--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/awt/MultipleGradientPaintContext.java Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,724 @@
+/*
+ * Copyright 2006-2007 Sun Microsystems, Inc. All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Sun designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Sun in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ */
+
+package java.awt;
+
+import java.awt.MultipleGradientPaint.CycleMethod;
+import java.awt.MultipleGradientPaint.ColorSpaceType;
+import java.awt.color.ColorSpace;
+import java.awt.geom.AffineTransform;
+import java.awt.geom.NoninvertibleTransformException;
+import java.awt.geom.Rectangle2D;
+import java.awt.image.ColorModel;
+import java.awt.image.DataBuffer;
+import java.awt.image.DataBufferInt;
+import java.awt.image.DirectColorModel;
+import java.awt.image.Raster;
+import java.awt.image.SinglePixelPackedSampleModel;
+import java.awt.image.WritableRaster;
+import java.lang.ref.SoftReference;
+import java.lang.ref.WeakReference;
+import java.util.Arrays;
+
+/**
+ * This is the superclass for all PaintContexts which use a multiple color
+ * gradient to fill in their raster. It provides the actual color
+ * interpolation functionality. Subclasses only have to deal with using
+ * the gradient to fill pixels in a raster.
+ *
+ * @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans
+ */
+abstract class MultipleGradientPaintContext implements PaintContext {
+
+ /**
+ * The PaintContext's ColorModel. This is ARGB if colors are not all
+ * opaque, otherwise it is RGB.
+ */
+ protected ColorModel model;
+
+ /** Color model used if gradient colors are all opaque. */
+ private static ColorModel xrgbmodel =
+ new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff);
+
+ /** The cached ColorModel. */
+ protected static ColorModel cachedModel;
+
+ /** The cached raster, which is reusable among instances. */
+ protected static WeakReference<Raster> cached;
+
+ /** Raster is reused whenever possible. */
+ protected Raster saved;
+
+ /** The method to use when painting out of the gradient bounds. */
+ protected CycleMethod cycleMethod;
+
+ /** The ColorSpace in which to perform the interpolation */
+ protected ColorSpaceType colorSpace;
+
+ /** Elements of the inverse transform matrix. */
+ protected float a00, a01, a10, a11, a02, a12;
+
+ /**
+ * This boolean specifies wether we are in simple lookup mode, where an
+ * input value between 0 and 1 may be used to directly index into a single
+ * array of gradient colors. If this boolean value is false, then we have
+ * to use a 2-step process where we have to determine which gradient array
+ * we fall into, then determine the index into that array.
+ */
+ protected boolean isSimpleLookup;
+
+ /**
+ * Size of gradients array for scaling the 0-1 index when looking up
+ * colors the fast way.
+ */
+ protected int fastGradientArraySize;
+
+ /**
+ * Array which contains the interpolated color values for each interval,
+ * used by calculateSingleArrayGradient(). It is protected for possible
+ * direct access by subclasses.
+ */
+ protected int[] gradient;
+
+ /**
+ * Array of gradient arrays, one array for each interval. Used by
+ * calculateMultipleArrayGradient().
+ */
+ private int[][] gradients;
+
+ /** Normalized intervals array. */
+ private float[] normalizedIntervals;
+
+ /** Fractions array. */
+ private float[] fractions;
+
+ /** Used to determine if gradient colors are all opaque. */
+ private int transparencyTest;
+
+ /** Color space conversion lookup tables. */
+ private static final int SRGBtoLinearRGB[] = new int[256];
+ private static final int LinearRGBtoSRGB[] = new int[256];
+
+ static {
+ // build the tables
+ for (int k = 0; k < 256; k++) {
+ SRGBtoLinearRGB[k] = convertSRGBtoLinearRGB(k);
+ LinearRGBtoSRGB[k] = convertLinearRGBtoSRGB(k);
+ }
+ }
+
+ /**
+ * Constant number of max colors between any 2 arbitrary colors.
+ * Used for creating and indexing gradients arrays.
+ */
+ protected static final int GRADIENT_SIZE = 256;
+ protected static final int GRADIENT_SIZE_INDEX = GRADIENT_SIZE -1;
+
+ /**
+ * Maximum length of the fast single-array. If the estimated array size
+ * is greater than this, switch over to the slow lookup method.
+ * No particular reason for choosing this number, but it seems to provide
+ * satisfactory performance for the common case (fast lookup).
+ */
+ private static final int MAX_GRADIENT_ARRAY_SIZE = 5000;
+
+ /**
+ * Constructor for MultipleGradientPaintContext superclass.
+ */
+ protected MultipleGradientPaintContext(MultipleGradientPaint mgp,
+ ColorModel cm,
+ Rectangle deviceBounds,
+ Rectangle2D userBounds,
+ AffineTransform t,
+ RenderingHints hints,
+ float[] fractions,
+ Color[] colors,
+ CycleMethod cycleMethod,
+ ColorSpaceType colorSpace)
+ {
+ if (deviceBounds == null) {
+ throw new NullPointerException("Device bounds cannot be null");
+ }
+
+ if (userBounds == null) {
+ throw new NullPointerException("User bounds cannot be null");
+ }
+
+ if (t == null) {
+ throw new NullPointerException("Transform cannot be null");
+ }
+
+ if (hints == null) {
+ throw new NullPointerException("RenderingHints cannot be null");
+ }
+
+ // The inverse transform is needed to go from device to user space.
+ // Get all the components of the inverse transform matrix.
+ AffineTransform tInv;
+ try {
+ // the following assumes that the caller has copied the incoming
+ // transform and is not concerned about it being modified
+ t.invert();
+ tInv = t;
+ } catch (NoninvertibleTransformException e) {
+ // just use identity transform in this case; better to show
+ // (incorrect) results than to throw an exception and/or no-op
+ tInv = new AffineTransform();
+ }
+ double m[] = new double[6];
+ tInv.getMatrix(m);
+ a00 = (float)m[0];
+ a10 = (float)m[1];
+ a01 = (float)m[2];
+ a11 = (float)m[3];
+ a02 = (float)m[4];
+ a12 = (float)m[5];
+
+ // copy some flags
+ this.cycleMethod = cycleMethod;
+ this.colorSpace = colorSpace;
+
+ // we can avoid copying this array since we do not modify its values
+ this.fractions = fractions;
+
+ // note that only one of these values can ever be non-null (we either
+ // store the fast gradient array or the slow one, but never both
+ // at the same time)
+ int[] gradient =
+ (mgp.gradient != null) ? mgp.gradient.get() : null;
+ int[][] gradients =
+ (mgp.gradients != null) ? mgp.gradients.get() : null;
+
+ if (gradient == null && gradients == null) {
+ // we need to (re)create the appropriate values
+ calculateLookupData(colors);
+
+ // now cache the calculated values in the
+ // MultipleGradientPaint instance for future use
+ mgp.model = this.model;
+ mgp.normalizedIntervals = this.normalizedIntervals;
+ mgp.isSimpleLookup = this.isSimpleLookup;
+ if (isSimpleLookup) {
+ // only cache the fast array
+ mgp.fastGradientArraySize = this.fastGradientArraySize;
+ mgp.gradient = new SoftReference<int[]>(this.gradient);
+ } else {
+ // only cache the slow array
+ mgp.gradients = new SoftReference<int[][]>(this.gradients);
+ }
+ } else {
+ // use the values cached in the MultipleGradientPaint instance
+ this.model = mgp.model;
+ this.normalizedIntervals = mgp.normalizedIntervals;
+ this.isSimpleLookup = mgp.isSimpleLookup;
+ this.gradient = gradient;
+ this.fastGradientArraySize = mgp.fastGradientArraySize;
+ this.gradients = gradients;
+ }
+ }
+
+ /**
+ * This function is the meat of this class. It calculates an array of
+ * gradient colors based on an array of fractions and color values at
+ * those fractions.
+ */
+ private void calculateLookupData(Color[] colors) {
+ Color[] normalizedColors;
+ if (colorSpace == ColorSpaceType.LINEAR_RGB) {
+ // create a new colors array
+ normalizedColors = new Color[colors.length];
+ // convert the colors using the lookup table
+ for (int i = 0; i < colors.length; i++) {
+ int argb = colors[i].getRGB();
+ int a = argb >>> 24;
+ int r = SRGBtoLinearRGB[(argb >> 16) & 0xff];
+ int g = SRGBtoLinearRGB[(argb >> 8) & 0xff];
+ int b = SRGBtoLinearRGB[(argb ) & 0xff];
+ normalizedColors[i] = new Color(r, g, b, a);
+ }
+ } else {
+ // we can just use this array by reference since we do not
+ // modify its values in the case of SRGB
+ normalizedColors = colors;
+ }
+
+ // this will store the intervals (distances) between gradient stops
+ normalizedIntervals = new float[fractions.length-1];
+
+ // convert from fractions into intervals
+ for (int i = 0; i < normalizedIntervals.length; i++) {
+ // interval distance is equal to the difference in positions
+ normalizedIntervals[i] = this.fractions[i+1] - this.fractions[i];
+ }
+
+ // initialize to be fully opaque for ANDing with colors
+ transparencyTest = 0xff000000;
+
+ // array of interpolation arrays
+ gradients = new int[normalizedIntervals.length][];
+
+ // find smallest interval
+ float Imin = 1;
+ for (int i = 0; i < normalizedIntervals.length; i++) {
+ Imin = (Imin > normalizedIntervals[i]) ?
+ normalizedIntervals[i] : Imin;
+ }
+
+ // Estimate the size of the entire gradients array.
+ // This is to prevent a tiny interval from causing the size of array
+ // to explode. If the estimated size is too large, break to using
+ // separate arrays for each interval, and using an indexing scheme at
+ // look-up time.
+ int estimatedSize = 0;
+ for (int i = 0; i < normalizedIntervals.length; i++) {
+ estimatedSize += (normalizedIntervals[i]/Imin) * GRADIENT_SIZE;
+ }
+
+ if (estimatedSize > MAX_GRADIENT_ARRAY_SIZE) {
+ // slow method
+ calculateMultipleArrayGradient(normalizedColors);
+ } else {
+ // fast method
+ calculateSingleArrayGradient(normalizedColors, Imin);
+ }
+
+ // use the most "economical" model
+ if ((transparencyTest >>> 24) == 0xff) {
+ model = xrgbmodel;
+ } else {
+ model = ColorModel.getRGBdefault();
+ }
+ }
+
+ /**
+ * FAST LOOKUP METHOD
+ *
+ * This method calculates the gradient color values and places them in a
+ * single int array, gradient[]. It does this by allocating space for
+ * each interval based on its size relative to the smallest interval in
+ * the array. The smallest interval is allocated 255 interpolated values
+ * (the maximum number of unique in-between colors in a 24 bit color
+ * system), and all other intervals are allocated
+ * size = (255 * the ratio of their size to the smallest interval).
+ *
+ * This scheme expedites a speedy retrieval because the colors are
+ * distributed along the array according to their user-specified
+ * distribution. All that is needed is a relative index from 0 to 1.
+ *
+ * The only problem with this method is that the possibility exists for
+ * the array size to balloon in the case where there is a
+ * disproportionately small gradient interval. In this case the other
+ * intervals will be allocated huge space, but much of that data is
+ * redundant. We thus need to use the space conserving scheme below.
+ *
+ * @param Imin the size of the smallest interval
+ */
+ private void calculateSingleArrayGradient(Color[] colors, float Imin) {
+ // set the flag so we know later it is a simple (fast) lookup
+ isSimpleLookup = true;
+
+ // 2 colors to interpolate
+ int rgb1, rgb2;
+
+ //the eventual size of the single array
+ int gradientsTot = 1;
+
+ // for every interval (transition between 2 colors)
+ for (int i = 0; i < gradients.length; i++) {
+ // create an array whose size is based on the ratio to the
+ // smallest interval
+ int nGradients = (int)((normalizedIntervals[i]/Imin)*255f);
+ gradientsTot += nGradients;
+ gradients[i] = new int[nGradients];
+
+ // the 2 colors (keyframes) to interpolate between
+ rgb1 = colors[i].getRGB();
+ rgb2 = colors[i+1].getRGB();
+
+ // fill this array with the colors in between rgb1 and rgb2
+ interpolate(rgb1, rgb2, gradients[i]);
+
+ // if the colors are opaque, transparency should still
+ // be 0xff000000
+ transparencyTest &= rgb1;
+ transparencyTest &= rgb2;
+ }
+
+ // put all gradients in a single array
+ gradient = new int[gradientsTot];
+ int curOffset = 0;
+ for (int i = 0; i < gradients.length; i++){
+ System.arraycopy(gradients[i], 0, gradient,
+ curOffset, gradients[i].length);
+ curOffset += gradients[i].length;
+ }
+ gradient[gradient.length-1] = colors[colors.length-1].getRGB();
+
+ // if interpolation occurred in Linear RGB space, convert the
+ // gradients back to sRGB using the lookup table
+ if (colorSpace == ColorSpaceType.LINEAR_RGB) {
+ for (int i = 0; i < gradient.length; i++) {
+ gradient[i] = convertEntireColorLinearRGBtoSRGB(gradient[i]);
+ }
+ }
+
+ fastGradientArraySize = gradient.length - 1;
+ }
+
+ /**
+ * SLOW LOOKUP METHOD
+ *
+ * This method calculates the gradient color values for each interval and
+ * places each into its own 255 size array. The arrays are stored in
+ * gradients[][]. (255 is used because this is the maximum number of
+ * unique colors between 2 arbitrary colors in a 24 bit color system.)
+ *
+ * This method uses the minimum amount of space (only 255 * number of
+ * intervals), but it aggravates the lookup procedure, because now we
+ * have to find out which interval to select, then calculate the index
+ * within that interval. This causes a significant performance hit,
+ * because it requires this calculation be done for every point in
+ * the rendering loop.
+ *
+ * For those of you who are interested, this is a classic example of the
+ * time-space tradeoff.
+ */
+ private void calculateMultipleArrayGradient(Color[] colors) {
+ // set the flag so we know later it is a non-simple lookup
+ isSimpleLookup = false;
+
+ // 2 colors to interpolate
+ int rgb1, rgb2;
+
+ // for every interval (transition between 2 colors)
+ for (int i = 0; i < gradients.length; i++){
+ // create an array of the maximum theoretical size for
+ // each interval
+ gradients[i] = new int[GRADIENT_SIZE];
+
+ // get the the 2 colors
+ rgb1 = colors[i].getRGB();
+ rgb2 = colors[i+1].getRGB();
+
+ // fill this array with the colors in between rgb1 and rgb2
+ interpolate(rgb1, rgb2, gradients[i]);
+
+ // if the colors are opaque, transparency should still
+ // be 0xff000000
+ transparencyTest &= rgb1;
+ transparencyTest &= rgb2;
+ }
+
+ // if interpolation occurred in Linear RGB space, convert the
+ // gradients back to SRGB using the lookup table
+ if (colorSpace == ColorSpaceType.LINEAR_RGB) {
+ for (int j = 0; j < gradients.length; j++) {
+ for (int i = 0; i < gradients[j].length; i++) {
+ gradients[j][i] =
+ convertEntireColorLinearRGBtoSRGB(gradients[j][i]);
+ }
+ }
+ }
+ }
+
+ /**
+ * Yet another helper function. This one linearly interpolates between
+ * 2 colors, filling up the output array.
+ *
+ * @param rgb1 the start color
+ * @param rgb2 the end color
+ * @param output the output array of colors; must not be null
+ */
+ private void interpolate(int rgb1, int rgb2, int[] output) {
+ // color components
+ int a1, r1, g1, b1, da, dr, dg, db;
+
+ // step between interpolated values
+ float stepSize = 1.0f / output.length;
+
+ // extract color components from packed integer
+ a1 = (rgb1 >> 24) & 0xff;
+ r1 = (rgb1 >> 16) & 0xff;
+ g1 = (rgb1 >> 8) & 0xff;
+ b1 = (rgb1 ) & 0xff;
+
+ // calculate the total change in alpha, red, green, blue
+ da = ((rgb2 >> 24) & 0xff) - a1;
+ dr = ((rgb2 >> 16) & 0xff) - r1;
+ dg = ((rgb2 >> 8) & 0xff) - g1;
+ db = ((rgb2 ) & 0xff) - b1;
+
+ // for each step in the interval calculate the in-between color by
+ // multiplying the normalized current position by the total color
+ // change (0.5 is added to prevent truncation round-off error)
+ for (int i = 0; i < output.length; i++) {
+ output[i] =
+ (((int) ((a1 + i * da * stepSize) + 0.5) << 24)) |
+ (((int) ((r1 + i * dr * stepSize) + 0.5) << 16)) |
+ (((int) ((g1 + i * dg * stepSize) + 0.5) << 8)) |
+ (((int) ((b1 + i * db * stepSize) + 0.5) ));
+ }
+ }
+
+ /**
+ * Yet another helper function. This one extracts the color components
+ * of an integer RGB triple, converts them from LinearRGB to SRGB, then
+ * recompacts them into an int.
+ */
+ private int convertEntireColorLinearRGBtoSRGB(int rgb) {
+ // color components
+ int a1, r1, g1, b1;
+
+ // extract red, green, blue components
+ a1 = (rgb >> 24) & 0xff;
+ r1 = (rgb >> 16) & 0xff;
+ g1 = (rgb >> 8) & 0xff;
+ b1 = (rgb ) & 0xff;
+
+ // use the lookup table
+ r1 = LinearRGBtoSRGB[r1];
+ g1 = LinearRGBtoSRGB[g1];
+ b1 = LinearRGBtoSRGB[b1];
+
+ // re-compact the components
+ return ((a1 << 24) |
+ (r1 << 16) |
+ (g1 << 8) |
+ (b1 ));
+ }
+
+ /**
+ * Helper function to index into the gradients array. This is necessary
+ * because each interval has an array of colors with uniform size 255.
+ * However, the color intervals are not necessarily of uniform length, so
+ * a conversion is required.
+ *
+ * @param position the unmanipulated position, which will be mapped
+ * into the range 0 to 1
+ * @returns integer color to display
+ */
+ protected final int indexIntoGradientsArrays(float position) {
+ // first, manipulate position value depending on the cycle method
+ if (cycleMethod == CycleMethod.NO_CYCLE) {
+ if (position > 1) {
+ // upper bound is 1
+ position = 1;
+ } else if (position < 0) {
+ // lower bound is 0
+ position = 0;
+ }
+ } else if (cycleMethod == CycleMethod.REPEAT) {
+ // get the fractional part
+ // (modulo behavior discards integer component)
+ position = position - (int)position;
+
+ //position should now be between -1 and 1
+ if (position < 0) {
+ // force it to be in the range 0-1
+ position = position + 1;
+ }
+ } else { // cycleMethod == CycleMethod.REFLECT
+ if (position < 0) {
+ // take absolute value
+ position = -position;
+ }
+
+ // get the integer part
+ int part = (int)position;
+
+ // get the fractional part
+ position = position - part;
+
+ if ((part & 1) == 1) {
+ // integer part is odd, get reflected color instead
+ position = 1 - position;
+ }
+ }
+
+ // now, get the color based on this 0-1 position...
+
+ if (isSimpleLookup) {
+ // easy to compute: just scale index by array size
+ return gradient[(int)(position * fastGradientArraySize)];
+ } else {
+ // more complicated computation, to save space
+
+ // for all the gradient interval arrays
+ for (int i = 0; i < gradients.length; i++) {
+ if (position < fractions[i+1]) {
+ // this is the array we want
+ float delta = position - fractions[i];
+
+ // this is the interval we want
+ int index = (int)((delta / normalizedIntervals[i])
+ * (GRADIENT_SIZE_INDEX));
+
+ return gradients[i][index];
+ }
+ }
+ }
+
+ return gradients[gradients.length - 1][GRADIENT_SIZE_INDEX];
+ }
+
+ /**
+ * Helper function to convert a color component in sRGB space to linear
+ * RGB space. Used to build a static lookup table.
+ */
+ private static int convertSRGBtoLinearRGB(int color) {
+ float input, output;
+
+ input = color / 255.0f;
+ if (input <= 0.04045f) {
+ output = input / 12.92f;
+ } else {
+ output = (float)Math.pow((input + 0.055) / 1.055, 2.4);
+ }
+
+ return Math.round(output * 255.0f);
+ }
+
+ /**
+ * Helper function to convert a color component in linear RGB space to
+ * SRGB space. Used to build a static lookup table.
+ */
+ private static int convertLinearRGBtoSRGB(int color) {
+ float input, output;
+
+ input = color/255.0f;
+ if (input <= 0.0031308) {
+ output = input * 12.92f;
+ } else {
+ output = (1.055f *
+ ((float) Math.pow(input, (1.0 / 2.4)))) - 0.055f;
+ }
+
+ return Math.round(output * 255.0f);
+ }
+
+ /**
+ * {@inheritDoc}
+ */
+ public final Raster getRaster(int x, int y, int w, int h) {
+ // If working raster is big enough, reuse it. Otherwise,
+ // build a large enough new one.
+ Raster raster = saved;
+ if (raster == null ||
+ raster.getWidth() < w || raster.getHeight() < h)
+ {
+ raster = getCachedRaster(model, w, h);
+ saved = raster;
+ }
+
+ // Access raster internal int array. Because we use a DirectColorModel,
+ // we know the DataBuffer is of type DataBufferInt and the SampleModel
+ // is SinglePixelPackedSampleModel.
+ // Adjust for initial offset in DataBuffer and also for the scanline
+ // stride.
+ // These calls make the DataBuffer non-acceleratable, but the
+ // Raster is never Stable long enough to accelerate anyway...
+ DataBufferInt rasterDB = (DataBufferInt)raster.getDataBuffer();
+ int[] pixels = rasterDB.getData(0);
+ int off = rasterDB.getOffset();
+ int scanlineStride = ((SinglePixelPackedSampleModel)
+ raster.getSampleModel()).getScanlineStride();
+ int adjust = scanlineStride - w;
+
+ fillRaster(pixels, off, adjust, x, y, w, h); // delegate to subclass
+
+ return raster;
+ }
+
+ protected abstract void fillRaster(int pixels[], int off, int adjust,
+ int x, int y, int w, int h);
+
+
+ /**
+ * Took this cacheRaster code from GradientPaint. It appears to recycle
+ * rasters for use by any other instance, as long as they are sufficiently
+ * large.
+ */
+ private static synchronized Raster getCachedRaster(ColorModel cm,
+ int w, int h)
+ {
+ if (cm == cachedModel) {
+ if (cached != null) {
+ Raster ras = (Raster) cached.get();
+ if (ras != null &&
+ ras.getWidth() >= w &&
+ ras.getHeight() >= h)
+ {
+ cached = null;
+ return ras;
+ }
+ }
+ }
+ return cm.createCompatibleWritableRaster(w, h);
+ }
+
+ /**
+ * Took this cacheRaster code from GradientPaint. It appears to recycle
+ * rasters for use by any other instance, as long as they are sufficiently
+ * large.
+ */
+ private static synchronized void putCachedRaster(ColorModel cm,
+ Raster ras)
+ {
+ if (cached != null) {
+ Raster cras = (Raster) cached.get();
+ if (cras != null) {
+ int cw = cras.getWidth();
+ int ch = cras.getHeight();
+ int iw = ras.getWidth();
+ int ih = ras.getHeight();
+ if (cw >= iw && ch >= ih) {
+ return;
+ }
+ if (cw * ch >= iw * ih) {
+ return;
+ }
+ }
+ }
+ cachedModel = cm;
+ cached = new WeakReference<Raster>(ras);
+ }
+
+ /**
+ * {@inheritDoc}
+ */
+ public final void dispose() {
+ if (saved != null) {
+ putCachedRaster(model, saved);
+ saved = null;
+ }
+ }
+
+ /**
+ * {@inheritDoc}
+ */
+ public final ColorModel getColorModel() {
+ return model;
+ }
+}