|
1 /* |
|
2 * Copyright 2003 Sun Microsystems, Inc. All Rights Reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. Sun designates this |
|
8 * particular file as subject to the "Classpath" exception as provided |
|
9 * by Sun in the LICENSE file that accompanied this code. |
|
10 * |
|
11 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 * version 2 for more details (a copy is included in the LICENSE file that |
|
15 * accompanied this code). |
|
16 * |
|
17 * You should have received a copy of the GNU General Public License version |
|
18 * 2 along with this work; if not, write to the Free Software Foundation, |
|
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 * |
|
21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
22 * CA 95054 USA or visit www.sun.com if you need additional information or |
|
23 * have any questions. |
|
24 */ |
|
25 package java.security.spec; |
|
26 |
|
27 import java.math.BigInteger; |
|
28 import java.util.Arrays; |
|
29 |
|
30 /** |
|
31 * This immutable class defines an elliptic curve (EC) |
|
32 * characteristic 2 finite field. |
|
33 * |
|
34 * @see ECField |
|
35 * |
|
36 * @author Valerie Peng |
|
37 * |
|
38 * @since 1.5 |
|
39 */ |
|
40 public class ECFieldF2m implements ECField { |
|
41 |
|
42 private int m; |
|
43 private int[] ks; |
|
44 private BigInteger rp; |
|
45 |
|
46 /** |
|
47 * Creates an elliptic curve characteristic 2 finite |
|
48 * field which has 2^<code>m</code> elements with normal basis. |
|
49 * @param m with 2^<code>m</code> being the number of elements. |
|
50 * @exception IllegalArgumentException if <code>m</code> |
|
51 * is not positive. |
|
52 */ |
|
53 public ECFieldF2m(int m) { |
|
54 if (m <= 0) { |
|
55 throw new IllegalArgumentException("m is not positive"); |
|
56 } |
|
57 this.m = m; |
|
58 this.ks = null; |
|
59 this.rp = null; |
|
60 } |
|
61 |
|
62 /** |
|
63 * Creates an elliptic curve characteristic 2 finite |
|
64 * field which has 2^<code>m</code> elements with |
|
65 * polynomial basis. |
|
66 * The reduction polynomial for this field is based |
|
67 * on <code>rp</code> whose i-th bit correspondes to |
|
68 * the i-th coefficient of the reduction polynomial.<p> |
|
69 * Note: A valid reduction polynomial is either a |
|
70 * trinomial (X^<code>m</code> + X^<code>k</code> + 1 |
|
71 * with <code>m</code> > <code>k</code> >= 1) or a |
|
72 * pentanomial (X^<code>m</code> + X^<code>k3</code> |
|
73 * + X^<code>k2</code> + X^<code>k1</code> + 1 with |
|
74 * <code>m</code> > <code>k3</code> > <code>k2</code> |
|
75 * > <code>k1</code> >= 1). |
|
76 * @param m with 2^<code>m</code> being the number of elements. |
|
77 * @param rp the BigInteger whose i-th bit corresponds to |
|
78 * the i-th coefficient of the reduction polynomial. |
|
79 * @exception NullPointerException if <code>rp</code> is null. |
|
80 * @exception IllegalArgumentException if <code>m</code> |
|
81 * is not positive, or <code>rp</code> does not represent |
|
82 * a valid reduction polynomial. |
|
83 */ |
|
84 public ECFieldF2m(int m, BigInteger rp) { |
|
85 // check m and rp |
|
86 this.m = m; |
|
87 this.rp = rp; |
|
88 if (m <= 0) { |
|
89 throw new IllegalArgumentException("m is not positive"); |
|
90 } |
|
91 int bitCount = this.rp.bitCount(); |
|
92 if (!this.rp.testBit(0) || !this.rp.testBit(m) || |
|
93 ((bitCount != 3) && (bitCount != 5))) { |
|
94 throw new IllegalArgumentException |
|
95 ("rp does not represent a valid reduction polynomial"); |
|
96 } |
|
97 // convert rp into ks |
|
98 BigInteger temp = this.rp.clearBit(0).clearBit(m); |
|
99 this.ks = new int[bitCount-2]; |
|
100 for (int i = this.ks.length-1; i >= 0; i--) { |
|
101 int index = temp.getLowestSetBit(); |
|
102 this.ks[i] = index; |
|
103 temp = temp.clearBit(index); |
|
104 } |
|
105 } |
|
106 |
|
107 /** |
|
108 * Creates an elliptic curve characteristic 2 finite |
|
109 * field which has 2^<code>m</code> elements with |
|
110 * polynomial basis. The reduction polynomial for this |
|
111 * field is based on <code>ks</code> whose content |
|
112 * contains the order of the middle term(s) of the |
|
113 * reduction polynomial. |
|
114 * Note: A valid reduction polynomial is either a |
|
115 * trinomial (X^<code>m</code> + X^<code>k</code> + 1 |
|
116 * with <code>m</code> > <code>k</code> >= 1) or a |
|
117 * pentanomial (X^<code>m</code> + X^<code>k3</code> |
|
118 * + X^<code>k2</code> + X^<code>k1</code> + 1 with |
|
119 * <code>m</code> > <code>k3</code> > <code>k2</code> |
|
120 * > <code>k1</code> >= 1), so <code>ks</code> should |
|
121 * have length 1 or 3. |
|
122 * @param m with 2^<code>m</code> being the number of elements. |
|
123 * @param ks the order of the middle term(s) of the |
|
124 * reduction polynomial. Contents of this array are copied |
|
125 * to protect against subsequent modification. |
|
126 * @exception NullPointerException if <code>ks</code> is null. |
|
127 * @exception IllegalArgumentException if<code>m</code> |
|
128 * is not positive, or the length of <code>ks</code> |
|
129 * is neither 1 nor 3, or values in <code>ks</code> |
|
130 * are not between <code>m</code>-1 and 1 (inclusive) |
|
131 * and in descending order. |
|
132 */ |
|
133 public ECFieldF2m(int m, int[] ks) { |
|
134 // check m and ks |
|
135 this.m = m; |
|
136 this.ks = ks.clone(); |
|
137 if (m <= 0) { |
|
138 throw new IllegalArgumentException("m is not positive"); |
|
139 } |
|
140 if ((this.ks.length != 1) && (this.ks.length != 3)) { |
|
141 throw new IllegalArgumentException |
|
142 ("length of ks is neither 1 nor 3"); |
|
143 } |
|
144 for (int i = 0; i < this.ks.length; i++) { |
|
145 if ((this.ks[i] < 1) || (this.ks[i] > m-1)) { |
|
146 throw new IllegalArgumentException |
|
147 ("ks["+ i + "] is out of range"); |
|
148 } |
|
149 if ((i != 0) && (this.ks[i] >= this.ks[i-1])) { |
|
150 throw new IllegalArgumentException |
|
151 ("values in ks are not in descending order"); |
|
152 } |
|
153 } |
|
154 // convert ks into rp |
|
155 this.rp = BigInteger.ONE; |
|
156 this.rp = rp.setBit(m); |
|
157 for (int j = 0; j < this.ks.length; j++) { |
|
158 rp = rp.setBit(this.ks[j]); |
|
159 } |
|
160 } |
|
161 |
|
162 /** |
|
163 * Returns the field size in bits which is <code>m</code> |
|
164 * for this characteristic 2 finite field. |
|
165 * @return the field size in bits. |
|
166 */ |
|
167 public int getFieldSize() { |
|
168 return m; |
|
169 } |
|
170 |
|
171 /** |
|
172 * Returns the value <code>m</code> of this characteristic |
|
173 * 2 finite field. |
|
174 * @return <code>m</code> with 2^<code>m</code> being the |
|
175 * number of elements. |
|
176 */ |
|
177 public int getM() { |
|
178 return m; |
|
179 } |
|
180 |
|
181 /** |
|
182 * Returns a BigInteger whose i-th bit corresponds to the |
|
183 * i-th coefficient of the reduction polynomial for polynomial |
|
184 * basis or null for normal basis. |
|
185 * @return a BigInteger whose i-th bit corresponds to the |
|
186 * i-th coefficient of the reduction polynomial for polynomial |
|
187 * basis or null for normal basis. |
|
188 */ |
|
189 public BigInteger getReductionPolynomial() { |
|
190 return rp; |
|
191 } |
|
192 |
|
193 /** |
|
194 * Returns an integer array which contains the order of the |
|
195 * middle term(s) of the reduction polynomial for polynomial |
|
196 * basis or null for normal basis. |
|
197 * @return an integer array which contains the order of the |
|
198 * middle term(s) of the reduction polynomial for polynomial |
|
199 * basis or null for normal basis. A new array is returned |
|
200 * each time this method is called. |
|
201 */ |
|
202 public int[] getMidTermsOfReductionPolynomial() { |
|
203 if (ks == null) { |
|
204 return null; |
|
205 } else { |
|
206 return ks.clone(); |
|
207 } |
|
208 } |
|
209 |
|
210 /** |
|
211 * Compares this finite field for equality with the |
|
212 * specified object. |
|
213 * @param obj the object to be compared. |
|
214 * @return true if <code>obj</code> is an instance |
|
215 * of ECFieldF2m and both <code>m</code> and the reduction |
|
216 * polynomial match, false otherwise. |
|
217 */ |
|
218 public boolean equals(Object obj) { |
|
219 if (this == obj) return true; |
|
220 if (obj instanceof ECFieldF2m) { |
|
221 // no need to compare rp here since ks and rp |
|
222 // should be equivalent |
|
223 return ((m == ((ECFieldF2m)obj).m) && |
|
224 (Arrays.equals(ks, ((ECFieldF2m) obj).ks))); |
|
225 } |
|
226 return false; |
|
227 } |
|
228 |
|
229 /** |
|
230 * Returns a hash code value for this characteristic 2 |
|
231 * finite field. |
|
232 * @return a hash code value. |
|
233 */ |
|
234 public int hashCode() { |
|
235 int value = m << 5; |
|
236 value += (rp==null? 0:rp.hashCode()); |
|
237 // no need to involve ks here since ks and rp |
|
238 // should be equivalent. |
|
239 return value; |
|
240 } |
|
241 } |