jdk/src/share/classes/java/security/spec/ECFieldF2m.java
changeset 2 90ce3da70b43
child 5506 202f599c92aa
equal deleted inserted replaced
0:fd16c54261b3 2:90ce3da70b43
       
     1 /*
       
     2  * Copyright 2003 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.  Sun designates this
       
     8  * particular file as subject to the "Classpath" exception as provided
       
     9  * by Sun in the LICENSE file that accompanied this code.
       
    10  *
       
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    14  * version 2 for more details (a copy is included in the LICENSE file that
       
    15  * accompanied this code).
       
    16  *
       
    17  * You should have received a copy of the GNU General Public License version
       
    18  * 2 along with this work; if not, write to the Free Software Foundation,
       
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    20  *
       
    21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    22  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    23  * have any questions.
       
    24  */
       
    25 package java.security.spec;
       
    26 
       
    27 import java.math.BigInteger;
       
    28 import java.util.Arrays;
       
    29 
       
    30 /**
       
    31  * This immutable class defines an elliptic curve (EC)
       
    32  * characteristic 2 finite field.
       
    33  *
       
    34  * @see ECField
       
    35  *
       
    36  * @author Valerie Peng
       
    37  *
       
    38  * @since 1.5
       
    39  */
       
    40 public class ECFieldF2m implements ECField {
       
    41 
       
    42     private int m;
       
    43     private int[] ks;
       
    44     private BigInteger rp;
       
    45 
       
    46     /**
       
    47      * Creates an elliptic curve characteristic 2 finite
       
    48      * field which has 2^<code>m</code> elements with normal basis.
       
    49      * @param m with 2^<code>m</code> being the number of elements.
       
    50      * @exception IllegalArgumentException if <code>m</code>
       
    51      * is not positive.
       
    52      */
       
    53     public ECFieldF2m(int m) {
       
    54         if (m <= 0) {
       
    55             throw new IllegalArgumentException("m is not positive");
       
    56         }
       
    57         this.m = m;
       
    58         this.ks = null;
       
    59         this.rp = null;
       
    60     }
       
    61 
       
    62     /**
       
    63      * Creates an elliptic curve characteristic 2 finite
       
    64      * field which has 2^<code>m</code> elements with
       
    65      * polynomial basis.
       
    66      * The reduction polynomial for this field is based
       
    67      * on <code>rp</code> whose i-th bit correspondes to
       
    68      * the i-th coefficient of the reduction polynomial.<p>
       
    69      * Note: A valid reduction polynomial is either a
       
    70      * trinomial (X^<code>m</code> + X^<code>k</code> + 1
       
    71      * with <code>m</code> > <code>k</code> >= 1) or a
       
    72      * pentanomial (X^<code>m</code> + X^<code>k3</code>
       
    73      * + X^<code>k2</code> + X^<code>k1</code> + 1 with
       
    74      * <code>m</code> > <code>k3</code> > <code>k2</code>
       
    75      * > <code>k1</code> >= 1).
       
    76      * @param m with 2^<code>m</code> being the number of elements.
       
    77      * @param rp the BigInteger whose i-th bit corresponds to
       
    78      * the i-th coefficient of the reduction polynomial.
       
    79      * @exception NullPointerException if <code>rp</code> is null.
       
    80      * @exception IllegalArgumentException if <code>m</code>
       
    81      * is not positive, or <code>rp</code> does not represent
       
    82      * a valid reduction polynomial.
       
    83      */
       
    84     public ECFieldF2m(int m, BigInteger rp) {
       
    85         // check m and rp
       
    86         this.m = m;
       
    87         this.rp = rp;
       
    88         if (m <= 0) {
       
    89             throw new IllegalArgumentException("m is not positive");
       
    90         }
       
    91         int bitCount = this.rp.bitCount();
       
    92         if (!this.rp.testBit(0) || !this.rp.testBit(m) ||
       
    93             ((bitCount != 3) && (bitCount != 5))) {
       
    94             throw new IllegalArgumentException
       
    95                 ("rp does not represent a valid reduction polynomial");
       
    96         }
       
    97         // convert rp into ks
       
    98         BigInteger temp = this.rp.clearBit(0).clearBit(m);
       
    99         this.ks = new int[bitCount-2];
       
   100         for (int i = this.ks.length-1; i >= 0; i--) {
       
   101             int index = temp.getLowestSetBit();
       
   102             this.ks[i] = index;
       
   103             temp = temp.clearBit(index);
       
   104         }
       
   105     }
       
   106 
       
   107     /**
       
   108      * Creates an elliptic curve characteristic 2 finite
       
   109      * field which has 2^<code>m</code> elements with
       
   110      * polynomial basis. The reduction polynomial for this
       
   111      * field is based on <code>ks</code> whose content
       
   112      * contains the order of the middle term(s) of the
       
   113      * reduction polynomial.
       
   114      * Note: A valid reduction polynomial is either a
       
   115      * trinomial (X^<code>m</code> + X^<code>k</code> + 1
       
   116      * with <code>m</code> > <code>k</code> >= 1) or a
       
   117      * pentanomial (X^<code>m</code> + X^<code>k3</code>
       
   118      * + X^<code>k2</code> + X^<code>k1</code> + 1 with
       
   119      * <code>m</code> > <code>k3</code> > <code>k2</code>
       
   120      * > <code>k1</code> >= 1), so <code>ks</code> should
       
   121      * have length 1 or 3.
       
   122      * @param m with 2^<code>m</code> being the number of elements.
       
   123      * @param ks the order of the middle term(s) of the
       
   124      * reduction polynomial. Contents of this array are copied
       
   125      * to protect against subsequent modification.
       
   126      * @exception NullPointerException if <code>ks</code> is null.
       
   127      * @exception IllegalArgumentException if<code>m</code>
       
   128      * is not positive, or the length of <code>ks</code>
       
   129      * is neither 1 nor 3, or values in <code>ks</code>
       
   130      * are not between <code>m</code>-1 and 1 (inclusive)
       
   131      * and in descending order.
       
   132      */
       
   133     public ECFieldF2m(int m, int[] ks) {
       
   134         // check m and ks
       
   135         this.m = m;
       
   136         this.ks = ks.clone();
       
   137         if (m <= 0) {
       
   138             throw new IllegalArgumentException("m is not positive");
       
   139         }
       
   140         if ((this.ks.length != 1) && (this.ks.length != 3)) {
       
   141             throw new IllegalArgumentException
       
   142                 ("length of ks is neither 1 nor 3");
       
   143         }
       
   144         for (int i = 0; i < this.ks.length; i++) {
       
   145             if ((this.ks[i] < 1) || (this.ks[i] > m-1)) {
       
   146                 throw new IllegalArgumentException
       
   147                     ("ks["+ i + "] is out of range");
       
   148             }
       
   149             if ((i != 0) && (this.ks[i] >= this.ks[i-1])) {
       
   150                 throw new IllegalArgumentException
       
   151                     ("values in ks are not in descending order");
       
   152             }
       
   153         }
       
   154         // convert ks into rp
       
   155         this.rp = BigInteger.ONE;
       
   156         this.rp = rp.setBit(m);
       
   157         for (int j = 0; j < this.ks.length; j++) {
       
   158             rp = rp.setBit(this.ks[j]);
       
   159         }
       
   160     }
       
   161 
       
   162     /**
       
   163      * Returns the field size in bits which is <code>m</code>
       
   164      * for this characteristic 2 finite field.
       
   165      * @return the field size in bits.
       
   166      */
       
   167     public int getFieldSize() {
       
   168         return m;
       
   169     }
       
   170 
       
   171     /**
       
   172      * Returns the value <code>m</code> of this characteristic
       
   173      * 2 finite field.
       
   174      * @return <code>m</code> with 2^<code>m</code> being the
       
   175      * number of elements.
       
   176      */
       
   177     public int getM() {
       
   178         return m;
       
   179     }
       
   180 
       
   181     /**
       
   182      * Returns a BigInteger whose i-th bit corresponds to the
       
   183      * i-th coefficient of the reduction polynomial for polynomial
       
   184      * basis or null for normal basis.
       
   185      * @return a BigInteger whose i-th bit corresponds to the
       
   186      * i-th coefficient of the reduction polynomial for polynomial
       
   187      * basis or null for normal basis.
       
   188      */
       
   189     public BigInteger getReductionPolynomial() {
       
   190         return rp;
       
   191     }
       
   192 
       
   193     /**
       
   194      * Returns an integer array which contains the order of the
       
   195      * middle term(s) of the reduction polynomial for polynomial
       
   196      * basis or null for normal basis.
       
   197      * @return an integer array which contains the order of the
       
   198      * middle term(s) of the reduction polynomial for polynomial
       
   199      * basis or null for normal basis. A new array is returned
       
   200      * each time this method is called.
       
   201      */
       
   202     public int[] getMidTermsOfReductionPolynomial() {
       
   203         if (ks == null) {
       
   204             return null;
       
   205         } else {
       
   206             return ks.clone();
       
   207         }
       
   208     }
       
   209 
       
   210     /**
       
   211      * Compares this finite field for equality with the
       
   212      * specified object.
       
   213      * @param obj the object to be compared.
       
   214      * @return true if <code>obj</code> is an instance
       
   215      * of ECFieldF2m and both <code>m</code> and the reduction
       
   216      * polynomial match, false otherwise.
       
   217      */
       
   218     public boolean equals(Object obj) {
       
   219         if (this == obj) return true;
       
   220         if (obj instanceof ECFieldF2m) {
       
   221             // no need to compare rp here since ks and rp
       
   222             // should be equivalent
       
   223             return ((m == ((ECFieldF2m)obj).m) &&
       
   224                     (Arrays.equals(ks, ((ECFieldF2m) obj).ks)));
       
   225         }
       
   226         return false;
       
   227     }
       
   228 
       
   229     /**
       
   230      * Returns a hash code value for this characteristic 2
       
   231      * finite field.
       
   232      * @return a hash code value.
       
   233      */
       
   234     public int hashCode() {
       
   235         int value = m << 5;
       
   236         value += (rp==null? 0:rp.hashCode());
       
   237         // no need to involve ks here since ks and rp
       
   238         // should be equivalent.
       
   239         return value;
       
   240     }
       
   241 }