42664
|
1 |
/*
|
|
2 |
* Copyright (c) 2008, 2015, Oracle and/or its affiliates. All rights reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
20 |
* or visit www.oracle.com if you need additional information or have any
|
|
21 |
* questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
#include "precompiled.hpp"
|
|
26 |
#include "asm/assembler.hpp"
|
|
27 |
#include "asm/assembler.inline.hpp"
|
|
28 |
#include "ci/ciEnv.hpp"
|
|
29 |
#include "gc/shared/cardTableModRefBS.hpp"
|
|
30 |
#include "gc/shared/collectedHeap.inline.hpp"
|
|
31 |
#include "interpreter/interpreter.hpp"
|
|
32 |
#include "interpreter/interpreterRuntime.hpp"
|
|
33 |
#include "interpreter/templateInterpreterGenerator.hpp"
|
|
34 |
#include "memory/resourceArea.hpp"
|
|
35 |
#include "prims/jvm_misc.hpp"
|
|
36 |
#include "prims/methodHandles.hpp"
|
|
37 |
#include "runtime/biasedLocking.hpp"
|
|
38 |
#include "runtime/interfaceSupport.hpp"
|
|
39 |
#include "runtime/objectMonitor.hpp"
|
|
40 |
#include "runtime/os.hpp"
|
|
41 |
#include "runtime/sharedRuntime.hpp"
|
|
42 |
#include "runtime/stubRoutines.hpp"
|
|
43 |
#include "utilities/hashtable.hpp"
|
|
44 |
#include "utilities/macros.hpp"
|
|
45 |
#if INCLUDE_ALL_GCS
|
|
46 |
#include "gc/g1/g1CollectedHeap.inline.hpp"
|
|
47 |
#include "gc/g1/g1SATBCardTableModRefBS.hpp"
|
|
48 |
#include "gc/g1/heapRegion.hpp"
|
|
49 |
#endif // INCLUDE_ALL_GCS
|
|
50 |
|
|
51 |
// Returns whether given imm has equal bit fields <0:size-1> and <size:2*size-1>.
|
|
52 |
inline bool Assembler::LogicalImmediate::has_equal_subpatterns(uintx imm, int size) {
|
|
53 |
uintx mask = right_n_bits(size);
|
|
54 |
uintx subpattern1 = mask_bits(imm, mask);
|
|
55 |
uintx subpattern2 = mask_bits(imm >> size, mask);
|
|
56 |
return subpattern1 == subpattern2;
|
|
57 |
}
|
|
58 |
|
|
59 |
// Returns least size that is a power of two from 2 to 64 with the proviso that given
|
|
60 |
// imm is composed of repeating patterns of this size.
|
|
61 |
inline int Assembler::LogicalImmediate::least_pattern_size(uintx imm) {
|
|
62 |
int size = BitsPerWord;
|
|
63 |
while (size > 2 && has_equal_subpatterns(imm, size >> 1)) {
|
|
64 |
size >>= 1;
|
|
65 |
}
|
|
66 |
return size;
|
|
67 |
}
|
|
68 |
|
|
69 |
// Returns count of set bits in given imm. Based on variable-precision SWAR algorithm.
|
|
70 |
inline int Assembler::LogicalImmediate::population_count(uintx x) {
|
|
71 |
x -= ((x >> 1) & 0x5555555555555555L);
|
|
72 |
x = (((x >> 2) & 0x3333333333333333L) + (x & 0x3333333333333333L));
|
|
73 |
x = (((x >> 4) + x) & 0x0f0f0f0f0f0f0f0fL);
|
|
74 |
x += (x >> 8);
|
|
75 |
x += (x >> 16);
|
|
76 |
x += (x >> 32);
|
|
77 |
return(x & 0x7f);
|
|
78 |
}
|
|
79 |
|
|
80 |
// Let given x be <A:B> where B = 0 and least bit of A = 1. Returns <A:C>, where C is B-size set bits.
|
|
81 |
inline uintx Assembler::LogicalImmediate::set_least_zeroes(uintx x) {
|
|
82 |
return x | (x - 1);
|
|
83 |
}
|
|
84 |
|
|
85 |
|
|
86 |
#ifdef ASSERT
|
|
87 |
|
|
88 |
// Restores immediate by encoded bit masks.
|
|
89 |
uintx Assembler::LogicalImmediate::decode() {
|
|
90 |
assert (_encoded, "should be");
|
|
91 |
|
|
92 |
int len_code = (_immN << 6) | ((~_imms) & 0x3f);
|
|
93 |
assert (len_code != 0, "should be");
|
|
94 |
|
|
95 |
int len = 6;
|
|
96 |
while (!is_set_nth_bit(len_code, len)) len--;
|
|
97 |
int esize = 1 << len;
|
|
98 |
assert (len > 0, "should be");
|
|
99 |
assert ((_is32bit ? 32 : 64) >= esize, "should be");
|
|
100 |
|
|
101 |
int levels = right_n_bits(len);
|
|
102 |
int S = _imms & levels;
|
|
103 |
int R = _immr & levels;
|
|
104 |
|
|
105 |
assert (S != levels, "should be");
|
|
106 |
|
|
107 |
uintx welem = right_n_bits(S + 1);
|
|
108 |
uintx wmask = (R == 0) ? welem : ((welem >> R) | (welem << (esize - R)));
|
|
109 |
|
|
110 |
for (int size = esize; size < 64; size <<= 1) {
|
|
111 |
wmask |= (wmask << size);
|
|
112 |
}
|
|
113 |
|
|
114 |
return wmask;
|
|
115 |
}
|
|
116 |
|
|
117 |
#endif
|
|
118 |
|
|
119 |
|
|
120 |
// Constructs LogicalImmediate by given imm. Figures out if given imm can be used in AArch64 logical
|
|
121 |
// instructions (AND, ANDS, EOR, ORR) and saves its encoding.
|
|
122 |
void Assembler::LogicalImmediate::construct(uintx imm, bool is32) {
|
|
123 |
_is32bit = is32;
|
|
124 |
|
|
125 |
if (is32) {
|
|
126 |
assert(((imm >> 32) == 0) || (((intx)imm >> 31) == -1), "32-bit immediate is out of range");
|
|
127 |
|
|
128 |
// Replicate low 32 bits.
|
|
129 |
imm &= 0xffffffff;
|
|
130 |
imm |= imm << 32;
|
|
131 |
}
|
|
132 |
|
|
133 |
// All-zeroes and all-ones can not be encoded.
|
|
134 |
if (imm != 0 && (~imm != 0)) {
|
|
135 |
|
|
136 |
// Let LPS (least pattern size) be the least size (power of two from 2 to 64) of repeating
|
|
137 |
// patterns in the immediate. If immediate value can be encoded, it is encoded by pattern
|
|
138 |
// of exactly LPS size (due to structure of valid patterns). In order to verify
|
|
139 |
// that immediate value can be encoded, LPS is calculated and <LPS-1:0> bits of immediate
|
|
140 |
// are verified to be valid pattern.
|
|
141 |
int lps = least_pattern_size(imm);
|
|
142 |
uintx lps_mask = right_n_bits(lps);
|
|
143 |
|
|
144 |
// A valid pattern has one of the following forms:
|
|
145 |
// | 0 x A | 1 x B | 0 x C |, where B > 0 and C > 0, or
|
|
146 |
// | 1 x A | 0 x B | 1 x C |, where B > 0 and C > 0.
|
|
147 |
// For simplicity, the second form of the pattern is inverted into the first form.
|
|
148 |
bool inverted = imm & 0x1;
|
|
149 |
uintx pattern = (inverted ? ~imm : imm) & lps_mask;
|
|
150 |
|
|
151 |
// | 0 x A | 1 x (B + C) |
|
|
152 |
uintx without_least_zeroes = set_least_zeroes(pattern);
|
|
153 |
|
|
154 |
// Pattern is valid iff without least zeroes it is a power of two - 1.
|
|
155 |
if ((without_least_zeroes & (without_least_zeroes + 1)) == 0) {
|
|
156 |
|
|
157 |
// Count B as population count of pattern.
|
|
158 |
int bits_count = population_count(pattern);
|
|
159 |
|
|
160 |
// Count B+C as population count of pattern without least zeroes
|
|
161 |
int left_range = population_count(without_least_zeroes);
|
|
162 |
|
|
163 |
// S-prefix is a part of imms field which encodes LPS.
|
|
164 |
// LPS | S prefix
|
|
165 |
// 64 | not defined
|
|
166 |
// 32 | 0b0
|
|
167 |
// 16 | 0b10
|
|
168 |
// 8 | 0b110
|
|
169 |
// 4 | 0b1110
|
|
170 |
// 2 | 0b11110
|
|
171 |
int s_prefix = (lps == 64) ? 0 : ~set_least_zeroes(lps) & 0x3f;
|
|
172 |
|
|
173 |
// immN bit is set iff LPS == 64.
|
|
174 |
_immN = (lps == 64) ? 1 : 0;
|
|
175 |
assert (!is32 || (_immN == 0), "32-bit immediate should be encoded with zero N-bit");
|
|
176 |
|
|
177 |
// immr is the rotation size.
|
|
178 |
_immr = lps + (inverted ? 0 : bits_count) - left_range;
|
|
179 |
|
|
180 |
// imms is the field that encodes bits count and S-prefix.
|
|
181 |
_imms = ((inverted ? (lps - bits_count) : bits_count) - 1) | s_prefix;
|
|
182 |
|
|
183 |
_encoded = true;
|
|
184 |
assert (decode() == imm, "illegal encoding");
|
|
185 |
|
|
186 |
return;
|
|
187 |
}
|
|
188 |
}
|
|
189 |
|
|
190 |
_encoded = false;
|
|
191 |
}
|