/*
* Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "classfile/systemDictionary.hpp"
#include "gc_interface/collectedHeap.hpp"
#include "interpreter/interpreter.hpp"
#include "oops/arrayOop.hpp"
#include "oops/markOop.hpp"
#include "runtime/basicLock.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) {
Label L;
const Register temp_reg = G3_scratch;
// Note: needs more testing of out-of-line vs. inline slow case
verify_oop(receiver);
load_klass(receiver, temp_reg);
cmp_and_brx_short(temp_reg, iCache, Assembler::equal, Assembler::pt, L);
AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
jump_to(ic_miss, temp_reg);
delayed()->nop();
align(CodeEntryAlignment);
bind(L);
}
void C1_MacroAssembler::explicit_null_check(Register base) {
Unimplemented();
}
void C1_MacroAssembler::build_frame(int frame_size_in_bytes, int bang_size_in_bytes) {
assert(bang_size_in_bytes >= frame_size_in_bytes, "stack bang size incorrect");
generate_stack_overflow_check(bang_size_in_bytes);
// Create the frame.
save_frame_c1(frame_size_in_bytes);
}
void C1_MacroAssembler::unverified_entry(Register receiver, Register ic_klass) {
if (C1Breakpoint) breakpoint_trap();
inline_cache_check(receiver, ic_klass);
}
void C1_MacroAssembler::verified_entry() {
if (C1Breakpoint) breakpoint_trap();
// build frame
verify_FPU(0, "method_entry");
}
void C1_MacroAssembler::lock_object(Register Rmark, Register Roop, Register Rbox, Register Rscratch, Label& slow_case) {
assert_different_registers(Rmark, Roop, Rbox, Rscratch);
Label done;
Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
// The following move must be the first instruction of emitted since debug
// information may be generated for it.
// Load object header
ld_ptr(mark_addr, Rmark);
verify_oop(Roop);
// save object being locked into the BasicObjectLock
st_ptr(Roop, Rbox, BasicObjectLock::obj_offset_in_bytes());
if (UseBiasedLocking) {
biased_locking_enter(Roop, Rmark, Rscratch, done, &slow_case);
}
// Save Rbox in Rscratch to be used for the cas operation
mov(Rbox, Rscratch);
// and mark it unlocked
or3(Rmark, markOopDesc::unlocked_value, Rmark);
// save unlocked object header into the displaced header location on the stack
st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
// compare object markOop with Rmark and if equal exchange Rscratch with object markOop
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
cas_ptr(mark_addr.base(), Rmark, Rscratch);
// if compare/exchange succeeded we found an unlocked object and we now have locked it
// hence we are done
cmp(Rmark, Rscratch);
brx(Assembler::equal, false, Assembler::pt, done);
delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot
// we did not find an unlocked object so see if this is a recursive case
// sub(Rscratch, SP, Rscratch);
assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
andcc(Rscratch, 0xfffff003, Rscratch);
brx(Assembler::notZero, false, Assembler::pn, slow_case);
delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
bind(done);
}
void C1_MacroAssembler::unlock_object(Register Rmark, Register Roop, Register Rbox, Label& slow_case) {
assert_different_registers(Rmark, Roop, Rbox);
Label done;
Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
if (UseBiasedLocking) {
// load the object out of the BasicObjectLock
ld_ptr(Rbox, BasicObjectLock::obj_offset_in_bytes(), Roop);
verify_oop(Roop);
biased_locking_exit(mark_addr, Rmark, done);
}
// Test first it it is a fast recursive unlock
ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
br_null_short(Rmark, Assembler::pt, done);
if (!UseBiasedLocking) {
// load object
ld_ptr(Rbox, BasicObjectLock::obj_offset_in_bytes(), Roop);
verify_oop(Roop);
}
// Check if it is still a light weight lock, this is is true if we see
// the stack address of the basicLock in the markOop of the object
cas_ptr(mark_addr.base(), Rbox, Rmark);
cmp(Rbox, Rmark);
brx(Assembler::notEqual, false, Assembler::pn, slow_case);
delayed()->nop();
// Done
bind(done);
}
void C1_MacroAssembler::try_allocate(
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register, must be global register for incr_allocated_bytes
Register t2, // temp register
Label& slow_case // continuation point if fast allocation fails
) {
RegisterOrConstant size_in_bytes = var_size_in_bytes->is_valid()
? RegisterOrConstant(var_size_in_bytes) : RegisterOrConstant(con_size_in_bytes);
if (UseTLAB) {
tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
} else {
eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
incr_allocated_bytes(size_in_bytes, t1, t2);
}
}
void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) {
assert_different_registers(obj, klass, len, t1, t2);
if (UseBiasedLocking && !len->is_valid()) {
ld_ptr(klass, in_bytes(Klass::prototype_header_offset()), t1);
} else {
set((intx)markOopDesc::prototype(), t1);
}
st_ptr(t1, obj, oopDesc::mark_offset_in_bytes());
if (UseCompressedClassPointers) {
// Save klass
mov(klass, t1);
encode_klass_not_null(t1);
stw(t1, obj, oopDesc::klass_offset_in_bytes());
} else {
st_ptr(klass, obj, oopDesc::klass_offset_in_bytes());
}
if (len->is_valid()) {
st(len, obj, arrayOopDesc::length_offset_in_bytes());
} else if (UseCompressedClassPointers) {
// otherwise length is in the class gap
store_klass_gap(G0, obj);
}
}
void C1_MacroAssembler::initialize_body(Register base, Register index) {
assert_different_registers(base, index);
Label loop;
bind(loop);
subcc(index, HeapWordSize, index);
brx(Assembler::greaterEqual, true, Assembler::pt, loop);
delayed()->st_ptr(G0, base, index);
}
void C1_MacroAssembler::allocate_object(
Register obj, // result: pointer to object after successful allocation
Register t1, // temp register
Register t2, // temp register, must be a global register for try_allocate
Register t3, // temp register
int hdr_size, // object header size in words
int obj_size, // object size in words
Register klass, // object klass
Label& slow_case // continuation point if fast allocation fails
) {
assert_different_registers(obj, t1, t2, t3, klass);
assert(klass == G5, "must be G5");
// allocate space & initialize header
if (!is_simm13(obj_size * wordSize)) {
// would need to use extra register to load
// object size => go the slow case for now
ba(slow_case);
delayed()->nop();
return;
}
try_allocate(obj, noreg, obj_size * wordSize, t2, t3, slow_case);
initialize_object(obj, klass, noreg, obj_size * HeapWordSize, t1, t2);
}
void C1_MacroAssembler::initialize_object(
Register obj, // result: pointer to object after successful allocation
Register klass, // object klass
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Register t2 // temp register
) {
const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize;
initialize_header(obj, klass, noreg, t1, t2);
#ifdef ASSERT
{
Label ok;
ld(klass, in_bytes(Klass::layout_helper_offset()), t1);
if (var_size_in_bytes != noreg) {
cmp_and_brx_short(t1, var_size_in_bytes, Assembler::equal, Assembler::pt, ok);
} else {
cmp_and_brx_short(t1, con_size_in_bytes, Assembler::equal, Assembler::pt, ok);
}
stop("bad size in initialize_object");
should_not_reach_here();
bind(ok);
}
#endif
// initialize body
const int threshold = 5 * HeapWordSize; // approximate break even point for code size
if (var_size_in_bytes != noreg) {
// use a loop
add(obj, hdr_size_in_bytes, t1); // compute address of first element
sub(var_size_in_bytes, hdr_size_in_bytes, t2); // compute size of body
initialize_body(t1, t2);
#ifndef _LP64
} else if (con_size_in_bytes < threshold * 2) {
// on v9 we can do double word stores to fill twice as much space.
assert(hdr_size_in_bytes % 8 == 0, "double word aligned");
assert(con_size_in_bytes % 8 == 0, "double word aligned");
for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += 2 * HeapWordSize) stx(G0, obj, i);
#endif
} else if (con_size_in_bytes <= threshold) {
// use explicit NULL stores
for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += HeapWordSize) st_ptr(G0, obj, i);
} else if (con_size_in_bytes > hdr_size_in_bytes) {
// use a loop
const Register base = t1;
const Register index = t2;
add(obj, hdr_size_in_bytes, base); // compute address of first element
// compute index = number of words to clear
set(con_size_in_bytes - hdr_size_in_bytes, index);
initialize_body(base, index);
}
if (CURRENT_ENV->dtrace_alloc_probes()) {
assert(obj == O0, "must be");
call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)),
relocInfo::runtime_call_type);
delayed()->nop();
}
verify_oop(obj);
}
void C1_MacroAssembler::allocate_array(
Register obj, // result: pointer to array after successful allocation
Register len, // array length
Register t1, // temp register
Register t2, // temp register
Register t3, // temp register
int hdr_size, // object header size in words
int elt_size, // element size in bytes
Register klass, // object klass
Label& slow_case // continuation point if fast allocation fails
) {
assert_different_registers(obj, len, t1, t2, t3, klass);
assert(klass == G5, "must be G5");
assert(t1 == G1, "must be G1");
// determine alignment mask
assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work");
// check for negative or excessive length
// note: the maximum length allowed is chosen so that arrays of any
// element size with this length are always smaller or equal
// to the largest integer (i.e., array size computation will
// not overflow)
set(max_array_allocation_length, t1);
cmp(len, t1);
br(Assembler::greaterUnsigned, false, Assembler::pn, slow_case);
// compute array size
// note: if 0 <= len <= max_length, len*elt_size + header + alignment is
// smaller or equal to the largest integer; also, since top is always
// aligned, we can do the alignment here instead of at the end address
// computation
const Register arr_size = t1;
switch (elt_size) {
case 1: delayed()->mov(len, arr_size); break;
case 2: delayed()->sll(len, 1, arr_size); break;
case 4: delayed()->sll(len, 2, arr_size); break;
case 8: delayed()->sll(len, 3, arr_size); break;
default: ShouldNotReachHere();
}
add(arr_size, hdr_size * wordSize + MinObjAlignmentInBytesMask, arr_size); // add space for header & alignment
and3(arr_size, ~MinObjAlignmentInBytesMask, arr_size); // align array size
// allocate space & initialize header
if (UseTLAB) {
tlab_allocate(obj, arr_size, 0, t2, slow_case);
} else {
eden_allocate(obj, arr_size, 0, t2, t3, slow_case);
}
initialize_header(obj, klass, len, t2, t3);
// initialize body
const Register base = t2;
const Register index = t3;
add(obj, hdr_size * wordSize, base); // compute address of first element
sub(arr_size, hdr_size * wordSize, index); // compute index = number of words to clear
initialize_body(base, index);
if (CURRENT_ENV->dtrace_alloc_probes()) {
assert(obj == O0, "must be");
call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)),
relocInfo::runtime_call_type);
delayed()->nop();
}
verify_oop(obj);
}
#ifndef PRODUCT
void C1_MacroAssembler::verify_stack_oop(int stack_offset) {
if (!VerifyOops) return;
verify_oop_addr(Address(SP, stack_offset + STACK_BIAS));
}
void C1_MacroAssembler::verify_not_null_oop(Register r) {
Label not_null;
br_notnull_short(r, Assembler::pt, not_null);
stop("non-null oop required");
bind(not_null);
if (!VerifyOops) return;
verify_oop(r);
}
void C1_MacroAssembler::invalidate_registers(bool iregisters, bool lregisters, bool oregisters,
Register preserve1, Register preserve2) {
if (iregisters) {
for (int i = 0; i < 6; i++) {
Register r = as_iRegister(i);
if (r != preserve1 && r != preserve2) set(0xdead, r);
}
}
if (oregisters) {
for (int i = 0; i < 6; i++) {
Register r = as_oRegister(i);
if (r != preserve1 && r != preserve2) set(0xdead, r);
}
}
if (lregisters) {
for (int i = 0; i < 8; i++) {
Register r = as_lRegister(i);
if (r != preserve1 && r != preserve2) set(0xdead, r);
}
}
}
#endif