/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/decoder.hpp"
#include "services/memBaseline.hpp"
#include "services/memPtr.hpp"
#include "services/memPtrArray.hpp"
#include "services/memSnapshot.hpp"
#include "services/memTracker.hpp"
#ifdef ASSERT
void decode_pointer_record(MemPointerRecord* rec) {
tty->print("Pointer: [" PTR_FORMAT " - " PTR_FORMAT "] size = %d bytes", rec->addr(),
rec->addr() + rec->size(), (int)rec->size());
tty->print(" type = %s", MemBaseline::type2name(FLAGS_TO_MEMORY_TYPE(rec->flags())));
if (rec->is_vm_pointer()) {
if (rec->is_allocation_record()) {
tty->print_cr(" (reserve)");
} else if (rec->is_commit_record()) {
tty->print_cr(" (commit)");
} else if (rec->is_uncommit_record()) {
tty->print_cr(" (uncommit)");
} else if (rec->is_deallocation_record()) {
tty->print_cr(" (release)");
} else {
tty->print_cr(" (tag)");
}
} else {
if (rec->is_arena_memory_record()) {
tty->print_cr(" (arena size)");
} else if (rec->is_allocation_record()) {
tty->print_cr(" (malloc)");
} else {
tty->print_cr(" (free)");
}
}
if (MemTracker::track_callsite()) {
char buf[1024];
address pc = ((MemPointerRecordEx*)rec)->pc();
if (pc != NULL && os::dll_address_to_function_name(pc, buf, sizeof(buf), NULL)) {
tty->print_cr("\tfrom %s", buf);
} else {
tty->print_cr("\tcould not decode pc = " PTR_FORMAT "", pc);
}
}
}
void decode_vm_region_record(VMMemRegion* rec) {
tty->print("VM Region [" PTR_FORMAT " - " PTR_FORMAT "]", rec->addr(),
rec->addr() + rec->size());
tty->print(" type = %s", MemBaseline::type2name(FLAGS_TO_MEMORY_TYPE(rec->flags())));
if (rec->is_allocation_record()) {
tty->print_cr(" (reserved)");
} else if (rec->is_commit_record()) {
tty->print_cr(" (committed)");
} else {
ShouldNotReachHere();
}
if (MemTracker::track_callsite()) {
char buf[1024];
address pc = ((VMMemRegionEx*)rec)->pc();
if (pc != NULL && os::dll_address_to_function_name(pc, buf, sizeof(buf), NULL)) {
tty->print_cr("\tfrom %s", buf);
} else {
tty->print_cr("\tcould not decode pc = " PTR_FORMAT "", pc);
}
}
}
#endif
bool VMMemPointerIterator::insert_record(MemPointerRecord* rec) {
VMMemRegionEx new_rec;
assert(rec->is_allocation_record() || rec->is_commit_record(),
"Sanity check");
if (MemTracker::track_callsite()) {
new_rec.init((MemPointerRecordEx*)rec);
} else {
new_rec.init(rec);
}
return insert(&new_rec);
}
bool VMMemPointerIterator::insert_record_after(MemPointerRecord* rec) {
VMMemRegionEx new_rec;
assert(rec->is_allocation_record() || rec->is_commit_record(),
"Sanity check");
if (MemTracker::track_callsite()) {
new_rec.init((MemPointerRecordEx*)rec);
} else {
new_rec.init(rec);
}
return insert_after(&new_rec);
}
// we don't consolidate reserved regions, since they may be categorized
// in different types.
bool VMMemPointerIterator::add_reserved_region(MemPointerRecord* rec) {
assert(rec->is_allocation_record(), "Sanity check");
VMMemRegion* reserved_region = (VMMemRegion*)current();
// we don't have anything yet
if (reserved_region == NULL) {
return insert_record(rec);
}
assert(reserved_region->is_reserved_region(), "Sanity check");
// duplicated records
if (reserved_region->is_same_region(rec)) {
return true;
}
// Overlapping stack regions indicate that a JNI thread failed to
// detach from the VM before exiting. This leaks the JavaThread object.
if (CheckJNICalls) {
guarantee(FLAGS_TO_MEMORY_TYPE(reserved_region->flags()) != mtThreadStack ||
!reserved_region->overlaps_region(rec),
"Attached JNI thread exited without being detached");
}
// otherwise, we should not have overlapping reserved regions
assert(FLAGS_TO_MEMORY_TYPE(reserved_region->flags()) == mtThreadStack ||
reserved_region->base() > rec->addr(), "Just check: locate()");
assert(FLAGS_TO_MEMORY_TYPE(reserved_region->flags()) == mtThreadStack ||
!reserved_region->overlaps_region(rec), "overlapping reserved regions");
return insert_record(rec);
}
// we do consolidate committed regions
bool VMMemPointerIterator::add_committed_region(MemPointerRecord* rec) {
assert(rec->is_commit_record(), "Sanity check");
VMMemRegion* reserved_rgn = (VMMemRegion*)current();
assert(reserved_rgn->is_reserved_region() && reserved_rgn->contains_region(rec),
"Sanity check");
// thread's native stack is always marked as "committed", ignore
// the "commit" operation for creating stack guard pages
if (FLAGS_TO_MEMORY_TYPE(reserved_rgn->flags()) == mtThreadStack &&
FLAGS_TO_MEMORY_TYPE(rec->flags()) != mtThreadStack) {
return true;
}
// if the reserved region has any committed regions
VMMemRegion* committed_rgn = (VMMemRegion*)next();
while (committed_rgn != NULL && committed_rgn->is_committed_region()) {
// duplicated commit records
if(committed_rgn->contains_region(rec)) {
return true;
} else if (committed_rgn->overlaps_region(rec)) {
// overlaps front part
if (rec->addr() < committed_rgn->addr()) {
committed_rgn->expand_region(rec->addr(),
committed_rgn->addr() - rec->addr());
} else {
// overlaps tail part
address committed_rgn_end = committed_rgn->addr() +
committed_rgn->size();
assert(committed_rgn_end < rec->addr() + rec->size(),
"overlap tail part");
committed_rgn->expand_region(committed_rgn_end,
(rec->addr() + rec->size()) - committed_rgn_end);
}
} else if (committed_rgn->base() + committed_rgn->size() == rec->addr()) {
// adjunct each other
committed_rgn->expand_region(rec->addr(), rec->size());
VMMemRegion* next_reg = (VMMemRegion*)next();
// see if we can consolidate next committed region
if (next_reg != NULL && next_reg->is_committed_region() &&
next_reg->base() == committed_rgn->base() + committed_rgn->size()) {
committed_rgn->expand_region(next_reg->base(), next_reg->size());
// delete merged region
remove();
}
return true;
} else if (committed_rgn->base() > rec->addr()) {
// found the location, insert this committed region
return insert_record(rec);
}
committed_rgn = (VMMemRegion*)next();
}
return insert_record(rec);
}
bool VMMemPointerIterator::remove_uncommitted_region(MemPointerRecord* rec) {
assert(rec->is_uncommit_record(), "sanity check");
VMMemRegion* cur;
cur = (VMMemRegion*)current();
assert(cur->is_reserved_region() && cur->contains_region(rec),
"Sanity check");
// thread's native stack is always marked as "committed", ignore
// the "commit" operation for creating stack guard pages
if (FLAGS_TO_MEMORY_TYPE(cur->flags()) == mtThreadStack &&
FLAGS_TO_MEMORY_TYPE(rec->flags()) != mtThreadStack) {
return true;
}
cur = (VMMemRegion*)next();
while (cur != NULL && cur->is_committed_region()) {
// region already uncommitted, must be due to duplicated record
if (cur->addr() >= rec->addr() + rec->size()) {
break;
} else if (cur->contains_region(rec)) {
// uncommit whole region
if (cur->is_same_region(rec)) {
remove();
break;
} else if (rec->addr() == cur->addr() ||
rec->addr() + rec->size() == cur->addr() + cur->size()) {
// uncommitted from either end of current memory region.
cur->exclude_region(rec->addr(), rec->size());
break;
} else { // split the committed region and release the middle
address high_addr = cur->addr() + cur->size();
size_t sz = high_addr - rec->addr();
cur->exclude_region(rec->addr(), sz);
sz = high_addr - (rec->addr() + rec->size());
if (MemTracker::track_callsite()) {
MemPointerRecordEx tmp(rec->addr() + rec->size(), cur->flags(), sz,
((VMMemRegionEx*)cur)->pc());
return insert_record_after(&tmp);
} else {
MemPointerRecord tmp(rec->addr() + rec->size(), cur->flags(), sz);
return insert_record_after(&tmp);
}
}
}
cur = (VMMemRegion*)next();
}
// we may not find committed record due to duplicated records
return true;
}
bool VMMemPointerIterator::remove_released_region(MemPointerRecord* rec) {
assert(rec->is_deallocation_record(), "Sanity check");
VMMemRegion* cur = (VMMemRegion*)current();
assert(cur->is_reserved_region() && cur->contains_region(rec),
"Sanity check");
if (rec->is_same_region(cur)) {
// release whole reserved region
#ifdef ASSERT
VMMemRegion* next_region = (VMMemRegion*)peek_next();
// should not have any committed memory in this reserved region
assert(next_region == NULL || !next_region->is_committed_region(), "Sanity check");
#endif
remove();
} else if (rec->addr() == cur->addr() ||
rec->addr() + rec->size() == cur->addr() + cur->size()) {
// released region is at either end of this region
cur->exclude_region(rec->addr(), rec->size());
assert(check_reserved_region(), "Integrity check");
} else { // split the reserved region and release the middle
address high_addr = cur->addr() + cur->size();
size_t sz = high_addr - rec->addr();
cur->exclude_region(rec->addr(), sz);
sz = high_addr - rec->addr() - rec->size();
if (MemTracker::track_callsite()) {
MemPointerRecordEx tmp(rec->addr() + rec->size(), cur->flags(), sz,
((VMMemRegionEx*)cur)->pc());
bool ret = insert_reserved_region(&tmp);
assert(!ret || check_reserved_region(), "Integrity check");
return ret;
} else {
MemPointerRecord tmp(rec->addr() + rec->size(), cur->flags(), sz);
bool ret = insert_reserved_region(&tmp);
assert(!ret || check_reserved_region(), "Integrity check");
return ret;
}
}
return true;
}
bool VMMemPointerIterator::insert_reserved_region(MemPointerRecord* rec) {
// skip all 'commit' records associated with previous reserved region
VMMemRegion* p = (VMMemRegion*)next();
while (p != NULL && p->is_committed_region() &&
p->base() + p->size() < rec->addr()) {
p = (VMMemRegion*)next();
}
return insert_record(rec);
}
bool VMMemPointerIterator::split_reserved_region(VMMemRegion* rgn, address new_rgn_addr, size_t new_rgn_size) {
assert(rgn->contains_region(new_rgn_addr, new_rgn_size), "Not fully contained");
address pc = (MemTracker::track_callsite() ? ((VMMemRegionEx*)rgn)->pc() : NULL);
if (rgn->base() == new_rgn_addr) { // new region is at the beginning of the region
size_t sz = rgn->size() - new_rgn_size;
// the original region becomes 'new' region
rgn->exclude_region(new_rgn_addr + new_rgn_size, sz);
// remaining becomes next region
MemPointerRecordEx next_rgn(new_rgn_addr + new_rgn_size, rgn->flags(), sz, pc);
return insert_reserved_region(&next_rgn);
} else if (rgn->base() + rgn->size() == new_rgn_addr + new_rgn_size) {
rgn->exclude_region(new_rgn_addr, new_rgn_size);
MemPointerRecordEx next_rgn(new_rgn_addr, rgn->flags(), new_rgn_size, pc);
return insert_reserved_region(&next_rgn);
} else {
// the orginal region will be split into three
address rgn_high_addr = rgn->base() + rgn->size();
// first region
rgn->exclude_region(new_rgn_addr, (rgn_high_addr - new_rgn_addr));
// the second region is the new region
MemPointerRecordEx new_rgn(new_rgn_addr, rgn->flags(), new_rgn_size, pc);
if (!insert_reserved_region(&new_rgn)) return false;
// the remaining region
MemPointerRecordEx rem_rgn(new_rgn_addr + new_rgn_size, rgn->flags(),
rgn_high_addr - (new_rgn_addr + new_rgn_size), pc);
return insert_reserved_region(&rem_rgn);
}
}
static int sort_in_seq_order(const void* p1, const void* p2) {
assert(p1 != NULL && p2 != NULL, "Sanity check");
const MemPointerRecord* mp1 = (MemPointerRecord*)p1;
const MemPointerRecord* mp2 = (MemPointerRecord*)p2;
return (mp1->seq() - mp2->seq());
}
bool StagingArea::init() {
if (MemTracker::track_callsite()) {
_malloc_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecordEx>();
_vm_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecordEx>();
} else {
_malloc_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecord>();
_vm_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecord>();
}
if (_malloc_data != NULL && _vm_data != NULL &&
!_malloc_data->out_of_memory() &&
!_vm_data->out_of_memory()) {
return true;
} else {
if (_malloc_data != NULL) delete _malloc_data;
if (_vm_data != NULL) delete _vm_data;
_malloc_data = NULL;
_vm_data = NULL;
return false;
}
}
VMRecordIterator StagingArea::virtual_memory_record_walker() {
MemPointerArray* arr = vm_data();
// sort into seq number order
arr->sort((FN_SORT)sort_in_seq_order);
return VMRecordIterator(arr);
}
MemSnapshot::MemSnapshot() {
if (MemTracker::track_callsite()) {
_alloc_ptrs = new (std::nothrow) MemPointerArrayImpl<MemPointerRecordEx>();
_vm_ptrs = new (std::nothrow)MemPointerArrayImpl<VMMemRegionEx>(64, true);
} else {
_alloc_ptrs = new (std::nothrow) MemPointerArrayImpl<MemPointerRecord>();
_vm_ptrs = new (std::nothrow)MemPointerArrayImpl<VMMemRegion>(64, true);
}
_staging_area.init();
_lock = new (std::nothrow) Mutex(Monitor::max_nonleaf - 1, "memSnapshotLock");
NOT_PRODUCT(_untracked_count = 0;)
_number_of_classes = 0;
}
MemSnapshot::~MemSnapshot() {
assert(MemTracker::shutdown_in_progress(), "native memory tracking still on");
{
MutexLockerEx locker(_lock);
if (_alloc_ptrs != NULL) {
delete _alloc_ptrs;
_alloc_ptrs = NULL;
}
if (_vm_ptrs != NULL) {
delete _vm_ptrs;
_vm_ptrs = NULL;
}
}
if (_lock != NULL) {
delete _lock;
_lock = NULL;
}
}
void MemSnapshot::copy_seq_pointer(MemPointerRecord* dest, const MemPointerRecord* src) {
assert(dest != NULL && src != NULL, "Just check");
assert(dest->addr() == src->addr(), "Just check");
assert(dest->seq() > 0 && src->seq() > 0, "not sequenced");
if (MemTracker::track_callsite()) {
*(SeqMemPointerRecordEx*)dest = *(SeqMemPointerRecordEx*)src;
} else {
*(SeqMemPointerRecord*)dest = *(SeqMemPointerRecord*)src;
}
}
void MemSnapshot::assign_pointer(MemPointerRecord*dest, const MemPointerRecord* src) {
assert(src != NULL && dest != NULL, "Just check");
assert(dest->seq() == 0 && src->seq() >0, "cast away sequence");
if (MemTracker::track_callsite()) {
*(MemPointerRecordEx*)dest = *(MemPointerRecordEx*)src;
} else {
*(MemPointerRecord*)dest = *(MemPointerRecord*)src;
}
}
// merge a recorder to the staging area
bool MemSnapshot::merge(MemRecorder* rec) {
assert(rec != NULL && !rec->out_of_memory(), "Just check");
SequencedRecordIterator itr(rec->pointer_itr());
MutexLockerEx lock(_lock, true);
MemPointerIterator malloc_staging_itr(_staging_area.malloc_data());
MemPointerRecord* incoming_rec = (MemPointerRecord*) itr.current();
MemPointerRecord* matched_rec;
while (incoming_rec != NULL) {
if (incoming_rec->is_vm_pointer()) {
// we don't do anything with virtual memory records during merge
if (!_staging_area.vm_data()->append(incoming_rec)) {
return false;
}
} else {
// locate matched record and/or also position the iterator to proper
// location for this incoming record.
matched_rec = (MemPointerRecord*)malloc_staging_itr.locate(incoming_rec->addr());
// we have not seen this memory block in this generation,
// so just add to staging area
if (matched_rec == NULL) {
if (!malloc_staging_itr.insert(incoming_rec)) {
return false;
}
} else if (incoming_rec->addr() == matched_rec->addr()) {
// whoever has higher sequence number wins
if (incoming_rec->seq() > matched_rec->seq()) {
copy_seq_pointer(matched_rec, incoming_rec);
}
} else if (incoming_rec->addr() < matched_rec->addr()) {
if (!malloc_staging_itr.insert(incoming_rec)) {
return false;
}
} else {
ShouldNotReachHere();
}
}
incoming_rec = (MemPointerRecord*)itr.next();
}
NOT_PRODUCT(void check_staging_data();)
return true;
}
// promote data to next generation
bool MemSnapshot::promote(int number_of_classes) {
assert(_alloc_ptrs != NULL && _vm_ptrs != NULL, "Just check");
assert(_staging_area.malloc_data() != NULL && _staging_area.vm_data() != NULL,
"Just check");
MutexLockerEx lock(_lock, true);
MallocRecordIterator malloc_itr = _staging_area.malloc_record_walker();
bool promoted = false;
if (promote_malloc_records(&malloc_itr)) {
VMRecordIterator vm_itr = _staging_area.virtual_memory_record_walker();
if (promote_virtual_memory_records(&vm_itr)) {
promoted = true;
}
}
NOT_PRODUCT(check_malloc_pointers();)
_staging_area.clear();
_number_of_classes = number_of_classes;
return promoted;
}
bool MemSnapshot::promote_malloc_records(MemPointerArrayIterator* itr) {
MemPointerIterator malloc_snapshot_itr(_alloc_ptrs);
MemPointerRecord* new_rec = (MemPointerRecord*)itr->current();
MemPointerRecord* matched_rec;
while (new_rec != NULL) {
matched_rec = (MemPointerRecord*)malloc_snapshot_itr.locate(new_rec->addr());
// found matched memory block
if (matched_rec != NULL && new_rec->addr() == matched_rec->addr()) {
// snapshot already contains 'live' records
assert(matched_rec->is_allocation_record() || matched_rec->is_arena_memory_record(),
"Sanity check");
// update block states
if (new_rec->is_allocation_record()) {
assign_pointer(matched_rec, new_rec);
} else if (new_rec->is_arena_memory_record()) {
if (new_rec->size() == 0) {
// remove size record once size drops to 0
malloc_snapshot_itr.remove();
} else {
assign_pointer(matched_rec, new_rec);
}
} else {
// a deallocation record
assert(new_rec->is_deallocation_record(), "Sanity check");
// an arena record can be followed by a size record, we need to remove both
if (matched_rec->is_arena_record()) {
MemPointerRecord* next = (MemPointerRecord*)malloc_snapshot_itr.peek_next();
if (next != NULL && next->is_arena_memory_record() &&
next->is_memory_record_of_arena(matched_rec)) {
malloc_snapshot_itr.remove();
}
}
// the memory is deallocated, remove related record(s)
malloc_snapshot_itr.remove();
}
} else {
// don't insert size 0 record
if (new_rec->is_arena_memory_record() && new_rec->size() == 0) {
new_rec = NULL;
}
if (new_rec != NULL) {
if (new_rec->is_allocation_record() || new_rec->is_arena_memory_record()) {
if (matched_rec != NULL && new_rec->addr() > matched_rec->addr()) {
if (!malloc_snapshot_itr.insert_after(new_rec)) {
return false;
}
} else {
if (!malloc_snapshot_itr.insert(new_rec)) {
return false;
}
}
}
#ifndef PRODUCT
else if (!has_allocation_record(new_rec->addr())) {
// NMT can not track some startup memory, which is allocated before NMT is on
_untracked_count ++;
}
#endif
}
}
new_rec = (MemPointerRecord*)itr->next();
}
return true;
}
bool MemSnapshot::promote_virtual_memory_records(MemPointerArrayIterator* itr) {
VMMemPointerIterator vm_snapshot_itr(_vm_ptrs);
MemPointerRecord* new_rec = (MemPointerRecord*)itr->current();
VMMemRegion* reserved_rec;
while (new_rec != NULL) {
assert(new_rec->is_vm_pointer(), "Sanity check");
// locate a reserved region that contains the specified address, or
// the nearest reserved region has base address just above the specified
// address
reserved_rec = (VMMemRegion*)vm_snapshot_itr.locate(new_rec->addr());
if (reserved_rec != NULL && reserved_rec->contains_region(new_rec)) {
// snapshot can only have 'live' records
assert(reserved_rec->is_reserved_region(), "Sanity check");
if (new_rec->is_allocation_record()) {
if (!reserved_rec->is_same_region(new_rec)) {
// only deal with split a bigger reserved region into smaller regions.
// So far, CDS is the only use case.
if (!vm_snapshot_itr.split_reserved_region(reserved_rec, new_rec->addr(), new_rec->size())) {
return false;
}
}
} else if (new_rec->is_uncommit_record()) {
if (!vm_snapshot_itr.remove_uncommitted_region(new_rec)) {
return false;
}
} else if (new_rec->is_commit_record()) {
// insert or expand existing committed region to cover this
// newly committed region
if (!vm_snapshot_itr.add_committed_region(new_rec)) {
return false;
}
} else if (new_rec->is_deallocation_record()) {
// release part or all memory region
if (!vm_snapshot_itr.remove_released_region(new_rec)) {
return false;
}
} else if (new_rec->is_type_tagging_record()) {
// tag this reserved virtual memory range to a memory type. Can not re-tag a memory range
// to different type.
assert(FLAGS_TO_MEMORY_TYPE(reserved_rec->flags()) == mtNone ||
FLAGS_TO_MEMORY_TYPE(reserved_rec->flags()) == FLAGS_TO_MEMORY_TYPE(new_rec->flags()),
"Sanity check");
reserved_rec->tag(new_rec->flags());
} else {
ShouldNotReachHere();
}
} else {
/*
* The assertion failure indicates mis-matched virtual memory records. The likely
* scenario is, that some virtual memory operations are not going through os::xxxx_memory()
* api, which have to be tracked manually. (perfMemory is an example).
*/
assert(new_rec->is_allocation_record(), "Sanity check");
if (!vm_snapshot_itr.add_reserved_region(new_rec)) {
return false;
}
}
new_rec = (MemPointerRecord*)itr->next();
}
return true;
}
#ifndef PRODUCT
void MemSnapshot::print_snapshot_stats(outputStream* st) {
st->print_cr("Snapshot:");
st->print_cr("\tMalloced: %d/%d [%5.2f%%] %dKB", _alloc_ptrs->length(), _alloc_ptrs->capacity(),
(100.0 * (float)_alloc_ptrs->length()) / (float)_alloc_ptrs->capacity(), _alloc_ptrs->instance_size()/K);
st->print_cr("\tVM: %d/%d [%5.2f%%] %dKB", _vm_ptrs->length(), _vm_ptrs->capacity(),
(100.0 * (float)_vm_ptrs->length()) / (float)_vm_ptrs->capacity(), _vm_ptrs->instance_size()/K);
st->print_cr("\tMalloc staging Area: %d/%d [%5.2f%%] %dKB", _staging_area.malloc_data()->length(),
_staging_area.malloc_data()->capacity(),
(100.0 * (float)_staging_area.malloc_data()->length()) / (float)_staging_area.malloc_data()->capacity(),
_staging_area.malloc_data()->instance_size()/K);
st->print_cr("\tVirtual memory staging Area: %d/%d [%5.2f%%] %dKB", _staging_area.vm_data()->length(),
_staging_area.vm_data()->capacity(),
(100.0 * (float)_staging_area.vm_data()->length()) / (float)_staging_area.vm_data()->capacity(),
_staging_area.vm_data()->instance_size()/K);
st->print_cr("\tUntracked allocation: %d", _untracked_count);
}
void MemSnapshot::check_malloc_pointers() {
MemPointerArrayIteratorImpl mItr(_alloc_ptrs);
MemPointerRecord* p = (MemPointerRecord*)mItr.current();
MemPointerRecord* prev = NULL;
while (p != NULL) {
if (prev != NULL) {
assert(p->addr() >= prev->addr(), "sorting order");
}
prev = p;
p = (MemPointerRecord*)mItr.next();
}
}
bool MemSnapshot::has_allocation_record(address addr) {
MemPointerArrayIteratorImpl itr(_staging_area.malloc_data());
MemPointerRecord* cur = (MemPointerRecord*)itr.current();
while (cur != NULL) {
if (cur->addr() == addr && cur->is_allocation_record()) {
return true;
}
cur = (MemPointerRecord*)itr.next();
}
return false;
}
#endif // PRODUCT
#ifdef ASSERT
void MemSnapshot::check_staging_data() {
MemPointerArrayIteratorImpl itr(_staging_area.malloc_data());
MemPointerRecord* cur = (MemPointerRecord*)itr.current();
MemPointerRecord* next = (MemPointerRecord*)itr.next();
while (next != NULL) {
assert((next->addr() > cur->addr()) ||
((next->flags() & MemPointerRecord::tag_masks) >
(cur->flags() & MemPointerRecord::tag_masks)),
"sorting order");
cur = next;
next = (MemPointerRecord*)itr.next();
}
MemPointerArrayIteratorImpl vm_itr(_staging_area.vm_data());
cur = (MemPointerRecord*)vm_itr.current();
while (cur != NULL) {
assert(cur->is_vm_pointer(), "virtual memory pointer only");
cur = (MemPointerRecord*)vm_itr.next();
}
}
void MemSnapshot::dump_all_vm_pointers() {
MemPointerArrayIteratorImpl itr(_vm_ptrs);
VMMemRegion* ptr = (VMMemRegion*)itr.current();
tty->print_cr("dump virtual memory pointers:");
while (ptr != NULL) {
if (ptr->is_committed_region()) {
tty->print("\t");
}
tty->print("[" PTR_FORMAT " - " PTR_FORMAT "] [%x]", ptr->addr(),
(ptr->addr() + ptr->size()), ptr->flags());
if (MemTracker::track_callsite()) {
VMMemRegionEx* ex = (VMMemRegionEx*)ptr;
if (ex->pc() != NULL) {
char buf[1024];
if (os::dll_address_to_function_name(ex->pc(), buf, sizeof(buf), NULL)) {
tty->print_cr("\t%s", buf);
} else {
tty->print_cr("");
}
}
}
ptr = (VMMemRegion*)itr.next();
}
tty->flush();
}
#endif // ASSERT