//
// Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//
// SPARC Architecture Description File
//----------REGISTER DEFINITION BLOCK------------------------------------------
// This information is used by the matcher and the register allocator to
// describe individual registers and classes of registers within the target
// archtecture.
register %{
//----------Architecture Description Register Definitions----------------------
// General Registers
// "reg_def" name ( register save type, C convention save type,
// ideal register type, encoding, vm name );
// Register Save Types:
//
// NS = No-Save: The register allocator assumes that these registers
// can be used without saving upon entry to the method, &
// that they do not need to be saved at call sites.
//
// SOC = Save-On-Call: The register allocator assumes that these registers
// can be used without saving upon entry to the method,
// but that they must be saved at call sites.
//
// SOE = Save-On-Entry: The register allocator assumes that these registers
// must be saved before using them upon entry to the
// method, but they do not need to be saved at call
// sites.
//
// AS = Always-Save: The register allocator assumes that these registers
// must be saved before using them upon entry to the
// method, & that they must be saved at call sites.
//
// Ideal Register Type is used to determine how to save & restore a
// register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
// spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
//
// The encoding number is the actual bit-pattern placed into the opcodes.
// ----------------------------
// Integer/Long Registers
// ----------------------------
// Need to expose the hi/lo aspect of 64-bit registers
// This register set is used for both the 64-bit build and
// the 32-bit build with 1-register longs.
// Global Registers 0-7
reg_def R_G0H( NS, NS, Op_RegI,128, G0->as_VMReg()->next());
reg_def R_G0 ( NS, NS, Op_RegI, 0, G0->as_VMReg());
reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
reg_def R_G1 (SOC, SOC, Op_RegI, 1, G1->as_VMReg());
reg_def R_G2H( NS, NS, Op_RegI,130, G2->as_VMReg()->next());
reg_def R_G2 ( NS, NS, Op_RegI, 2, G2->as_VMReg());
reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
reg_def R_G3 (SOC, SOC, Op_RegI, 3, G3->as_VMReg());
reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
reg_def R_G4 (SOC, SOC, Op_RegI, 4, G4->as_VMReg());
reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
reg_def R_G5 (SOC, SOC, Op_RegI, 5, G5->as_VMReg());
reg_def R_G6H( NS, NS, Op_RegI,134, G6->as_VMReg()->next());
reg_def R_G6 ( NS, NS, Op_RegI, 6, G6->as_VMReg());
reg_def R_G7H( NS, NS, Op_RegI,135, G7->as_VMReg()->next());
reg_def R_G7 ( NS, NS, Op_RegI, 7, G7->as_VMReg());
// Output Registers 0-7
reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
reg_def R_O0 (SOC, SOC, Op_RegI, 8, O0->as_VMReg());
reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
reg_def R_O1 (SOC, SOC, Op_RegI, 9, O1->as_VMReg());
reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
reg_def R_SPH( NS, NS, Op_RegI,142, SP->as_VMReg()->next());
reg_def R_SP ( NS, NS, Op_RegI, 14, SP->as_VMReg());
reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
// Local Registers 0-7
reg_def R_L0H( NS, NS, Op_RegI,144, L0->as_VMReg()->next());
reg_def R_L0 ( NS, NS, Op_RegI, 16, L0->as_VMReg());
reg_def R_L1H( NS, NS, Op_RegI,145, L1->as_VMReg()->next());
reg_def R_L1 ( NS, NS, Op_RegI, 17, L1->as_VMReg());
reg_def R_L2H( NS, NS, Op_RegI,146, L2->as_VMReg()->next());
reg_def R_L2 ( NS, NS, Op_RegI, 18, L2->as_VMReg());
reg_def R_L3H( NS, NS, Op_RegI,147, L3->as_VMReg()->next());
reg_def R_L3 ( NS, NS, Op_RegI, 19, L3->as_VMReg());
reg_def R_L4H( NS, NS, Op_RegI,148, L4->as_VMReg()->next());
reg_def R_L4 ( NS, NS, Op_RegI, 20, L4->as_VMReg());
reg_def R_L5H( NS, NS, Op_RegI,149, L5->as_VMReg()->next());
reg_def R_L5 ( NS, NS, Op_RegI, 21, L5->as_VMReg());
reg_def R_L6H( NS, NS, Op_RegI,150, L6->as_VMReg()->next());
reg_def R_L6 ( NS, NS, Op_RegI, 22, L6->as_VMReg());
reg_def R_L7H( NS, NS, Op_RegI,151, L7->as_VMReg()->next());
reg_def R_L7 ( NS, NS, Op_RegI, 23, L7->as_VMReg());
// Input Registers 0-7
reg_def R_I0H( NS, NS, Op_RegI,152, I0->as_VMReg()->next());
reg_def R_I0 ( NS, NS, Op_RegI, 24, I0->as_VMReg());
reg_def R_I1H( NS, NS, Op_RegI,153, I1->as_VMReg()->next());
reg_def R_I1 ( NS, NS, Op_RegI, 25, I1->as_VMReg());
reg_def R_I2H( NS, NS, Op_RegI,154, I2->as_VMReg()->next());
reg_def R_I2 ( NS, NS, Op_RegI, 26, I2->as_VMReg());
reg_def R_I3H( NS, NS, Op_RegI,155, I3->as_VMReg()->next());
reg_def R_I3 ( NS, NS, Op_RegI, 27, I3->as_VMReg());
reg_def R_I4H( NS, NS, Op_RegI,156, I4->as_VMReg()->next());
reg_def R_I4 ( NS, NS, Op_RegI, 28, I4->as_VMReg());
reg_def R_I5H( NS, NS, Op_RegI,157, I5->as_VMReg()->next());
reg_def R_I5 ( NS, NS, Op_RegI, 29, I5->as_VMReg());
reg_def R_FPH( NS, NS, Op_RegI,158, FP->as_VMReg()->next());
reg_def R_FP ( NS, NS, Op_RegI, 30, FP->as_VMReg());
reg_def R_I7H( NS, NS, Op_RegI,159, I7->as_VMReg()->next());
reg_def R_I7 ( NS, NS, Op_RegI, 31, I7->as_VMReg());
// ----------------------------
// Float/Double Registers
// ----------------------------
// Float Registers
reg_def R_F0 ( SOC, SOC, Op_RegF, 0, F0->as_VMReg());
reg_def R_F1 ( SOC, SOC, Op_RegF, 1, F1->as_VMReg());
reg_def R_F2 ( SOC, SOC, Op_RegF, 2, F2->as_VMReg());
reg_def R_F3 ( SOC, SOC, Op_RegF, 3, F3->as_VMReg());
reg_def R_F4 ( SOC, SOC, Op_RegF, 4, F4->as_VMReg());
reg_def R_F5 ( SOC, SOC, Op_RegF, 5, F5->as_VMReg());
reg_def R_F6 ( SOC, SOC, Op_RegF, 6, F6->as_VMReg());
reg_def R_F7 ( SOC, SOC, Op_RegF, 7, F7->as_VMReg());
reg_def R_F8 ( SOC, SOC, Op_RegF, 8, F8->as_VMReg());
reg_def R_F9 ( SOC, SOC, Op_RegF, 9, F9->as_VMReg());
reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
// Double Registers
// The rules of ADL require that double registers be defined in pairs.
// Each pair must be two 32-bit values, but not necessarily a pair of
// single float registers. In each pair, ADLC-assigned register numbers
// must be adjacent, with the lower number even. Finally, when the
// CPU stores such a register pair to memory, the word associated with
// the lower ADLC-assigned number must be stored to the lower address.
// These definitions specify the actual bit encodings of the sparc
// double fp register numbers. FloatRegisterImpl in register_sparc.hpp
// wants 0-63, so we have to convert every time we want to use fp regs
// with the macroassembler, using reg_to_DoubleFloatRegister_object().
// 255 is a flag meaning "don't go here".
// I believe we can't handle callee-save doubles D32 and up until
// the place in the sparc stack crawler that asserts on the 255 is
// fixed up.
reg_def R_D32 (SOC, SOC, Op_RegD, 1, F32->as_VMReg());
reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
reg_def R_D34 (SOC, SOC, Op_RegD, 3, F34->as_VMReg());
reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
reg_def R_D36 (SOC, SOC, Op_RegD, 5, F36->as_VMReg());
reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
reg_def R_D38 (SOC, SOC, Op_RegD, 7, F38->as_VMReg());
reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
reg_def R_D40 (SOC, SOC, Op_RegD, 9, F40->as_VMReg());
reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
// ----------------------------
// Special Registers
// Condition Codes Flag Registers
// I tried to break out ICC and XCC but it's not very pretty.
// Every Sparc instruction which defs/kills one also kills the other.
// Hence every compare instruction which defs one kind of flags ends
// up needing a kill of the other.
reg_def CCR (SOC, SOC, Op_RegFlags, 0, VMRegImpl::Bad());
reg_def FCC0(SOC, SOC, Op_RegFlags, 0, VMRegImpl::Bad());
reg_def FCC1(SOC, SOC, Op_RegFlags, 1, VMRegImpl::Bad());
reg_def FCC2(SOC, SOC, Op_RegFlags, 2, VMRegImpl::Bad());
reg_def FCC3(SOC, SOC, Op_RegFlags, 3, VMRegImpl::Bad());
// ----------------------------
// Specify the enum values for the registers. These enums are only used by the
// OptoReg "class". We can convert these enum values at will to VMReg when needed
// for visibility to the rest of the vm. The order of this enum influences the
// register allocator so having the freedom to set this order and not be stuck
// with the order that is natural for the rest of the vm is worth it.
alloc_class chunk0(
R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
// Note that a register is not allocatable unless it is also mentioned
// in a widely-used reg_class below. Thus, R_G7 and R_G0 are outside i_reg.
alloc_class chunk1(
// The first registers listed here are those most likely to be used
// as temporaries. We move F0..F7 away from the front of the list,
// to reduce the likelihood of interferences with parameters and
// return values. Likewise, we avoid using F0/F1 for parameters,
// since they are used for return values.
// This FPU fine-tuning is worth about 1% on the SPEC geomean.
R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
//----------Architecture Description Register Classes--------------------------
// Several register classes are automatically defined based upon information in
// this architecture description.
// 1) reg_class inline_cache_reg ( as defined in frame section )
// 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
//
// G0 is not included in integer class since it has special meaning.
reg_class g0_reg(R_G0);
// ----------------------------
// Integer Register Classes
// ----------------------------
// Exclusions from i_reg:
// R_G0: hardwired zero
// R_G2: reserved by HotSpot to the TLS register (invariant within Java)
// R_G6: reserved by Solaris ABI to tools
// R_G7: reserved by Solaris ABI to libthread
// R_O7: Used as a temp in many encodings
reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
// Class for all integer registers, except the G registers. This is used for
// encodings which use G registers as temps. The regular inputs to such
// instructions use a "notemp_" prefix, as a hack to ensure that the allocator
// will not put an input into a temp register.
reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
reg_class g1_regI(R_G1);
reg_class g3_regI(R_G3);
reg_class g4_regI(R_G4);
reg_class o0_regI(R_O0);
reg_class o7_regI(R_O7);
// ----------------------------
// Pointer Register Classes
// ----------------------------
#ifdef _LP64
// 64-bit build means 64-bit pointers means hi/lo pairs
reg_class ptr_reg( R_G1H,R_G1, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
// Lock encodings use G3 and G4 internally
reg_class lock_ptr_reg( R_G1H,R_G1, R_G5H,R_G5,
R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
// Special class for storeP instructions, which can store SP or RPC to TLS.
// It is also used for memory addressing, allowing direct TLS addressing.
reg_class sp_ptr_reg( R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
// R_L7 is the lowest-priority callee-save (i.e., NS) register
// We use it to save R_G2 across calls out of Java.
reg_class l7_regP(R_L7H,R_L7);
// Other special pointer regs
reg_class g1_regP(R_G1H,R_G1);
reg_class g2_regP(R_G2H,R_G2);
reg_class g3_regP(R_G3H,R_G3);
reg_class g4_regP(R_G4H,R_G4);
reg_class g5_regP(R_G5H,R_G5);
reg_class i0_regP(R_I0H,R_I0);
reg_class o0_regP(R_O0H,R_O0);
reg_class o1_regP(R_O1H,R_O1);
reg_class o2_regP(R_O2H,R_O2);
reg_class o7_regP(R_O7H,R_O7);
#else // _LP64
// 32-bit build means 32-bit pointers means 1 register.
reg_class ptr_reg( R_G1, R_G3,R_G4,R_G5,
R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
// Lock encodings use G3 and G4 internally
reg_class lock_ptr_reg(R_G1, R_G5,
R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
// Special class for storeP instructions, which can store SP or RPC to TLS.
// It is also used for memory addressing, allowing direct TLS addressing.
reg_class sp_ptr_reg( R_G1,R_G2,R_G3,R_G4,R_G5,
R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
// R_L7 is the lowest-priority callee-save (i.e., NS) register
// We use it to save R_G2 across calls out of Java.
reg_class l7_regP(R_L7);
// Other special pointer regs
reg_class g1_regP(R_G1);
reg_class g2_regP(R_G2);
reg_class g3_regP(R_G3);
reg_class g4_regP(R_G4);
reg_class g5_regP(R_G5);
reg_class i0_regP(R_I0);
reg_class o0_regP(R_O0);
reg_class o1_regP(R_O1);
reg_class o2_regP(R_O2);
reg_class o7_regP(R_O7);
#endif // _LP64
// ----------------------------
// Long Register Classes
// ----------------------------
// Longs in 1 register. Aligned adjacent hi/lo pairs.
// Note: O7 is never in this class; it is sometimes used as an encoding temp.
reg_class long_reg( R_G1H,R_G1, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
#ifdef _LP64
// 64-bit, longs in 1 register: use all 64-bit integer registers
// 32-bit, longs in 1 register: cannot use I's and L's. Restrict to O's and G's.
,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
#endif // _LP64
);
reg_class g1_regL(R_G1H,R_G1);
reg_class g3_regL(R_G3H,R_G3);
reg_class o2_regL(R_O2H,R_O2);
reg_class o7_regL(R_O7H,R_O7);
// ----------------------------
// Special Class for Condition Code Flags Register
reg_class int_flags(CCR);
reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
reg_class float_flag0(FCC0);
// ----------------------------
// Float Point Register Classes
// ----------------------------
// Skip F30/F31, they are reserved for mem-mem copies
reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
// Paired floating point registers--they show up in the same order as the floats,
// but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
/* Use extra V9 double registers; this AD file does not support V8 */
R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
);
// Paired floating point registers--they show up in the same order as the floats,
// but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
// This class is usable for mis-aligned loads as happen in I2C adapters.
reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
%}
//----------DEFINITION BLOCK---------------------------------------------------
// Define name --> value mappings to inform the ADLC of an integer valued name
// Current support includes integer values in the range [0, 0x7FFFFFFF]
// Format:
// int_def <name> ( <int_value>, <expression>);
// Generated Code in ad_<arch>.hpp
// #define <name> (<expression>)
// // value == <int_value>
// Generated code in ad_<arch>.cpp adlc_verification()
// assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
//
definitions %{
// The default cost (of an ALU instruction).
int_def DEFAULT_COST ( 100, 100);
int_def HUGE_COST (1000000, 1000000);
// Memory refs are twice as expensive as run-of-the-mill.
int_def MEMORY_REF_COST ( 200, DEFAULT_COST * 2);
// Branches are even more expensive.
int_def BRANCH_COST ( 300, DEFAULT_COST * 3);
int_def CALL_COST ( 300, DEFAULT_COST * 3);
%}
//----------SOURCE BLOCK-------------------------------------------------------
// This is a block of C++ code which provides values, functions, and
// definitions necessary in the rest of the architecture description
source_hpp %{
// Header information of the source block.
// Method declarations/definitions which are used outside
// the ad-scope can conveniently be defined here.
//
// To keep related declarations/definitions/uses close together,
// we switch between source %{ }% and source_hpp %{ }% freely as needed.
// Must be visible to the DFA in dfa_sparc.cpp
extern bool can_branch_register( Node *bol, Node *cmp );
extern bool use_block_zeroing(Node* count);
// Macros to extract hi & lo halves from a long pair.
// G0 is not part of any long pair, so assert on that.
// Prevents accidentally using G1 instead of G0.
#define LONG_HI_REG(x) (x)
#define LONG_LO_REG(x) (x)
class CallStubImpl {
//--------------------------------------------------------------
//---< Used for optimization in Compile::Shorten_branches >---
//--------------------------------------------------------------
public:
// Size of call trampoline stub.
static uint size_call_trampoline() {
return 0; // no call trampolines on this platform
}
// number of relocations needed by a call trampoline stub
static uint reloc_call_trampoline() {
return 0; // no call trampolines on this platform
}
};
class HandlerImpl {
public:
static int emit_exception_handler(CodeBuffer &cbuf);
static int emit_deopt_handler(CodeBuffer& cbuf);
static uint size_exception_handler() {
if (TraceJumps) {
return (400); // just a guess
}
return ( NativeJump::instruction_size ); // sethi;jmp;nop
}
static uint size_deopt_handler() {
if (TraceJumps) {
return (400); // just a guess
}
return ( 4+ NativeJump::instruction_size ); // save;sethi;jmp;restore
}
};
%}
source %{
#define __ _masm.
// tertiary op of a LoadP or StoreP encoding
#define REGP_OP true
static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
static Register reg_to_register_object(int register_encoding);
// Used by the DFA in dfa_sparc.cpp.
// Check for being able to use a V9 branch-on-register. Requires a
// compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
// extended. Doesn't work following an integer ADD, for example, because of
// overflow (-1 incremented yields 0 plus a carry in the high-order word). On
// 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
// replace them with zero, which could become sign-extension in a different OS
// release. There's no obvious reason why an interrupt will ever fill these
// bits with non-zero junk (the registers are reloaded with standard LD
// instructions which either zero-fill or sign-fill).
bool can_branch_register( Node *bol, Node *cmp ) {
if( !BranchOnRegister ) return false;
#ifdef _LP64
if( cmp->Opcode() == Op_CmpP )
return true; // No problems with pointer compares
#endif
if( cmp->Opcode() == Op_CmpL )
return true; // No problems with long compares
if( !SparcV9RegsHiBitsZero ) return false;
if( bol->as_Bool()->_test._test != BoolTest::ne &&
bol->as_Bool()->_test._test != BoolTest::eq )
return false;
// Check for comparing against a 'safe' value. Any operation which
// clears out the high word is safe. Thus, loads and certain shifts
// are safe, as are non-negative constants. Any operation which
// preserves zero bits in the high word is safe as long as each of its
// inputs are safe. Thus, phis and bitwise booleans are safe if their
// inputs are safe. At present, the only important case to recognize
// seems to be loads. Constants should fold away, and shifts &
// logicals can use the 'cc' forms.
Node *x = cmp->in(1);
if( x->is_Load() ) return true;
if( x->is_Phi() ) {
for( uint i = 1; i < x->req(); i++ )
if( !x->in(i)->is_Load() )
return false;
return true;
}
return false;
}
bool use_block_zeroing(Node* count) {
// Use BIS for zeroing if count is not constant
// or it is >= BlockZeroingLowLimit.
return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
}
// ****************************************************************************
// REQUIRED FUNCTIONALITY
// !!!!! Special hack to get all type of calls to specify the byte offset
// from the start of the call to the point where the return address
// will point.
// The "return address" is the address of the call instruction, plus 8.
int MachCallStaticJavaNode::ret_addr_offset() {
int offset = NativeCall::instruction_size; // call; delay slot
if (_method_handle_invoke)
offset += 4; // restore SP
return offset;
}
int MachCallDynamicJavaNode::ret_addr_offset() {
int vtable_index = this->_vtable_index;
if (vtable_index < 0) {
// must be invalid_vtable_index, not nonvirtual_vtable_index
assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
return (NativeMovConstReg::instruction_size +
NativeCall::instruction_size); // sethi; setlo; call; delay slot
} else {
assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
int klass_load_size;
if (UseCompressedClassPointers) {
assert(Universe::heap() != NULL, "java heap should be initialized");
klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
} else {
klass_load_size = 1*BytesPerInstWord;
}
if (Assembler::is_simm13(v_off)) {
return klass_load_size +
(2*BytesPerInstWord + // ld_ptr, ld_ptr
NativeCall::instruction_size); // call; delay slot
} else {
return klass_load_size +
(4*BytesPerInstWord + // set_hi, set, ld_ptr, ld_ptr
NativeCall::instruction_size); // call; delay slot
}
}
}
int MachCallRuntimeNode::ret_addr_offset() {
#ifdef _LP64
if (MacroAssembler::is_far_target(entry_point())) {
return NativeFarCall::instruction_size;
} else {
return NativeCall::instruction_size;
}
#else
return NativeCall::instruction_size; // call; delay slot
#endif
}
// Indicate if the safepoint node needs the polling page as an input.
// Since Sparc does not have absolute addressing, it does.
bool SafePointNode::needs_polling_address_input() {
return true;
}
// emit an interrupt that is caught by the debugger (for debugging compiler)
void emit_break(CodeBuffer &cbuf) {
MacroAssembler _masm(&cbuf);
__ breakpoint_trap();
}
#ifndef PRODUCT
void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
st->print("TA");
}
#endif
void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
emit_break(cbuf);
}
uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
return MachNode::size(ra_);
}
// Traceable jump
void emit_jmpl(CodeBuffer &cbuf, int jump_target) {
MacroAssembler _masm(&cbuf);
Register rdest = reg_to_register_object(jump_target);
__ JMP(rdest, 0);
__ delayed()->nop();
}
// Traceable jump and set exception pc
void emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
MacroAssembler _masm(&cbuf);
Register rdest = reg_to_register_object(jump_target);
__ JMP(rdest, 0);
__ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
}
void emit_nop(CodeBuffer &cbuf) {
MacroAssembler _masm(&cbuf);
__ nop();
}
void emit_illtrap(CodeBuffer &cbuf) {
MacroAssembler _masm(&cbuf);
__ illtrap(0);
}
intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
assert(n->rule() != loadUB_rule, "");
intptr_t offset = 0;
const TypePtr *adr_type = TYPE_PTR_SENTINAL; // Check for base==RegI, disp==immP
const Node* addr = n->get_base_and_disp(offset, adr_type);
assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
assert(addr != NULL && addr != (Node*)-1, "invalid addr");
assert(addr->bottom_type()->isa_oopptr() == atype, "");
atype = atype->add_offset(offset);
assert(disp32 == offset, "wrong disp32");
return atype->_offset;
}
intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
assert(n->rule() != loadUB_rule, "");
intptr_t offset = 0;
Node* addr = n->in(2);
assert(addr->bottom_type()->isa_oopptr() == atype, "");
if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
Node* a = addr->in(2/*AddPNode::Address*/);
Node* o = addr->in(3/*AddPNode::Offset*/);
offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
atype = a->bottom_type()->is_ptr()->add_offset(offset);
assert(atype->isa_oop_ptr(), "still an oop");
}
offset = atype->is_ptr()->_offset;
if (offset != Type::OffsetBot) offset += disp32;
return offset;
}
static inline jdouble replicate_immI(int con, int count, int width) {
// Load a constant replicated "count" times with width "width"
assert(count*width == 8 && width <= 4, "sanity");
int bit_width = width * 8;
jlong val = con;
val &= (((jlong) 1) << bit_width) - 1; // mask off sign bits
for (int i = 0; i < count - 1; i++) {
val |= (val << bit_width);
}
jdouble dval = *((jdouble*) &val); // coerce to double type
return dval;
}
static inline jdouble replicate_immF(float con) {
// Replicate float con 2 times and pack into vector.
int val = *((int*)&con);
jlong lval = val;
lval = (lval << 32) | (lval & 0xFFFFFFFFl);
jdouble dval = *((jdouble*) &lval); // coerce to double type
return dval;
}
// Standard Sparc opcode form2 field breakdown
static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
f0 &= (1<<19)-1; // Mask displacement to 19 bits
int op = (f30 << 30) |
(f29 << 29) |
(f25 << 25) |
(f22 << 22) |
(f20 << 20) |
(f19 << 19) |
(f0 << 0);
cbuf.insts()->emit_int32(op);
}
// Standard Sparc opcode form2 field breakdown
static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
f0 >>= 10; // Drop 10 bits
f0 &= (1<<22)-1; // Mask displacement to 22 bits
int op = (f30 << 30) |
(f25 << 25) |
(f22 << 22) |
(f0 << 0);
cbuf.insts()->emit_int32(op);
}
// Standard Sparc opcode form3 field breakdown
static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
int op = (f30 << 30) |
(f25 << 25) |
(f19 << 19) |
(f14 << 14) |
(f5 << 5) |
(f0 << 0);
cbuf.insts()->emit_int32(op);
}
// Standard Sparc opcode form3 field breakdown
static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
simm13 &= (1<<13)-1; // Mask to 13 bits
int op = (f30 << 30) |
(f25 << 25) |
(f19 << 19) |
(f14 << 14) |
(1 << 13) | // bit to indicate immediate-mode
(simm13<<0);
cbuf.insts()->emit_int32(op);
}
static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
simm10 &= (1<<10)-1; // Mask to 10 bits
emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
}
#ifdef ASSERT
// Helper function for VerifyOops in emit_form3_mem_reg
void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
warning("VerifyOops encountered unexpected instruction:");
n->dump(2);
warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
}
#endif
void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
int src1_enc, int disp32, int src2_enc, int dst_enc) {
#ifdef ASSERT
// The following code implements the +VerifyOops feature.
// It verifies oop values which are loaded into or stored out of
// the current method activation. +VerifyOops complements techniques
// like ScavengeALot, because it eagerly inspects oops in transit,
// as they enter or leave the stack, as opposed to ScavengeALot,
// which inspects oops "at rest", in the stack or heap, at safepoints.
// For this reason, +VerifyOops can sometimes detect bugs very close
// to their point of creation. It can also serve as a cross-check
// on the validity of oop maps, when used toegether with ScavengeALot.
// It would be good to verify oops at other points, especially
// when an oop is used as a base pointer for a load or store.
// This is presently difficult, because it is hard to know when
// a base address is biased or not. (If we had such information,
// it would be easy and useful to make a two-argument version of
// verify_oop which unbiases the base, and performs verification.)
assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
bool is_verified_oop_base = false;
bool is_verified_oop_load = false;
bool is_verified_oop_store = false;
int tmp_enc = -1;
if (VerifyOops && src1_enc != R_SP_enc) {
// classify the op, mainly for an assert check
int st_op = 0, ld_op = 0;
switch (primary) {
case Assembler::stb_op3: st_op = Op_StoreB; break;
case Assembler::sth_op3: st_op = Op_StoreC; break;
case Assembler::stx_op3: // may become StoreP or stay StoreI or StoreD0
case Assembler::stw_op3: st_op = Op_StoreI; break;
case Assembler::std_op3: st_op = Op_StoreL; break;
case Assembler::stf_op3: st_op = Op_StoreF; break;
case Assembler::stdf_op3: st_op = Op_StoreD; break;
case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
case Assembler::ldx_op3: // may become LoadP or stay LoadI
case Assembler::ldsw_op3: // may become LoadP or stay LoadI
case Assembler::lduw_op3: ld_op = Op_LoadI; break;
case Assembler::ldd_op3: ld_op = Op_LoadL; break;
case Assembler::ldf_op3: ld_op = Op_LoadF; break;
case Assembler::lddf_op3: ld_op = Op_LoadD; break;
case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
default: ShouldNotReachHere();
}
if (tertiary == REGP_OP) {
if (st_op == Op_StoreI) st_op = Op_StoreP;
else if (ld_op == Op_LoadI) ld_op = Op_LoadP;
else ShouldNotReachHere();
if (st_op) {
// a store
// inputs are (0:control, 1:memory, 2:address, 3:value)
Node* n2 = n->in(3);
if (n2 != NULL) {
const Type* t = n2->bottom_type();
is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
}
} else {
// a load
const Type* t = n->bottom_type();
is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
}
}
if (ld_op) {
// a Load
// inputs are (0:control, 1:memory, 2:address)
if (!(n->ideal_Opcode()==ld_op) && // Following are special cases
!(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
!(n->ideal_Opcode()==Op_LoadI && ld_op==Op_LoadF) &&
!(n->ideal_Opcode()==Op_LoadF && ld_op==Op_LoadI) &&
!(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
!(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
!(n->ideal_Opcode()==Op_LoadL && ld_op==Op_LoadI) &&
!(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
!(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
!(n->ideal_Opcode()==Op_ConvI2F && ld_op==Op_LoadF) &&
!(n->ideal_Opcode()==Op_ConvI2D && ld_op==Op_LoadF) &&
!(n->ideal_Opcode()==Op_PrefetchRead && ld_op==Op_LoadI) &&
!(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
!(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
!(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
!(n->rule() == loadUB_rule)) {
verify_oops_warning(n, n->ideal_Opcode(), ld_op);
}
} else if (st_op) {
// a Store
// inputs are (0:control, 1:memory, 2:address, 3:value)
if (!(n->ideal_Opcode()==st_op) && // Following are special cases
!(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
!(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
!(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
!(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
!(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
!(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
verify_oops_warning(n, n->ideal_Opcode(), st_op);
}
}
if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
Node* addr = n->in(2);
if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
const TypeOopPtr* atype = addr->bottom_type()->isa_instptr(); // %%% oopptr?
if (atype != NULL) {
intptr_t offset = get_offset_from_base(n, atype, disp32);
intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
if (offset != offset_2) {
get_offset_from_base(n, atype, disp32);
get_offset_from_base_2(n, atype, disp32);
}
assert(offset == offset_2, "different offsets");
if (offset == disp32) {
// we now know that src1 is a true oop pointer
is_verified_oop_base = true;
if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
if( primary == Assembler::ldd_op3 ) {
is_verified_oop_base = false; // Cannot 'ldd' into O7
} else {
tmp_enc = dst_enc;
dst_enc = R_O7_enc; // Load into O7; preserve source oop
assert(src1_enc != dst_enc, "");
}
}
}
if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
|| offset == oopDesc::mark_offset_in_bytes())) {
// loading the mark should not be allowed either, but
// we don't check this since it conflicts with InlineObjectHash
// usage of LoadINode to get the mark. We could keep the
// check if we create a new LoadMarkNode
// but do not verify the object before its header is initialized
ShouldNotReachHere();
}
}
}
}
}
#endif
uint instr;
instr = (Assembler::ldst_op << 30)
| (dst_enc << 25)
| (primary << 19)
| (src1_enc << 14);
uint index = src2_enc;
int disp = disp32;
if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
disp += STACK_BIAS;
// Quick fix for JDK-8029668: check that stack offset fits, bailout if not
if (!Assembler::is_simm13(disp)) {
ra->C->record_method_not_compilable("unable to handle large constant offsets");
return;
}
}
// We should have a compiler bailout here rather than a guarantee.
// Better yet would be some mechanism to handle variable-size matches correctly.
guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
if( disp == 0 ) {
// use reg-reg form
// bit 13 is already zero
instr |= index;
} else {
// use reg-imm form
instr |= 0x00002000; // set bit 13 to one
instr |= disp & 0x1FFF;
}
cbuf.insts()->emit_int32(instr);
#ifdef ASSERT
{
MacroAssembler _masm(&cbuf);
if (is_verified_oop_base) {
__ verify_oop(reg_to_register_object(src1_enc));
}
if (is_verified_oop_store) {
__ verify_oop(reg_to_register_object(dst_enc));
}
if (tmp_enc != -1) {
__ mov(O7, reg_to_register_object(tmp_enc));
}
if (is_verified_oop_load) {
__ verify_oop(reg_to_register_object(dst_enc));
}
}
#endif
}
void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
// The method which records debug information at every safepoint
// expects the call to be the first instruction in the snippet as
// it creates a PcDesc structure which tracks the offset of a call
// from the start of the codeBlob. This offset is computed as
// code_end() - code_begin() of the code which has been emitted
// so far.
// In this particular case we have skirted around the problem by
// putting the "mov" instruction in the delay slot but the problem
// may bite us again at some other point and a cleaner/generic
// solution using relocations would be needed.
MacroAssembler _masm(&cbuf);
__ set_inst_mark();
// We flush the current window just so that there is a valid stack copy
// the fact that the current window becomes active again instantly is
// not a problem there is nothing live in it.
#ifdef ASSERT
int startpos = __ offset();
#endif /* ASSERT */
__ call((address)entry_point, rtype);
if (preserve_g2) __ delayed()->mov(G2, L7);
else __ delayed()->nop();
if (preserve_g2) __ mov(L7, G2);
#ifdef ASSERT
if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
#ifdef _LP64
// Trash argument dump slots.
__ set(0xb0b8ac0db0b8ac0d, G1);
__ mov(G1, G5);
__ stx(G1, SP, STACK_BIAS + 0x80);
__ stx(G1, SP, STACK_BIAS + 0x88);
__ stx(G1, SP, STACK_BIAS + 0x90);
__ stx(G1, SP, STACK_BIAS + 0x98);
__ stx(G1, SP, STACK_BIAS + 0xA0);
__ stx(G1, SP, STACK_BIAS + 0xA8);
#else // _LP64
// this is also a native call, so smash the first 7 stack locations,
// and the various registers
// Note: [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
// while [SP+0x44..0x58] are the argument dump slots.
__ set((intptr_t)0xbaadf00d, G1);
__ mov(G1, G5);
__ sllx(G1, 32, G1);
__ or3(G1, G5, G1);
__ mov(G1, G5);
__ stx(G1, SP, 0x40);
__ stx(G1, SP, 0x48);
__ stx(G1, SP, 0x50);
__ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
#endif // _LP64
}
#endif /*ASSERT*/
}
//=============================================================================
// REQUIRED FUNCTIONALITY for encoding
void emit_lo(CodeBuffer &cbuf, int val) { }
void emit_hi(CodeBuffer &cbuf, int val) { }
//=============================================================================
const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
int Compile::ConstantTable::calculate_table_base_offset() const {
if (UseRDPCForConstantTableBase) {
// The table base offset might be less but then it fits into
// simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
return Assembler::min_simm13();
} else {
int offset = -(size() / 2);
if (!Assembler::is_simm13(offset)) {
offset = Assembler::min_simm13();
}
return offset;
}
}
bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
ShouldNotReachHere();
}
void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
Compile* C = ra_->C;
Compile::ConstantTable& constant_table = C->constant_table();
MacroAssembler _masm(&cbuf);
Register r = as_Register(ra_->get_encode(this));
CodeSection* consts_section = __ code()->consts();
int consts_size = consts_section->align_at_start(consts_section->size());
assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
if (UseRDPCForConstantTableBase) {
// For the following RDPC logic to work correctly the consts
// section must be allocated right before the insts section. This
// assert checks for that. The layout and the SECT_* constants
// are defined in src/share/vm/asm/codeBuffer.hpp.
assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
int insts_offset = __ offset();
// Layout:
//
// |----------- consts section ------------|----------- insts section -----------...
// |------ constant table -----|- padding -|------------------x----
// \ current PC (RDPC instruction)
// |<------------- consts_size ----------->|<- insts_offset ->|
// \ table base
// The table base offset is later added to the load displacement
// so it has to be negative.
int table_base_offset = -(consts_size + insts_offset);
int disp;
// If the displacement from the current PC to the constant table
// base fits into simm13 we set the constant table base to the
// current PC.
if (Assembler::is_simm13(table_base_offset)) {
constant_table.set_table_base_offset(table_base_offset);
disp = 0;
} else {
// Otherwise we set the constant table base offset to the
// maximum negative displacement of load instructions to keep
// the disp as small as possible:
//
// |<------------- consts_size ----------->|<- insts_offset ->|
// |<--------- min_simm13 --------->|<-------- disp --------->|
// \ table base
table_base_offset = Assembler::min_simm13();
constant_table.set_table_base_offset(table_base_offset);
disp = (consts_size + insts_offset) + table_base_offset;
}
__ rdpc(r);
if (disp != 0) {
assert(r != O7, "need temporary");
__ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
}
}
else {
// Materialize the constant table base.
address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
AddressLiteral base(baseaddr, rspec);
__ set(base, r);
}
}
uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
if (UseRDPCForConstantTableBase) {
// This is really the worst case but generally it's only 1 instruction.
return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
} else {
return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
}
}
#ifndef PRODUCT
void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
char reg[128];
ra_->dump_register(this, reg);
if (UseRDPCForConstantTableBase) {
st->print("RDPC %s\t! constant table base", reg);
} else {
st->print("SET &constanttable,%s\t! constant table base", reg);
}
}
#endif
//=============================================================================
#ifndef PRODUCT
void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
Compile* C = ra_->C;
for (int i = 0; i < OptoPrologueNops; i++) {
st->print_cr("NOP"); st->print("\t");
}
if( VerifyThread ) {
st->print_cr("Verify_Thread"); st->print("\t");
}
size_t framesize = C->frame_size_in_bytes();
int bangsize = C->bang_size_in_bytes();
// Calls to C2R adapters often do not accept exceptional returns.
// We require that their callers must bang for them. But be careful, because
// some VM calls (such as call site linkage) can use several kilobytes of
// stack. But the stack safety zone should account for that.
// See bugs 4446381, 4468289, 4497237.
if (C->need_stack_bang(bangsize)) {
st->print_cr("! stack bang (%d bytes)", bangsize); st->print("\t");
}
if (Assembler::is_simm13(-framesize)) {
st->print ("SAVE R_SP,-" SIZE_FORMAT ",R_SP",framesize);
} else {
st->print_cr("SETHI R_SP,hi%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
st->print_cr("ADD R_G3,lo%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
st->print ("SAVE R_SP,R_G3,R_SP");
}
}
#endif
void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
Compile* C = ra_->C;
MacroAssembler _masm(&cbuf);
for (int i = 0; i < OptoPrologueNops; i++) {
__ nop();
}
__ verify_thread();
size_t framesize = C->frame_size_in_bytes();
assert(framesize >= 16*wordSize, "must have room for reg. save area");
assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
int bangsize = C->bang_size_in_bytes();
// Calls to C2R adapters often do not accept exceptional returns.
// We require that their callers must bang for them. But be careful, because
// some VM calls (such as call site linkage) can use several kilobytes of
// stack. But the stack safety zone should account for that.
// See bugs 4446381, 4468289, 4497237.
if (C->need_stack_bang(bangsize)) {
__ generate_stack_overflow_check(bangsize);
}
if (Assembler::is_simm13(-framesize)) {
__ save(SP, -framesize, SP);
} else {
__ sethi(-framesize & ~0x3ff, G3);
__ add(G3, -framesize & 0x3ff, G3);
__ save(SP, G3, SP);
}
C->set_frame_complete( __ offset() );
if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
// NOTE: We set the table base offset here because users might be
// emitted before MachConstantBaseNode.
Compile::ConstantTable& constant_table = C->constant_table();
constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
}
}
uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
return MachNode::size(ra_);
}
int MachPrologNode::reloc() const {
return 10; // a large enough number
}
//=============================================================================
#ifndef PRODUCT
void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
Compile* C = ra_->C;
if(do_polling() && ra_->C->is_method_compilation()) {
st->print("SETHI #PollAddr,L0\t! Load Polling address\n\t");
#ifdef _LP64
st->print("LDX [L0],G0\t!Poll for Safepointing\n\t");
#else
st->print("LDUW [L0],G0\t!Poll for Safepointing\n\t");
#endif
}
if(do_polling()) {
if (UseCBCond && !ra_->C->is_method_compilation()) {
st->print("NOP\n\t");
}
st->print("RET\n\t");
}
st->print("RESTORE");
}
#endif
void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
MacroAssembler _masm(&cbuf);
Compile* C = ra_->C;
__ verify_thread();
// If this does safepoint polling, then do it here
if(do_polling() && ra_->C->is_method_compilation()) {
AddressLiteral polling_page(os::get_polling_page());
__ sethi(polling_page, L0);
__ relocate(relocInfo::poll_return_type);
__ ld_ptr(L0, 0, G0);
}
// If this is a return, then stuff the restore in the delay slot
if(do_polling()) {
if (UseCBCond && !ra_->C->is_method_compilation()) {
// Insert extra padding for the case when the epilogue is preceded by
// a cbcond jump, which can't be followed by a CTI instruction
__ nop();
}
__ ret();
__ delayed()->restore();
} else {
__ restore();
}
}
uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
return MachNode::size(ra_);
}
int MachEpilogNode::reloc() const {
return 16; // a large enough number
}
const Pipeline * MachEpilogNode::pipeline() const {
return MachNode::pipeline_class();
}
int MachEpilogNode::safepoint_offset() const {
assert( do_polling(), "no return for this epilog node");
return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
}
//=============================================================================
// Figure out which register class each belongs in: rc_int, rc_float, rc_stack
enum RC { rc_bad, rc_int, rc_float, rc_stack };
static enum RC rc_class( OptoReg::Name reg ) {
if( !OptoReg::is_valid(reg) ) return rc_bad;
if (OptoReg::is_stack(reg)) return rc_stack;
VMReg r = OptoReg::as_VMReg(reg);
if (r->is_Register()) return rc_int;
assert(r->is_FloatRegister(), "must be");
return rc_float;
}
static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
if (cbuf) {
emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
}
#ifndef PRODUCT
else if (!do_size) {
if (size != 0) st->print("\n\t");
if (is_load) st->print("%s [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
else st->print("%s R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
}
#endif
return size+4;
}
static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
#ifndef PRODUCT
else if( !do_size ) {
if( size != 0 ) st->print("\n\t");
st->print("%s R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
}
#endif
return size+4;
}
uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
PhaseRegAlloc *ra_,
bool do_size,
outputStream* st ) const {
// Get registers to move
OptoReg::Name src_second = ra_->get_reg_second(in(1));
OptoReg::Name src_first = ra_->get_reg_first(in(1));
OptoReg::Name dst_second = ra_->get_reg_second(this );
OptoReg::Name dst_first = ra_->get_reg_first(this );
enum RC src_second_rc = rc_class(src_second);
enum RC src_first_rc = rc_class(src_first);
enum RC dst_second_rc = rc_class(dst_second);
enum RC dst_first_rc = rc_class(dst_first);
assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
// Generate spill code!
int size = 0;
if( src_first == dst_first && src_second == dst_second )
return size; // Self copy, no move
// --------------------------------------
// Check for mem-mem move. Load into unused float registers and fall into
// the float-store case.
if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
int offset = ra_->reg2offset(src_first);
// Further check for aligned-adjacent pair, so we can use a double load
if( (src_first&1)==0 && src_first+1 == src_second ) {
src_second = OptoReg::Name(R_F31_num);
src_second_rc = rc_float;
size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
} else {
size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
}
src_first = OptoReg::Name(R_F30_num);
src_first_rc = rc_float;
}
if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
int offset = ra_->reg2offset(src_second);
size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
src_second = OptoReg::Name(R_F31_num);
src_second_rc = rc_float;
}
// --------------------------------------
// Check for float->int copy; requires a trip through memory
if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
int offset = frame::register_save_words*wordSize;
if (cbuf) {
emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
}
#ifndef PRODUCT
else if (!do_size) {
if (size != 0) st->print("\n\t");
st->print( "SUB R_SP,16,R_SP\n");
impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
st->print("\tADD R_SP,16,R_SP\n");
}
#endif
size += 16;
}
// Check for float->int copy on T4
if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
// Further check for aligned-adjacent pair, so we can use a double move
if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
}
// Check for int->float copy on T4
if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
// Further check for aligned-adjacent pair, so we can use a double move
if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
}
// --------------------------------------
// In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
// In such cases, I have to do the big-endian swap. For aligned targets, the
// hardware does the flop for me. Doubles are always aligned, so no problem
// there. Misaligned sources only come from native-long-returns (handled
// special below).
#ifndef _LP64
if( src_first_rc == rc_int && // source is already big-endian
src_second_rc != rc_bad && // 64-bit move
((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
// Do the big-endian flop.
OptoReg::Name tmp = dst_first ; dst_first = dst_second ; dst_second = tmp ;
enum RC tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
}
#endif
// --------------------------------------
// Check for integer reg-reg copy
if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
#ifndef _LP64
if( src_first == R_O0_num && src_second == R_O1_num ) { // Check for the evil O0/O1 native long-return case
// Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
// as stored in memory. On a big-endian machine like SPARC, this means that the _second
// operand contains the least significant word of the 64-bit value and vice versa.
OptoReg::Name tmp = OptoReg::Name(R_O7_num);
assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
// Shift O0 left in-place, zero-extend O1, then OR them into the dst
if( cbuf ) {
emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
emit3 ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
#ifndef PRODUCT
} else if( !do_size ) {
if( size != 0 ) st->print("\n\t");
st->print("SLLX R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
st->print("SRL R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
st->print("OR R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
#endif
}
return size+12;
}
else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
// returning a long value in I0/I1
// a SpillCopy must be able to target a return instruction's reg_class
// Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
// as stored in memory. On a big-endian machine like SPARC, this means that the _second
// operand contains the least significant word of the 64-bit value and vice versa.
OptoReg::Name tdest = dst_first;
if (src_first == dst_first) {
tdest = OptoReg::Name(R_O7_num);
size += 4;
}
if( cbuf ) {
assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
// Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
// ShrL_reg_imm6
emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
// ShrR_reg_imm6 src, 0, dst
emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
if (tdest != dst_first) {
emit3 ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
}
}
#ifndef PRODUCT
else if( !do_size ) {
if( size != 0 ) st->print("\n\t"); // %%%%% !!!!!
st->print("SRLX R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
st->print("SRL R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
if (tdest != dst_first) {
st->print("MOV R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
}
}
#endif // PRODUCT
return size+8;
}
#endif // !_LP64
// Else normal reg-reg copy
assert( src_second != dst_first, "smashed second before evacuating it" );
size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV ",size, st);
assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
// This moves an aligned adjacent pair.
// See if we are done.
if( src_first+1 == src_second && dst_first+1 == dst_second )
return size;
}
// Check for integer store
if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
int offset = ra_->reg2offset(dst_first);
// Further check for aligned-adjacent pair, so we can use a double store
if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
size = impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
}
// Check for integer load
if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
int offset = ra_->reg2offset(src_first);
// Further check for aligned-adjacent pair, so we can use a double load
if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
size = impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
}
// Check for float reg-reg copy
if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
// Further check for aligned-adjacent pair, so we can use a double move
if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
}
// Check for float store
if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
int offset = ra_->reg2offset(dst_first);
// Further check for aligned-adjacent pair, so we can use a double store
if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
size = impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
}
// Check for float load
if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
int offset = ra_->reg2offset(src_first);
// Further check for aligned-adjacent pair, so we can use a double load
if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
size = impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
}
// --------------------------------------------------------------------
// Check for hi bits still needing moving. Only happens for misaligned
// arguments to native calls.
if( src_second == dst_second )
return size; // Self copy; no move
assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
#ifndef _LP64
// In the LP64 build, all registers can be moved as aligned/adjacent
// pairs, so there's never any need to move the high bits separately.
// The 32-bit builds have to deal with the 32-bit ABI which can force
// all sorts of silly alignment problems.
// Check for integer reg-reg copy. Hi bits are stuck up in the top
// 32-bits of a 64-bit register, but are needed in low bits of another
// register (else it's a hi-bits-to-hi-bits copy which should have
// happened already as part of a 64-bit move)
if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
// Shift src_second down to dst_second's low bits.
if( cbuf ) {
emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
#ifndef PRODUCT
} else if( !do_size ) {
if( size != 0 ) st->print("\n\t");
st->print("SRLX R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
#endif
}
return size+4;
}
// Check for high word integer store. Must down-shift the hi bits
// into a temp register, then fall into the case of storing int bits.
if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
// Shift src_second down to dst_second's low bits.
if( cbuf ) {
emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
#ifndef PRODUCT
} else if( !do_size ) {
if( size != 0 ) st->print("\n\t");
st->print("SRLX R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
#endif
}
size+=4;
src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
}
// Check for high word integer load
if( dst_second_rc == rc_int && src_second_rc == rc_stack )
return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
// Check for high word integer store
if( src_second_rc == rc_int && dst_second_rc == rc_stack )
return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
// Check for high word float store
if( src_second_rc == rc_float && dst_second_rc == rc_stack )
return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
#endif // !_LP64
Unimplemented();
}
#ifndef PRODUCT
void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
implementation( NULL, ra_, false, st );
}
#endif
void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
implementation( &cbuf, ra_, false, NULL );
}
uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
return implementation( NULL, ra_, true, NULL );
}
//=============================================================================
#ifndef PRODUCT
void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
}
#endif
void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
MacroAssembler _masm(&cbuf);
for(int i = 0; i < _count; i += 1) {
__ nop();
}
}
uint MachNopNode::size(PhaseRegAlloc *ra_) const {
return 4 * _count;
}
//=============================================================================
#ifndef PRODUCT
void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
int reg = ra_->get_reg_first(this);
st->print("LEA [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
}
#endif
void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
MacroAssembler _masm(&cbuf);
int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
int reg = ra_->get_encode(this);
if (Assembler::is_simm13(offset)) {
__ add(SP, offset, reg_to_register_object(reg));
} else {
__ set(offset, O7);
__ add(SP, O7, reg_to_register_object(reg));
}
}
uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
// BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
assert(ra_ == ra_->C->regalloc(), "sanity");
return ra_->C->scratch_emit_size(this);
}
//=============================================================================
#ifndef PRODUCT
void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
st->print_cr("\nUEP:");
#ifdef _LP64
if (UseCompressedClassPointers) {
assert(Universe::heap() != NULL, "java heap should be initialized");
st->print_cr("\tLDUW [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
if (Universe::narrow_klass_base() != 0) {
st->print_cr("\tSET Universe::narrow_klass_base,R_G6_heap_base");
if (Universe::narrow_klass_shift() != 0) {
st->print_cr("\tSLL R_G5,Universe::narrow_klass_shift,R_G5");
}
st->print_cr("\tADD R_G5,R_G6_heap_base,R_G5");
st->print_cr("\tSET Universe::narrow_ptrs_base,R_G6_heap_base");
} else {
st->print_cr("\tSLL R_G5,Universe::narrow_klass_shift,R_G5");
}
} else {
st->print_cr("\tLDX [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
}
st->print_cr("\tCMP R_G5,R_G3" );
st->print ("\tTne xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
#else // _LP64
st->print_cr("\tLDUW [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
st->print_cr("\tCMP R_G5,R_G3" );
st->print ("\tTne icc,R_G0+ST_RESERVED_FOR_USER_0+2");
#endif // _LP64
}
#endif
void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
MacroAssembler _masm(&cbuf);
Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
Register temp_reg = G3;
assert( G5_ic_reg != temp_reg, "conflicting registers" );
// Load klass from receiver
__ load_klass(O0, temp_reg);
// Compare against expected klass
__ cmp(temp_reg, G5_ic_reg);
// Branch to miss code, checks xcc or icc depending
__ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
}
uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
return MachNode::size(ra_);
}
//=============================================================================
// Emit exception handler code.
int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
Register temp_reg = G3;
AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
MacroAssembler _masm(&cbuf);
address base =
__ start_a_stub(size_exception_handler());
if (base == NULL) return 0; // CodeBuffer::expand failed
int offset = __ offset();
__ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
__ delayed()->nop();
assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
__ end_a_stub();
return offset;
}
int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
// Can't use any of the current frame's registers as we may have deopted
// at a poll and everything (including G3) can be live.
Register temp_reg = L0;
AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
MacroAssembler _masm(&cbuf);
address base =
__ start_a_stub(size_deopt_handler());
if (base == NULL) return 0; // CodeBuffer::expand failed
int offset = __ offset();
__ save_frame(0);
__ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
__ delayed()->restore();
assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
__ end_a_stub();
return offset;
}
// Given a register encoding, produce a Integer Register object
static Register reg_to_register_object(int register_encoding) {
assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
return as_Register(register_encoding);
}
// Given a register encoding, produce a single-precision Float Register object
static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
return as_SingleFloatRegister(register_encoding);
}
// Given a register encoding, produce a double-precision Float Register object
static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
return as_DoubleFloatRegister(register_encoding);
}
const bool Matcher::match_rule_supported(int opcode) {
if (!has_match_rule(opcode))
return false;
switch (opcode) {
case Op_CountLeadingZerosI:
case Op_CountLeadingZerosL:
case Op_CountTrailingZerosI:
case Op_CountTrailingZerosL:
case Op_PopCountI:
case Op_PopCountL:
if (!UsePopCountInstruction)
return false;
case Op_CompareAndSwapL:
#ifdef _LP64
case Op_CompareAndSwapP:
#endif
if (!VM_Version::supports_cx8())
return false;
break;
}
return true; // Per default match rules are supported.
}
int Matcher::regnum_to_fpu_offset(int regnum) {
return regnum - 32; // The FP registers are in the second chunk
}
#ifdef ASSERT
address last_rethrow = NULL; // debugging aid for Rethrow encoding
#endif
// Vector width in bytes
const int Matcher::vector_width_in_bytes(BasicType bt) {
assert(MaxVectorSize == 8, "");
return 8;
}
// Vector ideal reg
const int Matcher::vector_ideal_reg(int size) {
assert(MaxVectorSize == 8, "");
return Op_RegD;
}
const int Matcher::vector_shift_count_ideal_reg(int size) {
fatal("vector shift is not supported");
return Node::NotAMachineReg;
}
// Limits on vector size (number of elements) loaded into vector.
const int Matcher::max_vector_size(const BasicType bt) {
assert(is_java_primitive(bt), "only primitive type vectors");
return vector_width_in_bytes(bt)/type2aelembytes(bt);
}
const int Matcher::min_vector_size(const BasicType bt) {
return max_vector_size(bt); // Same as max.
}
// SPARC doesn't support misaligned vectors store/load.
const bool Matcher::misaligned_vectors_ok() {
return false;
}
// Current (2013) SPARC platforms need to read original key
// to construct decryption expanded key
const bool Matcher::pass_original_key_for_aes() {
return true;
}
// USII supports fxtof through the whole range of number, USIII doesn't
const bool Matcher::convL2FSupported(void) {
return VM_Version::has_fast_fxtof();
}
// Is this branch offset short enough that a short branch can be used?
//
// NOTE: If the platform does not provide any short branch variants, then
// this method should return false for offset 0.
bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
// The passed offset is relative to address of the branch.
// Don't need to adjust the offset.
return UseCBCond && Assembler::is_simm12(offset);
}
const bool Matcher::isSimpleConstant64(jlong value) {
// Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
// Depends on optimizations in MacroAssembler::setx.
int hi = (int)(value >> 32);
int lo = (int)(value & ~0);
return (hi == 0) || (hi == -1) || (lo == 0);
}
// No scaling for the parameter the ClearArray node.
const bool Matcher::init_array_count_is_in_bytes = true;
// Threshold size for cleararray.
const int Matcher::init_array_short_size = 8 * BytesPerLong;
// No additional cost for CMOVL.
const int Matcher::long_cmove_cost() { return 0; }
// CMOVF/CMOVD are expensive on T4 and on SPARC64.
const int Matcher::float_cmove_cost() {
return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
}
// Does the CPU require late expand (see block.cpp for description of late expand)?
const bool Matcher::require_postalloc_expand = false;
// Should the Matcher clone shifts on addressing modes, expecting them to
// be subsumed into complex addressing expressions or compute them into
// registers? True for Intel but false for most RISCs
const bool Matcher::clone_shift_expressions = false;
// Do we need to mask the count passed to shift instructions or does
// the cpu only look at the lower 5/6 bits anyway?
const bool Matcher::need_masked_shift_count = false;
bool Matcher::narrow_oop_use_complex_address() {
NOT_LP64(ShouldNotCallThis());
assert(UseCompressedOops, "only for compressed oops code");
return false;
}
bool Matcher::narrow_klass_use_complex_address() {
NOT_LP64(ShouldNotCallThis());
assert(UseCompressedClassPointers, "only for compressed klass code");
return false;
}
// Is it better to copy float constants, or load them directly from memory?
// Intel can load a float constant from a direct address, requiring no
// extra registers. Most RISCs will have to materialize an address into a
// register first, so they would do better to copy the constant from stack.
const bool Matcher::rematerialize_float_constants = false;
// If CPU can load and store mis-aligned doubles directly then no fixup is
// needed. Else we split the double into 2 integer pieces and move it
// piece-by-piece. Only happens when passing doubles into C code as the
// Java calling convention forces doubles to be aligned.
#ifdef _LP64
const bool Matcher::misaligned_doubles_ok = true;
#else
const bool Matcher::misaligned_doubles_ok = false;
#endif
// No-op on SPARC.
void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
}
// Advertise here if the CPU requires explicit rounding operations
// to implement the UseStrictFP mode.
const bool Matcher::strict_fp_requires_explicit_rounding = false;
// Are floats converted to double when stored to stack during deoptimization?
// Sparc does not handle callee-save floats.
bool Matcher::float_in_double() { return false; }
// Do ints take an entire long register or just half?
// Note that we if-def off of _LP64.
// The relevant question is how the int is callee-saved. In _LP64
// the whole long is written but de-opt'ing will have to extract
// the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
#ifdef _LP64
const bool Matcher::int_in_long = true;
#else
const bool Matcher::int_in_long = false;
#endif
// Return whether or not this register is ever used as an argument. This
// function is used on startup to build the trampoline stubs in generateOptoStub.
// Registers not mentioned will be killed by the VM call in the trampoline, and
// arguments in those registers not be available to the callee.
bool Matcher::can_be_java_arg( int reg ) {
// Standard sparc 6 args in registers
if( reg == R_I0_num ||
reg == R_I1_num ||
reg == R_I2_num ||
reg == R_I3_num ||
reg == R_I4_num ||
reg == R_I5_num ) return true;
#ifdef _LP64
// 64-bit builds can pass 64-bit pointers and longs in
// the high I registers
if( reg == R_I0H_num ||
reg == R_I1H_num ||
reg == R_I2H_num ||
reg == R_I3H_num ||
reg == R_I4H_num ||
reg == R_I5H_num ) return true;
if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
return true;
}
#else
// 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
// Longs cannot be passed in O regs, because O regs become I regs
// after a 'save' and I regs get their high bits chopped off on
// interrupt.
if( reg == R_G1H_num || reg == R_G1_num ) return true;
if( reg == R_G4H_num || reg == R_G4_num ) return true;
#endif
// A few float args in registers
if( reg >= R_F0_num && reg <= R_F7_num ) return true;
return false;
}
bool Matcher::is_spillable_arg( int reg ) {
return can_be_java_arg(reg);
}
bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
// Use hardware SDIVX instruction when it is
// faster than a code which use multiply.
return VM_Version::has_fast_idiv();
}
// Register for DIVI projection of divmodI
RegMask Matcher::divI_proj_mask() {
ShouldNotReachHere();
return RegMask();
}
// Register for MODI projection of divmodI
RegMask Matcher::modI_proj_mask() {
ShouldNotReachHere();
return RegMask();
}
// Register for DIVL projection of divmodL
RegMask Matcher::divL_proj_mask() {
ShouldNotReachHere();
return RegMask();
}
// Register for MODL projection of divmodL
RegMask Matcher::modL_proj_mask() {
ShouldNotReachHere();
return RegMask();
}
const RegMask Matcher::method_handle_invoke_SP_save_mask() {
return L7_REGP_mask();
}
%}
// The intptr_t operand types, defined by textual substitution.
// (Cf. opto/type.hpp. This lets us avoid many, many other ifdefs.)
#ifdef _LP64
#define immX immL
#define immX13 immL13
#define immX13m7 immL13m7
#define iRegX iRegL
#define g1RegX g1RegL
#else
#define immX immI
#define immX13 immI13
#define immX13m7 immI13m7
#define iRegX iRegI
#define g1RegX g1RegI
#endif
//----------ENCODING BLOCK-----------------------------------------------------
// This block specifies the encoding classes used by the compiler to output
// byte streams. Encoding classes are parameterized macros used by
// Machine Instruction Nodes in order to generate the bit encoding of the
// instruction. Operands specify their base encoding interface with the
// interface keyword. There are currently supported four interfaces,
// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
// operand to generate a function which returns its register number when
// queried. CONST_INTER causes an operand to generate a function which
// returns the value of the constant when queried. MEMORY_INTER causes an
// operand to generate four functions which return the Base Register, the
// Index Register, the Scale Value, and the Offset Value of the operand when
// queried. COND_INTER causes an operand to generate six functions which
// return the encoding code (ie - encoding bits for the instruction)
// associated with each basic boolean condition for a conditional instruction.
//
// Instructions specify two basic values for encoding. Again, a function
// is available to check if the constant displacement is an oop. They use the
// ins_encode keyword to specify their encoding classes (which must be
// a sequence of enc_class names, and their parameters, specified in
// the encoding block), and they use the
// opcode keyword to specify, in order, their primary, secondary, and
// tertiary opcode. Only the opcode sections which a particular instruction
// needs for encoding need to be specified.
encode %{
enc_class enc_untested %{
#ifdef ASSERT
MacroAssembler _masm(&cbuf);
__ untested("encoding");
#endif
%}
enc_class form3_mem_reg( memory mem, iRegI dst ) %{
emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
$mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
%}
enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
$mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
%}
enc_class form3_mem_prefetch_read( memory mem ) %{
emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
$mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
%}
enc_class form3_mem_prefetch_write( memory mem ) %{
emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
$mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
%}
enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
assert(Assembler::is_simm13($mem$$disp ), "need disp and disp+4");
assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
guarantee($mem$$index == R_G0_enc, "double index?");
emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp, R_G0_enc, $reg$$reg );
emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
%}
enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
assert(Assembler::is_simm13($mem$$disp ), "need disp and disp+4");
assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
guarantee($mem$$index == R_G0_enc, "double index?");
// Load long with 2 instructions
emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp, R_G0_enc, $reg$$reg+0 );
emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
%}
//%%% form3_mem_plus_4_reg is a hack--get rid of it
enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
%}
enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
// Encode a reg-reg copy. If it is useless, then empty encoding.
if( $rs2$$reg != $rd$$reg )
emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
%}
// Target lo half of long
enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
// Encode a reg-reg copy. If it is useless, then empty encoding.
if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
%}
// Source lo half of long
enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
// Encode a reg-reg copy. If it is useless, then empty encoding.
if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
%}
// Target hi half of long
enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
%}
// Source lo half of long, and leave it sign extended.
enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
// Sign extend low half
emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
%}
// Source hi half of long, and leave it sign extended.
enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
// Shift high half to low half
emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
%}
// Source hi half of long
enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
// Encode a reg-reg copy. If it is useless, then empty encoding.
if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
%}
enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
%}
enc_class enc_to_bool( iRegI src, iRegI dst ) %{
emit3 ( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, 0, 0, $src$$reg );
emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
%}
enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
emit3 ( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
// clear if nothing else is happening
emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, 0 );
// blt,a,pn done
emit2_19 ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
// mov dst,-1 in delay slot
emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
%}
enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
%}
enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
%}
enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
%}
enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
%}
enc_class move_return_pc_to_o1() %{
emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
%}
#ifdef _LP64
/* %%% merge with enc_to_bool */
enc_class enc_convP2B( iRegI dst, iRegP src ) %{
MacroAssembler _masm(&cbuf);
Register src_reg = reg_to_register_object($src$$reg);
Register dst_reg = reg_to_register_object($dst$$reg);
__ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
%}
#endif
enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
// (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
MacroAssembler _masm(&cbuf);
Register p_reg = reg_to_register_object($p$$reg);
Register q_reg = reg_to_register_object($q$$reg);
Register y_reg = reg_to_register_object($y$$reg);
Register tmp_reg = reg_to_register_object($tmp$$reg);
__ subcc( p_reg, q_reg, p_reg );
__ add ( p_reg, y_reg, tmp_reg );
__ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
%}
enc_class form_d2i_helper(regD src, regF dst) %{
// fcmp %fcc0,$src,$src
emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
// branch %fcc0 not-nan, predict taken
emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
// fdtoi $src,$dst
emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fdtoi_opf, $src$$reg );
// fitos $dst,$dst (if nan)
emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fitos_opf, $dst$$reg );
// clear $dst (if nan)
emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
// carry on here...
%}
enc_class form_d2l_helper(regD src, regD dst) %{
// fcmp %fcc0,$src,$src check for NAN
emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
// branch %fcc0 not-nan, predict taken
emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
// fdtox $src,$dst convert in delay slot
emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fdtox_opf, $src$$reg );
// fxtod $dst,$dst (if nan)
emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fxtod_opf, $dst$$reg );
// clear $dst (if nan)
emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
// carry on here...
%}
enc_class form_f2i_helper(regF src, regF dst) %{
// fcmps %fcc0,$src,$src
emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
// branch %fcc0 not-nan, predict taken
emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
// fstoi $src,$dst
emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fstoi_opf, $src$$reg );
// fitos $dst,$dst (if nan)
emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fitos_opf, $dst$$reg );
// clear $dst (if nan)
emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
// carry on here...
%}
enc_class form_f2l_helper(regF src, regD dst) %{
// fcmps %fcc0,$src,$src
emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
// branch %fcc0 not-nan, predict taken
emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
// fstox $src,$dst
emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fstox_opf, $src$$reg );
// fxtod $dst,$dst (if nan)
emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fxtod_opf, $dst$$reg );
// clear $dst (if nan)
emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
// carry on here...
%}
enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
%}
enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
%}
enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
%}
enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
%}
enc_class form3_convI2F(regF rs2, regF rd) %{
emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
%}
// Encloding class for traceable jumps
enc_class form_jmpl(g3RegP dest) %{
emit_jmpl(cbuf, $dest$$reg);
%}
enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
%}
enc_class form2_nop() %{
emit_nop(cbuf);
%}
enc_class form2_illtrap() %{
emit_illtrap(cbuf);
%}
// Compare longs and convert into -1, 0, 1.
enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
// CMP $src1,$src2
emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
// blt,a,pn done
emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
// mov dst,-1 in delay slot
emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
// bgt,a,pn done
emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
// mov dst,1 in delay slot
emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, 1 );
// CLR $dst
emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
%}
enc_class enc_PartialSubtypeCheck() %{
MacroAssembler _masm(&cbuf);
__ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
__ delayed()->nop();
%}
enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
MacroAssembler _masm(&cbuf);
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
__ delayed()->nop();
%}
enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
MacroAssembler _masm(&cbuf);
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
__ delayed()->nop();
%}
enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
int op = (Assembler::arith_op << 30) |
($dst$$reg << 25) |
(Assembler::movcc_op3 << 19) |
(1 << 18) | // cc2 bit for 'icc'
($cmp$$cmpcode << 14) |
(0 << 13) | // select register move
($pcc$$constant << 11) | // cc1, cc0 bits for 'icc' or 'xcc'
($src$$reg << 0);
cbuf.insts()->emit_int32(op);
%}
enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
int op = (Assembler::arith_op << 30) |
($dst$$reg << 25) |
(Assembler::movcc_op3 << 19) |
(1 << 18) | // cc2 bit for 'icc'
($cmp$$cmpcode << 14) |
(1 << 13) | // select immediate move
($pcc$$constant << 11) | // cc1, cc0 bits for 'icc'
(simm11 << 0);
cbuf.insts()->emit_int32(op);
%}
enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
int op = (Assembler::arith_op << 30) |
($dst$$reg << 25) |
(Assembler::movcc_op3 << 19) |
(0 << 18) | // cc2 bit for 'fccX'
($cmp$$cmpcode << 14) |
(0 << 13) | // select register move
($fcc$$reg << 11) | // cc1, cc0 bits for fcc0-fcc3
($src$$reg << 0);
cbuf.insts()->emit_int32(op);
%}
enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
int op = (Assembler::arith_op << 30) |
($dst$$reg << 25) |
(Assembler::movcc_op3 << 19) |
(0 << 18) | // cc2 bit for 'fccX'
($cmp$$cmpcode << 14) |
(1 << 13) | // select immediate move
($fcc$$reg << 11) | // cc1, cc0 bits for fcc0-fcc3
(simm11 << 0);
cbuf.insts()->emit_int32(op);
%}
enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
int op = (Assembler::arith_op << 30) |
($dst$$reg << 25) |
(Assembler::fpop2_op3 << 19) |
(0 << 18) |
($cmp$$cmpcode << 14) |
(1 << 13) | // select register move
($pcc$$constant << 11) | // cc1-cc0 bits for 'icc' or 'xcc'
($primary << 5) | // select single, double or quad
($src$$reg << 0);
cbuf.insts()->emit_int32(op);
%}
enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
int op = (Assembler::arith_op << 30) |
($dst$$reg << 25) |
(Assembler::fpop2_op3 << 19) |
(0 << 18) |
($cmp$$cmpcode << 14) |
($fcc$$reg << 11) | // cc2-cc0 bits for 'fccX'
($primary << 5) | // select single, double or quad
($src$$reg << 0);
cbuf.insts()->emit_int32(op);
%}
// Used by the MIN/MAX encodings. Same as a CMOV, but
// the condition comes from opcode-field instead of an argument.
enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
int op = (Assembler::arith_op << 30) |
($dst$$reg << 25) |
(Assembler::movcc_op3 << 19) |
(1 << 18) | // cc2 bit for 'icc'
($primary << 14) |
(0 << 13) | // select register move
(0 << 11) | // cc1, cc0 bits for 'icc'
($src$$reg << 0);
cbuf.insts()->emit_int32(op);
%}
enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
int op = (Assembler::arith_op << 30) |
($dst$$reg << 25) |
(Assembler::movcc_op3 << 19) |
(6 << 16) | // cc2 bit for 'xcc'
($primary << 14) |
(0 << 13) | // select register move
(0 << 11) | // cc1, cc0 bits for 'icc'
($src$$reg << 0);
cbuf.insts()->emit_int32(op);
%}
enc_class Set13( immI13 src, iRegI rd ) %{
emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
%}
enc_class SetHi22( immI src, iRegI rd ) %{
emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
%}
enc_class Set32( immI src, iRegI rd ) %{
MacroAssembler _masm(&cbuf);
__ set($src$$constant, reg_to_register_object($rd$$reg));
%}
enc_class call_epilog %{
if( VerifyStackAtCalls ) {
MacroAssembler _masm(&cbuf);
int framesize = ra_->C->frame_size_in_bytes();
Register temp_reg = G3;
__ add(SP, framesize, temp_reg);
__ cmp(temp_reg, FP);
__ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
}
%}
// Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
// to G1 so the register allocator will not have to deal with the misaligned register
// pair.
enc_class adjust_long_from_native_call %{
#ifndef _LP64
if (returns_long()) {
// sllx O0,32,O0
emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
// srl O1,0,O1
emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
// or O0,O1,G1
emit3 ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
}
#endif
%}
enc_class Java_To_Runtime (method meth) %{ // CALL Java_To_Runtime
// CALL directly to the runtime
// The user of this is responsible for ensuring that R_L7 is empty (killed).
emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
/*preserve_g2=*/true);
%}
enc_class preserve_SP %{
MacroAssembler _masm(&cbuf);
__ mov(SP, L7_mh_SP_save);
%}
enc_class restore_SP %{
MacroAssembler _masm(&cbuf);
__ mov(L7_mh_SP_save, SP);
%}
enc_class Java_Static_Call (method meth) %{ // JAVA STATIC CALL
// CALL to fixup routine. Fixup routine uses ScopeDesc info to determine
// who we intended to call.
if (!_method) {
emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
} else if (_optimized_virtual) {
emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
} else {
emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
}
if (_method) { // Emit stub for static call.
CompiledStaticCall::emit_to_interp_stub(cbuf);
}
%}
enc_class Java_Dynamic_Call (method meth) %{ // JAVA DYNAMIC CALL
MacroAssembler _masm(&cbuf);
__ set_inst_mark();
int vtable_index = this->_vtable_index;
// MachCallDynamicJavaNode::ret_addr_offset uses this same test
if (vtable_index < 0) {
// must be invalid_vtable_index, not nonvirtual_vtable_index
assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
__ ic_call((address)$meth$$method);
} else {
assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
// Just go thru the vtable
// get receiver klass (receiver already checked for non-null)
// If we end up going thru a c2i adapter interpreter expects method in G5
int off = __ offset();
__ load_klass(O0, G3_scratch);
int klass_load_size;
if (UseCompressedClassPointers) {
assert(Universe::heap() != NULL, "java heap should be initialized");
klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
} else {
klass_load_size = 1*BytesPerInstWord;
}
int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
if (Assembler::is_simm13(v_off)) {
__ ld_ptr(G3, v_off, G5_method);
} else {
// Generate 2 instructions
__ Assembler::sethi(v_off & ~0x3ff, G5_method);
__ or3(G5_method, v_off & 0x3ff, G5_method);
// ld_ptr, set_hi, set
assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
"Unexpected instruction size(s)");
__ ld_ptr(G3, G5_method, G5_method);
}
// NOTE: for vtable dispatches, the vtable entry will never be null.
// However it may very well end up in handle_wrong_method if the
// method is abstract for the particular class.
__ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
// jump to target (either compiled code or c2iadapter)
__ jmpl(G3_scratch, G0, O7);
__ delayed()->nop();
}
%}
enc_class Java_Compiled_Call (method meth) %{ // JAVA COMPILED CALL
MacroAssembler _masm(&cbuf);
Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
Register temp_reg = G3; // caller must kill G3! We cannot reuse G5_ic_reg here because
// we might be calling a C2I adapter which needs it.
assert(temp_reg != G5_ic_reg, "conflicting registers");
// Load nmethod
__ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
// CALL to compiled java, indirect the contents of G3
__ set_inst_mark();
__ callr(temp_reg, G0);
__ delayed()->nop();
%}
enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
MacroAssembler _masm(&cbuf);
Register Rdividend = reg_to_register_object($src1$$reg);
Register Rdivisor = reg_to_register_object($src2$$reg);
Register Rresult = reg_to_register_object($dst$$reg);
__ sra(Rdivisor, 0, Rdivisor);
__ sra(Rdividend, 0, Rdividend);
__ sdivx(Rdividend, Rdivisor, Rresult);
%}
enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
MacroAssembler _masm(&cbuf);
Register Rdividend = reg_to_register_object($src1$$reg);
int divisor = $imm$$constant;
Register Rresult = reg_to_register_object($dst$$reg);
__ sra(Rdividend, 0, Rdividend);
__ sdivx(Rdividend, divisor, Rresult);
%}
enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
MacroAssembler _masm(&cbuf);
Register Rsrc1 = reg_to_register_object($src1$$reg);
Register Rsrc2 = reg_to_register_object($src2$$reg);
Register Rdst = reg_to_register_object($dst$$reg);
__ sra( Rsrc1, 0, Rsrc1 );
__ sra( Rsrc2, 0, Rsrc2 );
__ mulx( Rsrc1, Rsrc2, Rdst );
__ srlx( Rdst, 32, Rdst );
%}
enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
MacroAssembler _masm(&cbuf);
Register Rdividend = reg_to_register_object($src1$$reg);
Register Rdivisor = reg_to_register_object($src2$$reg);
Register Rresult = reg_to_register_object($dst$$reg);
Register Rscratch = reg_to_register_object($scratch$$reg);
assert(Rdividend != Rscratch, "");
assert(Rdivisor != Rscratch, "");
__ sra(Rdividend, 0, Rdividend);
__ sra(Rdivisor, 0, Rdivisor);
__ sdivx(Rdividend, Rdivisor, Rscratch);
__ mulx(Rscratch, Rdivisor, Rscratch);
__ sub(Rdividend, Rscratch, Rresult);
%}
enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
MacroAssembler _masm(&cbuf);
Register Rdividend = reg_to_register_object($src1$$reg);
int divisor = $imm$$constant;
Register Rresult = reg_to_register_object($dst$$reg);
Register Rscratch = reg_to_register_object($scratch$$reg);
assert(Rdividend != Rscratch, "");
__ sra(Rdividend, 0, Rdividend);
__ sdivx(Rdividend, divisor, Rscratch);
__ mulx(Rscratch, divisor, Rscratch);
__ sub(Rdividend, Rscratch, Rresult);
%}
enc_class fabss (sflt_reg dst, sflt_reg src) %{
MacroAssembler _masm(&cbuf);
FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
__ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
%}
enc_class fabsd (dflt_reg dst, dflt_reg src) %{
MacroAssembler _masm(&cbuf);
FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
__ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
%}
enc_class fnegd (dflt_reg dst, dflt_reg src) %{
MacroAssembler _masm(&cbuf);
FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
__ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
%}
enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
MacroAssembler _masm(&cbuf);
FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
__ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
%}
enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
MacroAssembler _masm(&cbuf);
FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
__ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
%}
enc_class fmovs (dflt_reg dst, dflt_reg src) %{
MacroAssembler _masm(&cbuf);
FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
__ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
%}
enc_class fmovd (dflt_reg dst, dflt_reg src) %{
MacroAssembler _masm(&cbuf);
FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
__ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
%}
enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
MacroAssembler _masm(&cbuf);
Register Roop = reg_to_register_object($oop$$reg);
Register Rbox = reg_to_register_object($box$$reg);
Register Rscratch = reg_to_register_object($scratch$$reg);
Register Rmark = reg_to_register_object($scratch2$$reg);
assert(Roop != Rscratch, "");
assert(Roop != Rmark, "");
assert(Rbox != Rscratch, "");
assert(Rbox != Rmark, "");
__ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
%}
enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
MacroAssembler _masm(&cbuf);
Register Roop = reg_to_register_object($oop$$reg);
Register Rbox = reg_to_register_object($box$$reg);
Register Rscratch = reg_to_register_object($scratch$$reg);
Register Rmark = reg_to_register_object($scratch2$$reg);
assert(Roop != Rscratch, "");
assert(Roop != Rmark, "");
assert(Rbox != Rscratch, "");
assert(Rbox != Rmark, "");
__ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
%}
enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
MacroAssembler _masm(&cbuf);
Register Rmem = reg_to_register_object($mem$$reg);
Register Rold = reg_to_register_object($old$$reg);
Register Rnew = reg_to_register_object($new$$reg);
__ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
__ cmp( Rold, Rnew );
%}
enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
Register Rmem = reg_to_register_object($mem$$reg);
Register Rold = reg_to_register_object($old$$reg);
Register Rnew = reg_to_register_object($new$$reg);
MacroAssembler _masm(&cbuf);
__ mov(Rnew, O7);
__ casx(Rmem, Rold, O7);
__ cmp( Rold, O7 );
%}
// raw int cas, used for compareAndSwap
enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
Register Rmem = reg_to_register_object($mem$$reg);
Register Rold = reg_to_register_object($old$$reg);
Register Rnew = reg_to_register_object($new$$reg);
MacroAssembler _masm(&cbuf);
__ mov(Rnew, O7);
__ cas(Rmem, Rold, O7);
__ cmp( Rold, O7 );
%}
enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
Register Rres = reg_to_register_object($res$$reg);
MacroAssembler _masm(&cbuf);
__ mov(1, Rres);
__ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
%}
enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
Register Rres = reg_to_register_object($res$$reg);
MacroAssembler _masm(&cbuf);
__ mov(1, Rres);
__ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
%}
enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
MacroAssembler _masm(&cbuf);
Register Rdst = reg_to_register_object($dst$$reg);
FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
: reg_to_DoubleFloatRegister_object($src1$$reg);
FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
: reg_to_DoubleFloatRegister_object($src2$$reg);
// Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
__ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
%}
enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
Label Ldone, Lloop;
MacroAssembler _masm(&cbuf);
Register str1_reg = reg_to_register_object($str1$$reg);
Register str2_reg = reg_to_register_object($str2$$reg);
Register cnt1_reg = reg_to_register_object($cnt1$$reg);
Register cnt2_reg = reg_to_register_object($cnt2$$reg);
Register result_reg = reg_to_register_object($result$$reg);
assert(result_reg != str1_reg &&
result_reg != str2_reg &&
result_reg != cnt1_reg &&
result_reg != cnt2_reg ,
"need different registers");
// Compute the minimum of the string lengths(str1_reg) and the
// difference of the string lengths (stack)
// See if the lengths are different, and calculate min in str1_reg.
// Stash diff in O7 in case we need it for a tie-breaker.
Label Lskip;
__ subcc(cnt1_reg, cnt2_reg, O7);
__ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
__ br(Assembler::greater, true, Assembler::pt, Lskip);
// cnt2 is shorter, so use its count:
__ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
__ bind(Lskip);
// reallocate cnt1_reg, cnt2_reg, result_reg
// Note: limit_reg holds the string length pre-scaled by 2
Register limit_reg = cnt1_reg;
Register chr2_reg = cnt2_reg;
Register chr1_reg = result_reg;
// str{12} are the base pointers
// Is the minimum length zero?
__ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
__ br(Assembler::equal, true, Assembler::pn, Ldone);
__ delayed()->mov(O7, result_reg); // result is difference in lengths
// Load first characters
__ lduh(str1_reg, 0, chr1_reg);
__ lduh(str2_reg, 0, chr2_reg);
// Compare first characters
__ subcc(chr1_reg, chr2_reg, chr1_reg);
__ br(Assembler::notZero, false, Assembler::pt, Ldone);
assert(chr1_reg == result_reg, "result must be pre-placed");
__ delayed()->nop();
{
// Check after comparing first character to see if strings are equivalent
Label LSkip2;
// Check if the strings start at same location
__ cmp(str1_reg, str2_reg);
__ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
__ delayed()->nop();
// Check if the length difference is zero (in O7)
__ cmp(G0, O7);
__ br(Assembler::equal, true, Assembler::pn, Ldone);
__ delayed()->mov(G0, result_reg); // result is zero
// Strings might not be equal
__ bind(LSkip2);
}
// We have no guarantee that on 64 bit the higher half of limit_reg is 0
__ signx(limit_reg);
__ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
__ br(Assembler::equal, true, Assembler::pn, Ldone);
__ delayed()->mov(O7, result_reg); // result is difference in lengths
// Shift str1_reg and str2_reg to the end of the arrays, negate limit
__ add(str1_reg, limit_reg, str1_reg);
__ add(str2_reg, limit_reg, str2_reg);
__ neg(chr1_reg, limit_reg); // limit = -(limit-2)
// Compare the rest of the characters
__ lduh(str1_reg, limit_reg, chr1_reg);
__ bind(Lloop);
// __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
__ lduh(str2_reg, limit_reg, chr2_reg);
__ subcc(chr1_reg, chr2_reg, chr1_reg);
__ br(Assembler::notZero, false, Assembler::pt, Ldone);
assert(chr1_reg == result_reg, "result must be pre-placed");
__ delayed()->inccc(limit_reg, sizeof(jchar));
// annul LDUH if branch is not taken to prevent access past end of string
__ br(Assembler::notZero, true, Assembler::pt, Lloop);
__ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
// If strings are equal up to min length, return the length difference.
__ mov(O7, result_reg);
// Otherwise, return the difference between the first mismatched chars.
__ bind(Ldone);
%}
enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
MacroAssembler _masm(&cbuf);
Register str1_reg = reg_to_register_object($str1$$reg);
Register str2_reg = reg_to_register_object($str2$$reg);
Register cnt_reg = reg_to_register_object($cnt$$reg);
Register tmp1_reg = O7;
Register result_reg = reg_to_register_object($result$$reg);
assert(result_reg != str1_reg &&
result_reg != str2_reg &&
result_reg != cnt_reg &&
result_reg != tmp1_reg ,
"need different registers");
__ cmp(str1_reg, str2_reg); //same char[] ?
__ brx(Assembler::equal, true, Assembler::pn, Ldone);
__ delayed()->add(G0, 1, result_reg);
__ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
__ delayed()->add(G0, 1, result_reg); // count == 0
//rename registers
Register limit_reg = cnt_reg;
Register chr1_reg = result_reg;
Register chr2_reg = tmp1_reg;
// We have no guarantee that on 64 bit the higher half of limit_reg is 0
__ signx(limit_reg);
//check for alignment and position the pointers to the ends
__ or3(str1_reg, str2_reg, chr1_reg);
__ andcc(chr1_reg, 0x3, chr1_reg);
// notZero means at least one not 4-byte aligned.
// We could optimize the case when both arrays are not aligned
// but it is not frequent case and it requires additional checks.
__ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
__ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
// Compare char[] arrays aligned to 4 bytes.
__ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
chr1_reg, chr2_reg, Ldone);
__ ba(Ldone);
__ delayed()->add(G0, 1, result_reg);
// char by char compare
__ bind(Lchar);
__ add(str1_reg, limit_reg, str1_reg);
__ add(str2_reg, limit_reg, str2_reg);
__ neg(limit_reg); //negate count
__ lduh(str1_reg, limit_reg, chr1_reg);
// Lchar_loop
__ bind(Lchar_loop);
__ lduh(str2_reg, limit_reg, chr2_reg);
__ cmp(chr1_reg, chr2_reg);
__ br(Assembler::notEqual, true, Assembler::pt, Ldone);
__ delayed()->mov(G0, result_reg); //not equal
__ inccc(limit_reg, sizeof(jchar));
// annul LDUH if branch is not taken to prevent access past end of string
__ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
__ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
__ add(G0, 1, result_reg); //equal
__ bind(Ldone);
%}
enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
Label Lvector, Ldone, Lloop;
MacroAssembler _masm(&cbuf);
Register ary1_reg = reg_to_register_object($ary1$$reg);
Register ary2_reg = reg_to_register_object($ary2$$reg);
Register tmp1_reg = reg_to_register_object($tmp1$$reg);
Register tmp2_reg = O7;
Register result_reg = reg_to_register_object($result$$reg);
int length_offset = arrayOopDesc::length_offset_in_bytes();
int base_offset = arrayOopDesc::base_offset_in_bytes(T_CHAR);
// return true if the same array
__ cmp(ary1_reg, ary2_reg);
__ brx(Assembler::equal, true, Assembler::pn, Ldone);
__ delayed()->add(G0, 1, result_reg); // equal
__ br_null(ary1_reg, true, Assembler::pn, Ldone);
__ delayed()->mov(G0, result_reg); // not equal
__ br_null(ary2_reg, true, Assembler::pn, Ldone);
__ delayed()->mov(G0, result_reg); // not equal
//load the lengths of arrays
__ ld(Address(ary1_reg, length_offset), tmp1_reg);
__ ld(Address(ary2_reg, length_offset), tmp2_reg);
// return false if the two arrays are not equal length
__ cmp(tmp1_reg, tmp2_reg);
__ br(Assembler::notEqual, true, Assembler::pn, Ldone);
__ delayed()->mov(G0, result_reg); // not equal
__ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
__ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
// load array addresses
__ add(ary1_reg, base_offset, ary1_reg);
__ add(ary2_reg, base_offset, ary2_reg);
// renaming registers
Register chr1_reg = result_reg; // for characters in ary1
Register chr2_reg = tmp2_reg; // for characters in ary2
Register limit_reg = tmp1_reg; // length
// set byte count
__ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
// Compare char[] arrays aligned to 4 bytes.
__ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
chr1_reg, chr2_reg, Ldone);
__ add(G0, 1, result_reg); // equals
__ bind(Ldone);
%}
enc_class enc_rethrow() %{
cbuf.set_insts_mark();
Register temp_reg = G3;
AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
MacroAssembler _masm(&cbuf);
#ifdef ASSERT
__ save_frame(0);
AddressLiteral last_rethrow_addrlit(&last_rethrow);
__ sethi(last_rethrow_addrlit, L1);
Address addr(L1, last_rethrow_addrlit.low10());
__ rdpc(L2);
__ inc(L2, 3 * BytesPerInstWord); // skip this & 2 more insns to point at jump_to
__ st_ptr(L2, addr);
__ restore();
#endif
__ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
__ delayed()->nop();
%}
enc_class emit_mem_nop() %{
// Generates the instruction LDUXA [o6,g0],#0x82,g0
cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
%}
enc_class emit_fadd_nop() %{
// Generates the instruction FMOVS f31,f31
cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
%}
enc_class emit_br_nop() %{
// Generates the instruction BPN,PN .
cbuf.insts()->emit_int32((unsigned int) 0x00400000);
%}
enc_class enc_membar_acquire %{
MacroAssembler _masm(&cbuf);
__ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
%}
enc_class enc_membar_release %{
MacroAssembler _masm(&cbuf);
__ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
%}
enc_class enc_membar_volatile %{
MacroAssembler _masm(&cbuf);
__ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
%}
%}
//----------FRAME--------------------------------------------------------------
// Definition of frame structure and management information.
//
// S T A C K L A Y O U T Allocators stack-slot number
// | (to get allocators register number
// G Owned by | | v add VMRegImpl::stack0)
// r CALLER | |
// o | +--------+ pad to even-align allocators stack-slot
// w V | pad0 | numbers; owned by CALLER
// t -----------+--------+----> Matcher::_in_arg_limit, unaligned
// h ^ | in | 5
// | | args | 4 Holes in incoming args owned by SELF
// | | | | 3
// | | +--------+
// V | | old out| Empty on Intel, window on Sparc
// | old |preserve| Must be even aligned.
// | SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
// | | in | 3 area for Intel ret address
// Owned by |preserve| Empty on Sparc.
// SELF +--------+
// | | pad2 | 2 pad to align old SP
// | +--------+ 1
// | | locks | 0
// | +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
// | | pad1 | 11 pad to align new SP
// | +--------+
// | | | 10
// | | spills | 9 spills
// V | | 8 (pad0 slot for callee)
// -----------+--------+----> Matcher::_out_arg_limit, unaligned
// ^ | out | 7
// | | args | 6 Holes in outgoing args owned by CALLEE
// Owned by +--------+
// CALLEE | new out| 6 Empty on Intel, window on Sparc
// | new |preserve| Must be even-aligned.
// | SP-+--------+----> Matcher::_new_SP, even aligned
// | | |
//
// Note 1: Only region 8-11 is determined by the allocator. Region 0-5 is
// known from SELF's arguments and the Java calling convention.
// Region 6-7 is determined per call site.
// Note 2: If the calling convention leaves holes in the incoming argument
// area, those holes are owned by SELF. Holes in the outgoing area
// are owned by the CALLEE. Holes should not be nessecary in the
// incoming area, as the Java calling convention is completely under
// the control of the AD file. Doubles can be sorted and packed to
// avoid holes. Holes in the outgoing arguments may be necessary for
// varargs C calling conventions.
// Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is
// even aligned with pad0 as needed.
// Region 6 is even aligned. Region 6-7 is NOT even aligned;
// region 6-11 is even aligned; it may be padded out more so that
// the region from SP to FP meets the minimum stack alignment.
frame %{
// What direction does stack grow in (assumed to be same for native & Java)
stack_direction(TOWARDS_LOW);
// These two registers define part of the calling convention
// between compiled code and the interpreter.
inline_cache_reg(R_G5); // Inline Cache Register or Method* for I2C
interpreter_method_oop_reg(R_G5); // Method Oop Register when calling interpreter
// Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
cisc_spilling_operand_name(indOffset);
// Number of stack slots consumed by a Monitor enter
#ifdef _LP64
sync_stack_slots(2);
#else
sync_stack_slots(1);
#endif
// Compiled code's Frame Pointer
frame_pointer(R_SP);
// Stack alignment requirement
stack_alignment(StackAlignmentInBytes);
// LP64: Alignment size in bytes (128-bit -> 16 bytes)
// !LP64: Alignment size in bytes (64-bit -> 8 bytes)
// Number of stack slots between incoming argument block and the start of
// a new frame. The PROLOG must add this many slots to the stack. The
// EPILOG must remove this many slots.
in_preserve_stack_slots(0);
// Number of outgoing stack slots killed above the out_preserve_stack_slots
// for calls to C. Supports the var-args backing area for register parms.
// ADLC doesn't support parsing expressions, so I folded the math by hand.
#ifdef _LP64
// (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
varargs_C_out_slots_killed(12);
#else
// (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
varargs_C_out_slots_killed( 7);
#endif
// The after-PROLOG location of the return address. Location of
// return address specifies a type (REG or STACK) and a number
// representing the register number (i.e. - use a register name) or
// stack slot.
return_addr(REG R_I7); // Ret Addr is in register I7
// Body of function which returns an OptoRegs array locating
// arguments either in registers or in stack slots for calling
// java
calling_convention %{
(void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
%}
// Body of function which returns an OptoRegs array locating
// arguments either in registers or in stack slots for calling
// C.
c_calling_convention %{
// This is obviously always outgoing
(void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
%}
// Location of native (C/C++) and interpreter return values. This is specified to
// be the same as Java. In the 32-bit VM, long values are actually returned from
// native calls in O0:O1 and returned to the interpreter in I0:I1. The copying
// to and from the register pairs is done by the appropriate call and epilog
// opcodes. This simplifies the register allocator.
c_return_value %{
assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
#ifdef _LP64
static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num, R_O0_num, R_O0_num, R_F0_num, R_F0_num, R_O0_num };
static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num, OptoReg::Bad, R_F1_num, R_O0H_num};
static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num, R_I0_num, R_I0_num, R_F0_num, R_F0_num, R_I0_num };
static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num, OptoReg::Bad, R_F1_num, R_I0H_num};
#else // !_LP64
static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num, R_O0_num, R_O0_num, R_F0_num, R_F0_num, R_G1_num };
static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num, R_I0_num, R_I0_num, R_F0_num, R_F0_num, R_G1_num };
static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
#endif
return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
(is_outgoing?lo_out:lo_in)[ideal_reg] );
%}
// Location of compiled Java return values. Same as C
return_value %{
assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
#ifdef _LP64
static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num, R_O0_num, R_O0_num, R_F0_num, R_F0_num, R_O0_num };
static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num, OptoReg::Bad, R_F1_num, R_O0H_num};
static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num, R_I0_num, R_I0_num, R_F0_num, R_F0_num, R_I0_num };
static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num, OptoReg::Bad, R_F1_num, R_I0H_num};
#else // !_LP64
static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num, R_O0_num, R_O0_num, R_F0_num, R_F0_num, R_G1_num };
static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num, R_I0_num, R_I0_num, R_F0_num, R_F0_num, R_G1_num };
static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
#endif
return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
(is_outgoing?lo_out:lo_in)[ideal_reg] );
%}
%}
//----------ATTRIBUTES---------------------------------------------------------
//----------Operand Attributes-------------------------------------------------
op_attrib op_cost(1); // Required cost attribute
//----------Instruction Attributes---------------------------------------------
ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
ins_attrib ins_size(32); // Required size attribute (in bits)
// avoid_back_to_back attribute is an expression that must return
// one of the following values defined in MachNode:
// AVOID_NONE - instruction can be placed anywhere
// AVOID_BEFORE - instruction cannot be placed after an
// instruction with MachNode::AVOID_AFTER
// AVOID_AFTER - the next instruction cannot be the one
// with MachNode::AVOID_BEFORE
// AVOID_BEFORE_AND_AFTER - BEFORE and AFTER attributes at
// the same time
ins_attrib ins_avoid_back_to_back(MachNode::AVOID_NONE);
ins_attrib ins_short_branch(0); // Required flag: is this instruction a
// non-matching short branch variant of some
// long branch?
//----------OPERANDS-----------------------------------------------------------
// Operand definitions must precede instruction definitions for correct parsing
// in the ADLC because operands constitute user defined types which are used in
// instruction definitions.
//----------Simple Operands----------------------------------------------------
// Immediate Operands
// Integer Immediate: 32-bit
operand immI() %{
match(ConI);
op_cost(0);
// formats are generated automatically for constants and base registers
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: 8-bit
operand immI8() %{
predicate(Assembler::is_simm8(n->get_int()));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: 13-bit
operand immI13() %{
predicate(Assembler::is_simm13(n->get_int()));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: 13-bit minus 7
operand immI13m7() %{
predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: 16-bit
operand immI16() %{
predicate(Assembler::is_simm16(n->get_int()));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
operand immU12() %{
predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: 6-bit
operand immU6() %{
predicate(n->get_int() >= 0 && n->get_int() <= 63);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: 11-bit
operand immI11() %{
predicate(Assembler::is_simm11(n->get_int()));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: 5-bit
operand immI5() %{
predicate(Assembler::is_simm5(n->get_int()));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Int Immediate non-negative
operand immU31()
%{
predicate(n->get_int() >= 0);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: 0-bit
operand immI0() %{
predicate(n->get_int() == 0);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: the value 10
operand immI10() %{
predicate(n->get_int() == 10);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: the values 0-31
operand immU5() %{
predicate(n->get_int() >= 0 && n->get_int() <= 31);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: the values 1-31
operand immI_1_31() %{
predicate(n->get_int() >= 1 && n->get_int() <= 31);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: the values 32-63
operand immI_32_63() %{
predicate(n->get_int() >= 32 && n->get_int() <= 63);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Immediates for special shifts (sign extend)
// Integer Immediate: the value 16
operand immI_16() %{
predicate(n->get_int() == 16);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: the value 24
operand immI_24() %{
predicate(n->get_int() == 24);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: the value 255
operand immI_255() %{
predicate( n->get_int() == 255 );
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: the value 65535
operand immI_65535() %{
predicate(n->get_int() == 65535);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: the value FF
operand immL_FF() %{
predicate( n->get_long() == 0xFFL );
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: the value FFFF
operand immL_FFFF() %{
predicate( n->get_long() == 0xFFFFL );
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Pointer Immediate: 32 or 64-bit
operand immP() %{
match(ConP);
op_cost(5);
// formats are generated automatically for constants and base registers
format %{ %}
interface(CONST_INTER);
%}
#ifdef _LP64
// Pointer Immediate: 64-bit
operand immP_set() %{
predicate(!VM_Version::is_niagara_plus());
match(ConP);
op_cost(5);
// formats are generated automatically for constants and base registers
format %{ %}
interface(CONST_INTER);
%}
// Pointer Immediate: 64-bit
// From Niagara2 processors on a load should be better than materializing.
operand immP_load() %{
predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
match(ConP);
op_cost(5);
// formats are generated automatically for constants and base registers
format %{ %}
interface(CONST_INTER);
%}
// Pointer Immediate: 64-bit
operand immP_no_oop_cheap() %{
predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
match(ConP);
op_cost(5);
// formats are generated automatically for constants and base registers
format %{ %}
interface(CONST_INTER);
%}
#endif
operand immP13() %{
predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
match(ConP);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immP0() %{
predicate(n->get_ptr() == 0);
match(ConP);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immP_poll() %{
predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
match(ConP);
// formats are generated automatically for constants and base registers
format %{ %}
interface(CONST_INTER);
%}
// Pointer Immediate
operand immN()
%{
match(ConN);
op_cost(10);
format %{ %}
interface(CONST_INTER);
%}
operand immNKlass()
%{
match(ConNKlass);
op_cost(10);
format %{ %}
interface(CONST_INTER);
%}
// NULL Pointer Immediate
operand immN0()
%{
predicate(n->get_narrowcon() == 0);
match(ConN);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immL() %{
match(ConL);
op_cost(40);
// formats are generated automatically for constants and base registers
format %{ %}
interface(CONST_INTER);
%}
operand immL0() %{
predicate(n->get_long() == 0L);
match(ConL);
op_cost(0);
// formats are generated automatically for constants and base registers
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: 5-bit
operand immL5() %{
predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: 13-bit
operand immL13() %{
predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: 13-bit minus 7
operand immL13m7() %{
predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: low 32-bit mask
operand immL_32bits() %{
predicate(n->get_long() == 0xFFFFFFFFL);
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: cheap (materialize in <= 3 instructions)
operand immL_cheap() %{
predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: expensive (materialize in > 3 instructions)
operand immL_expensive() %{
predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Double Immediate
operand immD() %{
match(ConD);
op_cost(40);
format %{ %}
interface(CONST_INTER);
%}
operand immD0() %{
#ifdef _LP64
// on 64-bit architectures this comparision is faster
predicate(jlong_cast(n->getd()) == 0);
#else
predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
#endif
match(ConD);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Float Immediate
operand immF() %{
match(ConF);
op_cost(20);
format %{ %}
interface(CONST_INTER);
%}
// Float Immediate: 0
operand immF0() %{
predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
match(ConF);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Integer Register Operands
// Integer Register
operand iRegI() %{
constraint(ALLOC_IN_RC(int_reg));
match(RegI);
match(notemp_iRegI);
match(g1RegI);
match(o0RegI);
match(iRegIsafe);
format %{ %}
interface(REG_INTER);
%}
operand notemp_iRegI() %{
constraint(ALLOC_IN_RC(notemp_int_reg));
match(RegI);
match(o0RegI);
format %{ %}
interface(REG_INTER);
%}
operand o0RegI() %{
constraint(ALLOC_IN_RC(o0_regI));
match(iRegI);
format %{ %}
interface(REG_INTER);
%}
// Pointer Register
operand iRegP() %{
constraint(ALLOC_IN_RC(ptr_reg));
match(RegP);
match(lock_ptr_RegP);
match(g1RegP);
match(g2RegP);
match(g3RegP);
match(g4RegP);
match(i0RegP);
match(o0RegP);
match(o1RegP);
match(l7RegP);
format %{ %}
interface(REG_INTER);
%}
operand sp_ptr_RegP() %{
constraint(ALLOC_IN_RC(sp_ptr_reg));
match(RegP);
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand lock_ptr_RegP() %{
constraint(ALLOC_IN_RC(lock_ptr_reg));
match(RegP);
match(i0RegP);
match(o0RegP);
match(o1RegP);
match(l7RegP);
format %{ %}
interface(REG_INTER);
%}
operand g1RegP() %{
constraint(ALLOC_IN_RC(g1_regP));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand g2RegP() %{
constraint(ALLOC_IN_RC(g2_regP));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand g3RegP() %{
constraint(ALLOC_IN_RC(g3_regP));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand g1RegI() %{
constraint(ALLOC_IN_RC(g1_regI));
match(iRegI);
format %{ %}
interface(REG_INTER);
%}
operand g3RegI() %{
constraint(ALLOC_IN_RC(g3_regI));
match(iRegI);
format %{ %}
interface(REG_INTER);
%}
operand g4RegI() %{
constraint(ALLOC_IN_RC(g4_regI));
match(iRegI);
format %{ %}
interface(REG_INTER);
%}
operand g4RegP() %{
constraint(ALLOC_IN_RC(g4_regP));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand i0RegP() %{
constraint(ALLOC_IN_RC(i0_regP));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand o0RegP() %{
constraint(ALLOC_IN_RC(o0_regP));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand o1RegP() %{
constraint(ALLOC_IN_RC(o1_regP));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand o2RegP() %{
constraint(ALLOC_IN_RC(o2_regP));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand o7RegP() %{
constraint(ALLOC_IN_RC(o7_regP));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand l7RegP() %{
constraint(ALLOC_IN_RC(l7_regP));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand o7RegI() %{
constraint(ALLOC_IN_RC(o7_regI));
match(iRegI);
format %{ %}
interface(REG_INTER);
%}
operand iRegN() %{
constraint(ALLOC_IN_RC(int_reg));
match(RegN);
format %{ %}
interface(REG_INTER);
%}
// Long Register
operand iRegL() %{
constraint(ALLOC_IN_RC(long_reg));
match(RegL);
format %{ %}
interface(REG_INTER);
%}
operand o2RegL() %{
constraint(ALLOC_IN_RC(o2_regL));
match(iRegL);
format %{ %}
interface(REG_INTER);
%}
operand o7RegL() %{
constraint(ALLOC_IN_RC(o7_regL));
match(iRegL);
format %{ %}
interface(REG_INTER);
%}
operand g1RegL() %{
constraint(ALLOC_IN_RC(g1_regL));
match(iRegL);
format %{ %}
interface(REG_INTER);
%}
operand g3RegL() %{
constraint(ALLOC_IN_RC(g3_regL));
match(iRegL);
format %{ %}
interface(REG_INTER);
%}
// Int Register safe
// This is 64bit safe
operand iRegIsafe() %{
constraint(ALLOC_IN_RC(long_reg));
match(iRegI);
format %{ %}
interface(REG_INTER);
%}
// Condition Code Flag Register
operand flagsReg() %{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
format %{ "ccr" %} // both ICC and XCC
interface(REG_INTER);
%}
// Condition Code Register, unsigned comparisons.
operand flagsRegU() %{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
format %{ "icc_U" %}
interface(REG_INTER);
%}
// Condition Code Register, pointer comparisons.
operand flagsRegP() %{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
#ifdef _LP64
format %{ "xcc_P" %}
#else
format %{ "icc_P" %}
#endif
interface(REG_INTER);
%}
// Condition Code Register, long comparisons.
operand flagsRegL() %{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
format %{ "xcc_L" %}
interface(REG_INTER);
%}
// Condition Code Register, floating comparisons, unordered same as "less".
operand flagsRegF() %{
constraint(ALLOC_IN_RC(float_flags));
match(RegFlags);
match(flagsRegF0);
format %{ %}
interface(REG_INTER);
%}
operand flagsRegF0() %{
constraint(ALLOC_IN_RC(float_flag0));
match(RegFlags);
format %{ %}
interface(REG_INTER);
%}
// Condition Code Flag Register used by long compare
operand flagsReg_long_LTGE() %{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
format %{ "icc_LTGE" %}
interface(REG_INTER);
%}
operand flagsReg_long_EQNE() %{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
format %{ "icc_EQNE" %}
interface(REG_INTER);
%}
operand flagsReg_long_LEGT() %{
constraint(ALLOC_IN_RC(int_flags));
match(RegFlags);
format %{ "icc_LEGT" %}
interface(REG_INTER);
%}
operand regD() %{
constraint(ALLOC_IN_RC(dflt_reg));
match(RegD);
match(regD_low);
format %{ %}
interface(REG_INTER);
%}
operand regF() %{
constraint(ALLOC_IN_RC(sflt_reg));
match(RegF);
format %{ %}
interface(REG_INTER);
%}
operand regD_low() %{
constraint(ALLOC_IN_RC(dflt_low_reg));
match(regD);
format %{ %}
interface(REG_INTER);
%}
// Special Registers
// Method Register
operand inline_cache_regP(iRegP reg) %{
constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
match(reg);
format %{ %}
interface(REG_INTER);
%}
operand interpreter_method_oop_regP(iRegP reg) %{
constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
match(reg);
format %{ %}
interface(REG_INTER);
%}
//----------Complex Operands---------------------------------------------------
// Indirect Memory Reference
operand indirect(sp_ptr_RegP reg) %{
constraint(ALLOC_IN_RC(sp_ptr_reg));
match(reg);
op_cost(100);
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0x0);
scale(0x0);
disp(0x0);
%}
%}
// Indirect with simm13 Offset
operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
constraint(ALLOC_IN_RC(sp_ptr_reg));
match(AddP reg offset);
op_cost(100);
format %{ "[$reg + $offset]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0x0);
scale(0x0);
disp($offset);
%}
%}
// Indirect with simm13 Offset minus 7
operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
constraint(ALLOC_IN_RC(sp_ptr_reg));
match(AddP reg offset);
op_cost(100);
format %{ "[$reg + $offset]" %}
interface(MEMORY_INTER) %{
base($reg);
index(0x0);
scale(0x0);
disp($offset);
%}
%}
// Note: Intel has a swapped version also, like this:
//operand indOffsetX(iRegI reg, immP offset) %{
// constraint(ALLOC_IN_RC(int_reg));
// match(AddP offset reg);
//
// op_cost(100);
// format %{ "[$reg + $offset]" %}
// interface(MEMORY_INTER) %{
// base($reg);
// index(0x0);
// scale(0x0);
// disp($offset);
// %}
//%}
//// However, it doesn't make sense for SPARC, since
// we have no particularly good way to embed oops in
// single instructions.
// Indirect with Register Index
operand indIndex(iRegP addr, iRegX index) %{
constraint(ALLOC_IN_RC(ptr_reg));
match(AddP addr index);
op_cost(100);
format %{ "[$addr + $index]" %}
interface(MEMORY_INTER) %{
base($addr);
index($index);
scale(0x0);
disp(0x0);
%}
%}
//----------Special Memory Operands--------------------------------------------
// Stack Slot Operand - This operand is used for loading and storing temporary
// values on the stack where a match requires a value to
// flow through memory.
operand stackSlotI(sRegI reg) %{
constraint(ALLOC_IN_RC(stack_slots));
op_cost(100);
//match(RegI);
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0xE); // R_SP
index(0x0);
scale(0x0);
disp($reg); // Stack Offset
%}
%}
operand stackSlotP(sRegP reg) %{
constraint(ALLOC_IN_RC(stack_slots));
op_cost(100);
//match(RegP);
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0xE); // R_SP
index(0x0);
scale(0x0);
disp($reg); // Stack Offset
%}
%}
operand stackSlotF(sRegF reg) %{
constraint(ALLOC_IN_RC(stack_slots));
op_cost(100);
//match(RegF);
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0xE); // R_SP
index(0x0);
scale(0x0);
disp($reg); // Stack Offset
%}
%}
operand stackSlotD(sRegD reg) %{
constraint(ALLOC_IN_RC(stack_slots));
op_cost(100);
//match(RegD);
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0xE); // R_SP
index(0x0);
scale(0x0);
disp($reg); // Stack Offset
%}
%}
operand stackSlotL(sRegL reg) %{
constraint(ALLOC_IN_RC(stack_slots));
op_cost(100);
//match(RegL);
format %{ "[$reg]" %}
interface(MEMORY_INTER) %{
base(0xE); // R_SP
index(0x0);
scale(0x0);
disp($reg); // Stack Offset
%}
%}
// Operands for expressing Control Flow
// NOTE: Label is a predefined operand which should not be redefined in
// the AD file. It is generically handled within the ADLC.
//----------Conditional Branch Operands----------------------------------------
// Comparison Op - This is the operation of the comparison, and is limited to
// the following set of codes:
// L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
//
// Other attributes of the comparison, such as unsignedness, are specified
// by the comparison instruction that sets a condition code flags register.
// That result is represented by a flags operand whose subtype is appropriate
// to the unsignedness (etc.) of the comparison.
//
// Later, the instruction which matches both the Comparison Op (a Bool) and
// the flags (produced by the Cmp) specifies the coding of the comparison op
// by matching a specific subtype of Bool operand below, such as cmpOpU.
operand cmpOp() %{
match(Bool);
format %{ "" %}
interface(COND_INTER) %{
equal(0x1);
not_equal(0x9);
less(0x3);
greater_equal(0xB);
less_equal(0x2);
greater(0xA);
overflow(0x7);
no_overflow(0xF);
%}
%}
// Comparison Op, unsigned
operand cmpOpU() %{
match(Bool);
predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
n->as_Bool()->_test._test != BoolTest::no_overflow);
format %{ "u" %}
interface(COND_INTER) %{
equal(0x1);
not_equal(0x9);
less(0x5);
greater_equal(0xD);
less_equal(0x4);
greater(0xC);
overflow(0x7);
no_overflow(0xF);
%}
%}
// Comparison Op, pointer (same as unsigned)
operand cmpOpP() %{
match(Bool);
predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
n->as_Bool()->_test._test != BoolTest::no_overflow);
format %{ "p" %}
interface(COND_INTER) %{
equal(0x1);
not_equal(0x9);
less(0x5);
greater_equal(0xD);
less_equal(0x4);
greater(0xC);
overflow(0x7);
no_overflow(0xF);
%}
%}
// Comparison Op, branch-register encoding
operand cmpOp_reg() %{
match(Bool);
predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
n->as_Bool()->_test._test != BoolTest::no_overflow);
format %{ "" %}
interface(COND_INTER) %{
equal (0x1);
not_equal (0x5);
less (0x3);
greater_equal(0x7);
less_equal (0x2);
greater (0x6);
overflow(0x7); // not supported
no_overflow(0xF); // not supported
%}
%}
// Comparison Code, floating, unordered same as less
operand cmpOpF() %{
match(Bool);
predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
n->as_Bool()->_test._test != BoolTest::no_overflow);
format %{ "fl" %}
interface(COND_INTER) %{
equal(0x9);
not_equal(0x1);
less(0x3);
greater_equal(0xB);
less_equal(0xE);
greater(0x6);
overflow(0x7); // not supported
no_overflow(0xF); // not supported
%}
%}
// Used by long compare
operand cmpOp_commute() %{
match(Bool);
predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
n->as_Bool()->_test._test != BoolTest::no_overflow);
format %{ "" %}
interface(COND_INTER) %{
equal(0x1);
not_equal(0x9);
less(0xA);
greater_equal(0x2);
less_equal(0xB);
greater(0x3);
overflow(0x7);
no_overflow(0xF);
%}
%}
//----------OPERAND CLASSES----------------------------------------------------
// Operand Classes are groups of operands that are used to simplify
// instruction definitions by not requiring the AD writer to specify separate
// instructions for every form of operand when the instruction accepts
// multiple operand types with the same basic encoding and format. The classic
// case of this is memory operands.
opclass memory( indirect, indOffset13, indIndex );
opclass indIndexMemory( indIndex );
//----------PIPELINE-----------------------------------------------------------
pipeline %{
//----------ATTRIBUTES---------------------------------------------------------
attributes %{
fixed_size_instructions; // Fixed size instructions
branch_has_delay_slot; // Branch has delay slot following
max_instructions_per_bundle = 4; // Up to 4 instructions per bundle
instruction_unit_size = 4; // An instruction is 4 bytes long
instruction_fetch_unit_size = 16; // The processor fetches one line
instruction_fetch_units = 1; // of 16 bytes
// List of nop instructions
nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
%}
//----------RESOURCES----------------------------------------------------------
// Resources are the functional units available to the machine
resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
//----------PIPELINE DESCRIPTION-----------------------------------------------
// Pipeline Description specifies the stages in the machine's pipeline
pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
//----------PIPELINE CLASSES---------------------------------------------------
// Pipeline Classes describe the stages in which input and output are
// referenced by the hardware pipeline.
// Integer ALU reg-reg operation
pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
single_instruction;
dst : E(write);
src1 : R(read);
src2 : R(read);
IALU : R;
%}
// Integer ALU reg-reg long operation
pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
instruction_count(2);
dst : E(write);
src1 : R(read);
src2 : R(read);
IALU : R;
IALU : R;
%}
// Integer ALU reg-reg long dependent operation
pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
instruction_count(1); multiple_bundles;
dst : E(write);
src1 : R(read);
src2 : R(read);
cr : E(write);
IALU : R(2);
%}
// Integer ALU reg-imm operaion
pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
single_instruction;
dst : E(write);
src1 : R(read);
IALU : R;
%}
// Integer ALU reg-reg operation with condition code
pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
single_instruction;
dst : E(write);
cr : E(write);
src1 : R(read);
src2 : R(read);
IALU : R;
%}
// Integer ALU reg-imm operation with condition code
pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
single_instruction;
dst : E(write);
cr : E(write);
src1 : R(read);
IALU : R;
%}
// Integer ALU zero-reg operation
pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
single_instruction;
dst : E(write);
src2 : R(read);
IALU : R;
%}
// Integer ALU zero-reg operation with condition code only
pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
single_instruction;
cr : E(write);
src : R(read);
IALU : R;
%}
// Integer ALU reg-reg operation with condition code only
pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
single_instruction;
cr : E(write);
src1 : R(read);
src2 : R(read);
IALU : R;
%}
// Integer ALU reg-imm operation with condition code only
pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
single_instruction;
cr : E(write);
src1 : R(read);
IALU : R;
%}
// Integer ALU reg-reg-zero operation with condition code only
pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
single_instruction;
cr : E(write);
src1 : R(read);
src2 : R(read);
IALU : R;
%}
// Integer ALU reg-imm-zero operation with condition code only
pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
single_instruction;
cr : E(write);
src1 : R(read);
IALU : R;
%}
// Integer ALU reg-reg operation with condition code, src1 modified
pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
single_instruction;
cr : E(write);
src1 : E(write);
src1 : R(read);
src2 : R(read);
IALU : R;
%}
// Integer ALU reg-imm operation with condition code, src1 modified
pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
single_instruction;
cr : E(write);
src1 : E(write);
src1 : R(read);
IALU : R;
%}
pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
multiple_bundles;
dst : E(write)+4;
cr : E(write);
src1 : R(read);
src2 : R(read);
IALU : R(3);
BR : R(2);
%}
// Integer ALU operation
pipe_class ialu_none(iRegI dst) %{
single_instruction;
dst : E(write);
IALU : R;
%}
// Integer ALU reg operation
pipe_class ialu_reg(iRegI dst, iRegI src) %{
single_instruction; may_have_no_code;
dst : E(write);
src : R(read);
IALU : R;
%}
// Integer ALU reg conditional operation
// This instruction has a 1 cycle stall, and cannot execute
// in the same cycle as the instruction setting the condition
// code. We kludge this by pretending to read the condition code
// 1 cycle earlier, and by marking the functional units as busy
// for 2 cycles with the result available 1 cycle later than
// is really the case.
pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
single_instruction;
op2_out : C(write);
op1 : R(read);
cr : R(read); // This is really E, with a 1 cycle stall
BR : R(2);
MS : R(2);
%}
#ifdef _LP64
pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
instruction_count(1); multiple_bundles;
dst : C(write)+1;
src : R(read)+1;
IALU : R(1);
BR : E(2);
MS : E(2);
%}
#endif
// Integer ALU reg operation
pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
single_instruction; may_have_no_code;
dst : E(write);
src : R(read);
IALU : R;
%}
pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
single_instruction; may_have_no_code;
dst : E(write);
src : R(read);
IALU : R;
%}
// Two integer ALU reg operations
pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
instruction_count(2);
dst : E(write);
src : R(read);
A0 : R;
A1 : R;
%}
// Two integer ALU reg operations
pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
instruction_count(2); may_have_no_code;
dst : E(write);
src : R(read);
A0 : R;
A1 : R;
%}
// Integer ALU imm operation
pipe_class ialu_imm(iRegI dst, immI13 src) %{
single_instruction;
dst : E(write);
IALU : R;
%}
// Integer ALU reg-reg with carry operation
pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
single_instruction;
dst : E(write);
src1 : R(read);
src2 : R(read);
IALU : R;
%}
// Integer ALU cc operation
pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
single_instruction;
dst : E(write);
cc : R(read);
IALU : R;
%}
// Integer ALU cc / second IALU operation
pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
instruction_count(1); multiple_bundles;
dst : E(write)+1;
src : R(read);
IALU : R;
%}
// Integer ALU cc / second IALU operation
pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
instruction_count(1); multiple_bundles;
dst : E(write)+1;
p : R(read);
q : R(read);
IALU : R;
%}
// Integer ALU hi-lo-reg operation
pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
instruction_count(1); multiple_bundles;
dst : E(write)+1;
IALU : R(2);
%}
// Float ALU hi-lo-reg operation (with temp)
pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
instruction_count(1); multiple_bundles;
dst : E(write)+1;
IALU : R(2);
%}
// Long Constant
pipe_class loadConL( iRegL dst, immL src ) %{
instruction_count(2); multiple_bundles;
dst : E(write)+1;
IALU : R(2);
IALU : R(2);
%}
// Pointer Constant
pipe_class loadConP( iRegP dst, immP src ) %{
instruction_count(0); multiple_bundles;
fixed_latency(6);
%}
// Polling Address
pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
#ifdef _LP64
instruction_count(0); multiple_bundles;
fixed_latency(6);
#else
dst : E(write);
IALU : R;
#endif
%}
// Long Constant small
pipe_class loadConLlo( iRegL dst, immL src ) %{
instruction_count(2);
dst : E(write);
IALU : R;
IALU : R;
%}
// [PHH] This is wrong for 64-bit. See LdImmF/D.
pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
instruction_count(1); multiple_bundles;
src : R(read);
dst : M(write)+1;
IALU : R;
MS : E;
%}
// Integer ALU nop operation
pipe_class ialu_nop() %{
single_instruction;
IALU : R;
%}
// Integer ALU nop operation
pipe_class ialu_nop_A0() %{
single_instruction;
A0 : R;
%}
// Integer ALU nop operation
pipe_class ialu_nop_A1() %{
single_instruction;
A1 : R;
%}
// Integer Multiply reg-reg operation
pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
single_instruction;
dst : E(write);
src1 : R(read);
src2 : R(read);
MS : R(5);
%}
// Integer Multiply reg-imm operation
pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
single_instruction;
dst : E(write);
src1 : R(read);
MS : R(5);
%}
pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
single_instruction;
dst : E(write)+4;
src1 : R(read);
src2 : R(read);
MS : R(6);
%}
pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
single_instruction;
dst : E(write)+4;
src1 : R(read);
MS : R(6);
%}
// Integer Divide reg-reg
pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
instruction_count(1); multiple_bundles;
dst : E(write);
temp : E(write);
src1 : R(read);
src2 : R(read);
temp : R(read);
MS : R(38);
%}
// Integer Divide reg-imm
pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
instruction_count(1); multiple_bundles;
dst : E(write);
temp : E(write);
src1 : R(read);
temp : R(read);
MS : R(38);
%}
// Long Divide
pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
dst : E(write)+71;
src1 : R(read);
src2 : R(read)+1;
MS : R(70);
%}
pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
dst : E(write)+71;
src1 : R(read);
MS : R(70);
%}
// Floating Point Add Float
pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
single_instruction;
dst : X(write);
src1 : E(read);
src2 : E(read);
FA : R;
%}
// Floating Point Add Double
pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
single_instruction;
dst : X(write);
src1 : E(read);
src2 : E(read);
FA : R;
%}
// Floating Point Conditional Move based on integer flags
pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
single_instruction;
dst : X(write);
src : E(read);
cr : R(read);
FA : R(2);
BR : R(2);
%}
// Floating Point Conditional Move based on integer flags
pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
single_instruction;
dst : X(write);
src : E(read);
cr : R(read);
FA : R(2);
BR : R(2);
%}
// Floating Point Multiply Float
pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
single_instruction;
dst : X(write);
src1 : E(read);
src2 : E(read);
FM : R;
%}
// Floating Point Multiply Double
pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
single_instruction;
dst : X(write);
src1 : E(read);
src2 : E(read);
FM : R;
%}
// Floating Point Divide Float
pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
single_instruction;
dst : X(write);
src1 : E(read);
src2 : E(read);
FM : R;
FDIV : C(14);
%}
// Floating Point Divide Double
pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
single_instruction;
dst : X(write);
src1 : E(read);
src2 : E(read);
FM : R;
FDIV : C(17);
%}
// Floating Point Move/Negate/Abs Float
pipe_class faddF_reg(regF dst, regF src) %{
single_instruction;
dst : W(write);
src : E(read);
FA : R(1);
%}
// Floating Point Move/Negate/Abs Double
pipe_class faddD_reg(regD dst, regD src) %{
single_instruction;
dst : W(write);
src : E(read);
FA : R;
%}
// Floating Point Convert F->D
pipe_class fcvtF2D(regD dst, regF src) %{
single_instruction;
dst : X(write);
src : E(read);
FA : R;
%}
// Floating Point Convert I->D
pipe_class fcvtI2D(regD dst, regF src) %{
single_instruction;
dst : X(write);
src : E(read);
FA : R;
%}
// Floating Point Convert LHi->D
pipe_class fcvtLHi2D(regD dst, regD src) %{
single_instruction;
dst : X(write);
src : E(read);
FA : R;
%}
// Floating Point Convert L->D
pipe_class fcvtL2D(regD dst, regF src) %{
single_instruction;
dst : X(write);
src : E(read);
FA : R;
%}
// Floating Point Convert L->F
pipe_class fcvtL2F(regD dst, regF src) %{
single_instruction;
dst : X(write);
src : E(read);
FA : R;
%}
// Floating Point Convert D->F
pipe_class fcvtD2F(regD dst, regF src) %{
single_instruction;
dst : X(write);
src : E(read);
FA : R;
%}
// Floating Point Convert I->L
pipe_class fcvtI2L(regD dst, regF src) %{
single_instruction;
dst : X(write);
src : E(read);
FA : R;
%}
// Floating Point Convert D->F
pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
instruction_count(1); multiple_bundles;
dst : X(write)+6;
src : E(read);
FA : R;
%}
// Floating Point Convert D->L
pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
instruction_count(1); multiple_bundles;
dst : X(write)+6;
src : E(read);
FA : R;
%}
// Floating Point Convert F->I
pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
instruction_count(1); multiple_bundles;
dst : X(write)+6;
src : E(read);
FA : R;
%}
// Floating Point Convert F->L
pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
instruction_count(1); multiple_bundles;
dst : X(write)+6;
src : E(read);
FA : R;
%}
// Floating Point Convert I->F
pipe_class fcvtI2F(regF dst, regF src) %{
single_instruction;
dst : X(write);
src : E(read);
FA : R;
%}
// Floating Point Compare
pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
single_instruction;
cr : X(write);
src1 : E(read);
src2 : E(read);
FA : R;
%}
// Floating Point Compare
pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
single_instruction;
cr : X(write);
src1 : E(read);
src2 : E(read);
FA : R;
%}
// Floating Add Nop
pipe_class fadd_nop() %{
single_instruction;
FA : R;
%}
// Integer Store to Memory
pipe_class istore_mem_reg(memory mem, iRegI src) %{
single_instruction;
mem : R(read);
src : C(read);
MS : R;
%}
// Integer Store to Memory
pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
single_instruction;
mem : R(read);
src : C(read);
MS : R;
%}
// Integer Store Zero to Memory
pipe_class istore_mem_zero(memory mem, immI0 src) %{
single_instruction;
mem : R(read);
MS : R;
%}
// Special Stack Slot Store
pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
single_instruction;
stkSlot : R(read);
src : C(read);
MS : R;
%}
// Special Stack Slot Store
pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
instruction_count(2); multiple_bundles;
stkSlot : R(read);
src : C(read);
MS : R(2);
%}
// Float Store
pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
single_instruction;
mem : R(read);
src : C(read);
MS : R;
%}
// Float Store
pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
single_instruction;
mem : R(read);
MS : R;
%}
// Double Store
pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
instruction_count(1);
mem : R(read);
src : C(read);
MS : R;
%}
// Double Store
pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
single_instruction;
mem : R(read);
MS : R;
%}
// Special Stack Slot Float Store
pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
single_instruction;
stkSlot : R(read);
src : C(read);
MS : R;
%}
// Special Stack Slot Double Store
pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
single_instruction;
stkSlot : R(read);
src : C(read);
MS : R;
%}
// Integer Load (when sign bit propagation not needed)
pipe_class iload_mem(iRegI dst, memory mem) %{
single_instruction;
mem : R(read);
dst : C(write);
MS : R;
%}
// Integer Load from stack operand
pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
single_instruction;
mem : R(read);
dst : C(write);
MS : R;
%}
// Integer Load (when sign bit propagation or masking is needed)
pipe_class iload_mask_mem(iRegI dst, memory mem) %{
single_instruction;
mem : R(read);
dst : M(write);
MS : R;
%}
// Float Load
pipe_class floadF_mem(regF dst, memory mem) %{
single_instruction;
mem : R(read);
dst : M(write);
MS : R;
%}
// Float Load
pipe_class floadD_mem(regD dst, memory mem) %{
instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
mem : R(read);
dst : M(write);
MS : R;
%}
// Float Load
pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
single_instruction;
stkSlot : R(read);
dst : M(write);
MS : R;
%}
// Float Load
pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
single_instruction;
stkSlot : R(read);
dst : M(write);
MS : R;
%}
// Memory Nop
pipe_class mem_nop() %{
single_instruction;
MS : R;
%}
pipe_class sethi(iRegP dst, immI src) %{
single_instruction;
dst : E(write);
IALU : R;
%}
pipe_class loadPollP(iRegP poll) %{
single_instruction;
poll : R(read);
MS : R;
%}
pipe_class br(Universe br, label labl) %{
single_instruction_with_delay_slot;
BR : R;
%}
pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
single_instruction_with_delay_slot;
cr : E(read);
BR : R;
%}
pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
single_instruction_with_delay_slot;
op1 : E(read);
BR : R;
MS : R;
%}
// Compare and branch
pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
instruction_count(2); has_delay_slot;
cr : E(write);
src1 : R(read);
src2 : R(read);
IALU : R;
BR : R;
%}
// Compare and branch
pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
instruction_count(2); has_delay_slot;
cr : E(write);
src1 : R(read);
IALU : R;
BR : R;
%}
// Compare and branch using cbcond
pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
single_instruction;
src1 : E(read);
src2 : E(read);
IALU : R;
BR : R;
%}
// Compare and branch using cbcond
pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
single_instruction;
src1 : E(read);
IALU : R;
BR : R;
%}
pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
single_instruction_with_delay_slot;
cr : E(read);
BR : R;
%}
pipe_class br_nop() %{
single_instruction;
BR : R;
%}
pipe_class simple_call(method meth) %{
instruction_count(2); multiple_bundles; force_serialization;
fixed_latency(100);
BR : R(1);
MS : R(1);
A0 : R(1);
%}
pipe_class compiled_call(method meth) %{
instruction_count(1); multiple_bundles; force_serialization;
fixed_latency(100);
MS : R(1);
%}
pipe_class call(method meth) %{
instruction_count(0); multiple_bundles; force_serialization;
fixed_latency(100);
%}
pipe_class tail_call(Universe ignore, label labl) %{
single_instruction; has_delay_slot;
fixed_latency(100);
BR : R(1);
MS : R(1);
%}
pipe_class ret(Universe ignore) %{
single_instruction; has_delay_slot;
BR : R(1);
MS : R(1);
%}
pipe_class ret_poll(g3RegP poll) %{
instruction_count(3); has_delay_slot;
poll : E(read);
MS : R;
%}
// The real do-nothing guy
pipe_class empty( ) %{
instruction_count(0);
%}
pipe_class long_memory_op() %{
instruction_count(0); multiple_bundles; force_serialization;
fixed_latency(25);
MS : R(1);
%}
// Check-cast
pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
array : R(read);
match : R(read);
IALU : R(2);
BR : R(2);
MS : R;
%}
// Convert FPU flags into +1,0,-1
pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
src1 : E(read);
src2 : E(read);
dst : E(write);
FA : R;
MS : R(2);
BR : R(2);
%}
// Compare for p < q, and conditionally add y
pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
p : E(read);
q : E(read);
y : E(read);
IALU : R(3)
%}
// Perform a compare, then move conditionally in a branch delay slot.
pipe_class min_max( iRegI src2, iRegI srcdst ) %{
src2 : E(read);
srcdst : E(read);
IALU : R;
BR : R;
%}
// Define the class for the Nop node
define %{
MachNop = ialu_nop;
%}
%}
//----------INSTRUCTIONS-------------------------------------------------------
//------------Special Stack Slot instructions - no match rules-----------------
instruct stkI_to_regF(regF dst, stackSlotI src) %{
// No match rule to avoid chain rule match.
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDF $src,$dst\t! stkI to regF" %}
opcode(Assembler::ldf_op3);
ins_encode(simple_form3_mem_reg(src, dst));
ins_pipe(floadF_stk);
%}
instruct stkL_to_regD(regD dst, stackSlotL src) %{
// No match rule to avoid chain rule match.
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDDF $src,$dst\t! stkL to regD" %}
opcode(Assembler::lddf_op3);
ins_encode(simple_form3_mem_reg(src, dst));
ins_pipe(floadD_stk);
%}
instruct regF_to_stkI(stackSlotI dst, regF src) %{
// No match rule to avoid chain rule match.
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STF $src,$dst\t! regF to stkI" %}
opcode(Assembler::stf_op3);
ins_encode(simple_form3_mem_reg(dst, src));
ins_pipe(fstoreF_stk_reg);
%}
instruct regD_to_stkL(stackSlotL dst, regD src) %{
// No match rule to avoid chain rule match.
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STDF $src,$dst\t! regD to stkL" %}
opcode(Assembler::stdf_op3);
ins_encode(simple_form3_mem_reg(dst, src));
ins_pipe(fstoreD_stk_reg);
%}
instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST*2);
size(8);
format %{ "STW $src,$dst.hi\t! long\n\t"
"STW R_G0,$dst.lo" %}
opcode(Assembler::stw_op3);
ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
ins_pipe(lstoreI_stk_reg);
%}
instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
// No match rule to avoid chain rule match.
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $src,$dst\t! regL to stkD" %}
opcode(Assembler::stx_op3);
ins_encode(simple_form3_mem_reg( dst, src ) );
ins_pipe(istore_stk_reg);
%}
//---------- Chain stack slots between similar types --------
// Load integer from stack slot
instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUW $src,$dst\t!stk" %}
opcode(Assembler::lduw_op3);
ins_encode(simple_form3_mem_reg( src, dst ) );
ins_pipe(iload_mem);
%}
// Store integer to stack slot
instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STW $src,$dst\t!stk" %}
opcode(Assembler::stw_op3);
ins_encode(simple_form3_mem_reg( dst, src ) );
ins_pipe(istore_mem_reg);
%}
// Load long from stack slot
instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDX $src,$dst\t! long" %}
opcode(Assembler::ldx_op3);
ins_encode(simple_form3_mem_reg( src, dst ) );
ins_pipe(iload_mem);
%}
// Store long to stack slot
instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $src,$dst\t! long" %}
opcode(Assembler::stx_op3);
ins_encode(simple_form3_mem_reg( dst, src ) );
ins_pipe(istore_mem_reg);
%}
#ifdef _LP64
// Load pointer from stack slot, 64-bit encoding
instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDX $src,$dst\t!ptr" %}
opcode(Assembler::ldx_op3);
ins_encode(simple_form3_mem_reg( src, dst ) );
ins_pipe(iload_mem);
%}
// Store pointer to stack slot
instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $src,$dst\t!ptr" %}
opcode(Assembler::stx_op3);
ins_encode(simple_form3_mem_reg( dst, src ) );
ins_pipe(istore_mem_reg);
%}
#else // _LP64
// Load pointer from stack slot, 32-bit encoding
instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
format %{ "LDUW $src,$dst\t!ptr" %}
opcode(Assembler::lduw_op3, Assembler::ldst_op);
ins_encode(simple_form3_mem_reg( src, dst ) );
ins_pipe(iload_mem);
%}
// Store pointer to stack slot
instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
format %{ "STW $src,$dst\t!ptr" %}
opcode(Assembler::stw_op3, Assembler::ldst_op);
ins_encode(simple_form3_mem_reg( dst, src ) );
ins_pipe(istore_mem_reg);
%}
#endif // _LP64
//------------Special Nop instructions for bundling - no match rules-----------
// Nop using the A0 functional unit
instruct Nop_A0() %{
ins_cost(0);
format %{ "NOP ! Alu Pipeline" %}
opcode(Assembler::or_op3, Assembler::arith_op);
ins_encode( form2_nop() );
ins_pipe(ialu_nop_A0);
%}
// Nop using the A1 functional unit
instruct Nop_A1( ) %{
ins_cost(0);
format %{ "NOP ! Alu Pipeline" %}
opcode(Assembler::or_op3, Assembler::arith_op);
ins_encode( form2_nop() );
ins_pipe(ialu_nop_A1);
%}
// Nop using the memory functional unit
instruct Nop_MS( ) %{
ins_cost(0);
format %{ "NOP ! Memory Pipeline" %}
ins_encode( emit_mem_nop );
ins_pipe(mem_nop);
%}
// Nop using the floating add functional unit
instruct Nop_FA( ) %{
ins_cost(0);
format %{ "NOP ! Floating Add Pipeline" %}
ins_encode( emit_fadd_nop );
ins_pipe(fadd_nop);
%}
// Nop using the branch functional unit
instruct Nop_BR( ) %{
ins_cost(0);
format %{ "NOP ! Branch Pipeline" %}
ins_encode( emit_br_nop );
ins_pipe(br_nop);
%}
//----------Load/Store/Move Instructions---------------------------------------
//----------Load Instructions--------------------------------------------------
// Load Byte (8bit signed)
instruct loadB(iRegI dst, memory mem) %{
match(Set dst (LoadB mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDSB $mem,$dst\t! byte" %}
ins_encode %{
__ ldsb($mem$$Address, $dst$$Register);
%}
ins_pipe(iload_mask_mem);
%}
// Load Byte (8bit signed) into a Long Register
instruct loadB2L(iRegL dst, memory mem) %{
match(Set dst (ConvI2L (LoadB mem)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDSB $mem,$dst\t! byte -> long" %}
ins_encode %{
__ ldsb($mem$$Address, $dst$$Register);
%}
ins_pipe(iload_mask_mem);
%}
// Load Unsigned Byte (8bit UNsigned) into an int reg
instruct loadUB(iRegI dst, memory mem) %{
match(Set dst (LoadUB mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUB $mem,$dst\t! ubyte" %}
ins_encode %{
__ ldub($mem$$Address, $dst$$Register);
%}
ins_pipe(iload_mem);
%}
// Load Unsigned Byte (8bit UNsigned) into a Long Register
instruct loadUB2L(iRegL dst, memory mem) %{
match(Set dst (ConvI2L (LoadUB mem)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUB $mem,$dst\t! ubyte -> long" %}
ins_encode %{
__ ldub($mem$$Address, $dst$$Register);
%}
ins_pipe(iload_mem);
%}
// Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
ins_cost(MEMORY_REF_COST + DEFAULT_COST);
size(2*4);
format %{ "LDUB $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
"AND $dst,$mask,$dst" %}
ins_encode %{
__ ldub($mem$$Address, $dst$$Register);
__ and3($dst$$Register, $mask$$constant, $dst$$Register);
%}
ins_pipe(iload_mem);
%}
// Load Short (16bit signed)
instruct loadS(iRegI dst, memory mem) %{
match(Set dst (LoadS mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDSH $mem,$dst\t! short" %}
ins_encode %{
__ ldsh($mem$$Address, $dst$$Register);
%}
ins_pipe(iload_mask_mem);
%}
// Load Short (16 bit signed) to Byte (8 bit signed)
instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDSB $mem+1,$dst\t! short -> byte" %}
ins_encode %{
__ ldsb($mem$$Address, $dst$$Register, 1);
%}
ins_pipe(iload_mask_mem);
%}
// Load Short (16bit signed) into a Long Register
instruct loadS2L(iRegL dst, memory mem) %{
match(Set dst (ConvI2L (LoadS mem)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDSH $mem,$dst\t! short -> long" %}
ins_encode %{
__ ldsh($mem$$Address, $dst$$Register);
%}
ins_pipe(iload_mask_mem);
%}
// Load Unsigned Short/Char (16bit UNsigned)
instruct loadUS(iRegI dst, memory mem) %{
match(Set dst (LoadUS mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUH $mem,$dst\t! ushort/char" %}
ins_encode %{
__ lduh($mem$$Address, $dst$$Register);
%}
ins_pipe(iload_mem);
%}
// Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDSB $mem+1,$dst\t! ushort -> byte" %}
ins_encode %{
__ ldsb($mem$$Address, $dst$$Register, 1);
%}
ins_pipe(iload_mask_mem);
%}
// Load Unsigned Short/Char (16bit UNsigned) into a Long Register
instruct loadUS2L(iRegL dst, memory mem) %{
match(Set dst (ConvI2L (LoadUS mem)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUH $mem,$dst\t! ushort/char -> long" %}
ins_encode %{
__ lduh($mem$$Address, $dst$$Register);
%}
ins_pipe(iload_mem);
%}
// Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUB $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
ins_encode %{
__ ldub($mem$$Address, $dst$$Register, 1); // LSB is index+1 on BE
%}
ins_pipe(iload_mem);
%}
// Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
ins_cost(MEMORY_REF_COST + DEFAULT_COST);
size(2*4);
format %{ "LDUH $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
"AND $dst,$mask,$dst" %}
ins_encode %{
Register Rdst = $dst$$Register;
__ lduh($mem$$Address, Rdst);
__ and3(Rdst, $mask$$constant, Rdst);
%}
ins_pipe(iload_mem);
%}
// Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
effect(TEMP dst, TEMP tmp);
ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
format %{ "LDUH $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
"SET $mask,$tmp\n\t"
"AND $dst,$tmp,$dst" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rtmp = $tmp$$Register;
__ lduh($mem$$Address, Rdst);
__ set($mask$$constant, Rtmp);
__ and3(Rdst, Rtmp, Rdst);
%}
ins_pipe(iload_mem);
%}
// Load Integer
instruct loadI(iRegI dst, memory mem) %{
match(Set dst (LoadI mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUW $mem,$dst\t! int" %}
ins_encode %{
__ lduw($mem$$Address, $dst$$Register);
%}
ins_pipe(iload_mem);
%}
// Load Integer to Byte (8 bit signed)
instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDSB $mem+3,$dst\t! int -> byte" %}
ins_encode %{
__ ldsb($mem$$Address, $dst$$Register, 3);
%}
ins_pipe(iload_mask_mem);
%}
// Load Integer to Unsigned Byte (8 bit UNsigned)
instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
match(Set dst (AndI (LoadI mem) mask));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUB $mem+3,$dst\t! int -> ubyte" %}
ins_encode %{
__ ldub($mem$$Address, $dst$$Register, 3);
%}
ins_pipe(iload_mask_mem);
%}
// Load Integer to Short (16 bit signed)
instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDSH $mem+2,$dst\t! int -> short" %}
ins_encode %{
__ ldsh($mem$$Address, $dst$$Register, 2);
%}
ins_pipe(iload_mask_mem);
%}
// Load Integer to Unsigned Short (16 bit UNsigned)
instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
match(Set dst (AndI (LoadI mem) mask));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUH $mem+2,$dst\t! int -> ushort/char" %}
ins_encode %{
__ lduh($mem$$Address, $dst$$Register, 2);
%}
ins_pipe(iload_mask_mem);
%}
// Load Integer into a Long Register
instruct loadI2L(iRegL dst, memory mem) %{
match(Set dst (ConvI2L (LoadI mem)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDSW $mem,$dst\t! int -> long" %}
ins_encode %{
__ ldsw($mem$$Address, $dst$$Register);
%}
ins_pipe(iload_mask_mem);
%}
// Load Integer with mask 0xFF into a Long Register
instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUB $mem+3,$dst\t! int & 0xFF -> long" %}
ins_encode %{
__ ldub($mem$$Address, $dst$$Register, 3); // LSB is index+3 on BE
%}
ins_pipe(iload_mem);
%}
// Load Integer with mask 0xFFFF into a Long Register
instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUH $mem+2,$dst\t! int & 0xFFFF -> long" %}
ins_encode %{
__ lduh($mem$$Address, $dst$$Register, 2); // LSW is index+2 on BE
%}
ins_pipe(iload_mem);
%}
// Load Integer with a 12-bit mask into a Long Register
instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
ins_cost(MEMORY_REF_COST + DEFAULT_COST);
size(2*4);
format %{ "LDUW $mem,$dst\t! int & 12-bit mask -> long\n\t"
"AND $dst,$mask,$dst" %}
ins_encode %{
Register Rdst = $dst$$Register;
__ lduw($mem$$Address, Rdst);
__ and3(Rdst, $mask$$constant, Rdst);
%}
ins_pipe(iload_mem);
%}
// Load Integer with a 31-bit mask into a Long Register
instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
effect(TEMP dst, TEMP tmp);
ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
format %{ "LDUW $mem,$dst\t! int & 31-bit mask -> long\n\t"
"SET $mask,$tmp\n\t"
"AND $dst,$tmp,$dst" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rtmp = $tmp$$Register;
__ lduw($mem$$Address, Rdst);
__ set($mask$$constant, Rtmp);
__ and3(Rdst, Rtmp, Rdst);
%}
ins_pipe(iload_mem);
%}
// Load Unsigned Integer into a Long Register
instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUW $mem,$dst\t! uint -> long" %}
ins_encode %{
__ lduw($mem$$Address, $dst$$Register);
%}
ins_pipe(iload_mem);
%}
// Load Long - aligned
instruct loadL(iRegL dst, memory mem ) %{
match(Set dst (LoadL mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDX $mem,$dst\t! long" %}
ins_encode %{
__ ldx($mem$$Address, $dst$$Register);
%}
ins_pipe(iload_mem);
%}
// Load Long - UNaligned
instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
match(Set dst (LoadL_unaligned mem));
effect(KILL tmp);
ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
size(16);
format %{ "LDUW $mem+4,R_O7\t! misaligned long\n"
"\tLDUW $mem ,$dst\n"
"\tSLLX #32, $dst, $dst\n"
"\tOR $dst, R_O7, $dst" %}
opcode(Assembler::lduw_op3);
ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
ins_pipe(iload_mem);
%}
// Load Range
instruct loadRange(iRegI dst, memory mem) %{
match(Set dst (LoadRange mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUW $mem,$dst\t! range" %}
opcode(Assembler::lduw_op3);
ins_encode(simple_form3_mem_reg( mem, dst ) );
ins_pipe(iload_mem);
%}
// Load Integer into %f register (for fitos/fitod)
instruct loadI_freg(regF dst, memory mem) %{
match(Set dst (LoadI mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDF $mem,$dst\t! for fitos/fitod" %}
opcode(Assembler::ldf_op3);
ins_encode(simple_form3_mem_reg( mem, dst ) );
ins_pipe(floadF_mem);
%}
// Load Pointer
instruct loadP(iRegP dst, memory mem) %{
match(Set dst (LoadP mem));
ins_cost(MEMORY_REF_COST);
size(4);
#ifndef _LP64
format %{ "LDUW $mem,$dst\t! ptr" %}
ins_encode %{
__ lduw($mem$$Address, $dst$$Register);
%}
#else
format %{ "LDX $mem,$dst\t! ptr" %}
ins_encode %{
__ ldx($mem$$Address, $dst$$Register);
%}
#endif
ins_pipe(iload_mem);
%}
// Load Compressed Pointer
instruct loadN(iRegN dst, memory mem) %{
match(Set dst (LoadN mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUW $mem,$dst\t! compressed ptr" %}
ins_encode %{
__ lduw($mem$$Address, $dst$$Register);
%}
ins_pipe(iload_mem);
%}
// Load Klass Pointer
instruct loadKlass(iRegP dst, memory mem) %{
match(Set dst (LoadKlass mem));
ins_cost(MEMORY_REF_COST);
size(4);
#ifndef _LP64
format %{ "LDUW $mem,$dst\t! klass ptr" %}
ins_encode %{
__ lduw($mem$$Address, $dst$$Register);
%}
#else
format %{ "LDX $mem,$dst\t! klass ptr" %}
ins_encode %{
__ ldx($mem$$Address, $dst$$Register);
%}
#endif
ins_pipe(iload_mem);
%}
// Load narrow Klass Pointer
instruct loadNKlass(iRegN dst, memory mem) %{
match(Set dst (LoadNKlass mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUW $mem,$dst\t! compressed klass ptr" %}
ins_encode %{
__ lduw($mem$$Address, $dst$$Register);
%}
ins_pipe(iload_mem);
%}
// Load Double
instruct loadD(regD dst, memory mem) %{
match(Set dst (LoadD mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDDF $mem,$dst" %}
opcode(Assembler::lddf_op3);
ins_encode(simple_form3_mem_reg( mem, dst ) );
ins_pipe(floadD_mem);
%}
// Load Double - UNaligned
instruct loadD_unaligned(regD_low dst, memory mem ) %{
match(Set dst (LoadD_unaligned mem));
ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
size(8);
format %{ "LDF $mem ,$dst.hi\t! misaligned double\n"
"\tLDF $mem+4,$dst.lo\t!" %}
opcode(Assembler::ldf_op3);
ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
ins_pipe(iload_mem);
%}
// Load Float
instruct loadF(regF dst, memory mem) %{
match(Set dst (LoadF mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDF $mem,$dst" %}
opcode(Assembler::ldf_op3);
ins_encode(simple_form3_mem_reg( mem, dst ) );
ins_pipe(floadF_mem);
%}
// Load Constant
instruct loadConI( iRegI dst, immI src ) %{
match(Set dst src);
ins_cost(DEFAULT_COST * 3/2);
format %{ "SET $src,$dst" %}
ins_encode( Set32(src, dst) );
ins_pipe(ialu_hi_lo_reg);
%}
instruct loadConI13( iRegI dst, immI13 src ) %{
match(Set dst src);
size(4);
format %{ "MOV $src,$dst" %}
ins_encode( Set13( src, dst ) );
ins_pipe(ialu_imm);
%}
#ifndef _LP64
instruct loadConP(iRegP dst, immP con) %{
match(Set dst con);
ins_cost(DEFAULT_COST * 3/2);
format %{ "SET $con,$dst\t!ptr" %}
ins_encode %{
relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
intptr_t val = $con$$constant;
if (constant_reloc == relocInfo::oop_type) {
__ set_oop_constant((jobject) val, $dst$$Register);
} else if (constant_reloc == relocInfo::metadata_type) {
__ set_metadata_constant((Metadata*)val, $dst$$Register);
} else { // non-oop pointers, e.g. card mark base, heap top
assert(constant_reloc == relocInfo::none, "unexpected reloc type");
__ set(val, $dst$$Register);
}
%}
ins_pipe(loadConP);
%}
#else
instruct loadConP_set(iRegP dst, immP_set con) %{
match(Set dst con);
ins_cost(DEFAULT_COST * 3/2);
format %{ "SET $con,$dst\t! ptr" %}
ins_encode %{
relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
intptr_t val = $con$$constant;
if (constant_reloc == relocInfo::oop_type) {
__ set_oop_constant((jobject) val, $dst$$Register);
} else if (constant_reloc == relocInfo::metadata_type) {
__ set_metadata_constant((Metadata*)val, $dst$$Register);
} else { // non-oop pointers, e.g. card mark base, heap top
assert(constant_reloc == relocInfo::none, "unexpected reloc type");
__ set(val, $dst$$Register);
}
%}
ins_pipe(loadConP);
%}
instruct loadConP_load(iRegP dst, immP_load con) %{
match(Set dst con);
ins_cost(MEMORY_REF_COST);
format %{ "LD [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
ins_encode %{
RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
__ ld_ptr($constanttablebase, con_offset, $dst$$Register);
%}
ins_pipe(loadConP);
%}
instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
match(Set dst con);
ins_cost(DEFAULT_COST * 3/2);
format %{ "SET $con,$dst\t! non-oop ptr" %}
ins_encode %{
if (_opnds[1]->constant_reloc() == relocInfo::metadata_type) {
__ set_metadata_constant((Metadata*)$con$$constant, $dst$$Register);
} else {
__ set($con$$constant, $dst$$Register);
}
%}
ins_pipe(loadConP);
%}
#endif // _LP64
instruct loadConP0(iRegP dst, immP0 src) %{
match(Set dst src);
size(4);
format %{ "CLR $dst\t!ptr" %}
ins_encode %{
__ clr($dst$$Register);
%}
ins_pipe(ialu_imm);
%}
instruct loadConP_poll(iRegP dst, immP_poll src) %{
match(Set dst src);
ins_cost(DEFAULT_COST);
format %{ "SET $src,$dst\t!ptr" %}
ins_encode %{
AddressLiteral polling_page(os::get_polling_page());
__ sethi(polling_page, reg_to_register_object($dst$$reg));
%}
ins_pipe(loadConP_poll);
%}
instruct loadConN0(iRegN dst, immN0 src) %{
match(Set dst src);
size(4);
format %{ "CLR $dst\t! compressed NULL ptr" %}
ins_encode %{
__ clr($dst$$Register);
%}
ins_pipe(ialu_imm);
%}
instruct loadConN(iRegN dst, immN src) %{
match(Set dst src);
ins_cost(DEFAULT_COST * 3/2);
format %{ "SET $src,$dst\t! compressed ptr" %}
ins_encode %{
Register dst = $dst$$Register;
__ set_narrow_oop((jobject)$src$$constant, dst);
%}
ins_pipe(ialu_hi_lo_reg);
%}
instruct loadConNKlass(iRegN dst, immNKlass src) %{
match(Set dst src);
ins_cost(DEFAULT_COST * 3/2);
format %{ "SET $src,$dst\t! compressed klass ptr" %}
ins_encode %{
Register dst = $dst$$Register;
__ set_narrow_klass((Klass*)$src$$constant, dst);
%}
ins_pipe(ialu_hi_lo_reg);
%}
// Materialize long value (predicated by immL_cheap).
instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
match(Set dst con);
effect(KILL tmp);
ins_cost(DEFAULT_COST * 3);
format %{ "SET64 $con,$dst KILL $tmp\t! cheap long" %}
ins_encode %{
__ set64($con$$constant, $dst$$Register, $tmp$$Register);
%}
ins_pipe(loadConL);
%}
// Load long value from constant table (predicated by immL_expensive).
instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
match(Set dst con);
ins_cost(MEMORY_REF_COST);
format %{ "LDX [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
ins_encode %{
RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
__ ldx($constanttablebase, con_offset, $dst$$Register);
%}
ins_pipe(loadConL);
%}
instruct loadConL0( iRegL dst, immL0 src ) %{
match(Set dst src);
ins_cost(DEFAULT_COST);
size(4);
format %{ "CLR $dst\t! long" %}
ins_encode( Set13( src, dst ) );
ins_pipe(ialu_imm);
%}
instruct loadConL13( iRegL dst, immL13 src ) %{
match(Set dst src);
ins_cost(DEFAULT_COST * 2);
size(4);
format %{ "MOV $src,$dst\t! long" %}
ins_encode( Set13( src, dst ) );
ins_pipe(ialu_imm);
%}
instruct loadConF(regF dst, immF con, o7RegI tmp) %{
match(Set dst con);
effect(KILL tmp);
format %{ "LDF [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
ins_encode %{
RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
__ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
%}
ins_pipe(loadConFD);
%}
instruct loadConD(regD dst, immD con, o7RegI tmp) %{
match(Set dst con);
effect(KILL tmp);
format %{ "LDDF [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
ins_encode %{
// XXX This is a quick fix for 6833573.
//__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
__ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
%}
ins_pipe(loadConFD);
%}
// Prefetch instructions.
// Must be safe to execute with invalid address (cannot fault).
instruct prefetchr( memory mem ) %{
match( PrefetchRead mem );
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
opcode(Assembler::prefetch_op3);
ins_encode( form3_mem_prefetch_read( mem ) );
ins_pipe(iload_mem);
%}
instruct prefetchw( memory mem ) %{
match( PrefetchWrite mem );
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
opcode(Assembler::prefetch_op3);
ins_encode( form3_mem_prefetch_write( mem ) );
ins_pipe(iload_mem);
%}
// Prefetch instructions for allocation.
instruct prefetchAlloc( memory mem ) %{
predicate(AllocatePrefetchInstr == 0);
match( PrefetchAllocation mem );
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
opcode(Assembler::prefetch_op3);
ins_encode( form3_mem_prefetch_write( mem ) );
ins_pipe(iload_mem);
%}
// Use BIS instruction to prefetch for allocation.
// Could fault, need space at the end of TLAB.
instruct prefetchAlloc_bis( iRegP dst ) %{
predicate(AllocatePrefetchInstr == 1);
match( PrefetchAllocation dst );
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STXA [$dst]\t! // Prefetch allocation using BIS" %}
ins_encode %{
__ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
%}
ins_pipe(istore_mem_reg);
%}
// Next code is used for finding next cache line address to prefetch.
#ifndef _LP64
instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
match(Set dst (CastX2P (AndI (CastP2X src) mask)));
ins_cost(DEFAULT_COST);
size(4);
format %{ "AND $src,$mask,$dst\t! next cache line address" %}
ins_encode %{
__ and3($src$$Register, $mask$$constant, $dst$$Register);
%}
ins_pipe(ialu_reg_imm);
%}
#else
instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
match(Set dst (CastX2P (AndL (CastP2X src) mask)));
ins_cost(DEFAULT_COST);
size(4);
format %{ "AND $src,$mask,$dst\t! next cache line address" %}
ins_encode %{
__ and3($src$$Register, $mask$$constant, $dst$$Register);
%}
ins_pipe(ialu_reg_imm);
%}
#endif
//----------Store Instructions-------------------------------------------------
// Store Byte
instruct storeB(memory mem, iRegI src) %{
match(Set mem (StoreB mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STB $src,$mem\t! byte" %}
opcode(Assembler::stb_op3);
ins_encode(simple_form3_mem_reg( mem, src ) );
ins_pipe(istore_mem_reg);
%}
instruct storeB0(memory mem, immI0 src) %{
match(Set mem (StoreB mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STB $src,$mem\t! byte" %}
opcode(Assembler::stb_op3);
ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
ins_pipe(istore_mem_zero);
%}
instruct storeCM0(memory mem, immI0 src) %{
match(Set mem (StoreCM mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STB $src,$mem\t! CMS card-mark byte 0" %}
opcode(Assembler::stb_op3);
ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
ins_pipe(istore_mem_zero);
%}
// Store Char/Short
instruct storeC(memory mem, iRegI src) %{
match(Set mem (StoreC mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STH $src,$mem\t! short" %}
opcode(Assembler::sth_op3);
ins_encode(simple_form3_mem_reg( mem, src ) );
ins_pipe(istore_mem_reg);
%}
instruct storeC0(memory mem, immI0 src) %{
match(Set mem (StoreC mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STH $src,$mem\t! short" %}
opcode(Assembler::sth_op3);
ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
ins_pipe(istore_mem_zero);
%}
// Store Integer
instruct storeI(memory mem, iRegI src) %{
match(Set mem (StoreI mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STW $src,$mem" %}
opcode(Assembler::stw_op3);
ins_encode(simple_form3_mem_reg( mem, src ) );
ins_pipe(istore_mem_reg);
%}
// Store Long
instruct storeL(memory mem, iRegL src) %{
match(Set mem (StoreL mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $src,$mem\t! long" %}
opcode(Assembler::stx_op3);
ins_encode(simple_form3_mem_reg( mem, src ) );
ins_pipe(istore_mem_reg);
%}
instruct storeI0(memory mem, immI0 src) %{
match(Set mem (StoreI mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STW $src,$mem" %}
opcode(Assembler::stw_op3);
ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
ins_pipe(istore_mem_zero);
%}
instruct storeL0(memory mem, immL0 src) %{
match(Set mem (StoreL mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $src,$mem" %}
opcode(Assembler::stx_op3);
ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
ins_pipe(istore_mem_zero);
%}
// Store Integer from float register (used after fstoi)
instruct storeI_Freg(memory mem, regF src) %{
match(Set mem (StoreI mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STF $src,$mem\t! after fstoi/fdtoi" %}
opcode(Assembler::stf_op3);
ins_encode(simple_form3_mem_reg( mem, src ) );
ins_pipe(fstoreF_mem_reg);
%}
// Store Pointer
instruct storeP(memory dst, sp_ptr_RegP src) %{
match(Set dst (StoreP dst src));
ins_cost(MEMORY_REF_COST);
size(4);
#ifndef _LP64
format %{ "STW $src,$dst\t! ptr" %}
opcode(Assembler::stw_op3, 0, REGP_OP);
#else
format %{ "STX $src,$dst\t! ptr" %}
opcode(Assembler::stx_op3, 0, REGP_OP);
#endif
ins_encode( form3_mem_reg( dst, src ) );
ins_pipe(istore_mem_spORreg);
%}
instruct storeP0(memory dst, immP0 src) %{
match(Set dst (StoreP dst src));
ins_cost(MEMORY_REF_COST);
size(4);
#ifndef _LP64
format %{ "STW $src,$dst\t! ptr" %}
opcode(Assembler::stw_op3, 0, REGP_OP);
#else
format %{ "STX $src,$dst\t! ptr" %}
opcode(Assembler::stx_op3, 0, REGP_OP);
#endif
ins_encode( form3_mem_reg( dst, R_G0 ) );
ins_pipe(istore_mem_zero);
%}
// Store Compressed Pointer
instruct storeN(memory dst, iRegN src) %{
match(Set dst (StoreN dst src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STW $src,$dst\t! compressed ptr" %}
ins_encode %{
Register base = as_Register($dst$$base);
Register index = as_Register($dst$$index);
Register src = $src$$Register;
if (index != G0) {
__ stw(src, base, index);
} else {
__ stw(src, base, $dst$$disp);
}
%}
ins_pipe(istore_mem_spORreg);
%}
instruct storeNKlass(memory dst, iRegN src) %{
match(Set dst (StoreNKlass dst src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STW $src,$dst\t! compressed klass ptr" %}
ins_encode %{
Register base = as_Register($dst$$base);
Register index = as_Register($dst$$index);
Register src = $src$$Register;
if (index != G0) {
__ stw(src, base, index);
} else {
__ stw(src, base, $dst$$disp);
}
%}
ins_pipe(istore_mem_spORreg);
%}
instruct storeN0(memory dst, immN0 src) %{
match(Set dst (StoreN dst src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STW $src,$dst\t! compressed ptr" %}
ins_encode %{
Register base = as_Register($dst$$base);
Register index = as_Register($dst$$index);
if (index != G0) {
__ stw(0, base, index);
} else {
__ stw(0, base, $dst$$disp);
}
%}
ins_pipe(istore_mem_zero);
%}
// Store Double
instruct storeD( memory mem, regD src) %{
match(Set mem (StoreD mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STDF $src,$mem" %}
opcode(Assembler::stdf_op3);
ins_encode(simple_form3_mem_reg( mem, src ) );
ins_pipe(fstoreD_mem_reg);
%}
instruct storeD0( memory mem, immD0 src) %{
match(Set mem (StoreD mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $src,$mem" %}
opcode(Assembler::stx_op3);
ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
ins_pipe(fstoreD_mem_zero);
%}
// Store Float
instruct storeF( memory mem, regF src) %{
match(Set mem (StoreF mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STF $src,$mem" %}
opcode(Assembler::stf_op3);
ins_encode(simple_form3_mem_reg( mem, src ) );
ins_pipe(fstoreF_mem_reg);
%}
instruct storeF0( memory mem, immF0 src) %{
match(Set mem (StoreF mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STW $src,$mem\t! storeF0" %}
opcode(Assembler::stw_op3);
ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
ins_pipe(fstoreF_mem_zero);
%}
// Convert oop pointer into compressed form
instruct encodeHeapOop(iRegN dst, iRegP src) %{
predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
match(Set dst (EncodeP src));
format %{ "encode_heap_oop $src, $dst" %}
ins_encode %{
__ encode_heap_oop($src$$Register, $dst$$Register);
%}
ins_avoid_back_to_back(Universe::narrow_oop_base() == NULL ? AVOID_NONE : AVOID_BEFORE);
ins_pipe(ialu_reg);
%}
instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
match(Set dst (EncodeP src));
format %{ "encode_heap_oop_not_null $src, $dst" %}
ins_encode %{
__ encode_heap_oop_not_null($src$$Register, $dst$$Register);
%}
ins_pipe(ialu_reg);
%}
instruct decodeHeapOop(iRegP dst, iRegN src) %{
predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
match(Set dst (DecodeN src));
format %{ "decode_heap_oop $src, $dst" %}
ins_encode %{
__ decode_heap_oop($src$$Register, $dst$$Register);
%}
ins_pipe(ialu_reg);
%}
instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
match(Set dst (DecodeN src));
format %{ "decode_heap_oop_not_null $src, $dst" %}
ins_encode %{
__ decode_heap_oop_not_null($src$$Register, $dst$$Register);
%}
ins_pipe(ialu_reg);
%}
instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
match(Set dst (EncodePKlass src));
format %{ "encode_klass_not_null $src, $dst" %}
ins_encode %{
__ encode_klass_not_null($src$$Register, $dst$$Register);
%}
ins_pipe(ialu_reg);
%}
instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
match(Set dst (DecodeNKlass src));
format %{ "decode_klass_not_null $src, $dst" %}
ins_encode %{
__ decode_klass_not_null($src$$Register, $dst$$Register);
%}
ins_pipe(ialu_reg);
%}
//----------MemBar Instructions-----------------------------------------------
// Memory barrier flavors
instruct membar_acquire() %{
match(MemBarAcquire);
match(LoadFence);
ins_cost(4*MEMORY_REF_COST);
size(0);
format %{ "MEMBAR-acquire" %}
ins_encode( enc_membar_acquire );
ins_pipe(long_memory_op);
%}
instruct membar_acquire_lock() %{
match(MemBarAcquireLock);
ins_cost(0);
size(0);
format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
ins_encode( );
ins_pipe(empty);
%}
instruct membar_release() %{
match(MemBarRelease);
match(StoreFence);
ins_cost(4*MEMORY_REF_COST);
size(0);
format %{ "MEMBAR-release" %}
ins_encode( enc_membar_release );
ins_pipe(long_memory_op);
%}
instruct membar_release_lock() %{
match(MemBarReleaseLock);
ins_cost(0);
size(0);
format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
ins_encode( );
ins_pipe(empty);
%}
instruct membar_volatile() %{
match(MemBarVolatile);
ins_cost(4*MEMORY_REF_COST);
size(4);
format %{ "MEMBAR-volatile" %}
ins_encode( enc_membar_volatile );
ins_pipe(long_memory_op);
%}
instruct unnecessary_membar_volatile() %{
match(MemBarVolatile);
predicate(Matcher::post_store_load_barrier(n));
ins_cost(0);
size(0);
format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
ins_encode( );
ins_pipe(empty);
%}
instruct membar_storestore() %{
match(MemBarStoreStore);
ins_cost(0);
size(0);
format %{ "!MEMBAR-storestore (empty encoding)" %}
ins_encode( );
ins_pipe(empty);
%}
//----------Register Move Instructions-----------------------------------------
instruct roundDouble_nop(regD dst) %{
match(Set dst (RoundDouble dst));
ins_cost(0);
// SPARC results are already "rounded" (i.e., normal-format IEEE)
ins_encode( );
ins_pipe(empty);
%}
instruct roundFloat_nop(regF dst) %{
match(Set dst (RoundFloat dst));
ins_cost(0);
// SPARC results are already "rounded" (i.e., normal-format IEEE)
ins_encode( );
ins_pipe(empty);
%}
// Cast Index to Pointer for unsafe natives
instruct castX2P(iRegX src, iRegP dst) %{
match(Set dst (CastX2P src));
format %{ "MOV $src,$dst\t! IntX->Ptr" %}
ins_encode( form3_g0_rs2_rd_move( src, dst ) );
ins_pipe(ialu_reg);
%}
// Cast Pointer to Index for unsafe natives
instruct castP2X(iRegP src, iRegX dst) %{
match(Set dst (CastP2X src));
format %{ "MOV $src,$dst\t! Ptr->IntX" %}
ins_encode( form3_g0_rs2_rd_move( src, dst ) );
ins_pipe(ialu_reg);
%}
instruct stfSSD(stackSlotD stkSlot, regD src) %{
// %%%% TO DO: Tell the coalescer that this kind of node is a copy!
match(Set stkSlot src); // chain rule
ins_cost(MEMORY_REF_COST);
format %{ "STDF $src,$stkSlot\t!stk" %}
opcode(Assembler::stdf_op3);
ins_encode(simple_form3_mem_reg(stkSlot, src));
ins_pipe(fstoreD_stk_reg);
%}
instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
// %%%% TO DO: Tell the coalescer that this kind of node is a copy!
match(Set dst stkSlot); // chain rule
ins_cost(MEMORY_REF_COST);
format %{ "LDDF $stkSlot,$dst\t!stk" %}
opcode(Assembler::lddf_op3);
ins_encode(simple_form3_mem_reg(stkSlot, dst));
ins_pipe(floadD_stk);
%}
instruct stfSSF(stackSlotF stkSlot, regF src) %{
// %%%% TO DO: Tell the coalescer that this kind of node is a copy!
match(Set stkSlot src); // chain rule
ins_cost(MEMORY_REF_COST);
format %{ "STF $src,$stkSlot\t!stk" %}
opcode(Assembler::stf_op3);
ins_encode(simple_form3_mem_reg(stkSlot, src));
ins_pipe(fstoreF_stk_reg);
%}
//----------Conditional Move---------------------------------------------------
// Conditional move
instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
ins_cost(150);
format %{ "MOV$cmp $pcc,$src,$dst" %}
ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
ins_pipe(ialu_reg);
%}
instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
ins_cost(140);
format %{ "MOV$cmp $pcc,$src,$dst" %}
ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
ins_pipe(ialu_imm);
%}
instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "MOV$cmp $icc,$src,$dst" %}
ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
ins_pipe(ialu_reg);
%}
instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
ins_cost(140);
size(4);
format %{ "MOV$cmp $icc,$src,$dst" %}
ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
ins_pipe(ialu_imm);
%}
instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "MOV$cmp $icc,$src,$dst" %}
ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
ins_pipe(ialu_reg);
%}
instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
ins_cost(140);
size(4);
format %{ "MOV$cmp $icc,$src,$dst" %}
ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
ins_pipe(ialu_imm);
%}
instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "MOV$cmp $fcc,$src,$dst" %}
ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
ins_pipe(ialu_reg);
%}
instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
ins_cost(140);
size(4);
format %{ "MOV$cmp $fcc,$src,$dst" %}
ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
ins_pipe(ialu_imm);
%}
// Conditional move for RegN. Only cmov(reg,reg).
instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
ins_cost(150);
format %{ "MOV$cmp $pcc,$src,$dst" %}
ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
ins_pipe(ialu_reg);
%}
// This instruction also works with CmpN so we don't need cmovNN_reg.
instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "MOV$cmp $icc,$src,$dst" %}
ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
ins_pipe(ialu_reg);
%}
// This instruction also works with CmpN so we don't need cmovNN_reg.
instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "MOV$cmp $icc,$src,$dst" %}
ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
ins_pipe(ialu_reg);
%}
instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "MOV$cmp $fcc,$src,$dst" %}
ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
ins_pipe(ialu_reg);
%}
// Conditional move
instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
ins_cost(150);
format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
ins_pipe(ialu_reg);
%}
instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
ins_cost(140);
format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
ins_pipe(ialu_imm);
%}
// This instruction also works with CmpN so we don't need cmovPN_reg.
instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "MOV$cmp $icc,$src,$dst\t! ptr" %}
ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
ins_pipe(ialu_reg);
%}
instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "MOV$cmp $icc,$src,$dst\t! ptr" %}
ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
ins_pipe(ialu_reg);
%}
instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
ins_cost(140);
size(4);
format %{ "MOV$cmp $icc,$src,$dst\t! ptr" %}
ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
ins_pipe(ialu_imm);
%}
instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
ins_cost(140);
size(4);
format %{ "MOV$cmp $icc,$src,$dst\t! ptr" %}
ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
ins_pipe(ialu_imm);
%}
instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "MOV$cmp $fcc,$src,$dst" %}
ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
ins_pipe(ialu_imm);
%}
instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
ins_cost(140);
size(4);
format %{ "MOV$cmp $fcc,$src,$dst" %}
ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
ins_pipe(ialu_imm);
%}
// Conditional move
instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
ins_cost(150);
opcode(0x101);
format %{ "FMOVD$cmp $pcc,$src,$dst" %}
ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
ins_pipe(int_conditional_float_move);
%}
instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "FMOVS$cmp $icc,$src,$dst" %}
opcode(0x101);
ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
ins_pipe(int_conditional_float_move);
%}
instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "FMOVS$cmp $icc,$src,$dst" %}
opcode(0x101);
ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
ins_pipe(int_conditional_float_move);
%}
// Conditional move,
instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "FMOVF$cmp $fcc,$src,$dst" %}
opcode(0x1);
ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
ins_pipe(int_conditional_double_move);
%}
// Conditional move
instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
ins_cost(150);
size(4);
opcode(0x102);
format %{ "FMOVD$cmp $pcc,$src,$dst" %}
ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
ins_pipe(int_conditional_double_move);
%}
instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "FMOVD$cmp $icc,$src,$dst" %}
opcode(0x102);
ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
ins_pipe(int_conditional_double_move);
%}
instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "FMOVD$cmp $icc,$src,$dst" %}
opcode(0x102);
ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
ins_pipe(int_conditional_double_move);
%}
// Conditional move,
instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "FMOVD$cmp $fcc,$src,$dst" %}
opcode(0x2);
ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
ins_pipe(int_conditional_double_move);
%}
// Conditional move
instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
ins_cost(150);
format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
ins_pipe(ialu_reg);
%}
instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
ins_cost(140);
format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
ins_pipe(ialu_imm);
%}
instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "MOV$cmp $icc,$src,$dst\t! long" %}
ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
ins_pipe(ialu_reg);
%}
instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "MOV$cmp $icc,$src,$dst\t! long" %}
ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
ins_pipe(ialu_reg);
%}
instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
ins_cost(150);
size(4);
format %{ "MOV$cmp $fcc,$src,$dst\t! long" %}
ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
ins_pipe(ialu_reg);
%}
//----------OS and Locking Instructions----------------------------------------
// This name is KNOWN by the ADLC and cannot be changed.
// The ADLC forces a 'TypeRawPtr::BOTTOM' output type
// for this guy.
instruct tlsLoadP(g2RegP dst) %{
match(Set dst (ThreadLocal));
size(0);
ins_cost(0);
format %{ "# TLS is in G2" %}
ins_encode( /*empty encoding*/ );
ins_pipe(ialu_none);
%}
instruct checkCastPP( iRegP dst ) %{
match(Set dst (CheckCastPP dst));
size(0);
format %{ "# checkcastPP of $dst" %}
ins_encode( /*empty encoding*/ );
ins_pipe(empty);
%}
instruct castPP( iRegP dst ) %{
match(Set dst (CastPP dst));
format %{ "# castPP of $dst" %}
ins_encode( /*empty encoding*/ );
ins_pipe(empty);
%}
instruct castII( iRegI dst ) %{
match(Set dst (CastII dst));
format %{ "# castII of $dst" %}
ins_encode( /*empty encoding*/ );
ins_cost(0);
ins_pipe(empty);
%}
//----------Arithmetic Instructions--------------------------------------------
// Addition Instructions
// Register Addition
instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
match(Set dst (AddI src1 src2));
size(4);
format %{ "ADD $src1,$src2,$dst" %}
ins_encode %{
__ add($src1$$Register, $src2$$Register, $dst$$Register);
%}
ins_pipe(ialu_reg_reg);
%}
// Immediate Addition
instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
match(Set dst (AddI src1 src2));
size(4);
format %{ "ADD $src1,$src2,$dst" %}
opcode(Assembler::add_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_imm);
%}
// Pointer Register Addition
instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
match(Set dst (AddP src1 src2));
size(4);
format %{ "ADD $src1,$src2,$dst" %}
opcode(Assembler::add_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
// Pointer Immediate Addition
instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
match(Set dst (AddP src1 src2));
size(4);
format %{ "ADD $src1,$src2,$dst" %}
opcode(Assembler::add_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_imm);
%}
// Long Addition
instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
match(Set dst (AddL src1 src2));
size(4);
format %{ "ADD $src1,$src2,$dst\t! long" %}
opcode(Assembler::add_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
match(Set dst (AddL src1 con));
size(4);
format %{ "ADD $src1,$con,$dst" %}
opcode(Assembler::add_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
ins_pipe(ialu_reg_imm);
%}
//----------Conditional_store--------------------------------------------------
// Conditional-store of the updated heap-top.
// Used during allocation of the shared heap.
// Sets flags (EQ) on success. Implemented with a CASA on Sparc.
// LoadP-locked. Same as a regular pointer load when used with a compare-swap
instruct loadPLocked(iRegP dst, memory mem) %{
match(Set dst (LoadPLocked mem));
ins_cost(MEMORY_REF_COST);
#ifndef _LP64
size(4);
format %{ "LDUW $mem,$dst\t! ptr" %}
opcode(Assembler::lduw_op3, 0, REGP_OP);
#else
format %{ "LDX $mem,$dst\t! ptr" %}
opcode(Assembler::ldx_op3, 0, REGP_OP);
#endif
ins_encode( form3_mem_reg( mem, dst ) );
ins_pipe(iload_mem);
%}
instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
effect( KILL newval );
format %{ "CASA [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
"CMP R_G3,$oldval\t\t! See if we made progress" %}
ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
ins_pipe( long_memory_op );
%}
// Conditional-store of an int value.
instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
effect( KILL newval );
format %{ "CASA [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
"CMP $oldval,$newval\t\t! See if we made progress" %}
ins_encode( enc_cas(mem_ptr,oldval,newval) );
ins_pipe( long_memory_op );
%}
// Conditional-store of a long value.
instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
effect( KILL newval );
format %{ "CASXA [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
"CMP $oldval,$newval\t\t! See if we made progress" %}
ins_encode( enc_cas(mem_ptr,oldval,newval) );
ins_pipe( long_memory_op );
%}
// No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
predicate(VM_Version::supports_cx8());
match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
effect( USE mem_ptr, KILL ccr, KILL tmp1);
format %{
"MOV $newval,O7\n\t"
"CASXA [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
"CMP $oldval,O7\t\t! See if we made progress\n\t"
"MOV 1,$res\n\t"
"MOVne xcc,R_G0,$res"
%}
ins_encode( enc_casx(mem_ptr, oldval, newval),
enc_lflags_ne_to_boolean(res) );
ins_pipe( long_memory_op );
%}
instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
effect( USE mem_ptr, KILL ccr, KILL tmp1);
format %{
"MOV $newval,O7\n\t"
"CASA [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
"CMP $oldval,O7\t\t! See if we made progress\n\t"
"MOV 1,$res\n\t"
"MOVne icc,R_G0,$res"
%}
ins_encode( enc_casi(mem_ptr, oldval, newval),
enc_iflags_ne_to_boolean(res) );
ins_pipe( long_memory_op );
%}
instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
#ifdef _LP64
predicate(VM_Version::supports_cx8());
#endif
match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
effect( USE mem_ptr, KILL ccr, KILL tmp1);
format %{
"MOV $newval,O7\n\t"
"CASA_PTR [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
"CMP $oldval,O7\t\t! See if we made progress\n\t"
"MOV 1,$res\n\t"
"MOVne xcc,R_G0,$res"
%}
#ifdef _LP64
ins_encode( enc_casx(mem_ptr, oldval, newval),
enc_lflags_ne_to_boolean(res) );
#else
ins_encode( enc_casi(mem_ptr, oldval, newval),
enc_iflags_ne_to_boolean(res) );
#endif
ins_pipe( long_memory_op );
%}
instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
effect( USE mem_ptr, KILL ccr, KILL tmp1);
format %{
"MOV $newval,O7\n\t"
"CASA [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
"CMP $oldval,O7\t\t! See if we made progress\n\t"
"MOV 1,$res\n\t"
"MOVne icc,R_G0,$res"
%}
ins_encode( enc_casi(mem_ptr, oldval, newval),
enc_iflags_ne_to_boolean(res) );
ins_pipe( long_memory_op );
%}
instruct xchgI( memory mem, iRegI newval) %{
match(Set newval (GetAndSetI mem newval));
format %{ "SWAP [$mem],$newval" %}
size(4);
ins_encode %{
__ swap($mem$$Address, $newval$$Register);
%}
ins_pipe( long_memory_op );
%}
#ifndef _LP64
instruct xchgP( memory mem, iRegP newval) %{
match(Set newval (GetAndSetP mem newval));
format %{ "SWAP [$mem],$newval" %}
size(4);
ins_encode %{
__ swap($mem$$Address, $newval$$Register);
%}
ins_pipe( long_memory_op );
%}
#endif
instruct xchgN( memory mem, iRegN newval) %{
match(Set newval (GetAndSetN mem newval));
format %{ "SWAP [$mem],$newval" %}
size(4);
ins_encode %{
__ swap($mem$$Address, $newval$$Register);
%}
ins_pipe( long_memory_op );
%}
//---------------------
// Subtraction Instructions
// Register Subtraction
instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
match(Set dst (SubI src1 src2));
size(4);
format %{ "SUB $src1,$src2,$dst" %}
opcode(Assembler::sub_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
// Immediate Subtraction
instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
match(Set dst (SubI src1 src2));
size(4);
format %{ "SUB $src1,$src2,$dst" %}
opcode(Assembler::sub_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_imm);
%}
instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
match(Set dst (SubI zero src2));
size(4);
format %{ "NEG $src2,$dst" %}
opcode(Assembler::sub_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
ins_pipe(ialu_zero_reg);
%}
// Long subtraction
instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
match(Set dst (SubL src1 src2));
size(4);
format %{ "SUB $src1,$src2,$dst\t! long" %}
opcode(Assembler::sub_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
// Immediate Subtraction
instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
match(Set dst (SubL src1 con));
size(4);
format %{ "SUB $src1,$con,$dst\t! long" %}
opcode(Assembler::sub_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
ins_pipe(ialu_reg_imm);
%}
// Long negation
instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
match(Set dst (SubL zero src2));
size(4);
format %{ "NEG $src2,$dst\t! long" %}
opcode(Assembler::sub_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
ins_pipe(ialu_zero_reg);
%}
// Multiplication Instructions
// Integer Multiplication
// Register Multiplication
instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
match(Set dst (MulI src1 src2));
size(4);
format %{ "MULX $src1,$src2,$dst" %}
opcode(Assembler::mulx_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(imul_reg_reg);
%}
// Immediate Multiplication
instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
match(Set dst (MulI src1 src2));
size(4);
format %{ "MULX $src1,$src2,$dst" %}
opcode(Assembler::mulx_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
ins_pipe(imul_reg_imm);
%}
instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
match(Set dst (MulL src1 src2));
ins_cost(DEFAULT_COST * 5);
size(4);
format %{ "MULX $src1,$src2,$dst\t! long" %}
opcode(Assembler::mulx_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(mulL_reg_reg);
%}
// Immediate Multiplication
instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
match(Set dst (MulL src1 src2));
ins_cost(DEFAULT_COST * 5);
size(4);
format %{ "MULX $src1,$src2,$dst" %}
opcode(Assembler::mulx_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
ins_pipe(mulL_reg_imm);
%}
// Integer Division
// Register Division
instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
match(Set dst (DivI src1 src2));
ins_cost((2+71)*DEFAULT_COST);
format %{ "SRA $src2,0,$src2\n\t"
"SRA $src1,0,$src1\n\t"
"SDIVX $src1,$src2,$dst" %}
ins_encode( idiv_reg( src1, src2, dst ) );
ins_pipe(sdiv_reg_reg);
%}
// Immediate Division
instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
match(Set dst (DivI src1 src2));
ins_cost((2+71)*DEFAULT_COST);
format %{ "SRA $src1,0,$src1\n\t"
"SDIVX $src1,$src2,$dst" %}
ins_encode( idiv_imm( src1, src2, dst ) );
ins_pipe(sdiv_reg_imm);
%}
//----------Div-By-10-Expansion------------------------------------------------
// Extract hi bits of a 32x32->64 bit multiply.
// Expand rule only, not matched
instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
effect( DEF dst, USE src1, USE src2 );
format %{ "MULX $src1,$src2,$dst\t! Used in div-by-10\n\t"
"SRLX $dst,#32,$dst\t\t! Extract only hi word of result" %}
ins_encode( enc_mul_hi(dst,src1,src2));
ins_pipe(sdiv_reg_reg);
%}
// Magic constant, reciprocal of 10
instruct loadConI_x66666667(iRegIsafe dst) %{
effect( DEF dst );
size(8);
format %{ "SET 0x66666667,$dst\t! Used in div-by-10" %}
ins_encode( Set32(0x66666667, dst) );
ins_pipe(ialu_hi_lo_reg);
%}
// Register Shift Right Arithmetic Long by 32-63
instruct sra_31( iRegI dst, iRegI src ) %{
effect( DEF dst, USE src );
format %{ "SRA $src,31,$dst\t! Used in div-by-10" %}
ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
ins_pipe(ialu_reg_reg);
%}
// Arithmetic Shift Right by 8-bit immediate
instruct sra_reg_2( iRegI dst, iRegI src ) %{
effect( DEF dst, USE src );
format %{ "SRA $src,2,$dst\t! Used in div-by-10" %}
opcode(Assembler::sra_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
ins_pipe(ialu_reg_imm);
%}
// Integer DIV with 10
instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
match(Set dst (DivI src div));
ins_cost((6+6)*DEFAULT_COST);
expand %{
iRegIsafe tmp1; // Killed temps;
iRegIsafe tmp2; // Killed temps;
iRegI tmp3; // Killed temps;
iRegI tmp4; // Killed temps;
loadConI_x66666667( tmp1 ); // SET 0x66666667 -> tmp1
mul_hi( tmp2, src, tmp1 ); // MUL hibits(src * tmp1) -> tmp2
sra_31( tmp3, src ); // SRA src,31 -> tmp3
sra_reg_2( tmp4, tmp2 ); // SRA tmp2,2 -> tmp4
subI_reg_reg( dst,tmp4,tmp3); // SUB tmp4 - tmp3 -> dst
%}
%}
// Register Long Division
instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
match(Set dst (DivL src1 src2));
ins_cost(DEFAULT_COST*71);
size(4);
format %{ "SDIVX $src1,$src2,$dst\t! long" %}
opcode(Assembler::sdivx_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(divL_reg_reg);
%}
// Register Long Division
instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
match(Set dst (DivL src1 src2));
ins_cost(DEFAULT_COST*71);
size(4);
format %{ "SDIVX $src1,$src2,$dst\t! long" %}
opcode(Assembler::sdivx_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
ins_pipe(divL_reg_imm);
%}
// Integer Remainder
// Register Remainder
instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
match(Set dst (ModI src1 src2));
effect( KILL ccr, KILL temp);
format %{ "SREM $src1,$src2,$dst" %}
ins_encode( irem_reg(src1, src2, dst, temp) );
ins_pipe(sdiv_reg_reg);
%}
// Immediate Remainder
instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
match(Set dst (ModI src1 src2));
effect( KILL ccr, KILL temp);
format %{ "SREM $src1,$src2,$dst" %}
ins_encode( irem_imm(src1, src2, dst, temp) );
ins_pipe(sdiv_reg_imm);
%}
// Register Long Remainder
instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
effect(DEF dst, USE src1, USE src2);
size(4);
format %{ "SDIVX $src1,$src2,$dst\t! long" %}
opcode(Assembler::sdivx_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(divL_reg_reg);
%}
// Register Long Division
instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
effect(DEF dst, USE src1, USE src2);
size(4);
format %{ "SDIVX $src1,$src2,$dst\t! long" %}
opcode(Assembler::sdivx_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
ins_pipe(divL_reg_imm);
%}
instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
effect(DEF dst, USE src1, USE src2);
size(4);
format %{ "MULX $src1,$src2,$dst\t! long" %}
opcode(Assembler::mulx_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(mulL_reg_reg);
%}
// Immediate Multiplication
instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
effect(DEF dst, USE src1, USE src2);
size(4);
format %{ "MULX $src1,$src2,$dst" %}
opcode(Assembler::mulx_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
ins_pipe(mulL_reg_imm);
%}
instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
effect(DEF dst, USE src1, USE src2);
size(4);
format %{ "SUB $src1,$src2,$dst\t! long" %}
opcode(Assembler::sub_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
effect(DEF dst, USE src1, USE src2);
size(4);
format %{ "SUB $src1,$src2,$dst\t! long" %}
opcode(Assembler::sub_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
// Register Long Remainder
instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
match(Set dst (ModL src1 src2));
ins_cost(DEFAULT_COST*(71 + 6 + 1));
expand %{
iRegL tmp1;
iRegL tmp2;
divL_reg_reg_1(tmp1, src1, src2);
mulL_reg_reg_1(tmp2, tmp1, src2);
subL_reg_reg_1(dst, src1, tmp2);
%}
%}
// Register Long Remainder
instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
match(Set dst (ModL src1 src2));
ins_cost(DEFAULT_COST*(71 + 6 + 1));
expand %{
iRegL tmp1;
iRegL tmp2;
divL_reg_imm13_1(tmp1, src1, src2);
mulL_reg_imm13_1(tmp2, tmp1, src2);
subL_reg_reg_2 (dst, src1, tmp2);
%}
%}
// Integer Shift Instructions
// Register Shift Left
instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
match(Set dst (LShiftI src1 src2));
size(4);
format %{ "SLL $src1,$src2,$dst" %}
opcode(Assembler::sll_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
// Register Shift Left Immediate
instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
match(Set dst (LShiftI src1 src2));
size(4);
format %{ "SLL $src1,$src2,$dst" %}
opcode(Assembler::sll_op3, Assembler::arith_op);
ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_imm);
%}
// Register Shift Left
instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
match(Set dst (LShiftL src1 src2));
size(4);
format %{ "SLLX $src1,$src2,$dst" %}
opcode(Assembler::sllx_op3, Assembler::arith_op);
ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
// Register Shift Left Immediate
instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
match(Set dst (LShiftL src1 src2));
size(4);
format %{ "SLLX $src1,$src2,$dst" %}
opcode(Assembler::sllx_op3, Assembler::arith_op);
ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_imm);
%}
// Register Arithmetic Shift Right
instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
match(Set dst (RShiftI src1 src2));
size(4);
format %{ "SRA $src1,$src2,$dst" %}
opcode(Assembler::sra_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
// Register Arithmetic Shift Right Immediate
instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
match(Set dst (RShiftI src1 src2));
size(4);
format %{ "SRA $src1,$src2,$dst" %}
opcode(Assembler::sra_op3, Assembler::arith_op);
ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_imm);
%}
// Register Shift Right Arithmatic Long
instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
match(Set dst (RShiftL src1 src2));
size(4);
format %{ "SRAX $src1,$src2,$dst" %}
opcode(Assembler::srax_op3, Assembler::arith_op);
ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
// Register Shift Left Immediate
instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
match(Set dst (RShiftL src1 src2));
size(4);
format %{ "SRAX $src1,$src2,$dst" %}
opcode(Assembler::srax_op3, Assembler::arith_op);
ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_imm);
%}
// Register Shift Right
instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
match(Set dst (URShiftI src1 src2));
size(4);
format %{ "SRL $src1,$src2,$dst" %}
opcode(Assembler::srl_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
// Register Shift Right Immediate
instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
match(Set dst (URShiftI src1 src2));
size(4);
format %{ "SRL $src1,$src2,$dst" %}
opcode(Assembler::srl_op3, Assembler::arith_op);
ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_imm);
%}
// Register Shift Right
instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
match(Set dst (URShiftL src1 src2));
size(4);
format %{ "SRLX $src1,$src2,$dst" %}
opcode(Assembler::srlx_op3, Assembler::arith_op);
ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
// Register Shift Right Immediate
instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
match(Set dst (URShiftL src1 src2));
size(4);
format %{ "SRLX $src1,$src2,$dst" %}
opcode(Assembler::srlx_op3, Assembler::arith_op);
ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_imm);
%}
// Register Shift Right Immediate with a CastP2X
#ifdef _LP64
instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
match(Set dst (URShiftL (CastP2X src1) src2));
size(4);
format %{ "SRLX $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
opcode(Assembler::srlx_op3, Assembler::arith_op);
ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_imm);
%}
#else
instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
match(Set dst (URShiftI (CastP2X src1) src2));
size(4);
format %{ "SRL $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
opcode(Assembler::srl_op3, Assembler::arith_op);
ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_imm);
%}
#endif
//----------Floating Point Arithmetic Instructions-----------------------------
// Add float single precision
instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
match(Set dst (AddF src1 src2));
size(4);
format %{ "FADDS $src1,$src2,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
ins_pipe(faddF_reg_reg);
%}
// Add float double precision
instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
match(Set dst (AddD src1 src2));
size(4);
format %{ "FADDD $src1,$src2,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
ins_pipe(faddD_reg_reg);
%}
// Sub float single precision
instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
match(Set dst (SubF src1 src2));
size(4);
format %{ "FSUBS $src1,$src2,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
ins_pipe(faddF_reg_reg);
%}
// Sub float double precision
instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
match(Set dst (SubD src1 src2));
size(4);
format %{ "FSUBD $src1,$src2,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
ins_pipe(faddD_reg_reg);
%}
// Mul float single precision
instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
match(Set dst (MulF src1 src2));
size(4);
format %{ "FMULS $src1,$src2,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
ins_pipe(fmulF_reg_reg);
%}
// Mul float double precision
instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
match(Set dst (MulD src1 src2));
size(4);
format %{ "FMULD $src1,$src2,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
ins_pipe(fmulD_reg_reg);
%}
// Div float single precision
instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
match(Set dst (DivF src1 src2));
size(4);
format %{ "FDIVS $src1,$src2,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
ins_pipe(fdivF_reg_reg);
%}
// Div float double precision
instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
match(Set dst (DivD src1 src2));
size(4);
format %{ "FDIVD $src1,$src2,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
ins_pipe(fdivD_reg_reg);
%}
// Absolute float double precision
instruct absD_reg(regD dst, regD src) %{
match(Set dst (AbsD src));
format %{ "FABSd $src,$dst" %}
ins_encode(fabsd(dst, src));
ins_pipe(faddD_reg);
%}
// Absolute float single precision
instruct absF_reg(regF dst, regF src) %{
match(Set dst (AbsF src));
format %{ "FABSs $src,$dst" %}
ins_encode(fabss(dst, src));
ins_pipe(faddF_reg);
%}
instruct negF_reg(regF dst, regF src) %{
match(Set dst (NegF src));
size(4);
format %{ "FNEGs $src,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
ins_encode(form3_opf_rs2F_rdF(src, dst));
ins_pipe(faddF_reg);
%}
instruct negD_reg(regD dst, regD src) %{
match(Set dst (NegD src));
format %{ "FNEGd $src,$dst" %}
ins_encode(fnegd(dst, src));
ins_pipe(faddD_reg);
%}
// Sqrt float double precision
instruct sqrtF_reg_reg(regF dst, regF src) %{
match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
size(4);
format %{ "FSQRTS $src,$dst" %}
ins_encode(fsqrts(dst, src));
ins_pipe(fdivF_reg_reg);
%}
// Sqrt float double precision
instruct sqrtD_reg_reg(regD dst, regD src) %{
match(Set dst (SqrtD src));
size(4);
format %{ "FSQRTD $src,$dst" %}
ins_encode(fsqrtd(dst, src));
ins_pipe(fdivD_reg_reg);
%}
//----------Logical Instructions-----------------------------------------------
// And Instructions
// Register And
instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
match(Set dst (AndI src1 src2));
size(4);
format %{ "AND $src1,$src2,$dst" %}
opcode(Assembler::and_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
// Immediate And
instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
match(Set dst (AndI src1 src2));
size(4);
format %{ "AND $src1,$src2,$dst" %}
opcode(Assembler::and_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_imm);
%}
// Register And Long
instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
match(Set dst (AndL src1 src2));
ins_cost(DEFAULT_COST);
size(4);
format %{ "AND $src1,$src2,$dst\t! long" %}
opcode(Assembler::and_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
match(Set dst (AndL src1 con));
ins_cost(DEFAULT_COST);
size(4);
format %{ "AND $src1,$con,$dst\t! long" %}
opcode(Assembler::and_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
ins_pipe(ialu_reg_imm);
%}
// Or Instructions
// Register Or
instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
match(Set dst (OrI src1 src2));
size(4);
format %{ "OR $src1,$src2,$dst" %}
opcode(Assembler::or_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
// Immediate Or
instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
match(Set dst (OrI src1 src2));
size(4);
format %{ "OR $src1,$src2,$dst" %}
opcode(Assembler::or_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_imm);
%}
// Register Or Long
instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
match(Set dst (OrL src1 src2));
ins_cost(DEFAULT_COST);
size(4);
format %{ "OR $src1,$src2,$dst\t! long" %}
opcode(Assembler::or_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
match(Set dst (OrL src1 con));
ins_cost(DEFAULT_COST*2);
ins_cost(DEFAULT_COST);
size(4);
format %{ "OR $src1,$con,$dst\t! long" %}
opcode(Assembler::or_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
ins_pipe(ialu_reg_imm);
%}
#ifndef _LP64
// Use sp_ptr_RegP to match G2 (TLS register) without spilling.
instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
match(Set dst (OrI src1 (CastP2X src2)));
size(4);
format %{ "OR $src1,$src2,$dst" %}
opcode(Assembler::or_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
#else
instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
match(Set dst (OrL src1 (CastP2X src2)));
ins_cost(DEFAULT_COST);
size(4);
format %{ "OR $src1,$src2,$dst\t! long" %}
opcode(Assembler::or_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
#endif
// Xor Instructions
// Register Xor
instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
match(Set dst (XorI src1 src2));
size(4);
format %{ "XOR $src1,$src2,$dst" %}
opcode(Assembler::xor_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
// Immediate Xor
instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
match(Set dst (XorI src1 src2));
size(4);
format %{ "XOR $src1,$src2,$dst" %}
opcode(Assembler::xor_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_imm);
%}
// Register Xor Long
instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
match(Set dst (XorL src1 src2));
ins_cost(DEFAULT_COST);
size(4);
format %{ "XOR $src1,$src2,$dst\t! long" %}
opcode(Assembler::xor_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
ins_pipe(ialu_reg_reg);
%}
instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
match(Set dst (XorL src1 con));
ins_cost(DEFAULT_COST);
size(4);
format %{ "XOR $src1,$con,$dst\t! long" %}
opcode(Assembler::xor_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
ins_pipe(ialu_reg_imm);
%}
//----------Convert to Boolean-------------------------------------------------
// Nice hack for 32-bit tests but doesn't work for
// 64-bit pointers.
instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
match(Set dst (Conv2B src));
effect( KILL ccr );
ins_cost(DEFAULT_COST*2);
format %{ "CMP R_G0,$src\n\t"
"ADDX R_G0,0,$dst" %}
ins_encode( enc_to_bool( src, dst ) );
ins_pipe(ialu_reg_ialu);
%}
#ifndef _LP64
instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
match(Set dst (Conv2B src));
effect( KILL ccr );
ins_cost(DEFAULT_COST*2);
format %{ "CMP R_G0,$src\n\t"
"ADDX R_G0,0,$dst" %}
ins_encode( enc_to_bool( src, dst ) );
ins_pipe(ialu_reg_ialu);
%}
#else
instruct convP2B( iRegI dst, iRegP src ) %{
match(Set dst (Conv2B src));
ins_cost(DEFAULT_COST*2);
format %{ "MOV $src,$dst\n\t"
"MOVRNZ $src,1,$dst" %}
ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
ins_pipe(ialu_clr_and_mover);
%}
#endif
instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
match(Set dst (CmpLTMask src zero));
effect(KILL ccr);
size(4);
format %{ "SRA $src,#31,$dst\t# cmpLTMask0" %}
ins_encode %{
__ sra($src$$Register, 31, $dst$$Register);
%}
ins_pipe(ialu_reg_imm);
%}
instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
match(Set dst (CmpLTMask p q));
effect( KILL ccr );
ins_cost(DEFAULT_COST*4);
format %{ "CMP $p,$q\n\t"
"MOV #0,$dst\n\t"
"BLT,a .+8\n\t"
"MOV #-1,$dst" %}
ins_encode( enc_ltmask(p,q,dst) );
ins_pipe(ialu_reg_reg_ialu);
%}
instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
effect(KILL ccr, TEMP tmp);
ins_cost(DEFAULT_COST*3);
format %{ "SUBcc $p,$q,$p\t! p' = p-q\n\t"
"ADD $p,$y,$tmp\t! g3=p-q+y\n\t"
"MOVlt $tmp,$p\t! p' < 0 ? p'+y : p'" %}
ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
ins_pipe(cadd_cmpltmask);
%}
instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
match(Set p (AndI (CmpLTMask p q) y));
effect(KILL ccr);
ins_cost(DEFAULT_COST*3);
format %{ "CMP $p,$q\n\t"
"MOV $y,$p\n\t"
"MOVge G0,$p" %}
ins_encode %{
__ cmp($p$$Register, $q$$Register);
__ mov($y$$Register, $p$$Register);
__ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
%}
ins_pipe(ialu_reg_reg_ialu);
%}
//-----------------------------------------------------------------
// Direct raw moves between float and general registers using VIS3.
// ins_pipe(faddF_reg);
instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
predicate(UseVIS >= 3);
match(Set dst (MoveF2I src));
format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
ins_encode %{
__ movstouw($src$$FloatRegister, $dst$$Register);
%}
ins_pipe(ialu_reg_reg);
%}
instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
predicate(UseVIS >= 3);
match(Set dst (MoveI2F src));
format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
ins_encode %{
__ movwtos($src$$Register, $dst$$FloatRegister);
%}
ins_pipe(ialu_reg_reg);
%}
instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
predicate(UseVIS >= 3);
match(Set dst (MoveD2L src));
format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
ins_encode %{
__ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
%}
ins_pipe(ialu_reg_reg);
%}
instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
predicate(UseVIS >= 3);
match(Set dst (MoveL2D src));
format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
ins_encode %{
__ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
%}
ins_pipe(ialu_reg_reg);
%}
// Raw moves between float and general registers using stack.
instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
match(Set dst (MoveF2I src));
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUW $src,$dst\t! MoveF2I" %}
opcode(Assembler::lduw_op3);
ins_encode(simple_form3_mem_reg( src, dst ) );
ins_pipe(iload_mem);
%}
instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
match(Set dst (MoveI2F src));
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDF $src,$dst\t! MoveI2F" %}
opcode(Assembler::ldf_op3);
ins_encode(simple_form3_mem_reg(src, dst));
ins_pipe(floadF_stk);
%}
instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
match(Set dst (MoveD2L src));
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDX $src,$dst\t! MoveD2L" %}
opcode(Assembler::ldx_op3);
ins_encode(simple_form3_mem_reg( src, dst ) );
ins_pipe(iload_mem);
%}
instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
match(Set dst (MoveL2D src));
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDDF $src,$dst\t! MoveL2D" %}
opcode(Assembler::lddf_op3);
ins_encode(simple_form3_mem_reg(src, dst));
ins_pipe(floadD_stk);
%}
instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
match(Set dst (MoveF2I src));
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STF $src,$dst\t! MoveF2I" %}
opcode(Assembler::stf_op3);
ins_encode(simple_form3_mem_reg(dst, src));
ins_pipe(fstoreF_stk_reg);
%}
instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
match(Set dst (MoveI2F src));
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STW $src,$dst\t! MoveI2F" %}
opcode(Assembler::stw_op3);
ins_encode(simple_form3_mem_reg( dst, src ) );
ins_pipe(istore_mem_reg);
%}
instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
match(Set dst (MoveD2L src));
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STDF $src,$dst\t! MoveD2L" %}
opcode(Assembler::stdf_op3);
ins_encode(simple_form3_mem_reg(dst, src));
ins_pipe(fstoreD_stk_reg);
%}
instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
match(Set dst (MoveL2D src));
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $src,$dst\t! MoveL2D" %}
opcode(Assembler::stx_op3);
ins_encode(simple_form3_mem_reg( dst, src ) );
ins_pipe(istore_mem_reg);
%}
//----------Arithmetic Conversion Instructions---------------------------------
// The conversions operations are all Alpha sorted. Please keep it that way!
instruct convD2F_reg(regF dst, regD src) %{
match(Set dst (ConvD2F src));
size(4);
format %{ "FDTOS $src,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
ins_encode(form3_opf_rs2D_rdF(src, dst));
ins_pipe(fcvtD2F);
%}
// Convert a double to an int in a float register.
// If the double is a NAN, stuff a zero in instead.
instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
effect(DEF dst, USE src, KILL fcc0);
format %{ "FCMPd fcc0,$src,$src\t! check for NAN\n\t"
"FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
"FDTOI $src,$dst\t! convert in delay slot\n\t"
"FITOS $dst,$dst\t! change NaN/max-int to valid float\n\t"
"FSUBs $dst,$dst,$dst\t! cleared only if nan\n"
"skip:" %}
ins_encode(form_d2i_helper(src,dst));
ins_pipe(fcvtD2I);
%}
instruct convD2I_stk(stackSlotI dst, regD src) %{
match(Set dst (ConvD2I src));
ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
expand %{
regF tmp;
convD2I_helper(tmp, src);
regF_to_stkI(dst, tmp);
%}
%}
instruct convD2I_reg(iRegI dst, regD src) %{
predicate(UseVIS >= 3);
match(Set dst (ConvD2I src));
ins_cost(DEFAULT_COST*2 + BRANCH_COST);
expand %{
regF tmp;
convD2I_helper(tmp, src);
MoveF2I_reg_reg(dst, tmp);
%}
%}
// Convert a double to a long in a double register.
// If the double is a NAN, stuff a zero in instead.
instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
effect(DEF dst, USE src, KILL fcc0);
format %{ "FCMPd fcc0,$src,$src\t! check for NAN\n\t"
"FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
"FDTOX $src,$dst\t! convert in delay slot\n\t"
"FXTOD $dst,$dst\t! change NaN/max-long to valid double\n\t"
"FSUBd $dst,$dst,$dst\t! cleared only if nan\n"
"skip:" %}
ins_encode(form_d2l_helper(src,dst));
ins_pipe(fcvtD2L);
%}
instruct convD2L_stk(stackSlotL dst, regD src) %{
match(Set dst (ConvD2L src));
ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
expand %{
regD tmp;
convD2L_helper(tmp, src);
regD_to_stkL(dst, tmp);
%}
%}
instruct convD2L_reg(iRegL dst, regD src) %{
predicate(UseVIS >= 3);
match(Set dst (ConvD2L src));
ins_cost(DEFAULT_COST*2 + BRANCH_COST);
expand %{
regD tmp;
convD2L_helper(tmp, src);
MoveD2L_reg_reg(dst, tmp);
%}
%}
instruct convF2D_reg(regD dst, regF src) %{
match(Set dst (ConvF2D src));
format %{ "FSTOD $src,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
ins_encode(form3_opf_rs2F_rdD(src, dst));
ins_pipe(fcvtF2D);
%}
// Convert a float to an int in a float register.
// If the float is a NAN, stuff a zero in instead.
instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
effect(DEF dst, USE src, KILL fcc0);
format %{ "FCMPs fcc0,$src,$src\t! check for NAN\n\t"
"FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
"FSTOI $src,$dst\t! convert in delay slot\n\t"
"FITOS $dst,$dst\t! change NaN/max-int to valid float\n\t"
"FSUBs $dst,$dst,$dst\t! cleared only if nan\n"
"skip:" %}
ins_encode(form_f2i_helper(src,dst));
ins_pipe(fcvtF2I);
%}
instruct convF2I_stk(stackSlotI dst, regF src) %{
match(Set dst (ConvF2I src));
ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
expand %{
regF tmp;
convF2I_helper(tmp, src);
regF_to_stkI(dst, tmp);
%}
%}
instruct convF2I_reg(iRegI dst, regF src) %{
predicate(UseVIS >= 3);
match(Set dst (ConvF2I src));
ins_cost(DEFAULT_COST*2 + BRANCH_COST);
expand %{
regF tmp;
convF2I_helper(tmp, src);
MoveF2I_reg_reg(dst, tmp);
%}
%}
// Convert a float to a long in a float register.
// If the float is a NAN, stuff a zero in instead.
instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
effect(DEF dst, USE src, KILL fcc0);
format %{ "FCMPs fcc0,$src,$src\t! check for NAN\n\t"
"FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
"FSTOX $src,$dst\t! convert in delay slot\n\t"
"FXTOD $dst,$dst\t! change NaN/max-long to valid double\n\t"
"FSUBd $dst,$dst,$dst\t! cleared only if nan\n"
"skip:" %}
ins_encode(form_f2l_helper(src,dst));
ins_pipe(fcvtF2L);
%}
instruct convF2L_stk(stackSlotL dst, regF src) %{
match(Set dst (ConvF2L src));
ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
expand %{
regD tmp;
convF2L_helper(tmp, src);
regD_to_stkL(dst, tmp);
%}
%}
instruct convF2L_reg(iRegL dst, regF src) %{
predicate(UseVIS >= 3);
match(Set dst (ConvF2L src));
ins_cost(DEFAULT_COST*2 + BRANCH_COST);
expand %{
regD tmp;
convF2L_helper(tmp, src);
MoveD2L_reg_reg(dst, tmp);
%}
%}
instruct convI2D_helper(regD dst, regF tmp) %{
effect(USE tmp, DEF dst);
format %{ "FITOD $tmp,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
ins_encode(form3_opf_rs2F_rdD(tmp, dst));
ins_pipe(fcvtI2D);
%}
instruct convI2D_stk(stackSlotI src, regD dst) %{
match(Set dst (ConvI2D src));
ins_cost(DEFAULT_COST + MEMORY_REF_COST);
expand %{
regF tmp;
stkI_to_regF(tmp, src);
convI2D_helper(dst, tmp);
%}
%}
instruct convI2D_reg(regD_low dst, iRegI src) %{
predicate(UseVIS >= 3);
match(Set dst (ConvI2D src));
expand %{
regF tmp;
MoveI2F_reg_reg(tmp, src);
convI2D_helper(dst, tmp);
%}
%}
instruct convI2D_mem(regD_low dst, memory mem) %{
match(Set dst (ConvI2D (LoadI mem)));
ins_cost(DEFAULT_COST + MEMORY_REF_COST);
size(8);
format %{ "LDF $mem,$dst\n\t"
"FITOD $dst,$dst" %}
opcode(Assembler::ldf_op3, Assembler::fitod_opf);
ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
ins_pipe(floadF_mem);
%}
instruct convI2F_helper(regF dst, regF tmp) %{
effect(DEF dst, USE tmp);
format %{ "FITOS $tmp,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
ins_encode(form3_opf_rs2F_rdF(tmp, dst));
ins_pipe(fcvtI2F);
%}
instruct convI2F_stk(regF dst, stackSlotI src) %{
match(Set dst (ConvI2F src));
ins_cost(DEFAULT_COST + MEMORY_REF_COST);
expand %{
regF tmp;
stkI_to_regF(tmp,src);
convI2F_helper(dst, tmp);
%}
%}
instruct convI2F_reg(regF dst, iRegI src) %{
predicate(UseVIS >= 3);
match(Set dst (ConvI2F src));
ins_cost(DEFAULT_COST);
expand %{
regF tmp;
MoveI2F_reg_reg(tmp, src);
convI2F_helper(dst, tmp);
%}
%}
instruct convI2F_mem( regF dst, memory mem ) %{
match(Set dst (ConvI2F (LoadI mem)));
ins_cost(DEFAULT_COST + MEMORY_REF_COST);
size(8);
format %{ "LDF $mem,$dst\n\t"
"FITOS $dst,$dst" %}
opcode(Assembler::ldf_op3, Assembler::fitos_opf);
ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
ins_pipe(floadF_mem);
%}
instruct convI2L_reg(iRegL dst, iRegI src) %{
match(Set dst (ConvI2L src));
size(4);
format %{ "SRA $src,0,$dst\t! int->long" %}
opcode(Assembler::sra_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
ins_pipe(ialu_reg_reg);
%}
// Zero-extend convert int to long
instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
match(Set dst (AndL (ConvI2L src) mask) );
size(4);
format %{ "SRL $src,0,$dst\t! zero-extend int to long" %}
opcode(Assembler::srl_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
ins_pipe(ialu_reg_reg);
%}
// Zero-extend long
instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
match(Set dst (AndL src mask) );
size(4);
format %{ "SRL $src,0,$dst\t! zero-extend long" %}
opcode(Assembler::srl_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
ins_pipe(ialu_reg_reg);
%}
//-----------
// Long to Double conversion using V8 opcodes.
// Still useful because cheetah traps and becomes
// amazingly slow for some common numbers.
// Magic constant, 0x43300000
instruct loadConI_x43300000(iRegI dst) %{
effect(DEF dst);
size(4);
format %{ "SETHI HI(0x43300000),$dst\t! 2^52" %}
ins_encode(SetHi22(0x43300000, dst));
ins_pipe(ialu_none);
%}
// Magic constant, 0x41f00000
instruct loadConI_x41f00000(iRegI dst) %{
effect(DEF dst);
size(4);
format %{ "SETHI HI(0x41f00000),$dst\t! 2^32" %}
ins_encode(SetHi22(0x41f00000, dst));
ins_pipe(ialu_none);
%}
// Construct a double from two float halves
instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
effect(DEF dst, USE src1, USE src2);
size(8);
format %{ "FMOVS $src1.hi,$dst.hi\n\t"
"FMOVS $src2.lo,$dst.lo" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
ins_pipe(faddD_reg_reg);
%}
// Convert integer in high half of a double register (in the lower half of
// the double register file) to double
instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
effect(DEF dst, USE src);
size(4);
format %{ "FITOD $src,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
ins_encode(form3_opf_rs2D_rdD(src, dst));
ins_pipe(fcvtLHi2D);
%}
// Add float double precision
instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
effect(DEF dst, USE src1, USE src2);
size(4);
format %{ "FADDD $src1,$src2,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
ins_pipe(faddD_reg_reg);
%}
// Sub float double precision
instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
effect(DEF dst, USE src1, USE src2);
size(4);
format %{ "FSUBD $src1,$src2,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
ins_pipe(faddD_reg_reg);
%}
// Mul float double precision
instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
effect(DEF dst, USE src1, USE src2);
size(4);
format %{ "FMULD $src1,$src2,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
ins_pipe(fmulD_reg_reg);
%}
instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
match(Set dst (ConvL2D src));
ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
expand %{
regD_low tmpsrc;
iRegI ix43300000;
iRegI ix41f00000;
stackSlotL lx43300000;
stackSlotL lx41f00000;
regD_low dx43300000;
regD dx41f00000;
regD tmp1;
regD_low tmp2;
regD tmp3;
regD tmp4;
stkL_to_regD(tmpsrc, src);
loadConI_x43300000(ix43300000);
loadConI_x41f00000(ix41f00000);
regI_to_stkLHi(lx43300000, ix43300000);
regI_to_stkLHi(lx41f00000, ix41f00000);
stkL_to_regD(dx43300000, lx43300000);
stkL_to_regD(dx41f00000, lx41f00000);
convI2D_regDHi_regD(tmp1, tmpsrc);
regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
subD_regD_regD(tmp3, tmp2, dx43300000);
mulD_regD_regD(tmp4, tmp1, dx41f00000);
addD_regD_regD(dst, tmp3, tmp4);
%}
%}
// Long to Double conversion using fast fxtof
instruct convL2D_helper(regD dst, regD tmp) %{
effect(DEF dst, USE tmp);
size(4);
format %{ "FXTOD $tmp,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
ins_encode(form3_opf_rs2D_rdD(tmp, dst));
ins_pipe(fcvtL2D);
%}
instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
predicate(VM_Version::has_fast_fxtof());
match(Set dst (ConvL2D src));
ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
expand %{
regD tmp;
stkL_to_regD(tmp, src);
convL2D_helper(dst, tmp);
%}
%}
instruct convL2D_reg(regD dst, iRegL src) %{
predicate(UseVIS >= 3);
match(Set dst (ConvL2D src));
expand %{
regD tmp;
MoveL2D_reg_reg(tmp, src);
convL2D_helper(dst, tmp);
%}
%}
// Long to Float conversion using fast fxtof
instruct convL2F_helper(regF dst, regD tmp) %{
effect(DEF dst, USE tmp);
size(4);
format %{ "FXTOS $tmp,$dst" %}
opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
ins_encode(form3_opf_rs2D_rdF(tmp, dst));
ins_pipe(fcvtL2F);
%}
instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
match(Set dst (ConvL2F src));
ins_cost(DEFAULT_COST + MEMORY_REF_COST);
expand %{
regD tmp;
stkL_to_regD(tmp, src);
convL2F_helper(dst, tmp);
%}
%}
instruct convL2F_reg(regF dst, iRegL src) %{
predicate(UseVIS >= 3);
match(Set dst (ConvL2F src));
ins_cost(DEFAULT_COST);
expand %{
regD tmp;
MoveL2D_reg_reg(tmp, src);
convL2F_helper(dst, tmp);
%}
%}
//-----------
instruct convL2I_reg(iRegI dst, iRegL src) %{
match(Set dst (ConvL2I src));
#ifndef _LP64
format %{ "MOV $src.lo,$dst\t! long->int" %}
ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
ins_pipe(ialu_move_reg_I_to_L);
#else
size(4);
format %{ "SRA $src,R_G0,$dst\t! long->int" %}
ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
ins_pipe(ialu_reg);
#endif
%}
// Register Shift Right Immediate
instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
match(Set dst (ConvL2I (RShiftL src cnt)));
size(4);
format %{ "SRAX $src,$cnt,$dst" %}
opcode(Assembler::srax_op3, Assembler::arith_op);
ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
ins_pipe(ialu_reg_imm);
%}
//----------Control Flow Instructions------------------------------------------
// Compare Instructions
// Compare Integers
instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
match(Set icc (CmpI op1 op2));
effect( DEF icc, USE op1, USE op2 );
size(4);
format %{ "CMP $op1,$op2" %}
opcode(Assembler::subcc_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
ins_pipe(ialu_cconly_reg_reg);
%}
instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
match(Set icc (CmpU op1 op2));
size(4);
format %{ "CMP $op1,$op2\t! unsigned" %}
opcode(Assembler::subcc_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
ins_pipe(ialu_cconly_reg_reg);
%}
instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
match(Set icc (CmpI op1 op2));
effect( DEF icc, USE op1 );
size(4);
format %{ "CMP $op1,$op2" %}
opcode(Assembler::subcc_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
ins_pipe(ialu_cconly_reg_imm);
%}
instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
match(Set icc (CmpI (AndI op1 op2) zero));
size(4);
format %{ "BTST $op2,$op1" %}
opcode(Assembler::andcc_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
ins_pipe(ialu_cconly_reg_reg_zero);
%}
instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
match(Set icc (CmpI (AndI op1 op2) zero));
size(4);
format %{ "BTST $op2,$op1" %}
opcode(Assembler::andcc_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
ins_pipe(ialu_cconly_reg_imm_zero);
%}
instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
match(Set xcc (CmpL op1 op2));
effect( DEF xcc, USE op1, USE op2 );
size(4);
format %{ "CMP $op1,$op2\t\t! long" %}
opcode(Assembler::subcc_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
ins_pipe(ialu_cconly_reg_reg);
%}
instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
match(Set xcc (CmpL op1 con));
effect( DEF xcc, USE op1, USE con );
size(4);
format %{ "CMP $op1,$con\t\t! long" %}
opcode(Assembler::subcc_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
ins_pipe(ialu_cconly_reg_reg);
%}
instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
match(Set xcc (CmpL (AndL op1 op2) zero));
effect( DEF xcc, USE op1, USE op2 );
size(4);
format %{ "BTST $op1,$op2\t\t! long" %}
opcode(Assembler::andcc_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
ins_pipe(ialu_cconly_reg_reg);
%}
// useful for checking the alignment of a pointer:
instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
match(Set xcc (CmpL (AndL op1 con) zero));
effect( DEF xcc, USE op1, USE con );
size(4);
format %{ "BTST $op1,$con\t\t! long" %}
opcode(Assembler::andcc_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
ins_pipe(ialu_cconly_reg_reg);
%}
instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
match(Set icc (CmpU op1 op2));
size(4);
format %{ "CMP $op1,$op2\t! unsigned" %}
opcode(Assembler::subcc_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
ins_pipe(ialu_cconly_reg_imm);
%}
// Compare Pointers
instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
match(Set pcc (CmpP op1 op2));
size(4);
format %{ "CMP $op1,$op2\t! ptr" %}
opcode(Assembler::subcc_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
ins_pipe(ialu_cconly_reg_reg);
%}
instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
match(Set pcc (CmpP op1 op2));
size(4);
format %{ "CMP $op1,$op2\t! ptr" %}
opcode(Assembler::subcc_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
ins_pipe(ialu_cconly_reg_imm);
%}
// Compare Narrow oops
instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
match(Set icc (CmpN op1 op2));
size(4);
format %{ "CMP $op1,$op2\t! compressed ptr" %}
opcode(Assembler::subcc_op3, Assembler::arith_op);
ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
ins_pipe(ialu_cconly_reg_reg);
%}
instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
match(Set icc (CmpN op1 op2));
size(4);
format %{ "CMP $op1,$op2\t! compressed ptr" %}
opcode(Assembler::subcc_op3, Assembler::arith_op);
ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
ins_pipe(ialu_cconly_reg_imm);
%}
//----------Max and Min--------------------------------------------------------
// Min Instructions
// Conditional move for min
instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
effect( USE_DEF op2, USE op1, USE icc );
size(4);
format %{ "MOVlt icc,$op1,$op2\t! min" %}
opcode(Assembler::less);
ins_encode( enc_cmov_reg_minmax(op2,op1) );
ins_pipe(ialu_reg_flags);
%}
// Min Register with Register.
instruct minI_eReg(iRegI op1, iRegI op2) %{
match(Set op2 (MinI op1 op2));
ins_cost(DEFAULT_COST*2);
expand %{
flagsReg icc;
compI_iReg(icc,op1,op2);
cmovI_reg_lt(op2,op1,icc);
%}
%}
// Max Instructions
// Conditional move for max
instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
effect( USE_DEF op2, USE op1, USE icc );
format %{ "MOVgt icc,$op1,$op2\t! max" %}
opcode(Assembler::greater);
ins_encode( enc_cmov_reg_minmax(op2,op1) );
ins_pipe(ialu_reg_flags);
%}
// Max Register with Register
instruct maxI_eReg(iRegI op1, iRegI op2) %{
match(Set op2 (MaxI op1 op2));
ins_cost(DEFAULT_COST*2);
expand %{
flagsReg icc;
compI_iReg(icc,op1,op2);
cmovI_reg_gt(op2,op1,icc);
%}
%}
//----------Float Compares----------------------------------------------------
// Compare floating, generate condition code
instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
match(Set fcc (CmpF src1 src2));
size(4);
format %{ "FCMPs $fcc,$src1,$src2" %}
opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
ins_pipe(faddF_fcc_reg_reg_zero);
%}
instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
match(Set fcc (CmpD src1 src2));
size(4);
format %{ "FCMPd $fcc,$src1,$src2" %}
opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
ins_pipe(faddD_fcc_reg_reg_zero);
%}
// Compare floating, generate -1,0,1
instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
match(Set dst (CmpF3 src1 src2));
effect(KILL fcc0);
ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
format %{ "fcmpl $dst,$src1,$src2" %}
// Primary = float
opcode( true );
ins_encode( floating_cmp( dst, src1, src2 ) );
ins_pipe( floating_cmp );
%}
instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
match(Set dst (CmpD3 src1 src2));
effect(KILL fcc0);
ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
format %{ "dcmpl $dst,$src1,$src2" %}
// Primary = double (not float)
opcode( false );
ins_encode( floating_cmp( dst, src1, src2 ) );
ins_pipe( floating_cmp );
%}
//----------Branches---------------------------------------------------------
// Jump
// (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
match(Jump switch_val);
effect(TEMP table);
ins_cost(350);
format %{ "ADD $constanttablebase, $constantoffset, O7\n\t"
"LD [O7 + $switch_val], O7\n\t"
"JUMP O7" %}
ins_encode %{
// Calculate table address into a register.
Register table_reg;
Register label_reg = O7;
// If we are calculating the size of this instruction don't trust
// zero offsets because they might change when
// MachConstantBaseNode decides to optimize the constant table
// base.
if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
table_reg = $constanttablebase;
} else {
table_reg = O7;
RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
__ add($constanttablebase, con_offset, table_reg);
}
// Jump to base address + switch value
__ ld_ptr(table_reg, $switch_val$$Register, label_reg);
__ jmp(label_reg, G0);
__ delayed()->nop();
%}
ins_pipe(ialu_reg_reg);
%}
// Direct Branch. Use V8 version with longer range.
instruct branch(label labl) %{
match(Goto);
effect(USE labl);
size(8);
ins_cost(BRANCH_COST);
format %{ "BA $labl" %}
ins_encode %{
Label* L = $labl$$label;
__ ba(*L);
__ delayed()->nop();
%}
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(br);
%}
// Direct Branch, short with no delay slot
instruct branch_short(label labl) %{
match(Goto);
predicate(UseCBCond);
effect(USE labl);
size(4);
ins_cost(BRANCH_COST);
format %{ "BA $labl\t! short branch" %}
ins_encode %{
Label* L = $labl$$label;
assert(__ use_cbcond(*L), "back to back cbcond");
__ ba_short(*L);
%}
ins_short_branch(1);
ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
ins_pipe(cbcond_reg_imm);
%}
// Conditional Direct Branch
instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
match(If cmp icc);
effect(USE labl);
size(8);
ins_cost(BRANCH_COST);
format %{ "BP$cmp $icc,$labl" %}
// Prim = bits 24-22, Secnd = bits 31-30
ins_encode( enc_bp( labl, cmp, icc ) );
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(br_cc);
%}
instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
match(If cmp icc);
effect(USE labl);
ins_cost(BRANCH_COST);
format %{ "BP$cmp $icc,$labl" %}
// Prim = bits 24-22, Secnd = bits 31-30
ins_encode( enc_bp( labl, cmp, icc ) );
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(br_cc);
%}
instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
match(If cmp pcc);
effect(USE labl);
size(8);
ins_cost(BRANCH_COST);
format %{ "BP$cmp $pcc,$labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
__ delayed()->nop();
%}
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(br_cc);
%}
instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
match(If cmp fcc);
effect(USE labl);
size(8);
ins_cost(BRANCH_COST);
format %{ "FBP$cmp $fcc,$labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
__ delayed()->nop();
%}
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(br_fcc);
%}
instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
match(CountedLoopEnd cmp icc);
effect(USE labl);
size(8);
ins_cost(BRANCH_COST);
format %{ "BP$cmp $icc,$labl\t! Loop end" %}
// Prim = bits 24-22, Secnd = bits 31-30
ins_encode( enc_bp( labl, cmp, icc ) );
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(br_cc);
%}
instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
match(CountedLoopEnd cmp icc);
effect(USE labl);
size(8);
ins_cost(BRANCH_COST);
format %{ "BP$cmp $icc,$labl\t! Loop end" %}
// Prim = bits 24-22, Secnd = bits 31-30
ins_encode( enc_bp( labl, cmp, icc ) );
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(br_cc);
%}
// Compare and branch instructions
instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
match(If cmp (CmpI op1 op2));
effect(USE labl, KILL icc);
size(12);
ins_cost(BRANCH_COST);
format %{ "CMP $op1,$op2\t! int\n\t"
"BP$cmp $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ cmp($op1$$Register, $op2$$Register);
__ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
__ delayed()->nop();
%}
ins_pipe(cmp_br_reg_reg);
%}
instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
match(If cmp (CmpI op1 op2));
effect(USE labl, KILL icc);
size(12);
ins_cost(BRANCH_COST);
format %{ "CMP $op1,$op2\t! int\n\t"
"BP$cmp $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ cmp($op1$$Register, $op2$$constant);
__ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
__ delayed()->nop();
%}
ins_pipe(cmp_br_reg_imm);
%}
instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
match(If cmp (CmpU op1 op2));
effect(USE labl, KILL icc);
size(12);
ins_cost(BRANCH_COST);
format %{ "CMP $op1,$op2\t! unsigned\n\t"
"BP$cmp $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ cmp($op1$$Register, $op2$$Register);
__ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
__ delayed()->nop();
%}
ins_pipe(cmp_br_reg_reg);
%}
instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
match(If cmp (CmpU op1 op2));
effect(USE labl, KILL icc);
size(12);
ins_cost(BRANCH_COST);
format %{ "CMP $op1,$op2\t! unsigned\n\t"
"BP$cmp $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ cmp($op1$$Register, $op2$$constant);
__ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
__ delayed()->nop();
%}
ins_pipe(cmp_br_reg_imm);
%}
instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
match(If cmp (CmpL op1 op2));
effect(USE labl, KILL xcc);
size(12);
ins_cost(BRANCH_COST);
format %{ "CMP $op1,$op2\t! long\n\t"
"BP$cmp $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ cmp($op1$$Register, $op2$$Register);
__ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
__ delayed()->nop();
%}
ins_pipe(cmp_br_reg_reg);
%}
instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
match(If cmp (CmpL op1 op2));
effect(USE labl, KILL xcc);
size(12);
ins_cost(BRANCH_COST);
format %{ "CMP $op1,$op2\t! long\n\t"
"BP$cmp $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ cmp($op1$$Register, $op2$$constant);
__ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
__ delayed()->nop();
%}
ins_pipe(cmp_br_reg_imm);
%}
// Compare Pointers and branch
instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
match(If cmp (CmpP op1 op2));
effect(USE labl, KILL pcc);
size(12);
ins_cost(BRANCH_COST);
format %{ "CMP $op1,$op2\t! ptr\n\t"
"B$cmp $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ cmp($op1$$Register, $op2$$Register);
__ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
__ delayed()->nop();
%}
ins_pipe(cmp_br_reg_reg);
%}
instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
match(If cmp (CmpP op1 null));
effect(USE labl, KILL pcc);
size(12);
ins_cost(BRANCH_COST);
format %{ "CMP $op1,0\t! ptr\n\t"
"B$cmp $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ cmp($op1$$Register, G0);
// bpr() is not used here since it has shorter distance.
__ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
__ delayed()->nop();
%}
ins_pipe(cmp_br_reg_reg);
%}
instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
match(If cmp (CmpN op1 op2));
effect(USE labl, KILL icc);
size(12);
ins_cost(BRANCH_COST);
format %{ "CMP $op1,$op2\t! compressed ptr\n\t"
"BP$cmp $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ cmp($op1$$Register, $op2$$Register);
__ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
__ delayed()->nop();
%}
ins_pipe(cmp_br_reg_reg);
%}
instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
match(If cmp (CmpN op1 null));
effect(USE labl, KILL icc);
size(12);
ins_cost(BRANCH_COST);
format %{ "CMP $op1,0\t! compressed ptr\n\t"
"BP$cmp $labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ cmp($op1$$Register, G0);
__ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
__ delayed()->nop();
%}
ins_pipe(cmp_br_reg_reg);
%}
// Loop back branch
instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
match(CountedLoopEnd cmp (CmpI op1 op2));
effect(USE labl, KILL icc);
size(12);
ins_cost(BRANCH_COST);
format %{ "CMP $op1,$op2\t! int\n\t"
"BP$cmp $labl\t! Loop end" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ cmp($op1$$Register, $op2$$Register);
__ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
__ delayed()->nop();
%}
ins_pipe(cmp_br_reg_reg);
%}
instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
match(CountedLoopEnd cmp (CmpI op1 op2));
effect(USE labl, KILL icc);
size(12);
ins_cost(BRANCH_COST);
format %{ "CMP $op1,$op2\t! int\n\t"
"BP$cmp $labl\t! Loop end" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ cmp($op1$$Register, $op2$$constant);
__ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
__ delayed()->nop();
%}
ins_pipe(cmp_br_reg_imm);
%}
// Short compare and branch instructions
instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
match(If cmp (CmpI op1 op2));
predicate(UseCBCond);
effect(USE labl, KILL icc);
size(4);
ins_cost(BRANCH_COST);
format %{ "CWB$cmp $op1,$op2,$labl\t! int" %}
ins_encode %{
Label* L = $labl$$label;
assert(__ use_cbcond(*L), "back to back cbcond");
__ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
%}
ins_short_branch(1);
ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
ins_pipe(cbcond_reg_reg);
%}
instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
match(If cmp (CmpI op1 op2));
predicate(UseCBCond);
effect(USE labl, KILL icc);
size(4);
ins_cost(BRANCH_COST);
format %{ "CWB$cmp $op1,$op2,$labl\t! int" %}
ins_encode %{
Label* L = $labl$$label;
assert(__ use_cbcond(*L), "back to back cbcond");
__ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
%}
ins_short_branch(1);
ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
ins_pipe(cbcond_reg_imm);
%}
instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
match(If cmp (CmpU op1 op2));
predicate(UseCBCond);
effect(USE labl, KILL icc);
size(4);
ins_cost(BRANCH_COST);
format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
ins_encode %{
Label* L = $labl$$label;
assert(__ use_cbcond(*L), "back to back cbcond");
__ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
%}
ins_short_branch(1);
ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
ins_pipe(cbcond_reg_reg);
%}
instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
match(If cmp (CmpU op1 op2));
predicate(UseCBCond);
effect(USE labl, KILL icc);
size(4);
ins_cost(BRANCH_COST);
format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
ins_encode %{
Label* L = $labl$$label;
assert(__ use_cbcond(*L), "back to back cbcond");
__ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
%}
ins_short_branch(1);
ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
ins_pipe(cbcond_reg_imm);
%}
instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
match(If cmp (CmpL op1 op2));
predicate(UseCBCond);
effect(USE labl, KILL xcc);
size(4);
ins_cost(BRANCH_COST);
format %{ "CXB$cmp $op1,$op2,$labl\t! long" %}
ins_encode %{
Label* L = $labl$$label;
assert(__ use_cbcond(*L), "back to back cbcond");
__ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
%}
ins_short_branch(1);
ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
ins_pipe(cbcond_reg_reg);
%}
instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
match(If cmp (CmpL op1 op2));
predicate(UseCBCond);
effect(USE labl, KILL xcc);
size(4);
ins_cost(BRANCH_COST);
format %{ "CXB$cmp $op1,$op2,$labl\t! long" %}
ins_encode %{
Label* L = $labl$$label;
assert(__ use_cbcond(*L), "back to back cbcond");
__ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
%}
ins_short_branch(1);
ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
ins_pipe(cbcond_reg_imm);
%}
// Compare Pointers and branch
instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
match(If cmp (CmpP op1 op2));
predicate(UseCBCond);
effect(USE labl, KILL pcc);
size(4);
ins_cost(BRANCH_COST);
#ifdef _LP64
format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
#else
format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
#endif
ins_encode %{
Label* L = $labl$$label;
assert(__ use_cbcond(*L), "back to back cbcond");
__ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
%}
ins_short_branch(1);
ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
ins_pipe(cbcond_reg_reg);
%}
instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
match(If cmp (CmpP op1 null));
predicate(UseCBCond);
effect(USE labl, KILL pcc);
size(4);
ins_cost(BRANCH_COST);
#ifdef _LP64
format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
#else
format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
#endif
ins_encode %{
Label* L = $labl$$label;
assert(__ use_cbcond(*L), "back to back cbcond");
__ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
%}
ins_short_branch(1);
ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
ins_pipe(cbcond_reg_reg);
%}
instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
match(If cmp (CmpN op1 op2));
predicate(UseCBCond);
effect(USE labl, KILL icc);
size(4);
ins_cost(BRANCH_COST);
format %{ "CWB$cmp $op1,$op2,$labl\t! compressed ptr" %}
ins_encode %{
Label* L = $labl$$label;
assert(__ use_cbcond(*L), "back to back cbcond");
__ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
%}
ins_short_branch(1);
ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
ins_pipe(cbcond_reg_reg);
%}
instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
match(If cmp (CmpN op1 null));
predicate(UseCBCond);
effect(USE labl, KILL icc);
size(4);
ins_cost(BRANCH_COST);
format %{ "CWB$cmp $op1,0,$labl\t! compressed ptr" %}
ins_encode %{
Label* L = $labl$$label;
assert(__ use_cbcond(*L), "back to back cbcond");
__ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
%}
ins_short_branch(1);
ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
ins_pipe(cbcond_reg_reg);
%}
// Loop back branch
instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
match(CountedLoopEnd cmp (CmpI op1 op2));
predicate(UseCBCond);
effect(USE labl, KILL icc);
size(4);
ins_cost(BRANCH_COST);
format %{ "CWB$cmp $op1,$op2,$labl\t! Loop end" %}
ins_encode %{
Label* L = $labl$$label;
assert(__ use_cbcond(*L), "back to back cbcond");
__ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
%}
ins_short_branch(1);
ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
ins_pipe(cbcond_reg_reg);
%}
instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
match(CountedLoopEnd cmp (CmpI op1 op2));
predicate(UseCBCond);
effect(USE labl, KILL icc);
size(4);
ins_cost(BRANCH_COST);
format %{ "CWB$cmp $op1,$op2,$labl\t! Loop end" %}
ins_encode %{
Label* L = $labl$$label;
assert(__ use_cbcond(*L), "back to back cbcond");
__ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
%}
ins_short_branch(1);
ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
ins_pipe(cbcond_reg_imm);
%}
// Branch-on-register tests all 64 bits. We assume that values
// in 64-bit registers always remains zero or sign extended
// unless our code munges the high bits. Interrupts can chop
// the high order bits to zero or sign at any time.
instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
match(If cmp (CmpI op1 zero));
predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
effect(USE labl);
size(8);
ins_cost(BRANCH_COST);
format %{ "BR$cmp $op1,$labl" %}
ins_encode( enc_bpr( labl, cmp, op1 ) );
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(br_reg);
%}
instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
match(If cmp (CmpP op1 null));
predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
effect(USE labl);
size(8);
ins_cost(BRANCH_COST);
format %{ "BR$cmp $op1,$labl" %}
ins_encode( enc_bpr( labl, cmp, op1 ) );
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(br_reg);
%}
instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
match(If cmp (CmpL op1 zero));
predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
effect(USE labl);
size(8);
ins_cost(BRANCH_COST);
format %{ "BR$cmp $op1,$labl" %}
ins_encode( enc_bpr( labl, cmp, op1 ) );
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(br_reg);
%}
// ============================================================================
// Long Compare
//
// Currently we hold longs in 2 registers. Comparing such values efficiently
// is tricky. The flavor of compare used depends on whether we are testing
// for LT, LE, or EQ. For a simple LT test we can check just the sign bit.
// The GE test is the negated LT test. The LE test can be had by commuting
// the operands (yielding a GE test) and then negating; negate again for the
// GT test. The EQ test is done by ORcc'ing the high and low halves, and the
// NE test is negated from that.
// Due to a shortcoming in the ADLC, it mixes up expressions like:
// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)). Note the
// difference between 'Y' and '0L'. The tree-matches for the CmpI sections
// are collapsed internally in the ADLC's dfa-gen code. The match for
// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
// foo match ends up with the wrong leaf. One fix is to not match both
// reg-reg and reg-zero forms of long-compare. This is unfortunate because
// both forms beat the trinary form of long-compare and both are very useful
// on Intel which has so few registers.
instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
match(If cmp xcc);
effect(USE labl);
size(8);
ins_cost(BRANCH_COST);
format %{ "BP$cmp $xcc,$labl" %}
ins_encode %{
Label* L = $labl$$label;
Assembler::Predict predict_taken =
cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
__ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
__ delayed()->nop();
%}
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(br_cc);
%}
// Manifest a CmpL3 result in an integer register. Very painful.
// This is the test to avoid.
instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
match(Set dst (CmpL3 src1 src2) );
effect( KILL ccr );
ins_cost(6*DEFAULT_COST);
size(24);
format %{ "CMP $src1,$src2\t\t! long\n"
"\tBLT,a,pn done\n"
"\tMOV -1,$dst\t! delay slot\n"
"\tBGT,a,pn done\n"
"\tMOV 1,$dst\t! delay slot\n"
"\tCLR $dst\n"
"done:" %}
ins_encode( cmpl_flag(src1,src2,dst) );
ins_pipe(cmpL_reg);
%}
// Conditional move
instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
ins_cost(150);
format %{ "MOV$cmp $xcc,$src,$dst\t! long" %}
ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
ins_pipe(ialu_reg);
%}
instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
ins_cost(140);
format %{ "MOV$cmp $xcc,$src,$dst\t! long" %}
ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
ins_pipe(ialu_imm);
%}
instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
ins_cost(150);
format %{ "MOV$cmp $xcc,$src,$dst" %}
ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
ins_pipe(ialu_reg);
%}
instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
ins_cost(140);
format %{ "MOV$cmp $xcc,$src,$dst" %}
ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
ins_pipe(ialu_imm);
%}
instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
ins_cost(150);
format %{ "MOV$cmp $xcc,$src,$dst" %}
ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
ins_pipe(ialu_reg);
%}
instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
ins_cost(150);
format %{ "MOV$cmp $xcc,$src,$dst" %}
ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
ins_pipe(ialu_reg);
%}
instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
ins_cost(140);
format %{ "MOV$cmp $xcc,$src,$dst" %}
ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
ins_pipe(ialu_imm);
%}
instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
ins_cost(150);
opcode(0x101);
format %{ "FMOVS$cmp $xcc,$src,$dst" %}
ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
ins_pipe(int_conditional_float_move);
%}
instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
ins_cost(150);
opcode(0x102);
format %{ "FMOVD$cmp $xcc,$src,$dst" %}
ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
ins_pipe(int_conditional_float_move);
%}
// ============================================================================
// Safepoint Instruction
instruct safePoint_poll(iRegP poll) %{
match(SafePoint poll);
effect(USE poll);
size(4);
#ifdef _LP64
format %{ "LDX [$poll],R_G0\t! Safepoint: poll for GC" %}
#else
format %{ "LDUW [$poll],R_G0\t! Safepoint: poll for GC" %}
#endif
ins_encode %{
__ relocate(relocInfo::poll_type);
__ ld_ptr($poll$$Register, 0, G0);
%}
ins_pipe(loadPollP);
%}
// ============================================================================
// Call Instructions
// Call Java Static Instruction
instruct CallStaticJavaDirect( method meth ) %{
match(CallStaticJava);
predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
effect(USE meth);
size(8);
ins_cost(CALL_COST);
format %{ "CALL,static ; NOP ==> " %}
ins_encode( Java_Static_Call( meth ), call_epilog );
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(simple_call);
%}
// Call Java Static Instruction (method handle version)
instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
match(CallStaticJava);
predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
effect(USE meth, KILL l7_mh_SP_save);
size(16);
ins_cost(CALL_COST);
format %{ "CALL,static/MethodHandle" %}
ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
ins_pipe(simple_call);
%}
// Call Java Dynamic Instruction
instruct CallDynamicJavaDirect( method meth ) %{
match(CallDynamicJava);
effect(USE meth);
ins_cost(CALL_COST);
format %{ "SET (empty),R_G5\n\t"
"CALL,dynamic ; NOP ==> " %}
ins_encode( Java_Dynamic_Call( meth ), call_epilog );
ins_pipe(call);
%}
// Call Runtime Instruction
instruct CallRuntimeDirect(method meth, l7RegP l7) %{
match(CallRuntime);
effect(USE meth, KILL l7);
ins_cost(CALL_COST);
format %{ "CALL,runtime" %}
ins_encode( Java_To_Runtime( meth ),
call_epilog, adjust_long_from_native_call );
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(simple_call);
%}
// Call runtime without safepoint - same as CallRuntime
instruct CallLeafDirect(method meth, l7RegP l7) %{
match(CallLeaf);
effect(USE meth, KILL l7);
ins_cost(CALL_COST);
format %{ "CALL,runtime leaf" %}
ins_encode( Java_To_Runtime( meth ),
call_epilog,
adjust_long_from_native_call );
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(simple_call);
%}
// Call runtime without safepoint - same as CallLeaf
instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
match(CallLeafNoFP);
effect(USE meth, KILL l7);
ins_cost(CALL_COST);
format %{ "CALL,runtime leaf nofp" %}
ins_encode( Java_To_Runtime( meth ),
call_epilog,
adjust_long_from_native_call );
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(simple_call);
%}
// Tail Call; Jump from runtime stub to Java code.
// Also known as an 'interprocedural jump'.
// Target of jump will eventually return to caller.
// TailJump below removes the return address.
instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
match(TailCall jump_target method_oop );
ins_cost(CALL_COST);
format %{ "Jmp $jump_target ; NOP \t! $method_oop holds method oop" %}
ins_encode(form_jmpl(jump_target));
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(tail_call);
%}
// Return Instruction
instruct Ret() %{
match(Return);
// The epilogue node did the ret already.
size(0);
format %{ "! return" %}
ins_encode();
ins_pipe(empty);
%}
// Tail Jump; remove the return address; jump to target.
// TailCall above leaves the return address around.
// TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
// ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
// "restore" before this instruction (in Epilogue), we need to materialize it
// in %i0.
instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
match( TailJump jump_target ex_oop );
ins_cost(CALL_COST);
format %{ "! discard R_O7\n\t"
"Jmp $jump_target ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
ins_encode(form_jmpl_set_exception_pc(jump_target));
// opcode(Assembler::jmpl_op3, Assembler::arith_op);
// The hack duplicates the exception oop into G3, so that CreateEx can use it there.
// ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(tail_call);
%}
// Create exception oop: created by stack-crawling runtime code.
// Created exception is now available to this handler, and is setup
// just prior to jumping to this handler. No code emitted.
instruct CreateException( o0RegP ex_oop )
%{
match(Set ex_oop (CreateEx));
ins_cost(0);
size(0);
// use the following format syntax
format %{ "! exception oop is in R_O0; no code emitted" %}
ins_encode();
ins_pipe(empty);
%}
// Rethrow exception:
// The exception oop will come in the first argument position.
// Then JUMP (not call) to the rethrow stub code.
instruct RethrowException()
%{
match(Rethrow);
ins_cost(CALL_COST);
// use the following format syntax
format %{ "Jmp rethrow_stub" %}
ins_encode(enc_rethrow);
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(tail_call);
%}
// Die now
instruct ShouldNotReachHere( )
%{
match(Halt);
ins_cost(CALL_COST);
size(4);
// Use the following format syntax
format %{ "ILLTRAP ; ShouldNotReachHere" %}
ins_encode( form2_illtrap() );
ins_pipe(tail_call);
%}
// ============================================================================
// The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
// array for an instance of the superklass. Set a hidden internal cache on a
// hit (cache is checked with exposed code in gen_subtype_check()). Return
// not zero for a miss or zero for a hit. The encoding ALSO sets flags.
instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
match(Set index (PartialSubtypeCheck sub super));
effect( KILL pcc, KILL o7 );
ins_cost(DEFAULT_COST*10);
format %{ "CALL PartialSubtypeCheck\n\tNOP" %}
ins_encode( enc_PartialSubtypeCheck() );
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(partial_subtype_check_pipe);
%}
instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
effect( KILL idx, KILL o7 );
ins_cost(DEFAULT_COST*10);
format %{ "CALL PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
ins_encode( enc_PartialSubtypeCheck() );
ins_avoid_back_to_back(AVOID_BEFORE);
ins_pipe(partial_subtype_check_pipe);
%}
// ============================================================================
// inlined locking and unlocking
instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
match(Set pcc (FastLock object box));
effect(TEMP scratch2, USE_KILL box, KILL scratch);
ins_cost(100);
format %{ "FASTLOCK $object,$box\t! kills $box,$scratch,$scratch2" %}
ins_encode( Fast_Lock(object, box, scratch, scratch2) );
ins_pipe(long_memory_op);
%}
instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
match(Set pcc (FastUnlock object box));
effect(TEMP scratch2, USE_KILL box, KILL scratch);
ins_cost(100);
format %{ "FASTUNLOCK $object,$box\t! kills $box,$scratch,$scratch2" %}
ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
ins_pipe(long_memory_op);
%}
// The encodings are generic.
instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
predicate(!use_block_zeroing(n->in(2)) );
match(Set dummy (ClearArray cnt base));
effect(TEMP temp, KILL ccr);
ins_cost(300);
format %{ "MOV $cnt,$temp\n"
"loop: SUBcc $temp,8,$temp\t! Count down a dword of bytes\n"
" BRge loop\t\t! Clearing loop\n"
" STX G0,[$base+$temp]\t! delay slot" %}
ins_encode %{
// Compiler ensures base is doubleword aligned and cnt is count of doublewords
Register nof_bytes_arg = $cnt$$Register;
Register nof_bytes_tmp = $temp$$Register;
Register base_pointer_arg = $base$$Register;
Label loop;
__ mov(nof_bytes_arg, nof_bytes_tmp);
// Loop and clear, walking backwards through the array.
// nof_bytes_tmp (if >0) is always the number of bytes to zero
__ bind(loop);
__ deccc(nof_bytes_tmp, 8);
__ br(Assembler::greaterEqual, true, Assembler::pt, loop);
__ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
// %%%% this mini-loop must not cross a cache boundary!
%}
ins_pipe(long_memory_op);
%}
instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
predicate(use_block_zeroing(n->in(2)));
match(Set dummy (ClearArray cnt base));
effect(USE_KILL cnt, USE_KILL base, KILL ccr);
ins_cost(300);
format %{ "CLEAR [$base, $cnt]\t! ClearArray" %}
ins_encode %{
assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
Register to = $base$$Register;
Register count = $cnt$$Register;
Label Ldone;
__ nop(); // Separate short branches
// Use BIS for zeroing (temp is not used).
__ bis_zeroing(to, count, G0, Ldone);
__ bind(Ldone);
%}
ins_pipe(long_memory_op);
%}
instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
match(Set dummy (ClearArray cnt base));
effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
ins_cost(300);
format %{ "CLEAR [$base, $cnt]\t! ClearArray" %}
ins_encode %{
assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
Register to = $base$$Register;
Register count = $cnt$$Register;
Register temp = $tmp$$Register;
Label Ldone;
__ nop(); // Separate short branches
// Use BIS for zeroing
__ bis_zeroing(to, count, temp, Ldone);
__ bind(Ldone);
%}
ins_pipe(long_memory_op);
%}
instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
o7RegI tmp, flagsReg ccr) %{
match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
ins_cost(300);
format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result // KILL $tmp" %}
ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
ins_pipe(long_memory_op);
%}
instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
o7RegI tmp, flagsReg ccr) %{
match(Set result (StrEquals (Binary str1 str2) cnt));
effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
ins_cost(300);
format %{ "String Equals $str1,$str2,$cnt -> $result // KILL $tmp" %}
ins_encode( enc_String_Equals(str1, str2, cnt, result) );
ins_pipe(long_memory_op);
%}
instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
o7RegI tmp2, flagsReg ccr) %{
match(Set result (AryEq ary1 ary2));
effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
ins_cost(300);
format %{ "Array Equals $ary1,$ary2 -> $result // KILL $tmp1,$tmp2" %}
ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
ins_pipe(long_memory_op);
%}
//---------- Zeros Count Instructions ------------------------------------------
instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
predicate(UsePopCountInstruction); // See Matcher::match_rule_supported
match(Set dst (CountLeadingZerosI src));
effect(TEMP dst, TEMP tmp, KILL cr);
// x |= (x >> 1);
// x |= (x >> 2);
// x |= (x >> 4);
// x |= (x >> 8);
// x |= (x >> 16);
// return (WORDBITS - popc(x));
format %{ "SRL $src,1,$tmp\t! count leading zeros (int)\n\t"
"SRL $src,0,$dst\t! 32-bit zero extend\n\t"
"OR $dst,$tmp,$dst\n\t"
"SRL $dst,2,$tmp\n\t"
"OR $dst,$tmp,$dst\n\t"
"SRL $dst,4,$tmp\n\t"
"OR $dst,$tmp,$dst\n\t"
"SRL $dst,8,$tmp\n\t"
"OR $dst,$tmp,$dst\n\t"
"SRL $dst,16,$tmp\n\t"
"OR $dst,$tmp,$dst\n\t"
"POPC $dst,$dst\n\t"
"MOV 32,$tmp\n\t"
"SUB $tmp,$dst,$dst" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc = $src$$Register;
Register Rtmp = $tmp$$Register;
__ srl(Rsrc, 1, Rtmp);
__ srl(Rsrc, 0, Rdst);
__ or3(Rdst, Rtmp, Rdst);
__ srl(Rdst, 2, Rtmp);
__ or3(Rdst, Rtmp, Rdst);
__ srl(Rdst, 4, Rtmp);
__ or3(Rdst, Rtmp, Rdst);
__ srl(Rdst, 8, Rtmp);
__ or3(Rdst, Rtmp, Rdst);
__ srl(Rdst, 16, Rtmp);
__ or3(Rdst, Rtmp, Rdst);
__ popc(Rdst, Rdst);
__ mov(BitsPerInt, Rtmp);
__ sub(Rtmp, Rdst, Rdst);
%}
ins_pipe(ialu_reg);
%}
instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
predicate(UsePopCountInstruction); // See Matcher::match_rule_supported
match(Set dst (CountLeadingZerosL src));
effect(TEMP dst, TEMP tmp, KILL cr);
// x |= (x >> 1);
// x |= (x >> 2);
// x |= (x >> 4);
// x |= (x >> 8);
// x |= (x >> 16);
// x |= (x >> 32);
// return (WORDBITS - popc(x));
format %{ "SRLX $src,1,$tmp\t! count leading zeros (long)\n\t"
"OR $src,$tmp,$dst\n\t"
"SRLX $dst,2,$tmp\n\t"
"OR $dst,$tmp,$dst\n\t"
"SRLX $dst,4,$tmp\n\t"
"OR $dst,$tmp,$dst\n\t"
"SRLX $dst,8,$tmp\n\t"
"OR $dst,$tmp,$dst\n\t"
"SRLX $dst,16,$tmp\n\t"
"OR $dst,$tmp,$dst\n\t"
"SRLX $dst,32,$tmp\n\t"
"OR $dst,$tmp,$dst\n\t"
"POPC $dst,$dst\n\t"
"MOV 64,$tmp\n\t"
"SUB $tmp,$dst,$dst" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc = $src$$Register;
Register Rtmp = $tmp$$Register;
__ srlx(Rsrc, 1, Rtmp);
__ or3( Rsrc, Rtmp, Rdst);
__ srlx(Rdst, 2, Rtmp);
__ or3( Rdst, Rtmp, Rdst);
__ srlx(Rdst, 4, Rtmp);
__ or3( Rdst, Rtmp, Rdst);
__ srlx(Rdst, 8, Rtmp);
__ or3( Rdst, Rtmp, Rdst);
__ srlx(Rdst, 16, Rtmp);
__ or3( Rdst, Rtmp, Rdst);
__ srlx(Rdst, 32, Rtmp);
__ or3( Rdst, Rtmp, Rdst);
__ popc(Rdst, Rdst);
__ mov(BitsPerLong, Rtmp);
__ sub(Rtmp, Rdst, Rdst);
%}
ins_pipe(ialu_reg);
%}
instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
predicate(UsePopCountInstruction); // See Matcher::match_rule_supported
match(Set dst (CountTrailingZerosI src));
effect(TEMP dst, KILL cr);
// return popc(~x & (x - 1));
format %{ "SUB $src,1,$dst\t! count trailing zeros (int)\n\t"
"ANDN $dst,$src,$dst\n\t"
"SRL $dst,R_G0,$dst\n\t"
"POPC $dst,$dst" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc = $src$$Register;
__ sub(Rsrc, 1, Rdst);
__ andn(Rdst, Rsrc, Rdst);
__ srl(Rdst, G0, Rdst);
__ popc(Rdst, Rdst);
%}
ins_pipe(ialu_reg);
%}
instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
predicate(UsePopCountInstruction); // See Matcher::match_rule_supported
match(Set dst (CountTrailingZerosL src));
effect(TEMP dst, KILL cr);
// return popc(~x & (x - 1));
format %{ "SUB $src,1,$dst\t! count trailing zeros (long)\n\t"
"ANDN $dst,$src,$dst\n\t"
"POPC $dst,$dst" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc = $src$$Register;
__ sub(Rsrc, 1, Rdst);
__ andn(Rdst, Rsrc, Rdst);
__ popc(Rdst, Rdst);
%}
ins_pipe(ialu_reg);
%}
//---------- Population Count Instructions -------------------------------------
instruct popCountI(iRegIsafe dst, iRegI src) %{
predicate(UsePopCountInstruction);
match(Set dst (PopCountI src));
format %{ "SRL $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
"POPC $dst, $dst" %}
ins_encode %{
__ srl($src$$Register, G0, $dst$$Register);
__ popc($dst$$Register, $dst$$Register);
%}
ins_pipe(ialu_reg);
%}
// Note: Long.bitCount(long) returns an int.
instruct popCountL(iRegIsafe dst, iRegL src) %{
predicate(UsePopCountInstruction);
match(Set dst (PopCountL src));
format %{ "POPC $src, $dst" %}
ins_encode %{
__ popc($src$$Register, $dst$$Register);
%}
ins_pipe(ialu_reg);
%}
// ============================================================================
//------------Bytes reverse--------------------------------------------------
instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
match(Set dst (ReverseBytesI src));
// Op cost is artificially doubled to make sure that load or store
// instructions are preferred over this one which requires a spill
// onto a stack slot.
ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
format %{ "LDUWA $src, $dst\t!asi=primary_little" %}
ins_encode %{
__ set($src$$disp + STACK_BIAS, O7);
__ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
%}
ins_pipe( iload_mem );
%}
instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
match(Set dst (ReverseBytesL src));
// Op cost is artificially doubled to make sure that load or store
// instructions are preferred over this one which requires a spill
// onto a stack slot.
ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
format %{ "LDXA $src, $dst\t!asi=primary_little" %}
ins_encode %{
__ set($src$$disp + STACK_BIAS, O7);
__ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
%}
ins_pipe( iload_mem );
%}
instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
match(Set dst (ReverseBytesUS src));
// Op cost is artificially doubled to make sure that load or store
// instructions are preferred over this one which requires a spill
// onto a stack slot.
ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
format %{ "LDUHA $src, $dst\t!asi=primary_little\n\t" %}
ins_encode %{
// the value was spilled as an int so bias the load
__ set($src$$disp + STACK_BIAS + 2, O7);
__ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
%}
ins_pipe( iload_mem );
%}
instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
match(Set dst (ReverseBytesS src));
// Op cost is artificially doubled to make sure that load or store
// instructions are preferred over this one which requires a spill
// onto a stack slot.
ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
format %{ "LDSHA $src, $dst\t!asi=primary_little\n\t" %}
ins_encode %{
// the value was spilled as an int so bias the load
__ set($src$$disp + STACK_BIAS + 2, O7);
__ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
%}
ins_pipe( iload_mem );
%}
// Load Integer reversed byte order
instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
match(Set dst (ReverseBytesI (LoadI src)));
ins_cost(DEFAULT_COST + MEMORY_REF_COST);
size(4);
format %{ "LDUWA $src, $dst\t!asi=primary_little" %}
ins_encode %{
__ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
%}
ins_pipe(iload_mem);
%}
// Load Long - aligned and reversed
instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
match(Set dst (ReverseBytesL (LoadL src)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDXA $src, $dst\t!asi=primary_little" %}
ins_encode %{
__ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
%}
ins_pipe(iload_mem);
%}
// Load unsigned short / char reversed byte order
instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
match(Set dst (ReverseBytesUS (LoadUS src)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUHA $src, $dst\t!asi=primary_little" %}
ins_encode %{
__ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
%}
ins_pipe(iload_mem);
%}
// Load short reversed byte order
instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
match(Set dst (ReverseBytesS (LoadS src)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDSHA $src, $dst\t!asi=primary_little" %}
ins_encode %{
__ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
%}
ins_pipe(iload_mem);
%}
// Store Integer reversed byte order
instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
match(Set dst (StoreI dst (ReverseBytesI src)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STWA $src, $dst\t!asi=primary_little" %}
ins_encode %{
__ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
%}
ins_pipe(istore_mem_reg);
%}
// Store Long reversed byte order
instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
match(Set dst (StoreL dst (ReverseBytesL src)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STXA $src, $dst\t!asi=primary_little" %}
ins_encode %{
__ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
%}
ins_pipe(istore_mem_reg);
%}
// Store unsighed short/char reversed byte order
instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
match(Set dst (StoreC dst (ReverseBytesUS src)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STHA $src, $dst\t!asi=primary_little" %}
ins_encode %{
__ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
%}
ins_pipe(istore_mem_reg);
%}
// Store short reversed byte order
instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
match(Set dst (StoreC dst (ReverseBytesS src)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STHA $src, $dst\t!asi=primary_little" %}
ins_encode %{
__ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
%}
ins_pipe(istore_mem_reg);
%}
// ====================VECTOR INSTRUCTIONS=====================================
// Load Aligned Packed values into a Double Register
instruct loadV8(regD dst, memory mem) %{
predicate(n->as_LoadVector()->memory_size() == 8);
match(Set dst (LoadVector mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDDF $mem,$dst\t! load vector (8 bytes)" %}
ins_encode %{
__ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
%}
ins_pipe(floadD_mem);
%}
// Store Vector in Double register to memory
instruct storeV8(memory mem, regD src) %{
predicate(n->as_StoreVector()->memory_size() == 8);
match(Set mem (StoreVector mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STDF $src,$mem\t! store vector (8 bytes)" %}
ins_encode %{
__ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
%}
ins_pipe(fstoreD_mem_reg);
%}
// Store Zero into vector in memory
instruct storeV8B_zero(memory mem, immI0 zero) %{
predicate(n->as_StoreVector()->memory_size() == 8);
match(Set mem (StoreVector mem (ReplicateB zero)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $zero,$mem\t! store zero vector (8 bytes)" %}
ins_encode %{
__ stx(G0, $mem$$Address);
%}
ins_pipe(fstoreD_mem_zero);
%}
instruct storeV4S_zero(memory mem, immI0 zero) %{
predicate(n->as_StoreVector()->memory_size() == 8);
match(Set mem (StoreVector mem (ReplicateS zero)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $zero,$mem\t! store zero vector (4 shorts)" %}
ins_encode %{
__ stx(G0, $mem$$Address);
%}
ins_pipe(fstoreD_mem_zero);
%}
instruct storeV2I_zero(memory mem, immI0 zero) %{
predicate(n->as_StoreVector()->memory_size() == 8);
match(Set mem (StoreVector mem (ReplicateI zero)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $zero,$mem\t! store zero vector (2 ints)" %}
ins_encode %{
__ stx(G0, $mem$$Address);
%}
ins_pipe(fstoreD_mem_zero);
%}
instruct storeV2F_zero(memory mem, immF0 zero) %{
predicate(n->as_StoreVector()->memory_size() == 8);
match(Set mem (StoreVector mem (ReplicateF zero)));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $zero,$mem\t! store zero vector (2 floats)" %}
ins_encode %{
__ stx(G0, $mem$$Address);
%}
ins_pipe(fstoreD_mem_zero);
%}
// Replicate scalar to packed byte values into Double register
instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
match(Set dst (ReplicateB src));
effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
format %{ "SLLX $src,56,$tmp\n\t"
"SRLX $tmp, 8,$tmp2\n\t"
"OR $tmp,$tmp2,$tmp\n\t"
"SRLX $tmp,16,$tmp2\n\t"
"OR $tmp,$tmp2,$tmp\n\t"
"SRLX $tmp,32,$tmp2\n\t"
"OR $tmp,$tmp2,$tmp\t! replicate8B\n\t"
"MOVXTOD $tmp,$dst\t! MoveL2D" %}
ins_encode %{
Register Rsrc = $src$$Register;
Register Rtmp = $tmp$$Register;
Register Rtmp2 = $tmp2$$Register;
__ sllx(Rsrc, 56, Rtmp);
__ srlx(Rtmp, 8, Rtmp2);
__ or3 (Rtmp, Rtmp2, Rtmp);
__ srlx(Rtmp, 16, Rtmp2);
__ or3 (Rtmp, Rtmp2, Rtmp);
__ srlx(Rtmp, 32, Rtmp2);
__ or3 (Rtmp, Rtmp2, Rtmp);
__ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
%}
ins_pipe(ialu_reg);
%}
// Replicate scalar to packed byte values into Double stack
instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
match(Set dst (ReplicateB src));
effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
format %{ "SLLX $src,56,$tmp\n\t"
"SRLX $tmp, 8,$tmp2\n\t"
"OR $tmp,$tmp2,$tmp\n\t"
"SRLX $tmp,16,$tmp2\n\t"
"OR $tmp,$tmp2,$tmp\n\t"
"SRLX $tmp,32,$tmp2\n\t"
"OR $tmp,$tmp2,$tmp\t! replicate8B\n\t"
"STX $tmp,$dst\t! regL to stkD" %}
ins_encode %{
Register Rsrc = $src$$Register;
Register Rtmp = $tmp$$Register;
Register Rtmp2 = $tmp2$$Register;
__ sllx(Rsrc, 56, Rtmp);
__ srlx(Rtmp, 8, Rtmp2);
__ or3 (Rtmp, Rtmp2, Rtmp);
__ srlx(Rtmp, 16, Rtmp2);
__ or3 (Rtmp, Rtmp2, Rtmp);
__ srlx(Rtmp, 32, Rtmp2);
__ or3 (Rtmp, Rtmp2, Rtmp);
__ set ($dst$$disp + STACK_BIAS, Rtmp2);
__ stx (Rtmp, Rtmp2, $dst$$base$$Register);
%}
ins_pipe(ialu_reg);
%}
// Replicate scalar constant to packed byte values in Double register
instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
predicate(n->as_Vector()->length() == 8);
match(Set dst (ReplicateB con));
effect(KILL tmp);
format %{ "LDDF [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
ins_encode %{
// XXX This is a quick fix for 6833573.
//__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
__ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
%}
ins_pipe(loadConFD);
%}
// Replicate scalar to packed char/short values into Double register
instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
match(Set dst (ReplicateS src));
effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
format %{ "SLLX $src,48,$tmp\n\t"
"SRLX $tmp,16,$tmp2\n\t"
"OR $tmp,$tmp2,$tmp\n\t"
"SRLX $tmp,32,$tmp2\n\t"
"OR $tmp,$tmp2,$tmp\t! replicate4S\n\t"
"MOVXTOD $tmp,$dst\t! MoveL2D" %}
ins_encode %{
Register Rsrc = $src$$Register;
Register Rtmp = $tmp$$Register;
Register Rtmp2 = $tmp2$$Register;
__ sllx(Rsrc, 48, Rtmp);
__ srlx(Rtmp, 16, Rtmp2);
__ or3 (Rtmp, Rtmp2, Rtmp);
__ srlx(Rtmp, 32, Rtmp2);
__ or3 (Rtmp, Rtmp2, Rtmp);
__ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
%}
ins_pipe(ialu_reg);
%}
// Replicate scalar to packed char/short values into Double stack
instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
match(Set dst (ReplicateS src));
effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
format %{ "SLLX $src,48,$tmp\n\t"
"SRLX $tmp,16,$tmp2\n\t"
"OR $tmp,$tmp2,$tmp\n\t"
"SRLX $tmp,32,$tmp2\n\t"
"OR $tmp,$tmp2,$tmp\t! replicate4S\n\t"
"STX $tmp,$dst\t! regL to stkD" %}
ins_encode %{
Register Rsrc = $src$$Register;
Register Rtmp = $tmp$$Register;
Register Rtmp2 = $tmp2$$Register;
__ sllx(Rsrc, 48, Rtmp);
__ srlx(Rtmp, 16, Rtmp2);
__ or3 (Rtmp, Rtmp2, Rtmp);
__ srlx(Rtmp, 32, Rtmp2);
__ or3 (Rtmp, Rtmp2, Rtmp);
__ set ($dst$$disp + STACK_BIAS, Rtmp2);
__ stx (Rtmp, Rtmp2, $dst$$base$$Register);
%}
ins_pipe(ialu_reg);
%}
// Replicate scalar constant to packed char/short values in Double register
instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
predicate(n->as_Vector()->length() == 4);
match(Set dst (ReplicateS con));
effect(KILL tmp);
format %{ "LDDF [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
ins_encode %{
// XXX This is a quick fix for 6833573.
//__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
__ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
%}
ins_pipe(loadConFD);
%}
// Replicate scalar to packed int values into Double register
instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
match(Set dst (ReplicateI src));
effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
format %{ "SLLX $src,32,$tmp\n\t"
"SRLX $tmp,32,$tmp2\n\t"
"OR $tmp,$tmp2,$tmp\t! replicate2I\n\t"
"MOVXTOD $tmp,$dst\t! MoveL2D" %}
ins_encode %{
Register Rsrc = $src$$Register;
Register Rtmp = $tmp$$Register;
Register Rtmp2 = $tmp2$$Register;
__ sllx(Rsrc, 32, Rtmp);
__ srlx(Rtmp, 32, Rtmp2);
__ or3 (Rtmp, Rtmp2, Rtmp);
__ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
%}
ins_pipe(ialu_reg);
%}
// Replicate scalar to packed int values into Double stack
instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
match(Set dst (ReplicateI src));
effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
format %{ "SLLX $src,32,$tmp\n\t"
"SRLX $tmp,32,$tmp2\n\t"
"OR $tmp,$tmp2,$tmp\t! replicate2I\n\t"
"STX $tmp,$dst\t! regL to stkD" %}
ins_encode %{
Register Rsrc = $src$$Register;
Register Rtmp = $tmp$$Register;
Register Rtmp2 = $tmp2$$Register;
__ sllx(Rsrc, 32, Rtmp);
__ srlx(Rtmp, 32, Rtmp2);
__ or3 (Rtmp, Rtmp2, Rtmp);
__ set ($dst$$disp + STACK_BIAS, Rtmp2);
__ stx (Rtmp, Rtmp2, $dst$$base$$Register);
%}
ins_pipe(ialu_reg);
%}
// Replicate scalar zero constant to packed int values in Double register
instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
predicate(n->as_Vector()->length() == 2);
match(Set dst (ReplicateI con));
effect(KILL tmp);
format %{ "LDDF [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
ins_encode %{
// XXX This is a quick fix for 6833573.
//__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
__ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
%}
ins_pipe(loadConFD);
%}
// Replicate scalar to packed float values into Double stack
instruct Repl2F_stk(stackSlotD dst, regF src) %{
predicate(n->as_Vector()->length() == 2);
match(Set dst (ReplicateF src));
ins_cost(MEMORY_REF_COST*2);
format %{ "STF $src,$dst.hi\t! packed2F\n\t"
"STF $src,$dst.lo" %}
opcode(Assembler::stf_op3);
ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
ins_pipe(fstoreF_stk_reg);
%}
// Replicate scalar zero constant to packed float values in Double register
instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
predicate(n->as_Vector()->length() == 2);
match(Set dst (ReplicateF con));
effect(KILL tmp);
format %{ "LDDF [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
ins_encode %{
// XXX This is a quick fix for 6833573.
//__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
__ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
%}
ins_pipe(loadConFD);
%}
//----------PEEPHOLE RULES-----------------------------------------------------
// These must follow all instruction definitions as they use the names
// defined in the instructions definitions.
//
// peepmatch ( root_instr_name [preceding_instruction]* );
//
// peepconstraint %{
// (instruction_number.operand_name relational_op instruction_number.operand_name
// [, ...] );
// // instruction numbers are zero-based using left to right order in peepmatch
//
// peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
// // provide an instruction_number.operand_name for each operand that appears
// // in the replacement instruction's match rule
//
// ---------VM FLAGS---------------------------------------------------------
//
// All peephole optimizations can be turned off using -XX:-OptoPeephole
//
// Each peephole rule is given an identifying number starting with zero and
// increasing by one in the order seen by the parser. An individual peephole
// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
// on the command-line.
//
// ---------CURRENT LIMITATIONS----------------------------------------------
//
// Only match adjacent instructions in same basic block
// Only equality constraints
// Only constraints between operands, not (0.dest_reg == EAX_enc)
// Only one replacement instruction
//
// ---------EXAMPLE----------------------------------------------------------
//
// // pertinent parts of existing instructions in architecture description
// instruct movI(eRegI dst, eRegI src) %{
// match(Set dst (CopyI src));
// %}
//
// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
// match(Set dst (AddI dst src));
// effect(KILL cr);
// %}
//
// // Change (inc mov) to lea
// peephole %{
// // increment preceeded by register-register move
// peepmatch ( incI_eReg movI );
// // require that the destination register of the increment
// // match the destination register of the move
// peepconstraint ( 0.dst == 1.dst );
// // construct a replacement instruction that sets
// // the destination to ( move's source register + one )
// peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
// %}
//
// // Change load of spilled value to only a spill
// instruct storeI(memory mem, eRegI src) %{
// match(Set mem (StoreI mem src));
// %}
//
// instruct loadI(eRegI dst, memory mem) %{
// match(Set dst (LoadI mem));
// %}
//
// peephole %{
// peepmatch ( loadI storeI );
// peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
// peepreplace ( storeI( 1.mem 1.mem 1.src ) );
// %}
//----------SMARTSPILL RULES---------------------------------------------------
// These must follow all instruction definitions as they use the names
// defined in the instructions definitions.
//
// SPARC will probably not have any of these rules due to RISC instruction set.
//----------PIPELINE-----------------------------------------------------------
// Rules which define the behavior of the target architectures pipeline.