jdk/src/share/classes/java/security/spec/ECFieldF2m.java
changeset 2 90ce3da70b43
child 5506 202f599c92aa
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/security/spec/ECFieldF2m.java	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,241 @@
+/*
+ * Copyright 2003 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Sun designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Sun in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ */
+package java.security.spec;
+
+import java.math.BigInteger;
+import java.util.Arrays;
+
+/**
+ * This immutable class defines an elliptic curve (EC)
+ * characteristic 2 finite field.
+ *
+ * @see ECField
+ *
+ * @author Valerie Peng
+ *
+ * @since 1.5
+ */
+public class ECFieldF2m implements ECField {
+
+    private int m;
+    private int[] ks;
+    private BigInteger rp;
+
+    /**
+     * Creates an elliptic curve characteristic 2 finite
+     * field which has 2^<code>m</code> elements with normal basis.
+     * @param m with 2^<code>m</code> being the number of elements.
+     * @exception IllegalArgumentException if <code>m</code>
+     * is not positive.
+     */
+    public ECFieldF2m(int m) {
+        if (m <= 0) {
+            throw new IllegalArgumentException("m is not positive");
+        }
+        this.m = m;
+        this.ks = null;
+        this.rp = null;
+    }
+
+    /**
+     * Creates an elliptic curve characteristic 2 finite
+     * field which has 2^<code>m</code> elements with
+     * polynomial basis.
+     * The reduction polynomial for this field is based
+     * on <code>rp</code> whose i-th bit correspondes to
+     * the i-th coefficient of the reduction polynomial.<p>
+     * Note: A valid reduction polynomial is either a
+     * trinomial (X^<code>m</code> + X^<code>k</code> + 1
+     * with <code>m</code> > <code>k</code> >= 1) or a
+     * pentanomial (X^<code>m</code> + X^<code>k3</code>
+     * + X^<code>k2</code> + X^<code>k1</code> + 1 with
+     * <code>m</code> > <code>k3</code> > <code>k2</code>
+     * > <code>k1</code> >= 1).
+     * @param m with 2^<code>m</code> being the number of elements.
+     * @param rp the BigInteger whose i-th bit corresponds to
+     * the i-th coefficient of the reduction polynomial.
+     * @exception NullPointerException if <code>rp</code> is null.
+     * @exception IllegalArgumentException if <code>m</code>
+     * is not positive, or <code>rp</code> does not represent
+     * a valid reduction polynomial.
+     */
+    public ECFieldF2m(int m, BigInteger rp) {
+        // check m and rp
+        this.m = m;
+        this.rp = rp;
+        if (m <= 0) {
+            throw new IllegalArgumentException("m is not positive");
+        }
+        int bitCount = this.rp.bitCount();
+        if (!this.rp.testBit(0) || !this.rp.testBit(m) ||
+            ((bitCount != 3) && (bitCount != 5))) {
+            throw new IllegalArgumentException
+                ("rp does not represent a valid reduction polynomial");
+        }
+        // convert rp into ks
+        BigInteger temp = this.rp.clearBit(0).clearBit(m);
+        this.ks = new int[bitCount-2];
+        for (int i = this.ks.length-1; i >= 0; i--) {
+            int index = temp.getLowestSetBit();
+            this.ks[i] = index;
+            temp = temp.clearBit(index);
+        }
+    }
+
+    /**
+     * Creates an elliptic curve characteristic 2 finite
+     * field which has 2^<code>m</code> elements with
+     * polynomial basis. The reduction polynomial for this
+     * field is based on <code>ks</code> whose content
+     * contains the order of the middle term(s) of the
+     * reduction polynomial.
+     * Note: A valid reduction polynomial is either a
+     * trinomial (X^<code>m</code> + X^<code>k</code> + 1
+     * with <code>m</code> > <code>k</code> >= 1) or a
+     * pentanomial (X^<code>m</code> + X^<code>k3</code>
+     * + X^<code>k2</code> + X^<code>k1</code> + 1 with
+     * <code>m</code> > <code>k3</code> > <code>k2</code>
+     * > <code>k1</code> >= 1), so <code>ks</code> should
+     * have length 1 or 3.
+     * @param m with 2^<code>m</code> being the number of elements.
+     * @param ks the order of the middle term(s) of the
+     * reduction polynomial. Contents of this array are copied
+     * to protect against subsequent modification.
+     * @exception NullPointerException if <code>ks</code> is null.
+     * @exception IllegalArgumentException if<code>m</code>
+     * is not positive, or the length of <code>ks</code>
+     * is neither 1 nor 3, or values in <code>ks</code>
+     * are not between <code>m</code>-1 and 1 (inclusive)
+     * and in descending order.
+     */
+    public ECFieldF2m(int m, int[] ks) {
+        // check m and ks
+        this.m = m;
+        this.ks = ks.clone();
+        if (m <= 0) {
+            throw new IllegalArgumentException("m is not positive");
+        }
+        if ((this.ks.length != 1) && (this.ks.length != 3)) {
+            throw new IllegalArgumentException
+                ("length of ks is neither 1 nor 3");
+        }
+        for (int i = 0; i < this.ks.length; i++) {
+            if ((this.ks[i] < 1) || (this.ks[i] > m-1)) {
+                throw new IllegalArgumentException
+                    ("ks["+ i + "] is out of range");
+            }
+            if ((i != 0) && (this.ks[i] >= this.ks[i-1])) {
+                throw new IllegalArgumentException
+                    ("values in ks are not in descending order");
+            }
+        }
+        // convert ks into rp
+        this.rp = BigInteger.ONE;
+        this.rp = rp.setBit(m);
+        for (int j = 0; j < this.ks.length; j++) {
+            rp = rp.setBit(this.ks[j]);
+        }
+    }
+
+    /**
+     * Returns the field size in bits which is <code>m</code>
+     * for this characteristic 2 finite field.
+     * @return the field size in bits.
+     */
+    public int getFieldSize() {
+        return m;
+    }
+
+    /**
+     * Returns the value <code>m</code> of this characteristic
+     * 2 finite field.
+     * @return <code>m</code> with 2^<code>m</code> being the
+     * number of elements.
+     */
+    public int getM() {
+        return m;
+    }
+
+    /**
+     * Returns a BigInteger whose i-th bit corresponds to the
+     * i-th coefficient of the reduction polynomial for polynomial
+     * basis or null for normal basis.
+     * @return a BigInteger whose i-th bit corresponds to the
+     * i-th coefficient of the reduction polynomial for polynomial
+     * basis or null for normal basis.
+     */
+    public BigInteger getReductionPolynomial() {
+        return rp;
+    }
+
+    /**
+     * Returns an integer array which contains the order of the
+     * middle term(s) of the reduction polynomial for polynomial
+     * basis or null for normal basis.
+     * @return an integer array which contains the order of the
+     * middle term(s) of the reduction polynomial for polynomial
+     * basis or null for normal basis. A new array is returned
+     * each time this method is called.
+     */
+    public int[] getMidTermsOfReductionPolynomial() {
+        if (ks == null) {
+            return null;
+        } else {
+            return ks.clone();
+        }
+    }
+
+    /**
+     * Compares this finite field for equality with the
+     * specified object.
+     * @param obj the object to be compared.
+     * @return true if <code>obj</code> is an instance
+     * of ECFieldF2m and both <code>m</code> and the reduction
+     * polynomial match, false otherwise.
+     */
+    public boolean equals(Object obj) {
+        if (this == obj) return true;
+        if (obj instanceof ECFieldF2m) {
+            // no need to compare rp here since ks and rp
+            // should be equivalent
+            return ((m == ((ECFieldF2m)obj).m) &&
+                    (Arrays.equals(ks, ((ECFieldF2m) obj).ks)));
+        }
+        return false;
+    }
+
+    /**
+     * Returns a hash code value for this characteristic 2
+     * finite field.
+     * @return a hash code value.
+     */
+    public int hashCode() {
+        int value = m << 5;
+        value += (rp==null? 0:rp.hashCode());
+        // no need to involve ks here since ks and rp
+        // should be equivalent.
+        return value;
+    }
+}