unknown type of array: " + a.getClass().getName());
+        }
+    }
+
+    private void sortByInsertionSort(int[] a) {
+        for (int j, i = 1; i < a.length; i++) {
+            int ai = a[i];
+
+            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
+                a[j + 1] = a[j];
+            }
+            a[j + 1] = ai;
+        }
+    }
+
+    private void sortByInsertionSort(long[] a) {
+        for (int j, i = 1; i < a.length; i++) {
+            long ai = a[i];
+
+            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
+                a[j + 1] = a[j];
+            }
+            a[j + 1] = ai;
+        }
+    }
+
+    private void sortByInsertionSort(byte[] a) {
+        for (int j, i = 1; i < a.length; i++) {
+            byte ai = a[i];
+
+            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
+                a[j + 1] = a[j];
+            }
+            a[j + 1] = ai;
+        }
+    }
+
+    private void sortByInsertionSort(char[] a) {
+        for (int j, i = 1; i < a.length; i++) {
+            char ai = a[i];
+
+            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
+                a[j + 1] = a[j];
+            }
+            a[j + 1] = ai;
+        }
+    }
+
+    private void sortByInsertionSort(short[] a) {
+        for (int j, i = 1; i < a.length; i++) {
+            short ai = a[i];
+
+            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
+                a[j + 1] = a[j];
+            }
+            a[j + 1] = ai;
+        }
+    }
+
+    private void sortByInsertionSort(float[] a) {
+        for (int j, i = 1; i < a.length; i++) {
+            float ai = a[i];
+
+            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
+                a[j + 1] = a[j];
+            }
+            a[j + 1] = ai;
+        }
+    }
+
+    private void sortByInsertionSort(double[] a) {
+        for (int j, i = 1; i < a.length; i++) {
+            double ai = a[i];
+
+            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
+                a[j + 1] = a[j];
+            }
+            a[j + 1] = ai;
+        }
+    }
+
+    private void checkSubArray(Object a, int fromIndex, int toIndex) {
+        if (a instanceof int[]) {
+            checkSubArray((int[]) a, fromIndex, toIndex);
+        } else if (a instanceof long[]) {
+            checkSubArray((long[]) a, fromIndex, toIndex);
+        } else if (a instanceof byte[]) {
+            checkSubArray((byte[]) a, fromIndex, toIndex);
+        } else if (a instanceof char[]) {
+            checkSubArray((char[]) a, fromIndex, toIndex);
+        } else if (a instanceof short[]) {
+            checkSubArray((short[]) a, fromIndex, toIndex);
+        } else if (a instanceof float[]) {
+            checkSubArray((float[]) a, fromIndex, toIndex);
+        } else if (a instanceof double[]) {
+            checkSubArray((double[]) a, fromIndex, toIndex);
+        } else {
+            fail("Unknown type of array: " + a.getClass().getName());
+        }
+    }
+
+    private void checkSubArray(int[] a, int fromIndex, int toIndex) {
+        for (int i = 0; i < fromIndex; i++) {
+            if (a[i] != A380) {
+                fail("Range sort changes left element at position " + i + hex(a[i], A380));
+            }
+        }
+
+        for (int i = fromIndex; i < toIndex - 1; i++) {
+            if (a[i] > a[i + 1]) {
+                fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]);
+            }
+        }
+
+        for (int i = toIndex; i < a.length; i++) {
+            if (a[i] != B747) {
+                fail("Range sort changes right element at position " + i + hex(a[i], B747));
+            }
+        }
+    }
+
+    private void checkSubArray(long[] a, int fromIndex, int toIndex) {
+        for (int i = 0; i < fromIndex; i++) {
+            if (a[i] != (long) A380) {
+                fail("Range sort changes left element at position " + i + hex(a[i], A380));
+            }
+        }
 
-                while (true) {
-                    for (int t = 1; t <= period; t++) {
-                        if (i >= a.length) {
-                            return;
-                        }
-                        a[i++] = k;
-                    }
-                    if (i >= a.length) {
-                        return;
-                    }
-                    k++;
+        for (int i = fromIndex; i < toIndex - 1; i++) {
+            if (a[i] > a[i + 1]) {
+                fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]);
+            }
+        }
+
+        for (int i = toIndex; i < a.length; i++) {
+            if (a[i] != (long) B747) {
+                fail("Range sort changes right element at position " + i + hex(a[i], B747));
+            }
+        }
+    }
+
+    private void checkSubArray(byte[] a, int fromIndex, int toIndex) {
+        for (int i = 0; i < fromIndex; i++) {
+            if (a[i] != (byte) A380) {
+                fail("Range sort changes left element at position " + i + hex(a[i], A380));
+            }
+        }
+
+        for (int i = fromIndex; i < toIndex - 1; i++) {
+            if (a[i] > a[i + 1]) {
+                fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]);
+            }
+        }
+
+        for (int i = toIndex; i < a.length; i++) {
+            if (a[i] != (byte) B747) {
+                fail("Range sort changes right element at position " + i + hex(a[i], B747));
+            }
+        }
+    }
+
+    private void checkSubArray(char[] a, int fromIndex, int toIndex) {
+        for (int i = 0; i < fromIndex; i++) {
+            if (a[i] != (char) A380) {
+                fail("Range sort changes left element at position " + i + hex(a[i], A380));
+            }
+        }
+
+        for (int i = fromIndex; i < toIndex - 1; i++) {
+            if (a[i] > a[i + 1]) {
+                fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]);
+            }
+        }
+
+        for (int i = toIndex; i < a.length; i++) {
+            if (a[i] != (char) B747) {
+                fail("Range sort changes right element at position " + i + hex(a[i], B747));
+            }
+        }
+    }
+
+    private void checkSubArray(short[] a, int fromIndex, int toIndex) {
+        for (int i = 0; i < fromIndex; i++) {
+            if (a[i] != (short) A380) {
+                fail("Range sort changes left element at position " + i + hex(a[i], A380));
+            }
+        }
+
+        for (int i = fromIndex; i < toIndex - 1; i++) {
+            if (a[i] > a[i + 1]) {
+                fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]);
+            }
+        }
+
+        for (int i = toIndex; i < a.length; i++) {
+            if (a[i] != (short) B747) {
+                fail("Range sort changes right element at position " + i + hex(a[i], B747));
+            }
+        }
+    }
+
+    private void checkSubArray(float[] a, int fromIndex, int toIndex) {
+        for (int i = 0; i < fromIndex; i++) {
+            if (a[i] != (float) A380) {
+                fail("Range sort changes left element at position " + i + hex((long) a[i], A380));
+            }
+        }
+
+        for (int i = fromIndex; i < toIndex - 1; i++) {
+            if (a[i] > a[i + 1]) {
+                fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]);
+            }
+        }
+
+        for (int i = toIndex; i < a.length; i++) {
+            if (a[i] != (float) B747) {
+                fail("Range sort changes right element at position " + i + hex((long) a[i], B747));
+            }
+        }
+    }
+
+    private void checkSubArray(double[] a, int fromIndex, int toIndex) {
+        for (int i = 0; i < fromIndex; i++) {
+            if (a[i] != (double) A380) {
+                fail("Range sort changes left element at position " + i + hex((long) a[i], A380));
+            }
+        }
+
+        for (int i = fromIndex; i < toIndex - 1; i++) {
+            if (a[i] > a[i + 1]) {
+                fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]);
+            }
+        }
+
+        for (int i = toIndex; i < a.length; i++) {
+            if (a[i] != (double) B747) {
+                fail("Range sort changes right element at position " + i + hex((long) a[i], B747));
+            }
+        }
+    }
+
+    private void checkRange(Object a, int m) {
+        if (a instanceof int[]) {
+            checkRange((int[]) a, m);
+        } else if (a instanceof long[]) {
+            checkRange((long[]) a, m);
+        } else if (a instanceof byte[]) {
+            checkRange((byte[]) a, m);
+        } else if (a instanceof char[]) {
+            checkRange((char[]) a, m);
+        } else if (a instanceof short[]) {
+            checkRange((short[]) a, m);
+        } else if (a instanceof float[]) {
+            checkRange((float[]) a, m);
+        } else if (a instanceof double[]) {
+            checkRange((double[]) a, m);
+        } else {
+            fail("Unknown type of array: " + a.getClass().getName());
+        }
+    }
+
+    private void checkRange(int[] a, int m) {
+        try {
+            sortingHelper.sort(a, m + 1, m);
+            fail(sortingHelper + " does not throw IllegalArgumentException " +
+                "as expected: fromIndex = " + (m + 1) + " toIndex = " + m);
+        } catch (IllegalArgumentException iae) {
+            try {
+                sortingHelper.sort(a, -m, a.length);
+                fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " +
+                    "as expected: fromIndex = " + (-m));
+            } catch (ArrayIndexOutOfBoundsException aoe) {
+                try {
+                    sortingHelper.sort(a, 0, a.length + m);
+                    fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " +
+                        "as expected: toIndex = " + (a.length + m));
+                } catch (ArrayIndexOutOfBoundsException expected) {}
+            }
+        }
+    }
+
+    private void checkRange(long[] a, int m) {
+        try {
+            sortingHelper.sort(a, m + 1, m);
+            fail(sortingHelper + " does not throw IllegalArgumentException " +
+                "as expected: fromIndex = " + (m + 1) + " toIndex = " + m);
+        } catch (IllegalArgumentException iae) {
+            try {
+                sortingHelper.sort(a, -m, a.length);
+                fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " +
+                    "as expected: fromIndex = " + (-m));
+            } catch (ArrayIndexOutOfBoundsException aoe) {
+                try {
+                    sortingHelper.sort(a, 0, a.length + m);
+                    fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " +
+                        "as expected: toIndex = " + (a.length + m));
+                } catch (ArrayIndexOutOfBoundsException expected) {}
+            }
+        }
+    }
+
+    private void checkRange(byte[] a, int m) {
+        try {
+            sortingHelper.sort(a, m + 1, m);
+            fail(sortingHelper + " does not throw IllegalArgumentException " +
+                "as expected: fromIndex = " + (m + 1) + " toIndex = " + m);
+        } catch (IllegalArgumentException iae) {
+            try {
+                sortingHelper.sort(a, -m, a.length);
+                fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " +
+                    "as expected: fromIndex = " + (-m));
+            } catch (ArrayIndexOutOfBoundsException aoe) {
+                try {
+                    sortingHelper.sort(a, 0, a.length + m);
+                    fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " +
+                        "as expected: toIndex = " + (a.length + m));
+                } catch (ArrayIndexOutOfBoundsException expected) {}
+            }
+        }
+    }
+
+    private void checkRange(char[] a, int m) {
+        try {
+            sortingHelper.sort(a, m + 1, m);
+            fail(sortingHelper + " does not throw IllegalArgumentException " +
+                "as expected: fromIndex = " + (m + 1) + " toIndex = " + m);
+        } catch (IllegalArgumentException iae) {
+            try {
+                sortingHelper.sort(a, -m, a.length);
+                fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " +
+                    "as expected: fromIndex = " + (-m));
+            } catch (ArrayIndexOutOfBoundsException aoe) {
+                try {
+                    sortingHelper.sort(a, 0, a.length + m);
+                    fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " +
+                        "as expected: toIndex = " + (a.length + m));
+                } catch (ArrayIndexOutOfBoundsException expected) {}
+            }
+        }
+    }
+
+    private void checkRange(short[] a, int m) {
+        try {
+            sortingHelper.sort(a, m + 1, m);
+            fail(sortingHelper + " does not throw IllegalArgumentException " +
+                "as expected: fromIndex = " + (m + 1) + " toIndex = " + m);
+        } catch (IllegalArgumentException iae) {
+            try {
+                sortingHelper.sort(a, -m, a.length);
+                fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " +
+                    "as expected: fromIndex = " + (-m));
+            } catch (ArrayIndexOutOfBoundsException aoe) {
+                try {
+                    sortingHelper.sort(a, 0, a.length + m);
+                    fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " +
+                        "as expected: toIndex = " + (a.length + m));
+                } catch (ArrayIndexOutOfBoundsException expected) {}
+            }
+        }
+    }
+
+    private void checkRange(float[] a, int m) {
+        try {
+            sortingHelper.sort(a, m + 1, m);
+            fail(sortingHelper + " does not throw IllegalArgumentException " +
+                "as expected: fromIndex = " + (m + 1) + " toIndex = " + m);
+        } catch (IllegalArgumentException iae) {
+            try {
+                sortingHelper.sort(a, -m, a.length);
+                fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " +
+                    "as expected: fromIndex = " + (-m));
+            } catch (ArrayIndexOutOfBoundsException aoe) {
+                try {
+                    sortingHelper.sort(a, 0, a.length + m);
+                    fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " +
+                        "as expected: toIndex = " + (a.length + m));
+                } catch (ArrayIndexOutOfBoundsException expected) {}
+            }
+        }
+    }
+
+    private void checkRange(double[] a, int m) {
+        try {
+            sortingHelper.sort(a, m + 1, m);
+            fail(sortingHelper + " does not throw IllegalArgumentException " +
+                "as expected: fromIndex = " + (m + 1) + " toIndex = " + m);
+        } catch (IllegalArgumentException iae) {
+            try {
+                sortingHelper.sort(a, -m, a.length);
+                fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " +
+                    "as expected: fromIndex = " + (-m));
+            } catch (ArrayIndexOutOfBoundsException aoe) {
+                try {
+                    sortingHelper.sort(a, 0, a.length + m);
+                    fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " +
+                        "as expected: toIndex = " + (a.length + m));
+                } catch (ArrayIndexOutOfBoundsException expected) {}
+            }
+        }
+    }
+
+    private void copy(Object dst, Object src) {
+        if (src instanceof float[]) {
+            copy((float[]) dst, (float[]) src);
+        } else if (src instanceof double[]) {
+            copy((double[]) dst, (double[]) src);
+        } else {
+            fail("Unknown type of array: " + src.getClass().getName());
+        }
+    }
+
+    private void copy(float[] dst, float[] src) {
+        System.arraycopy(src, 0, dst, 0, src.length);
+    }
+
+    private void copy(double[] dst, double[] src) {
+        System.arraycopy(src, 0, dst, 0, src.length);
+    }
+
+    private void printTestName(String test, TestRandom random, int length) {
+        printTestName(test, random, length, "");
+    }
+
+    private void createData(int length) {
+        gold = new Object[] {
+            new int[length], new long[length],
+            new byte[length], new char[length], new short[length],
+            new float[length], new double[length]
+        };
+
+        test = new Object[] {
+            new int[length], new long[length],
+            new byte[length], new char[length], new short[length],
+            new float[length], new double[length]
+        };
+    }
+
+    private void convertData(int length) {
+        for (int i = 1; i < gold.length; i++) {
+            TypeConverter converter = TypeConverter.values()[i - 1];
+            converter.convert((int[])gold[0], gold[i]);
+        }
+
+        for (int i = 0; i < gold.length; i++) {
+            System.arraycopy(gold[i], 0, test[i], 0, length);
+        }
+    }
+
+    private String hex(long a, int b) {
+        return ": " + Long.toHexString(a) + ", must be " + Integer.toHexString(b);
+    }
+
+    private void printTestName(String test, TestRandom random, int length, String message) {
+        out.println( "[" + sortingHelper + "] '" + test +
+            "' length = " + length + ", random = " + random + message);
+    }
+
+    private static enum TypeConverter {
+        LONG {
+            void convert(int[] src, Object dst) {
+                long[] b = (long[]) dst;
+
+                for (int i = 0; i < src.length; i++) {
+                    b[i] = (long) src[i];
                 }
             }
         },
-        ORGAN_PIPES {
-            void build(int[] a, int m) {
-                int i = 0;
-                int k = m;
+
+        BYTE {
+            void convert(int[] src, Object dst) {
+                byte[] b = (byte[]) dst;
+
+                for (int i = 0; i < src.length; i++) {
+                    b[i] = (byte) src[i];
+                }
+            }
+        },
+
+        CHAR {
+            void convert(int[] src, Object dst) {
+                char[] b = (char[]) dst;
+
+                for (int i = 0; i < src.length; i++) {
+                    b[i] = (char) src[i];
+                }
+            }
+        },
+
+        SHORT {
+            void convert(int[] src, Object dst) {
+                short[] b = (short[]) dst;
+
+                for (int i = 0; i < src.length; i++) {
+                    b[i] = (short) src[i];
+                }
+            }
+        },
 
-                while (true) {
-                    for (int t = 1; t <= m; t++) {
-                        if (i >= a.length) {
-                            return;
-                        }
-                        a[i++] = k;
-                    }
+        FLOAT {
+            void convert(int[] src, Object dst) {
+                float[] b = (float[]) dst;
+
+                for (int i = 0; i < src.length; i++) {
+                    b[i] = (float) src[i];
+                }
+            }
+        },
+
+        DOUBLE {
+            void convert(int[] src, Object dst) {
+                double[] b = (double[]) dst;
+
+                for (int i = 0; i < src.length; i++) {
+                    b[i] = (double) src[i];
+                }
+            }
+        };
+
+        abstract void convert(int[] src, Object dst);
+    }
+
+    private static enum SortedBuilder {
+        STEPS {
+            void build(int[] a, int m) {
+                for (int i = 0; i < m; i++) {
+                    a[i] = 0;
+                }
+
+                for (int i = m; i < a.length; i++) {
+                    a[i] = 1;
                 }
             }
         };
 
         abstract void build(int[] a, int m);
-
-        @Override public String toString() {
-            String name = name();
-
-            for (int i = name.length(); i < 12; i++) {
-                name += " ";
-            }
-            return name;
-        }
-    }
-
-    private static enum MergeBuilder {
-        ASCENDING {
-            void build(int[] a, int m) {
-                int period = a.length / m;
-                int v = 1, i = 0;
-
-                for (int k = 0; k < m; k++) {
-                    v = 1;
-                    for (int p = 0; p < period; p++) {
-                        a[i++] = v++;
-                    }
-                }
-                for (int j = i; j < a.length - 1; j++) {
-                    a[j] = v++;
-                }
-                a[a.length - 1] = 0;
-            }
-        },
-        DESCENDING {
-            void build(int[] a, int m) {
-                int period = a.length / m;
-                int v = -1, i = 0;
-
-                for (int k = 0; k < m; k++) {
-                    v = -1;
-                    for (int p = 0; p < period; p++) {
-                        a[i++] = v--;
-                    }
-                }
-                for (int j = i; j < a.length - 1; j++) {
-                    a[j] = v--;
-                }
-                a[a.length - 1] = 0;
-            }
-        };
-
-        abstract void build(int[] a, int m);
-
-        @Override public String toString() {
-            String name = name();
-
-            for (int i = name.length(); i < 12; i++) {
-                name += " ";
-            }
-            return name;
-        }
     }
 
     private static enum UnsortedBuilder {
@@ -894,6 +1649,7 @@
                 }
             }
         },
+
         ASCENDING {
             void build(int[] a, int m, Random random) {
                 for (int i = 0; i < a.length; i++) {
@@ -901,6 +1657,7 @@
                 }
             }
         },
+
         DESCENDING {
             void build(int[] a, int m, Random random) {
                 for (int i = 0; i < a.length; i++) {
@@ -908,13 +1665,15 @@
                 }
             }
         },
-        ALL_EQUAL {
+
+        EQUAL {
             void build(int[] a, int m, Random random) {
                 for (int i = 0; i < a.length; i++) {
                     a[i] = m;
                 }
             }
         },
+
         SAW {
             void build(int[] a, int m, Random random) {
                 int incCount = 1;
@@ -941,6 +1700,7 @@
                 }
             }
         },
+
         REPEATED {
             void build(int[] a, int m, Random random) {
                 for (int i = 0; i < a.length; i++) {
@@ -948,6 +1708,7 @@
                 }
             }
         },
+
         DUPLICATED {
             void build(int[] a, int m, Random random) {
                 for (int i = 0; i < a.length; i++) {
@@ -955,6 +1716,7 @@
                 }
             }
         },
+
         ORGAN_PIPES {
             void build(int[] a, int m, Random random) {
                 int middle = a.length / (m + 1);
@@ -962,11 +1724,13 @@
                 for (int i = 0; i < middle; i++) {
                     a[i] = i;
                 }
+
                 for (int i = middle; i < a.length; i++) {
                     a[i] = a.length - i - 1;
                 }
             }
         },
+
         STAGGER {
             void build(int[] a, int m, Random random) {
                 for (int i = 0; i < a.length; i++) {
@@ -974,6 +1738,7 @@
                 }
             }
         },
+
         PLATEAU {
             void build(int[] a, int m, Random random) {
                 for (int i = 0; i < a.length; i++) {
@@ -981,1064 +1746,271 @@
                 }
             }
         },
+
         SHUFFLE {
             void build(int[] a, int m, Random random) {
                 int x = 0, y = 0;
+
                 for (int i = 0; i < a.length; i++) {
                     a[i] = random.nextBoolean() ? (x += 2) : (y += 2);
                 }
             }
+        },
+
+        LATCH {
+            void build(int[] a, int m, Random random) {
+                int max = a.length / m;
+                max = max < 2 ? 2 : max;
+
+                for (int i = 0; i < a.length; i++) {
+                    a[i] = i % max;
+                }
+            }
         };
 
         abstract void build(int[] a, int m, Random random);
-
-        @Override public String toString() {
-            String name = name();
-
-            for (int i = name.length(); i < 12; i++) {
-                name += " ";
-            }
-            return name;
-        }
-    }
-
-    private static void checkWithCheckSum(Object test, Object golden) {
-        checkSorted(test);
-        checkCheckSum(test, golden);
-    }
-
-    private static void failed(String message) {
-        err.format("\n*** TEST FAILED - %s.\n\n%s.\n\n", ourDescription, message);
-        throw new RuntimeException("Test failed - see log file for details");
-    }
-
-    private static void failedSort(int index, String value1, String value2) {
-        failed("Array is not sorted at " + index + "-th position: " +
-            value1 + " and " + value2);
-    }
-
-    private static void failedCompare(int index, String value1, String value2) {
-        failed("On position " + index + " must be " + value2 + " instead of " + value1);
-    }
-
-    private static void compare(Object test, Object golden) {
-        if (test instanceof int[]) {
-            compare((int[]) test, (int[]) golden);
-        } else if (test instanceof long[]) {
-            compare((long[]) test, (long[]) golden);
-        } else if (test instanceof short[]) {
-            compare((short[]) test, (short[]) golden);
-        } else if (test instanceof byte[]) {
-            compare((byte[]) test, (byte[]) golden);
-        } else if (test instanceof char[]) {
-            compare((char[]) test, (char[]) golden);
-        } else if (test instanceof float[]) {
-            compare((float[]) test, (float[]) golden);
-        } else if (test instanceof double[]) {
-            compare((double[]) test, (double[]) golden);
-        } else if (test instanceof Integer[]) {
-            compare((Integer[]) test, (Integer[]) golden);
-        } else {
-            failed("Unknow type of array: " + test + " of class " +
-                test.getClass().getName());
-        }
-    }
-
-    private static void compare(int[] a, int[] b) {
-        for (int i = 0; i < a.length; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
-
-    private static void compare(long[] a, long[] b) {
-        for (int i = 0; i < a.length; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
-
-    private static void compare(short[] a, short[] b) {
-        for (int i = 0; i < a.length; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
-
-    private static void compare(byte[] a, byte[] b) {
-        for (int i = 0; i < a.length; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
-
-    private static void compare(char[] a, char[] b) {
-        for (int i = 0; i < a.length; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
     }
 
-    private static void compare(float[] a, float[] b) {
-        for (int i = 0; i < a.length; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
+    private static enum MergingBuilder {
+        ASCENDING {
+            void build(int[] a, int m) {
+                int period = a.length / m;
+                int v = 1, i = 0;
+
+                for (int k = 0; k < m; k++) {
+                    v = 1;
 
-    private static void compare(double[] a, double[] b) {
-        for (int i = 0; i < a.length; i++) {
-            if (a[i] != b[i]) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
+                    for (int p = 0; p < period; p++) {
+                        a[i++] = v++;
+                    }
+                }
 
-    private static void compare(Integer[] a, Integer[] b) {
-        for (int i = 0; i < a.length; i++) {
-            if (a[i].compareTo(b[i]) != 0) {
-                failedCompare(i, "" + a[i], "" + b[i]);
-            }
-        }
-    }
+                for (int j = i; j < a.length - 1; j++) {
+                    a[j] = v++;
+                }
 
-    private static void checkSorted(Object object) {
-        if (object instanceof int[]) {
-            checkSorted((int[]) object);
-        } else if (object instanceof long[]) {
-            checkSorted((long[]) object);
-        } else if (object instanceof short[]) {
-            checkSorted((short[]) object);
-        } else if (object instanceof byte[]) {
-            checkSorted((byte[]) object);
-        } else if (object instanceof char[]) {
-            checkSorted((char[]) object);
-        } else if (object instanceof float[]) {
-            checkSorted((float[]) object);
-        } else if (object instanceof double[]) {
-            checkSorted((double[]) object);
-        } else if (object instanceof Integer[]) {
-            checkSorted((Integer[]) object);
-        } else {
-            failed("Unknow type of array: " + object + " of class " +
-                object.getClass().getName());
-        }
-    }
+                a[a.length - 1] = 0;
+            }
+        },
+
+        DESCENDING {
+            void build(int[] a, int m) {
+                int period = a.length / m;
+                int v = -1, i = 0;
 
-    private static void checkSorted(int[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
+                for (int k = 0; k < m; k++) {
+                    v = -1;
+
+                    for (int p = 0; p < period; p++) {
+                        a[i++] = v--;
+                    }
+                }
+
+                for (int j = i; j < a.length - 1; j++) {
+                    a[j] = v--;
+                }
+
+                a[a.length - 1] = 0;
             }
-        }
-    }
-
-    private static void checkSorted(long[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-    }
+        },
 
-    private static void checkSorted(short[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
+        POINT {
+            void build(int[] a, int m) {
+                for (int i = 0; i < a.length; i++) {
+                    a[i] = 0;
+                }
+                a[a.length / 2] = m;
             }
-        }
-    }
+        },
 
-    private static void checkSorted(byte[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
+        LINE {
+            void build(int[] a, int m) {
+                for (int i = 0; i < a.length; i++) {
+                    a[i] = i;
+                }
+                reverse(a, 0, a.length - 1);
             }
-        }
-    }
+        },
 
-    private static void checkSorted(char[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-    }
-
-    private static void checkSorted(float[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
+        PEARL {
+            void build(int[] a, int m) {
+                for (int i = 0; i < a.length; i++) {
+                    a[i] = i;
+                }
+                reverse(a, 0, 2);
             }
-        }
-    }
+        },
+
+        RING {
+            void build(int[] a, int m) {
+                int k1 = a.length / 3;
+                int k2 = a.length / 3 * 2;
+                int level = a.length / 3;
 
-    private static void checkSorted(double[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
+                for (int i = 0, k = level; i < k1; i++) {
+                    a[i] = k--;
+                }
+
+                for (int i = k1; i < k2; i++) {
+                    a[i] = 0;
+                }
+
+                for (int i = k2, k = level; i < a.length; i++) {
+                    a[i] = k--;
+                }
             }
-        }
-    }
+        };
+
+        abstract void build(int[] a, int m);
 
-    private static void checkSorted(Integer[] a) {
-        for (int i = 0; i < a.length - 1; i++) {
-            if (a[i].intValue() > a[i + 1].intValue()) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
+        private static void reverse(int[] a, int lo, int hi) {
+            for (--hi; lo < hi; ) {
+                int tmp = a[lo];
+                a[lo++] = a[hi];
+                a[hi--] = tmp;
             }
         }
     }
 
-    private static void checkCheckSum(Object test, Object golden) {
-        if (checkSumXor(test) != checkSumXor(golden)) {
-            failed("Original and sorted arrays are not identical [xor]");
-        }
-        if (checkSumPlus(test) != checkSumPlus(golden)) {
-            failed("Original and sorted arrays are not identical [plus]");
-        }
-    }
-
-    private static int checkSumXor(Object object) {
-        if (object instanceof int[]) {
-            return checkSumXor((int[]) object);
-        } else if (object instanceof long[]) {
-            return checkSumXor((long[]) object);
-        } else if (object instanceof short[]) {
-            return checkSumXor((short[]) object);
-        } else if (object instanceof byte[]) {
-            return checkSumXor((byte[]) object);
-        } else if (object instanceof char[]) {
-            return checkSumXor((char[]) object);
-        } else if (object instanceof float[]) {
-            return checkSumXor((float[]) object);
-        } else if (object instanceof double[]) {
-            return checkSumXor((double[]) object);
-        } else if (object instanceof Integer[]) {
-            return checkSumXor((Integer[]) object);
-        } else {
-            failed("Unknow type of array: " + object + " of class " +
-                object.getClass().getName());
-            return -1;
-        }
-    }
-
-    private static int checkSumXor(Integer[] a) {
-        int checkSum = 0;
-
-        for (Integer e : a) {
-            checkSum ^= e.intValue();
-        }
-        return checkSum;
-    }
-
-    private static int checkSumXor(int[] a) {
-        int checkSum = 0;
+    private static enum NegativeZeroBuilder {
+        FLOAT {
+            void build(Object o, Random random) {
+                float[] a = (float[]) o;
 
-        for (int e : a) {
-            checkSum ^= e;
-        }
-        return checkSum;
-    }
-
-    private static int checkSumXor(long[] a) {
-        long checkSum = 0;
-
-        for (long e : a) {
-            checkSum ^= e;
-        }
-        return (int) checkSum;
-    }
-
-    private static int checkSumXor(short[] a) {
-        short checkSum = 0;
-
-        for (short e : a) {
-            checkSum ^= e;
-        }
-        return (int) checkSum;
-    }
-
-    private static int checkSumXor(byte[] a) {
-        byte checkSum = 0;
-
-        for (byte e : a) {
-            checkSum ^= e;
-        }
-        return (int) checkSum;
-    }
-
-    private static int checkSumXor(char[] a) {
-        char checkSum = 0;
-
-        for (char e : a) {
-            checkSum ^= e;
-        }
-        return (int) checkSum;
-    }
-
-    private static int checkSumXor(float[] a) {
-        int checkSum = 0;
+                for (int i = 0; i < a.length; i++) {
+                    a[i] = random.nextBoolean() ? -0.0f : 0.0f;
+                }
+            }
+        },
 
-        for (float e : a) {
-            checkSum ^= (int) e;
-        }
-        return checkSum;
-    }
-
-    private static int checkSumXor(double[] a) {
-        int checkSum = 0;
-
-        for (double e : a) {
-            checkSum ^= (int) e;
-        }
-        return checkSum;
-    }
-
-    private static int checkSumPlus(Object object) {
-        if (object instanceof int[]) {
-            return checkSumPlus((int[]) object);
-        } else if (object instanceof long[]) {
-            return checkSumPlus((long[]) object);
-        } else if (object instanceof short[]) {
-            return checkSumPlus((short[]) object);
-        } else if (object instanceof byte[]) {
-            return checkSumPlus((byte[]) object);
-        } else if (object instanceof char[]) {
-            return checkSumPlus((char[]) object);
-        } else if (object instanceof float[]) {
-            return checkSumPlus((float[]) object);
-        } else if (object instanceof double[]) {
-            return checkSumPlus((double[]) object);
-        } else if (object instanceof Integer[]) {
-            return checkSumPlus((Integer[]) object);
-        } else {
-            failed("Unknow type of array: " + object + " of class " +
-                object.getClass().getName());
-            return -1;
-        }
-    }
-
-    private static int checkSumPlus(int[] a) {
-        int checkSum = 0;
+        DOUBLE {
+            void build(Object o, Random random) {
+                double[] a = (double[]) o;
 
-        for (int e : a) {
-            checkSum += e;
-        }
-        return checkSum;
-    }
-
-    private static int checkSumPlus(long[] a) {
-        long checkSum = 0;
-
-        for (long e : a) {
-            checkSum += e;
-        }
-        return (int) checkSum;
-    }
-
-    private static int checkSumPlus(short[] a) {
-        short checkSum = 0;
-
-        for (short e : a) {
-            checkSum += e;
-        }
-        return (int) checkSum;
-    }
+                for (int i = 0; i < a.length; i++) {
+                    a[i] = random.nextBoolean() ? -0.0d : 0.0d;
+                }
+            }
+        };
 
-    private static int checkSumPlus(byte[] a) {
-        byte checkSum = 0;
-
-        for (byte e : a) {
-            checkSum += e;
-        }
-        return (int) checkSum;
-    }
-
-    private static int checkSumPlus(char[] a) {
-        char checkSum = 0;
-
-        for (char e : a) {
-            checkSum += e;
-        }
-        return (int) checkSum;
-    }
-
-    private static int checkSumPlus(float[] a) {
-        int checkSum = 0;
-
-        for (float e : a) {
-            checkSum += (int) e;
-        }
-        return checkSum;
+        abstract void build(Object o, Random random);
     }
 
-    private static int checkSumPlus(double[] a) {
-        int checkSum = 0;
-
-        for (double e : a) {
-            checkSum += (int) e;
-        }
-        return checkSum;
-    }
-
-    private static int checkSumPlus(Integer[] a) {
-        int checkSum = 0;
-
-        for (Integer e : a) {
-            checkSum += e.intValue();
-        }
-        return checkSum;
-    }
+    private static enum FloatingPointBuilder {
+        FLOAT {
+            void build(Object o, int a, int g, int z, int n, int p, Random random) {
+                float negativeValue = -random.nextFloat();
+                float positiveValue =  random.nextFloat();
+                float[] x = (float[]) o;
+                int fromIndex = 0;
 
-    private static void sortByInsertionSort(Object object) {
-        if (object instanceof int[]) {
-            sortByInsertionSort((int[]) object);
-        } else if (object instanceof long[]) {
-            sortByInsertionSort((long[]) object);
-        } else if (object instanceof short[]) {
-            sortByInsertionSort((short[]) object);
-        } else if (object instanceof byte[]) {
-            sortByInsertionSort((byte[]) object);
-        } else if (object instanceof char[]) {
-            sortByInsertionSort((char[]) object);
-        } else if (object instanceof float[]) {
-            sortByInsertionSort((float[]) object);
-        } else if (object instanceof double[]) {
-            sortByInsertionSort((double[]) object);
-        } else if (object instanceof Integer[]) {
-            sortByInsertionSort((Integer[]) object);
-        } else {
-            failed("Unknow type of array: " + object + " of class " +
-                object.getClass().getName());
-        }
-    }
+                writeValue(x, negativeValue, fromIndex, n);
+                fromIndex += n;
 
-    private static void sortByInsertionSort(int[] a) {
-        for (int j, i = 1; i < a.length; i++) {
-            int ai = a[i];
-            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
-                a[j + 1] = a[j];
-            }
-            a[j + 1] = ai;
-        }
-    }
-
-    private static void sortByInsertionSort(long[] a) {
-        for (int j, i = 1; i < a.length; i++) {
-            long ai = a[i];
-            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
-                a[j + 1] = a[j];
-            }
-            a[j + 1] = ai;
-        }
-    }
+                writeValue(x, -0.0f, fromIndex, g);
+                fromIndex += g;
 
-    private static void sortByInsertionSort(short[] a) {
-        for (int j, i = 1; i < a.length; i++) {
-            short ai = a[i];
-            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
-                a[j + 1] = a[j];
-            }
-            a[j + 1] = ai;
-        }
-    }
+                writeValue(x, 0.0f, fromIndex, z);
+                fromIndex += z;
 
-    private static void sortByInsertionSort(byte[] a) {
-        for (int j, i = 1; i < a.length; i++) {
-            byte ai = a[i];
-            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
-                a[j + 1] = a[j];
-            }
-            a[j + 1] = ai;
-        }
-    }
+                writeValue(x, positiveValue, fromIndex, p);
+                fromIndex += p;
 
-    private static void sortByInsertionSort(char[] a) {
-        for (int j, i = 1; i < a.length; i++) {
-            char ai = a[i];
-            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
-                a[j + 1] = a[j];
-            }
-            a[j + 1] = ai;
-        }
-    }
-
-    private static void sortByInsertionSort(float[] a) {
-        for (int j, i = 1; i < a.length; i++) {
-            float ai = a[i];
-            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
-                a[j + 1] = a[j];
+                writeValue(x, Float.NaN, fromIndex, a);
             }
-            a[j + 1] = ai;
-        }
-    }
-
-    private static void sortByInsertionSort(double[] a) {
-        for (int j, i = 1; i < a.length; i++) {
-            double ai = a[i];
-            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
-                a[j + 1] = a[j];
-            }
-            a[j + 1] = ai;
-        }
-    }
+        },
 
-    private static void sortByInsertionSort(Integer[] a) {
-        for (int j, i = 1; i < a.length; i++) {
-            Integer ai = a[i];
-            for (j = i - 1; j >= 0 && ai < a[j]; j--) {
-                a[j + 1] = a[j];
-            }
-            a[j + 1] = ai;
-        }
-    }
+        DOUBLE {
+            void build(Object o, int a, int g, int z, int n, int p, Random random) {
+                double negativeValue = -random.nextFloat();
+                double positiveValue =  random.nextFloat();
+                double[] x = (double[]) o;
+                int fromIndex = 0;
 
-    private static void sort(Object object) {
-        if (object instanceof int[]) {
-            Arrays.sort((int[]) object);
-        } else if (object instanceof long[]) {
-            Arrays.sort((long[]) object);
-        } else if (object instanceof short[]) {
-            Arrays.sort((short[]) object);
-        } else if (object instanceof byte[]) {
-            Arrays.sort((byte[]) object);
-        } else if (object instanceof char[]) {
-            Arrays.sort((char[]) object);
-        } else if (object instanceof float[]) {
-            Arrays.sort((float[]) object);
-        } else if (object instanceof double[]) {
-            Arrays.sort((double[]) object);
-        } else if (object instanceof Integer[]) {
-            Arrays.sort((Integer[]) object);
-        } else {
-            failed("Unknow type of array: " + object + " of class " +
-                object.getClass().getName());
-        }
-    }
+                writeValue(x, negativeValue, fromIndex, n);
+                fromIndex += n;
+
+                writeValue(x, -0.0d, fromIndex, g);
+                fromIndex += g;
 
-    private static void sortSubArray(Object object, int fromIndex, int toIndex) {
-        if (object instanceof int[]) {
-            Arrays.sort((int[]) object, fromIndex, toIndex);
-        } else if (object instanceof long[]) {
-            Arrays.sort((long[]) object, fromIndex, toIndex);
-        } else if (object instanceof short[]) {
-            Arrays.sort((short[]) object, fromIndex, toIndex);
-        } else if (object instanceof byte[]) {
-            Arrays.sort((byte[]) object, fromIndex, toIndex);
-        } else if (object instanceof char[]) {
-            Arrays.sort((char[]) object, fromIndex, toIndex);
-        } else if (object instanceof float[]) {
-            Arrays.sort((float[]) object, fromIndex, toIndex);
-        } else if (object instanceof double[]) {
-            Arrays.sort((double[]) object, fromIndex, toIndex);
-        } else if (object instanceof Integer[]) {
-            Arrays.sort((Integer[]) object, fromIndex, toIndex);
-        } else {
-            failed("Unknow type of array: " + object + " of class " +
-                object.getClass().getName());
-        }
-    }
+                writeValue(x, 0.0d, fromIndex, z);
+                fromIndex += z;
+
+                writeValue(x, positiveValue, fromIndex, p);
+                fromIndex += p;
 
-    private static void checkSubArray(Object object, int fromIndex, int toIndex, int m) {
-        if (object instanceof int[]) {
-            checkSubArray((int[]) object, fromIndex, toIndex, m);
-        } else if (object instanceof long[]) {
-            checkSubArray((long[]) object, fromIndex, toIndex, m);
-        } else if (object instanceof short[]) {
-            checkSubArray((short[]) object, fromIndex, toIndex, m);
-        } else if (object instanceof byte[]) {
-            checkSubArray((byte[]) object, fromIndex, toIndex, m);
-        } else if (object instanceof char[]) {
-            checkSubArray((char[]) object, fromIndex, toIndex, m);
-        } else if (object instanceof float[]) {
-            checkSubArray((float[]) object, fromIndex, toIndex, m);
-        } else if (object instanceof double[]) {
-            checkSubArray((double[]) object, fromIndex, toIndex, m);
-        } else if (object instanceof Integer[]) {
-            checkSubArray((Integer[]) object, fromIndex, toIndex, m);
-        } else {
-            failed("Unknow type of array: " + object + " of class " +
-                object.getClass().getName());
-        }
-    }
+                writeValue(x, Double.NaN, fromIndex, a);
+            }
+        };
 
-    private static void checkSubArray(Integer[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            if (a[i].intValue() != 0xDEDA) {
-                failed("Range sort changes left element on position " + i +
-                    ": " + a[i] + ", must be " + 0xDEDA);
+        abstract void build(Object o, int a, int g, int z, int n, int p, Random random);
+
+        private static void writeValue(float[] a, float value, int fromIndex, int count) {
+            for (int i = fromIndex; i < fromIndex + count; i++) {
+                a[i] = value;
             }
         }
 
-        for (int i = fromIndex; i < toIndex - 1; i++) {
-            if (a[i].intValue() > a[i + 1].intValue()) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-
-        for (int i = toIndex; i < a.length; i++) {
-            if (a[i].intValue() != 0xBABA) {
-                failed("Range sort changes right element on position " + i +
-                    ": " + a[i] + ", must be " + 0xBABA);
-            }
-        }
-    }
-
-    private static void checkSubArray(int[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            if (a[i] != 0xDEDA) {
-                failed("Range sort changes left element on position " + i +
-                    ": " + a[i] + ", must be " + 0xDEDA);
-            }
-        }
-
-        for (int i = fromIndex; i < toIndex - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-
-        for (int i = toIndex; i < a.length; i++) {
-            if (a[i] != 0xBABA) {
-                failed("Range sort changes right element on position " + i +
-                    ": " + a[i] + ", must be " + 0xBABA);
+        private static void writeValue(double[] a, double value, int fromIndex, int count) {
+            for (int i = fromIndex; i < fromIndex + count; i++) {
+                a[i] = value;
             }
         }
     }
 
-    private static void checkSubArray(byte[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            if (a[i] != (byte) 0xDEDA) {
-                failed("Range sort changes left element on position " + i +
-                    ": " + a[i] + ", must be " + 0xDEDA);
-            }
-        }
-
-        for (int i = fromIndex; i < toIndex - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-
-        for (int i = toIndex; i < a.length; i++) {
-            if (a[i] != (byte) 0xBABA) {
-                failed("Range sort changes right element on position " + i +
-                    ": " + a[i] + ", must be " + 0xBABA);
-            }
-        }
-    }
-
-    private static void checkSubArray(long[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            if (a[i] != (long) 0xDEDA) {
-                failed("Range sort changes left element on position " + i +
-                    ": " + a[i] + ", must be " + 0xDEDA);
-            }
-        }
-
-        for (int i = fromIndex; i < toIndex - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-
-        for (int i = toIndex; i < a.length; i++) {
-            if (a[i] != (long) 0xBABA) {
-                failed("Range sort changes right element on position " + i +
-                    ": " + a[i] + ", must be " + 0xBABA);
-            }
-        }
-    }
+    private static Comparator<Pair> pairComparator = new Comparator<Pair>() {
 
-    private static void checkSubArray(char[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            if (a[i] != (char) 0xDEDA) {
-                failed("Range sort changes left element on position " + i +
-                    ": " + a[i] + ", must be " + 0xDEDA);
-            }
+        @Override
+        public int compare(Pair p1, Pair p2) {
+            return p1.compareTo(p2);
         }
-
-        for (int i = fromIndex; i < toIndex - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
-
-        for (int i = toIndex; i < a.length; i++) {
-            if (a[i] != (char) 0xBABA) {
-                failed("Range sort changes right element on position " + i +
-                    ": " + a[i] + ", must be " + 0xBABA);
-            }
-        }
-    }
+    };
 
-    private static void checkSubArray(short[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            if (a[i] != (short) 0xDEDA) {
-                failed("Range sort changes left element on position " + i +
-                    ": " + a[i] + ", must be " + 0xDEDA);
-            }
-        }
-
-        for (int i = fromIndex; i < toIndex - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
-        }
+    private static class Pair implements Comparable<Pair> {
 
-        for (int i = toIndex; i < a.length; i++) {
-            if (a[i] != (short) 0xBABA) {
-                failed("Range sort changes right element on position " + i +
-                    ": " + a[i] + ", must be " + 0xBABA);
-            }
-        }
-    }
-
-    private static void checkSubArray(float[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            if (a[i] != (float) 0xDEDA) {
-                failed("Range sort changes left element on position " + i +
-                    ": " + a[i] + ", must be " + 0xDEDA);
-            }
-        }
-
-        for (int i = fromIndex; i < toIndex - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
+        private Pair(int key, int value) {
+            this.key = key;
+            this.value = value;
         }
 
-        for (int i = toIndex; i < a.length; i++) {
-            if (a[i] != (float) 0xBABA) {
-                failed("Range sort changes right element on position " + i +
-                    ": " + a[i] + ", must be " + 0xBABA);
-            }
-        }
-    }
-
-    private static void checkSubArray(double[] a, int fromIndex, int toIndex, int m) {
-        for (int i = 0; i < fromIndex; i++) {
-            if (a[i] != (double) 0xDEDA) {
-                failed("Range sort changes left element on position " + i +
-                    ": " + a[i] + ", must be " + 0xDEDA);
-            }
+        int getKey() {
+            return key;
         }
 
-        for (int i = fromIndex; i < toIndex - 1; i++) {
-            if (a[i] > a[i + 1]) {
-                failedSort(i, "" + a[i], "" + a[i + 1]);
-            }
+        int getValue() {
+            return value;
         }
 
-        for (int i = toIndex; i < a.length; i++) {
-            if (a[i] != (double) 0xBABA) {
-                failed("Range sort changes right element on position " + i +
-                    ": " + a[i] + ", must be " + 0xBABA);
-            }
+        @Override
+        public int compareTo(Pair pair) {
+            return Integer.compare(key, pair.key);
         }
-    }
-
-    private static void checkRange(Object object, int m) {
-        if (object instanceof int[]) {
-            checkRange((int[]) object, m);
-        } else if (object instanceof long[]) {
-            checkRange((long[]) object, m);
-        } else if (object instanceof short[]) {
-            checkRange((short[]) object, m);
-        } else if (object instanceof byte[]) {
-            checkRange((byte[]) object, m);
-        } else if (object instanceof char[]) {
-            checkRange((char[]) object, m);
-        } else if (object instanceof float[]) {
-            checkRange((float[]) object, m);
-        } else if (object instanceof double[]) {
-            checkRange((double[]) object, m);
-        } else if (object instanceof Integer[]) {
-            checkRange((Integer[]) object, m);
-        } else {
-            failed("Unknow type of array: " + object + " of class " +
-                object.getClass().getName());
-        }
-    }
-
-    private static void checkRange(Integer[] a, int m) {
-        try {
-            Arrays.sort(a, m + 1, m);
-
-            failed("Sort does not throw IllegalArgumentException " +
-                " as expected: fromIndex = " + (m + 1) +
-                " toIndex = " + m);
-        }
-        catch (IllegalArgumentException iae) {
-            try {
-                Arrays.sort(a, -m, a.length);
 
-                failed("Sort does not throw ArrayIndexOutOfBoundsException " +
-                    " as expected: fromIndex = " + (-m));
-            }
-            catch (ArrayIndexOutOfBoundsException aoe) {
-                try {
-                    Arrays.sort(a, 0, a.length + m);
-
-                    failed("Sort does not throw ArrayIndexOutOfBoundsException " +
-                        " as expected: toIndex = " + (a.length + m));
-                }
-                catch (ArrayIndexOutOfBoundsException aie) {
-                    return;
-                }
-            }
+        @Override
+        public String toString() {
+            return "(" + key + ", " + value + ")";
         }
-    }
-
-    private static void checkRange(int[] a, int m) {
-        try {
-            Arrays.sort(a, m + 1, m);
 
-            failed("Sort does not throw IllegalArgumentException " +
-                " as expected: fromIndex = " + (m + 1) +
-                " toIndex = " + m);
-        }
-        catch (IllegalArgumentException iae) {
-            try {
-                Arrays.sort(a, -m, a.length);
-
-                failed("Sort does not throw ArrayIndexOutOfBoundsException " +
-                    " as expected: fromIndex = " + (-m));
-            }
-            catch (ArrayIndexOutOfBoundsException aoe) {
-                try {
-                    Arrays.sort(a, 0, a.length + m);
-
-                    failed("Sort does not throw ArrayIndexOutOfBoundsException " +
-                        " as expected: toIndex = " + (a.length + m));
-                }
-                catch (ArrayIndexOutOfBoundsException aie) {
-                    return;
-                }
-            }
-        }
+        private int key;
+        private int value;
     }
 
-    private static void checkRange(long[] a, int m) {
-        try {
-            Arrays.sort(a, m + 1, m);
-
-            failed("Sort does not throw IllegalArgumentException " +
-                " as expected: fromIndex = " + (m + 1) +
-                " toIndex = " + m);
-        }
-        catch (IllegalArgumentException iae) {
-            try {
-                Arrays.sort(a, -m, a.length);
-
-                failed("Sort does not throw ArrayIndexOutOfBoundsException " +
-                    " as expected: fromIndex = " + (-m));
-            }
-            catch (ArrayIndexOutOfBoundsException aoe) {
-                try {
-                    Arrays.sort(a, 0, a.length + m);
-
-                    failed("Sort does not throw ArrayIndexOutOfBoundsException " +
-                        " as expected: toIndex = " + (a.length + m));
-                }
-                catch (ArrayIndexOutOfBoundsException aie) {
-                    return;
-                }
-            }
-        }
-    }
-
-    private static void checkRange(byte[] a, int m) {
-        try {
-            Arrays.sort(a, m + 1, m);
-
-            failed("Sort does not throw IllegalArgumentException " +
-                " as expected: fromIndex = " + (m + 1) +
-                " toIndex = " + m);
-        }
-        catch (IllegalArgumentException iae) {
-            try {
-                Arrays.sort(a, -m, a.length);
-
-                failed("Sort does not throw ArrayIndexOutOfBoundsException " +
-                    " as expected: fromIndex = " + (-m));
-            }
-            catch (ArrayIndexOutOfBoundsException aoe) {
-                try {
-                    Arrays.sort(a, 0, a.length + m);
-
-                    failed("Sort does not throw ArrayIndexOutOfBoundsException " +
-                        " as expected: toIndex = " + (a.length + m));
-                }
-                catch (ArrayIndexOutOfBoundsException aie) {
-                    return;
-                }
-            }
-        }
-    }
-
-    private static void checkRange(short[] a, int m) {
-        try {
-            Arrays.sort(a, m + 1, m);
-
-            failed("Sort does not throw IllegalArgumentException " +
-                " as expected: fromIndex = " + (m + 1) +
-                " toIndex = " + m);
-        }
-        catch (IllegalArgumentException iae) {
-            try {
-                Arrays.sort(a, -m, a.length);
-
-                failed("Sort does not throw ArrayIndexOutOfBoundsException " +
-                    " as expected: fromIndex = " + (-m));
-            }
-            catch (ArrayIndexOutOfBoundsException aoe) {
-                try {
-                    Arrays.sort(a, 0, a.length + m);
-
-                    failed("Sort does not throw ArrayIndexOutOfBoundsException " +
-                        " as expected: toIndex = " + (a.length + m));
-                }
-                catch (ArrayIndexOutOfBoundsException aie) {
-                    return;
-                }
-            }
-        }
-    }
-
-    private static void checkRange(char[] a, int m) {
-        try {
-            Arrays.sort(a, m + 1, m);
-
-            failed("Sort does not throw IllegalArgumentException " +
-                " as expected: fromIndex = " + (m + 1) +
-                " toIndex = " + m);
-        }
-        catch (IllegalArgumentException iae) {
-            try {
-                Arrays.sort(a, -m, a.length);
+    private static class TestRandom extends Random {
 
-                failed("Sort does not throw ArrayIndexOutOfBoundsException " +
-                    " as expected: fromIndex = " + (-m));
-            }
-            catch (ArrayIndexOutOfBoundsException aoe) {
-                try {
-                    Arrays.sort(a, 0, a.length + m);
-
-                    failed("Sort does not throw ArrayIndexOutOfBoundsException " +
-                        " as expected: toIndex = " + (a.length + m));
-                }
-                catch (ArrayIndexOutOfBoundsException aie) {
-                    return;
-                }
-            }
-        }
-    }
-
-    private static void checkRange(float[] a, int m) {
-        try {
-            Arrays.sort(a, m + 1, m);
-
-            failed("Sort does not throw IllegalArgumentException " +
-                " as expected: fromIndex = " + (m + 1) +
-                " toIndex = " + m);
-        }
-        catch (IllegalArgumentException iae) {
-            try {
-                Arrays.sort(a, -m, a.length);
-
-                failed("Sort does not throw ArrayIndexOutOfBoundsException " +
-                    " as expected: fromIndex = " + (-m));
-            }
-            catch (ArrayIndexOutOfBoundsException aoe) {
-                try {
-                    Arrays.sort(a, 0, a.length + m);
-
-                    failed("Sort does not throw ArrayIndexOutOfBoundsException " +
-                        " as expected: toIndex = " + (a.length + m));
-                }
-                catch (ArrayIndexOutOfBoundsException aie) {
-                    return;
-                }
-            }
-        }
-    }
-
-    private static void checkRange(double[] a, int m) {
-        try {
-            Arrays.sort(a, m + 1, m);
+        private static final TestRandom BABA = new TestRandom(0xBABA);
+        private static final TestRandom DEDA = new TestRandom(0xDEDA);
+        private static final TestRandom C0FFEE = new TestRandom(0xC0FFEE);
 
-            failed("Sort does not throw IllegalArgumentException " +
-                " as expected: fromIndex = " + (m + 1) +
-                " toIndex = " + m);
-        }
-        catch (IllegalArgumentException iae) {
-            try {
-                Arrays.sort(a, -m, a.length);
-
-                failed("Sort does not throw ArrayIndexOutOfBoundsException " +
-                    " as expected: fromIndex = " + (-m));
-            }
-            catch (ArrayIndexOutOfBoundsException aoe) {
-                try {
-                    Arrays.sort(a, 0, a.length + m);
-
-                    failed("Sort does not throw ArrayIndexOutOfBoundsException " +
-                        " as expected: toIndex = " + (a.length + m));
-                }
-                catch (ArrayIndexOutOfBoundsException aie) {
-                    return;
-                }
-            }
-        }
-    }
-
-    private static void outArray(Object[] a) {
-        for (int i = 0; i < a.length; i++) {
-            out.print(a[i] + " ");
-        }
-        out.println();
-    }
-
-    private static void outArray(int[] a) {
-        for (int i = 0; i < a.length; i++) {
-            out.print(a[i] + " ");
-        }
-        out.println();
-    }
-
-    private static void outArray(float[] a) {
-        for (int i = 0; i < a.length; i++) {
-            out.print(a[i] + " ");
-        }
-        out.println();
-    }
-
-    private static void outArray(double[] a) {
-        for (int i = 0; i < a.length; i++) {
-            out.print(a[i] + " ");
-        }
-        out.println();
-    }
-
-    private static class MyRandom extends Random {
-        MyRandom(long seed) {
+        private TestRandom(long seed) {
             super(seed);
-            mySeed = seed;
+            this.seed = Long.toHexString(seed).toUpperCase();
         }
 
-        long getSeed() {
-            return mySeed;
+        @Override
+        public String toString() {
+            return seed;
         }
 
-        private long mySeed;
+        private String seed;
     }
-
-    private static String ourDescription;
 }
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test/jdk/java/util/Arrays/java.base/java/util/SortingHelper.java	Tue Nov 12 13:49:40 2019 -0800
@@ -0,0 +1,352 @@
+/*
+ * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.util;
+
+/**
+ * This class provides access to package-private
+ * methods of DualPivotQuicksort class.
+ *
+ * @author Vladimir Yaroslavskiy
+ *
+ * @version 2019.09.19
+ *
+ * @since 14
+ */
+public enum SortingHelper {
+
+    DUAL_PIVOT_QUICKSORT("Dual-Pivot Quicksort") {
+
+        @Override
+        public void sort(Object a) {
+            if (a instanceof int[]) {
+                DualPivotQuicksort.sort((int[]) a, SEQUENTIAL, 0, ((int[]) a).length);
+            } else if (a instanceof long[]) {
+                DualPivotQuicksort.sort((long[]) a, SEQUENTIAL, 0, ((long[]) a).length);
+            } else if (a instanceof byte[]) {
+                DualPivotQuicksort.sort((byte[]) a, 0, ((byte[]) a).length);
+            } else if (a instanceof char[]) {
+                DualPivotQuicksort.sort((char[]) a, SEQUENTIAL, 0, ((char[]) a).length);
+            } else if (a instanceof short[]) {
+                DualPivotQuicksort.sort((short[]) a, SEQUENTIAL, 0, ((short[]) a).length);
+            } else if (a instanceof float[]) {
+                DualPivotQuicksort.sort((float[]) a, SEQUENTIAL, 0, ((float[]) a).length);
+            } else if (a instanceof double[]) {
+                DualPivotQuicksort.sort((double[]) a, SEQUENTIAL, 0, ((double[]) a).length);
+            } else {
+                fail(a);
+            }
+        }
+
+        @Override
+        public void sort(Object a, int low, int high) {
+            if (a instanceof int[]) {
+                DualPivotQuicksort.sort((int[]) a, SEQUENTIAL, low, high);
+            } else if (a instanceof long[]) {
+                DualPivotQuicksort.sort((long[]) a, SEQUENTIAL, low, high);
+            } else if (a instanceof byte[]) {
+                DualPivotQuicksort.sort((byte[]) a, low, high);
+            } else if (a instanceof char[]) {
+                DualPivotQuicksort.sort((char[]) a, SEQUENTIAL, low, high);
+            } else if (a instanceof short[]) {
+                DualPivotQuicksort.sort((short[]) a, SEQUENTIAL, low, high);
+            } else if (a instanceof float[]) {
+                DualPivotQuicksort.sort((float[]) a, SEQUENTIAL, low, high);
+            } else if (a instanceof double[]) {
+                DualPivotQuicksort.sort((double[]) a, SEQUENTIAL, low, high);
+            } else {
+                fail(a);
+            }
+        }
+
+        @Override
+        public void sort(Object[] a) {
+            fail(a);
+        }
+
+        @Override
+        public void sort(Object[] a, Comparator comparator) {
+            fail(a);
+        }
+    },
+
+    PARALLEL_SORT("Parallel sort") {
+
+        @Override
+        public void sort(Object a) {
+            if (a instanceof int[]) {
+                DualPivotQuicksort.sort((int[]) a, PARALLEL, 0, ((int[]) a).length);
+            } else if (a instanceof long[]) {
+                DualPivotQuicksort.sort((long[]) a, PARALLEL, 0, ((long[]) a).length);
+            } else if (a instanceof byte[]) {
+                DualPivotQuicksort.sort((byte[]) a, 0, ((byte[]) a).length);
+            } else if (a instanceof char[]) {
+                DualPivotQuicksort.sort((char[]) a, PARALLEL, 0, ((char[]) a).length);
+            } else if (a instanceof short[]) {
+                DualPivotQuicksort.sort((short[]) a, PARALLEL, 0, ((short[]) a).length);
+            } else if (a instanceof float[]) {
+                DualPivotQuicksort.sort((float[]) a, PARALLEL, 0, ((float[]) a).length);
+            } else if (a instanceof double[]) {
+                DualPivotQuicksort.sort((double[]) a, PARALLEL, 0, ((double[]) a).length);
+            } else {
+                fail(a);
+            }
+        }
+
+        @Override
+        public void sort(Object a, int low, int high) {
+            if (a instanceof int[]) {
+                DualPivotQuicksort.sort((int[]) a, PARALLEL, low, high);
+            } else if (a instanceof long[]) {
+                DualPivotQuicksort.sort((long[]) a, PARALLEL, low, high);
+            } else if (a instanceof byte[]) {
+                DualPivotQuicksort.sort((byte[]) a, low, high);
+            } else if (a instanceof char[]) {
+                DualPivotQuicksort.sort((char[]) a, PARALLEL, low, high);
+            } else if (a instanceof short[]) {
+                DualPivotQuicksort.sort((short[]) a, PARALLEL, low, high);
+            } else if (a instanceof float[]) {
+                DualPivotQuicksort.sort((float[]) a, PARALLEL, low, high);
+            } else if (a instanceof double[]) {
+                DualPivotQuicksort.sort((double[]) a, PARALLEL, low, high);
+            } else {
+                fail(a);
+            }
+        }
+
+        @Override
+        public void sort(Object[] a) {
+            fail(a);
+        }
+
+        @Override
+        public void sort(Object[] a, Comparator comparator) {
+            fail(a);
+        }
+    },
+
+    HEAP_SORT("Heap sort") {
+
+        @Override
+        public void sort(Object a) {
+            if (a instanceof int[]) {
+                DualPivotQuicksort.sort(null, (int[]) a, BIG_DEPTH, 0, ((int[]) a).length);
+            } else if (a instanceof long[]) {
+                DualPivotQuicksort.sort(null, (long[]) a, BIG_DEPTH, 0, ((long[]) a).length);
+            } else if (a instanceof byte[]) {
+                DualPivotQuicksort.sort((byte[]) a, 0, ((byte[]) a).length);
+            } else if (a instanceof char[]) {
+                DualPivotQuicksort.sort((char[]) a, BIG_DEPTH, 0, ((char[]) a).length);
+            } else if (a instanceof short[]) {
+                DualPivotQuicksort.sort((short[]) a, BIG_DEPTH, 0, ((short[]) a).length);
+            } else if (a instanceof float[]) {
+                DualPivotQuicksort.sort(null, (float[]) a, BIG_DEPTH, 0, ((float[]) a).length);
+            } else if (a instanceof double[]) {
+                DualPivotQuicksort.sort(null, (double[]) a, BIG_DEPTH, 0, ((double[]) a).length);
+            } else {
+                fail(a);
+            }
+        }
+
+        @Override
+        public void sort(Object a, int low, int high) {
+            if (a instanceof int[]) {
+                DualPivotQuicksort.sort(null, (int[]) a, BIG_DEPTH, low, high);
+            } else if (a instanceof long[]) {
+                DualPivotQuicksort.sort(null, (long[]) a, BIG_DEPTH, low, high);
+            } else if (a instanceof byte[]) {
+                DualPivotQuicksort.sort((byte[]) a, low, high);
+            } else if (a instanceof char[]) {
+                DualPivotQuicksort.sort((char[]) a, BIG_DEPTH, low, high);
+            } else if (a instanceof short[]) {
+                DualPivotQuicksort.sort((short[]) a, BIG_DEPTH, low, high);
+            } else if (a instanceof float[]) {
+                DualPivotQuicksort.sort(null, (float[]) a, BIG_DEPTH, low, high);
+            } else if (a instanceof double[]) {
+                DualPivotQuicksort.sort(null, (double[]) a, BIG_DEPTH, low, high);
+            } else {
+                fail(a);
+            }
+        }
+
+        @Override
+        public void sort(Object[] a) {
+            fail(a);
+        }
+
+        @Override
+        public void sort(Object[] a, Comparator comparator) {
+            fail(a);
+        }
+    },
+
+    ARRAYS_SORT("Arrays.sort") {
+
+        @Override
+        public void sort(Object a) {
+            if (a instanceof int[]) {
+                Arrays.sort((int[]) a);
+            } else if (a instanceof long[]) {
+                Arrays.sort((long[]) a);
+            } else if (a instanceof byte[]) {
+                Arrays.sort((byte[]) a);
+            } else if (a instanceof char[]) {
+                Arrays.sort((char[]) a);
+            } else if (a instanceof short[]) {
+                Arrays.sort((short[]) a);
+            } else if (a instanceof float[]) {
+                Arrays.sort((float[]) a);
+            } else if (a instanceof double[]) {
+                Arrays.sort((double[]) a);
+            } else {
+                fail(a);
+            }
+        }
+
+        @Override
+        public void sort(Object a, int low, int high) {
+            if (a instanceof int[]) {
+                Arrays.sort((int[]) a, low, high);
+            } else if (a instanceof long[]) {
+                Arrays.sort((long[]) a, low, high);
+            } else if (a instanceof byte[]) {
+                Arrays.sort((byte[]) a, low, high);
+            } else if (a instanceof char[]) {
+                Arrays.sort((char[]) a, low, high);
+            } else if (a instanceof short[]) {
+                Arrays.sort((short[]) a, low, high);
+            } else if (a instanceof float[]) {
+                Arrays.sort((float[]) a, low, high);
+            } else if (a instanceof double[]) {
+                Arrays.sort((double[]) a, low, high);
+            } else {
+                fail(a);
+            }
+        }
+
+        @Override
+        public void sort(Object[] a) {
+            Arrays.sort(a);
+        }
+
+        @Override
+        @SuppressWarnings("unchecked")
+        public void sort(Object[] a, Comparator comparator) {
+            Arrays.sort(a, comparator);
+        }
+    },
+
+    ARRAYS_PARALLEL_SORT("Arrays.parallelSort") {
+
+        @Override
+        public void sort(Object a) {
+            if (a instanceof int[]) {
+                Arrays.parallelSort((int[]) a);
+            } else if (a instanceof long[]) {
+                Arrays.parallelSort((long[]) a);
+            } else if (a instanceof byte[]) {
+                Arrays.parallelSort((byte[]) a);
+            } else if (a instanceof char[]) {
+                Arrays.parallelSort((char[]) a);
+            } else if (a instanceof short[]) {
+                Arrays.parallelSort((short[]) a);
+            } else if (a instanceof float[]) {
+                Arrays.parallelSort((float[]) a);
+            } else if (a instanceof double[]) {
+                Arrays.parallelSort((double[]) a);
+            } else {
+                fail(a);
+            }
+        }
+
+        @Override
+        public void sort(Object a, int low, int high) {
+            if (a instanceof int[]) {
+                Arrays.parallelSort((int[]) a, low, high);
+            } else if (a instanceof long[]) {
+                Arrays.parallelSort((long[]) a, low, high);
+            } else if (a instanceof byte[]) {
+                Arrays.parallelSort((byte[]) a, low, high);
+            } else if (a instanceof char[]) {
+                Arrays.parallelSort((char[]) a, low, high);
+            } else if (a instanceof short[]) {
+                Arrays.parallelSort((short[]) a, low, high);
+            } else if (a instanceof float[]) {
+                Arrays.parallelSort((float[]) a, low, high);
+            } else if (a instanceof double[]) {
+                Arrays.parallelSort((double[]) a, low, high);
+            } else {
+                fail(a);
+            }
+        }
+
+        @Override
+        @SuppressWarnings("unchecked")
+        public void sort(Object[] a) {
+            Arrays.parallelSort((Comparable[]) a);
+        }
+
+        @Override
+        @SuppressWarnings("unchecked")
+        public void sort(Object[] a, Comparator comparator) {
+            Arrays.parallelSort(a, comparator);
+        }
+    };
+
+    abstract public void sort(Object a);
+
+    abstract public void sort(Object a, int low, int high);
+
+    abstract public void sort(Object[] a);
+
+    abstract public void sort(Object[] a, Comparator comparator);
+
+    private SortingHelper(String name) {
+        this.name = name;
+    }
+
+    @Override
+    public String toString() {
+        return name;
+    }
+
+    private static void fail(Object a) {
+        throw new RuntimeException("Unexpected type of array: " + a.getClass().getName());
+    }
+
+    private String name;
+
+    /**
+     * Parallelism level for sequential and parallel sorting.
+     */
+    private static final int SEQUENTIAL = 0;
+    private static final int PARALLEL = 87;
+
+    /**
+     * Heap sort will be invoked, if recursion depth is too big.
+     * Value is taken from DualPivotQuicksort.MAX_RECURSION_DEPTH.
+     */
+    private static final int BIG_DEPTH = 64 * (3 << 1);
+}