8193460: Take tools/launcher/TestXcheckJNIWarnings.java back off the ProblemList
Reviewed-by: mchung, psandoz
/*
* Copyright (c) 2008, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "asm/assembler.inline.hpp"
#include "ci/ciEnv.hpp"
#include "gc/shared/cardTableModRefBS.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/templateInterpreterGenerator.hpp"
#include "memory/resourceArea.hpp"
#include "prims/jvm_misc.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/hashtable.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1SATBCardTableModRefBS.hpp"
#include "gc/g1/heapRegion.hpp"
#endif // INCLUDE_ALL_GCS
// Returns whether given imm has equal bit fields <0:size-1> and <size:2*size-1>.
inline bool Assembler::LogicalImmediate::has_equal_subpatterns(uintx imm, int size) {
uintx mask = right_n_bits(size);
uintx subpattern1 = mask_bits(imm, mask);
uintx subpattern2 = mask_bits(imm >> size, mask);
return subpattern1 == subpattern2;
}
// Returns least size that is a power of two from 2 to 64 with the proviso that given
// imm is composed of repeating patterns of this size.
inline int Assembler::LogicalImmediate::least_pattern_size(uintx imm) {
int size = BitsPerWord;
while (size > 2 && has_equal_subpatterns(imm, size >> 1)) {
size >>= 1;
}
return size;
}
// Returns count of set bits in given imm. Based on variable-precision SWAR algorithm.
inline int Assembler::LogicalImmediate::population_count(uintx x) {
x -= ((x >> 1) & 0x5555555555555555L);
x = (((x >> 2) & 0x3333333333333333L) + (x & 0x3333333333333333L));
x = (((x >> 4) + x) & 0x0f0f0f0f0f0f0f0fL);
x += (x >> 8);
x += (x >> 16);
x += (x >> 32);
return(x & 0x7f);
}
// Let given x be <A:B> where B = 0 and least bit of A = 1. Returns <A:C>, where C is B-size set bits.
inline uintx Assembler::LogicalImmediate::set_least_zeroes(uintx x) {
return x | (x - 1);
}
#ifdef ASSERT
// Restores immediate by encoded bit masks.
uintx Assembler::LogicalImmediate::decode() {
assert (_encoded, "should be");
int len_code = (_immN << 6) | ((~_imms) & 0x3f);
assert (len_code != 0, "should be");
int len = 6;
while (!is_set_nth_bit(len_code, len)) len--;
int esize = 1 << len;
assert (len > 0, "should be");
assert ((_is32bit ? 32 : 64) >= esize, "should be");
int levels = right_n_bits(len);
int S = _imms & levels;
int R = _immr & levels;
assert (S != levels, "should be");
uintx welem = right_n_bits(S + 1);
uintx wmask = (R == 0) ? welem : ((welem >> R) | (welem << (esize - R)));
for (int size = esize; size < 64; size <<= 1) {
wmask |= (wmask << size);
}
return wmask;
}
#endif
// Constructs LogicalImmediate by given imm. Figures out if given imm can be used in AArch64 logical
// instructions (AND, ANDS, EOR, ORR) and saves its encoding.
void Assembler::LogicalImmediate::construct(uintx imm, bool is32) {
_is32bit = is32;
if (is32) {
assert(((imm >> 32) == 0) || (((intx)imm >> 31) == -1), "32-bit immediate is out of range");
// Replicate low 32 bits.
imm &= 0xffffffff;
imm |= imm << 32;
}
// All-zeroes and all-ones can not be encoded.
if (imm != 0 && (~imm != 0)) {
// Let LPS (least pattern size) be the least size (power of two from 2 to 64) of repeating
// patterns in the immediate. If immediate value can be encoded, it is encoded by pattern
// of exactly LPS size (due to structure of valid patterns). In order to verify
// that immediate value can be encoded, LPS is calculated and <LPS-1:0> bits of immediate
// are verified to be valid pattern.
int lps = least_pattern_size(imm);
uintx lps_mask = right_n_bits(lps);
// A valid pattern has one of the following forms:
// | 0 x A | 1 x B | 0 x C |, where B > 0 and C > 0, or
// | 1 x A | 0 x B | 1 x C |, where B > 0 and C > 0.
// For simplicity, the second form of the pattern is inverted into the first form.
bool inverted = imm & 0x1;
uintx pattern = (inverted ? ~imm : imm) & lps_mask;
// | 0 x A | 1 x (B + C) |
uintx without_least_zeroes = set_least_zeroes(pattern);
// Pattern is valid iff without least zeroes it is a power of two - 1.
if ((without_least_zeroes & (without_least_zeroes + 1)) == 0) {
// Count B as population count of pattern.
int bits_count = population_count(pattern);
// Count B+C as population count of pattern without least zeroes
int left_range = population_count(without_least_zeroes);
// S-prefix is a part of imms field which encodes LPS.
// LPS | S prefix
// 64 | not defined
// 32 | 0b0
// 16 | 0b10
// 8 | 0b110
// 4 | 0b1110
// 2 | 0b11110
int s_prefix = (lps == 64) ? 0 : ~set_least_zeroes(lps) & 0x3f;
// immN bit is set iff LPS == 64.
_immN = (lps == 64) ? 1 : 0;
assert (!is32 || (_immN == 0), "32-bit immediate should be encoded with zero N-bit");
// immr is the rotation size.
_immr = lps + (inverted ? 0 : bits_count) - left_range;
// imms is the field that encodes bits count and S-prefix.
_imms = ((inverted ? (lps - bits_count) : bits_count) - 1) | s_prefix;
_encoded = true;
assert (decode() == imm, "illegal encoding");
return;
}
}
_encoded = false;
}