/*
* Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_assembler.cpp.incl"
// Implementation of AbstractAssembler
//
// The AbstractAssembler is generating code into a CodeBuffer. To make code generation faster,
// the assembler keeps a copy of the code buffers boundaries & modifies them when
// emitting bytes rather than using the code buffers accessor functions all the time.
// The code buffer is updated via set_code_end(...) after emitting a whole instruction.
AbstractAssembler::AbstractAssembler(CodeBuffer* code) {
if (code == NULL) return;
CodeSection* cs = code->insts();
cs->clear_mark(); // new assembler kills old mark
_code_section = cs;
_code_begin = cs->start();
_code_limit = cs->limit();
_code_pos = cs->end();
_oop_recorder= code->oop_recorder();
if (_code_begin == NULL) {
vm_exit_out_of_memory(0, err_msg("CodeCache: no room for %s",
code->name()));
}
}
void AbstractAssembler::set_code_section(CodeSection* cs) {
assert(cs->outer() == code_section()->outer(), "sanity");
assert(cs->is_allocated(), "need to pre-allocate this section");
cs->clear_mark(); // new assembly into this section kills old mark
_code_section = cs;
_code_begin = cs->start();
_code_limit = cs->limit();
_code_pos = cs->end();
}
// Inform CodeBuffer that incoming code and relocation will be for stubs
address AbstractAssembler::start_a_stub(int required_space) {
CodeBuffer* cb = code();
CodeSection* cs = cb->stubs();
assert(_code_section == cb->insts(), "not in insts?");
sync();
if (cs->maybe_expand_to_ensure_remaining(required_space)
&& cb->blob() == NULL) {
return NULL;
}
set_code_section(cs);
return pc();
}
// Inform CodeBuffer that incoming code and relocation will be code
// Should not be called if start_a_stub() returned NULL
void AbstractAssembler::end_a_stub() {
assert(_code_section == code()->stubs(), "not in stubs?");
sync();
set_code_section(code()->insts());
}
// Inform CodeBuffer that incoming code and relocation will be for stubs
address AbstractAssembler::start_a_const(int required_space, int required_align) {
CodeBuffer* cb = code();
CodeSection* cs = cb->consts();
assert(_code_section == cb->insts(), "not in insts?");
sync();
address end = cs->end();
int pad = -(intptr_t)end & (required_align-1);
if (cs->maybe_expand_to_ensure_remaining(pad + required_space)) {
if (cb->blob() == NULL) return NULL;
end = cs->end(); // refresh pointer
}
if (pad > 0) {
while (--pad >= 0) { *end++ = 0; }
cs->set_end(end);
}
set_code_section(cs);
return end;
}
// Inform CodeBuffer that incoming code and relocation will be code
// Should not be called if start_a_const() returned NULL
void AbstractAssembler::end_a_const() {
assert(_code_section == code()->consts(), "not in consts?");
sync();
set_code_section(code()->insts());
}
void AbstractAssembler::flush() {
sync();
ICache::invalidate_range(addr_at(0), offset());
}
void AbstractAssembler::a_byte(int x) {
emit_byte(x);
}
void AbstractAssembler::a_long(jint x) {
emit_long(x);
}
// Labels refer to positions in the (to be) generated code. There are bound
// and unbound
//
// Bound labels refer to known positions in the already generated code.
// offset() is the position the label refers to.
//
// Unbound labels refer to unknown positions in the code to be generated; it
// may contain a list of unresolved displacements that refer to it
#ifndef PRODUCT
void AbstractAssembler::print(Label& L) {
if (L.is_bound()) {
tty->print_cr("bound label to %d|%d", L.loc_pos(), L.loc_sect());
} else if (L.is_unbound()) {
L.print_instructions((MacroAssembler*)this);
} else {
tty->print_cr("label in inconsistent state (loc = %d)", L.loc());
}
}
#endif // PRODUCT
void AbstractAssembler::bind(Label& L) {
if (L.is_bound()) {
// Assembler can bind a label more than once to the same place.
guarantee(L.loc() == locator(), "attempt to redefine label");
return;
}
L.bind_loc(locator());
L.patch_instructions((MacroAssembler*)this);
}
void AbstractAssembler::generate_stack_overflow_check( int frame_size_in_bytes) {
if (UseStackBanging) {
// Each code entry causes one stack bang n pages down the stack where n
// is configurable by StackBangPages. The setting depends on the maximum
// depth of VM call stack or native before going back into java code,
// since only java code can raise a stack overflow exception using the
// stack banging mechanism. The VM and native code does not detect stack
// overflow.
// The code in JavaCalls::call() checks that there is at least n pages
// available, so all entry code needs to do is bang once for the end of
// this shadow zone.
// The entry code may need to bang additional pages if the framesize
// is greater than a page.
const int page_size = os::vm_page_size();
int bang_end = StackShadowPages*page_size;
// This is how far the previous frame's stack banging extended.
const int bang_end_safe = bang_end;
if (frame_size_in_bytes > page_size) {
bang_end += frame_size_in_bytes;
}
int bang_offset = bang_end_safe;
while (bang_offset <= bang_end) {
// Need at least one stack bang at end of shadow zone.
bang_stack_with_offset(bang_offset);
bang_offset += page_size;
}
} // end (UseStackBanging)
}
void Label::add_patch_at(CodeBuffer* cb, int branch_loc) {
assert(_loc == -1, "Label is unbound");
if (_patch_index < PatchCacheSize) {
_patches[_patch_index] = branch_loc;
} else {
if (_patch_overflow == NULL) {
_patch_overflow = cb->create_patch_overflow();
}
_patch_overflow->push(branch_loc);
}
++_patch_index;
}
void Label::patch_instructions(MacroAssembler* masm) {
assert(is_bound(), "Label is bound");
CodeBuffer* cb = masm->code();
int target_sect = CodeBuffer::locator_sect(loc());
address target = cb->locator_address(loc());
while (_patch_index > 0) {
--_patch_index;
int branch_loc;
if (_patch_index >= PatchCacheSize) {
branch_loc = _patch_overflow->pop();
} else {
branch_loc = _patches[_patch_index];
}
int branch_sect = CodeBuffer::locator_sect(branch_loc);
address branch = cb->locator_address(branch_loc);
if (branch_sect == CodeBuffer::SECT_CONSTS) {
// The thing to patch is a constant word.
*(address*)branch = target;
continue;
}
#ifdef ASSERT
// Cross-section branches only work if the
// intermediate section boundaries are frozen.
if (target_sect != branch_sect) {
for (int n = MIN2(target_sect, branch_sect),
nlimit = (target_sect + branch_sect) - n;
n < nlimit; n++) {
CodeSection* cs = cb->code_section(n);
assert(cs->is_frozen(), "cross-section branch needs stable offsets");
}
}
#endif //ASSERT
// Push the target offset into the branch instruction.
masm->pd_patch_instruction(branch, target);
}
}
struct DelayedConstant {
typedef void (*value_fn_t)();
BasicType type;
intptr_t value;
value_fn_t value_fn;
// This limit of 20 is generous for initial uses.
// The limit needs to be large enough to store the field offsets
// into classes which do not have statically fixed layouts.
// (Initial use is for method handle object offsets.)
// Look for uses of "delayed_value" in the source code
// and make sure this number is generous enough to handle all of them.
enum { DC_LIMIT = 20 };
static DelayedConstant delayed_constants[DC_LIMIT];
static DelayedConstant* add(BasicType type, value_fn_t value_fn);
bool match(BasicType t, value_fn_t cfn) {
return type == t && value_fn == cfn;
}
static void update_all();
};
DelayedConstant DelayedConstant::delayed_constants[DC_LIMIT];
// Default C structure initialization rules have the following effect here:
// = { { (BasicType)0, (intptr_t)NULL }, ... };
DelayedConstant* DelayedConstant::add(BasicType type,
DelayedConstant::value_fn_t cfn) {
for (int i = 0; i < DC_LIMIT; i++) {
DelayedConstant* dcon = &delayed_constants[i];
if (dcon->match(type, cfn))
return dcon;
if (dcon->value_fn == NULL) {
// (cmpxchg not because this is multi-threaded but because I'm paranoid)
if (Atomic::cmpxchg_ptr(CAST_FROM_FN_PTR(void*, cfn), &dcon->value_fn, NULL) == NULL) {
dcon->type = type;
return dcon;
}
}
}
// If this assert is hit (in pre-integration testing!) then re-evaluate
// the comment on the definition of DC_LIMIT.
guarantee(false, "too many delayed constants");
return NULL;
}
void DelayedConstant::update_all() {
for (int i = 0; i < DC_LIMIT; i++) {
DelayedConstant* dcon = &delayed_constants[i];
if (dcon->value_fn != NULL && dcon->value == 0) {
typedef int (*int_fn_t)();
typedef address (*address_fn_t)();
switch (dcon->type) {
case T_INT: dcon->value = (intptr_t) ((int_fn_t) dcon->value_fn)(); break;
case T_ADDRESS: dcon->value = (intptr_t) ((address_fn_t)dcon->value_fn)(); break;
}
}
}
}
intptr_t* AbstractAssembler::delayed_value_addr(int(*value_fn)()) {
DelayedConstant* dcon = DelayedConstant::add(T_INT, (DelayedConstant::value_fn_t) value_fn);
return &dcon->value;
}
intptr_t* AbstractAssembler::delayed_value_addr(address(*value_fn)()) {
DelayedConstant* dcon = DelayedConstant::add(T_ADDRESS, (DelayedConstant::value_fn_t) value_fn);
return &dcon->value;
}
void AbstractAssembler::update_delayed_values() {
DelayedConstant::update_all();
}
void AbstractAssembler::block_comment(const char* comment) {
if (sect() == CodeBuffer::SECT_INSTS) {
code_section()->outer()->block_comment(offset(), comment);
}
}
bool MacroAssembler::needs_explicit_null_check(intptr_t offset) {
// Exception handler checks the nmethod's implicit null checks table
// only when this method returns false.
#ifdef _LP64
if (UseCompressedOops && Universe::narrow_oop_base() != NULL) {
assert (Universe::heap() != NULL, "java heap should be initialized");
// The first page after heap_base is unmapped and
// the 'offset' is equal to [heap_base + offset] for
// narrow oop implicit null checks.
uintptr_t base = (uintptr_t)Universe::narrow_oop_base();
if ((uintptr_t)offset >= base) {
// Normalize offset for the next check.
offset = (intptr_t)(pointer_delta((void*)offset, (void*)base, 1));
}
}
#endif
return offset < 0 || os::vm_page_size() <= offset;
}
#ifndef PRODUCT
void Label::print_instructions(MacroAssembler* masm) const {
CodeBuffer* cb = masm->code();
for (int i = 0; i < _patch_index; ++i) {
int branch_loc;
if (i >= PatchCacheSize) {
branch_loc = _patch_overflow->at(i - PatchCacheSize);
} else {
branch_loc = _patches[i];
}
int branch_pos = CodeBuffer::locator_pos(branch_loc);
int branch_sect = CodeBuffer::locator_sect(branch_loc);
address branch = cb->locator_address(branch_loc);
tty->print_cr("unbound label");
tty->print("@ %d|%d ", branch_pos, branch_sect);
if (branch_sect == CodeBuffer::SECT_CONSTS) {
tty->print_cr(PTR_FORMAT, *(address*)branch);
continue;
}
masm->pd_print_patched_instruction(branch);
tty->cr();
}
}
#endif // ndef PRODUCT