jdk/src/share/classes/java/awt/MultipleGradientPaintContext.java
changeset 2 90ce3da70b43
child 5506 202f599c92aa
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/awt/MultipleGradientPaintContext.java	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,724 @@
+/*
+ * Copyright 2006-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Sun designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Sun in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ */
+
+package java.awt;
+
+import java.awt.MultipleGradientPaint.CycleMethod;
+import java.awt.MultipleGradientPaint.ColorSpaceType;
+import java.awt.color.ColorSpace;
+import java.awt.geom.AffineTransform;
+import java.awt.geom.NoninvertibleTransformException;
+import java.awt.geom.Rectangle2D;
+import java.awt.image.ColorModel;
+import java.awt.image.DataBuffer;
+import java.awt.image.DataBufferInt;
+import java.awt.image.DirectColorModel;
+import java.awt.image.Raster;
+import java.awt.image.SinglePixelPackedSampleModel;
+import java.awt.image.WritableRaster;
+import java.lang.ref.SoftReference;
+import java.lang.ref.WeakReference;
+import java.util.Arrays;
+
+/**
+ * This is the superclass for all PaintContexts which use a multiple color
+ * gradient to fill in their raster.  It provides the actual color
+ * interpolation functionality.  Subclasses only have to deal with using
+ * the gradient to fill pixels in a raster.
+ *
+ * @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans
+ */
+abstract class MultipleGradientPaintContext implements PaintContext {
+
+    /**
+     * The PaintContext's ColorModel.  This is ARGB if colors are not all
+     * opaque, otherwise it is RGB.
+     */
+    protected ColorModel model;
+
+    /** Color model used if gradient colors are all opaque. */
+    private static ColorModel xrgbmodel =
+        new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff);
+
+    /** The cached ColorModel. */
+    protected static ColorModel cachedModel;
+
+    /** The cached raster, which is reusable among instances. */
+    protected static WeakReference<Raster> cached;
+
+    /** Raster is reused whenever possible. */
+    protected Raster saved;
+
+    /** The method to use when painting out of the gradient bounds. */
+    protected CycleMethod cycleMethod;
+
+    /** The ColorSpace in which to perform the interpolation */
+    protected ColorSpaceType colorSpace;
+
+    /** Elements of the inverse transform matrix. */
+    protected float a00, a01, a10, a11, a02, a12;
+
+    /**
+     * This boolean specifies wether we are in simple lookup mode, where an
+     * input value between 0 and 1 may be used to directly index into a single
+     * array of gradient colors.  If this boolean value is false, then we have
+     * to use a 2-step process where we have to determine which gradient array
+     * we fall into, then determine the index into that array.
+     */
+    protected boolean isSimpleLookup;
+
+    /**
+     * Size of gradients array for scaling the 0-1 index when looking up
+     * colors the fast way.
+     */
+    protected int fastGradientArraySize;
+
+    /**
+     * Array which contains the interpolated color values for each interval,
+     * used by calculateSingleArrayGradient().  It is protected for possible
+     * direct access by subclasses.
+     */
+    protected int[] gradient;
+
+    /**
+     * Array of gradient arrays, one array for each interval.  Used by
+     * calculateMultipleArrayGradient().
+     */
+    private int[][] gradients;
+
+    /** Normalized intervals array. */
+    private float[] normalizedIntervals;
+
+    /** Fractions array. */
+    private float[] fractions;
+
+    /** Used to determine if gradient colors are all opaque. */
+    private int transparencyTest;
+
+    /** Color space conversion lookup tables. */
+    private static final int SRGBtoLinearRGB[] = new int[256];
+    private static final int LinearRGBtoSRGB[] = new int[256];
+
+    static {
+        // build the tables
+        for (int k = 0; k < 256; k++) {
+            SRGBtoLinearRGB[k] = convertSRGBtoLinearRGB(k);
+            LinearRGBtoSRGB[k] = convertLinearRGBtoSRGB(k);
+        }
+    }
+
+    /**
+     * Constant number of max colors between any 2 arbitrary colors.
+     * Used for creating and indexing gradients arrays.
+     */
+    protected static final int GRADIENT_SIZE = 256;
+    protected static final int GRADIENT_SIZE_INDEX = GRADIENT_SIZE -1;
+
+    /**
+     * Maximum length of the fast single-array.  If the estimated array size
+     * is greater than this, switch over to the slow lookup method.
+     * No particular reason for choosing this number, but it seems to provide
+     * satisfactory performance for the common case (fast lookup).
+     */
+    private static final int MAX_GRADIENT_ARRAY_SIZE = 5000;
+
+    /**
+     * Constructor for MultipleGradientPaintContext superclass.
+     */
+    protected MultipleGradientPaintContext(MultipleGradientPaint mgp,
+                                           ColorModel cm,
+                                           Rectangle deviceBounds,
+                                           Rectangle2D userBounds,
+                                           AffineTransform t,
+                                           RenderingHints hints,
+                                           float[] fractions,
+                                           Color[] colors,
+                                           CycleMethod cycleMethod,
+                                           ColorSpaceType colorSpace)
+    {
+        if (deviceBounds == null) {
+            throw new NullPointerException("Device bounds cannot be null");
+        }
+
+        if (userBounds == null) {
+            throw new NullPointerException("User bounds cannot be null");
+        }
+
+        if (t == null) {
+            throw new NullPointerException("Transform cannot be null");
+        }
+
+        if (hints == null) {
+            throw new NullPointerException("RenderingHints cannot be null");
+        }
+
+        // The inverse transform is needed to go from device to user space.
+        // Get all the components of the inverse transform matrix.
+        AffineTransform tInv;
+        try {
+            // the following assumes that the caller has copied the incoming
+            // transform and is not concerned about it being modified
+            t.invert();
+            tInv = t;
+        } catch (NoninvertibleTransformException e) {
+            // just use identity transform in this case; better to show
+            // (incorrect) results than to throw an exception and/or no-op
+            tInv = new AffineTransform();
+        }
+        double m[] = new double[6];
+        tInv.getMatrix(m);
+        a00 = (float)m[0];
+        a10 = (float)m[1];
+        a01 = (float)m[2];
+        a11 = (float)m[3];
+        a02 = (float)m[4];
+        a12 = (float)m[5];
+
+        // copy some flags
+        this.cycleMethod = cycleMethod;
+        this.colorSpace = colorSpace;
+
+        // we can avoid copying this array since we do not modify its values
+        this.fractions = fractions;
+
+        // note that only one of these values can ever be non-null (we either
+        // store the fast gradient array or the slow one, but never both
+        // at the same time)
+        int[] gradient =
+            (mgp.gradient != null) ? mgp.gradient.get() : null;
+        int[][] gradients =
+            (mgp.gradients != null) ? mgp.gradients.get() : null;
+
+        if (gradient == null && gradients == null) {
+            // we need to (re)create the appropriate values
+            calculateLookupData(colors);
+
+            // now cache the calculated values in the
+            // MultipleGradientPaint instance for future use
+            mgp.model               = this.model;
+            mgp.normalizedIntervals = this.normalizedIntervals;
+            mgp.isSimpleLookup      = this.isSimpleLookup;
+            if (isSimpleLookup) {
+                // only cache the fast array
+                mgp.fastGradientArraySize = this.fastGradientArraySize;
+                mgp.gradient = new SoftReference<int[]>(this.gradient);
+            } else {
+                // only cache the slow array
+                mgp.gradients = new SoftReference<int[][]>(this.gradients);
+            }
+        } else {
+            // use the values cached in the MultipleGradientPaint instance
+            this.model                 = mgp.model;
+            this.normalizedIntervals   = mgp.normalizedIntervals;
+            this.isSimpleLookup        = mgp.isSimpleLookup;
+            this.gradient              = gradient;
+            this.fastGradientArraySize = mgp.fastGradientArraySize;
+            this.gradients             = gradients;
+        }
+    }
+
+    /**
+     * This function is the meat of this class.  It calculates an array of
+     * gradient colors based on an array of fractions and color values at
+     * those fractions.
+     */
+    private void calculateLookupData(Color[] colors) {
+        Color[] normalizedColors;
+        if (colorSpace == ColorSpaceType.LINEAR_RGB) {
+            // create a new colors array
+            normalizedColors = new Color[colors.length];
+            // convert the colors using the lookup table
+            for (int i = 0; i < colors.length; i++) {
+                int argb = colors[i].getRGB();
+                int a = argb >>> 24;
+                int r = SRGBtoLinearRGB[(argb >> 16) & 0xff];
+                int g = SRGBtoLinearRGB[(argb >>  8) & 0xff];
+                int b = SRGBtoLinearRGB[(argb      ) & 0xff];
+                normalizedColors[i] = new Color(r, g, b, a);
+            }
+        } else {
+            // we can just use this array by reference since we do not
+            // modify its values in the case of SRGB
+            normalizedColors = colors;
+        }
+
+        // this will store the intervals (distances) between gradient stops
+        normalizedIntervals = new float[fractions.length-1];
+
+        // convert from fractions into intervals
+        for (int i = 0; i < normalizedIntervals.length; i++) {
+            // interval distance is equal to the difference in positions
+            normalizedIntervals[i] = this.fractions[i+1] - this.fractions[i];
+        }
+
+        // initialize to be fully opaque for ANDing with colors
+        transparencyTest = 0xff000000;
+
+        // array of interpolation arrays
+        gradients = new int[normalizedIntervals.length][];
+
+        // find smallest interval
+        float Imin = 1;
+        for (int i = 0; i < normalizedIntervals.length; i++) {
+            Imin = (Imin > normalizedIntervals[i]) ?
+                normalizedIntervals[i] : Imin;
+        }
+
+        // Estimate the size of the entire gradients array.
+        // This is to prevent a tiny interval from causing the size of array
+        // to explode.  If the estimated size is too large, break to using
+        // separate arrays for each interval, and using an indexing scheme at
+        // look-up time.
+        int estimatedSize = 0;
+        for (int i = 0; i < normalizedIntervals.length; i++) {
+            estimatedSize += (normalizedIntervals[i]/Imin) * GRADIENT_SIZE;
+        }
+
+        if (estimatedSize > MAX_GRADIENT_ARRAY_SIZE) {
+            // slow method
+            calculateMultipleArrayGradient(normalizedColors);
+        } else {
+            // fast method
+            calculateSingleArrayGradient(normalizedColors, Imin);
+        }
+
+        // use the most "economical" model
+        if ((transparencyTest >>> 24) == 0xff) {
+            model = xrgbmodel;
+        } else {
+            model = ColorModel.getRGBdefault();
+        }
+    }
+
+    /**
+     * FAST LOOKUP METHOD
+     *
+     * This method calculates the gradient color values and places them in a
+     * single int array, gradient[].  It does this by allocating space for
+     * each interval based on its size relative to the smallest interval in
+     * the array.  The smallest interval is allocated 255 interpolated values
+     * (the maximum number of unique in-between colors in a 24 bit color
+     * system), and all other intervals are allocated
+     * size = (255 * the ratio of their size to the smallest interval).
+     *
+     * This scheme expedites a speedy retrieval because the colors are
+     * distributed along the array according to their user-specified
+     * distribution.  All that is needed is a relative index from 0 to 1.
+     *
+     * The only problem with this method is that the possibility exists for
+     * the array size to balloon in the case where there is a
+     * disproportionately small gradient interval.  In this case the other
+     * intervals will be allocated huge space, but much of that data is
+     * redundant.  We thus need to use the space conserving scheme below.
+     *
+     * @param Imin the size of the smallest interval
+     */
+    private void calculateSingleArrayGradient(Color[] colors, float Imin) {
+        // set the flag so we know later it is a simple (fast) lookup
+        isSimpleLookup = true;
+
+        // 2 colors to interpolate
+        int rgb1, rgb2;
+
+        //the eventual size of the single array
+        int gradientsTot = 1;
+
+        // for every interval (transition between 2 colors)
+        for (int i = 0; i < gradients.length; i++) {
+            // create an array whose size is based on the ratio to the
+            // smallest interval
+            int nGradients = (int)((normalizedIntervals[i]/Imin)*255f);
+            gradientsTot += nGradients;
+            gradients[i] = new int[nGradients];
+
+            // the 2 colors (keyframes) to interpolate between
+            rgb1 = colors[i].getRGB();
+            rgb2 = colors[i+1].getRGB();
+
+            // fill this array with the colors in between rgb1 and rgb2
+            interpolate(rgb1, rgb2, gradients[i]);
+
+            // if the colors are opaque, transparency should still
+            // be 0xff000000
+            transparencyTest &= rgb1;
+            transparencyTest &= rgb2;
+        }
+
+        // put all gradients in a single array
+        gradient = new int[gradientsTot];
+        int curOffset = 0;
+        for (int i = 0; i < gradients.length; i++){
+            System.arraycopy(gradients[i], 0, gradient,
+                             curOffset, gradients[i].length);
+            curOffset += gradients[i].length;
+        }
+        gradient[gradient.length-1] = colors[colors.length-1].getRGB();
+
+        // if interpolation occurred in Linear RGB space, convert the
+        // gradients back to sRGB using the lookup table
+        if (colorSpace == ColorSpaceType.LINEAR_RGB) {
+            for (int i = 0; i < gradient.length; i++) {
+                gradient[i] = convertEntireColorLinearRGBtoSRGB(gradient[i]);
+            }
+        }
+
+        fastGradientArraySize = gradient.length - 1;
+    }
+
+    /**
+     * SLOW LOOKUP METHOD
+     *
+     * This method calculates the gradient color values for each interval and
+     * places each into its own 255 size array.  The arrays are stored in
+     * gradients[][].  (255 is used because this is the maximum number of
+     * unique colors between 2 arbitrary colors in a 24 bit color system.)
+     *
+     * This method uses the minimum amount of space (only 255 * number of
+     * intervals), but it aggravates the lookup procedure, because now we
+     * have to find out which interval to select, then calculate the index
+     * within that interval.  This causes a significant performance hit,
+     * because it requires this calculation be done for every point in
+     * the rendering loop.
+     *
+     * For those of you who are interested, this is a classic example of the
+     * time-space tradeoff.
+     */
+    private void calculateMultipleArrayGradient(Color[] colors) {
+        // set the flag so we know later it is a non-simple lookup
+        isSimpleLookup = false;
+
+        // 2 colors to interpolate
+        int rgb1, rgb2;
+
+        // for every interval (transition between 2 colors)
+        for (int i = 0; i < gradients.length; i++){
+            // create an array of the maximum theoretical size for
+            // each interval
+            gradients[i] = new int[GRADIENT_SIZE];
+
+            // get the the 2 colors
+            rgb1 = colors[i].getRGB();
+            rgb2 = colors[i+1].getRGB();
+
+            // fill this array with the colors in between rgb1 and rgb2
+            interpolate(rgb1, rgb2, gradients[i]);
+
+            // if the colors are opaque, transparency should still
+            // be 0xff000000
+            transparencyTest &= rgb1;
+            transparencyTest &= rgb2;
+        }
+
+        // if interpolation occurred in Linear RGB space, convert the
+        // gradients back to SRGB using the lookup table
+        if (colorSpace == ColorSpaceType.LINEAR_RGB) {
+            for (int j = 0; j < gradients.length; j++) {
+                for (int i = 0; i < gradients[j].length; i++) {
+                    gradients[j][i] =
+                        convertEntireColorLinearRGBtoSRGB(gradients[j][i]);
+                }
+            }
+        }
+    }
+
+    /**
+     * Yet another helper function.  This one linearly interpolates between
+     * 2 colors, filling up the output array.
+     *
+     * @param rgb1 the start color
+     * @param rgb2 the end color
+     * @param output the output array of colors; must not be null
+     */
+    private void interpolate(int rgb1, int rgb2, int[] output) {
+        // color components
+        int a1, r1, g1, b1, da, dr, dg, db;
+
+        // step between interpolated values
+        float stepSize = 1.0f / output.length;
+
+        // extract color components from packed integer
+        a1 = (rgb1 >> 24) & 0xff;
+        r1 = (rgb1 >> 16) & 0xff;
+        g1 = (rgb1 >>  8) & 0xff;
+        b1 = (rgb1      ) & 0xff;
+
+        // calculate the total change in alpha, red, green, blue
+        da = ((rgb2 >> 24) & 0xff) - a1;
+        dr = ((rgb2 >> 16) & 0xff) - r1;
+        dg = ((rgb2 >>  8) & 0xff) - g1;
+        db = ((rgb2      ) & 0xff) - b1;
+
+        // for each step in the interval calculate the in-between color by
+        // multiplying the normalized current position by the total color
+        // change (0.5 is added to prevent truncation round-off error)
+        for (int i = 0; i < output.length; i++) {
+            output[i] =
+                (((int) ((a1 + i * da * stepSize) + 0.5) << 24)) |
+                (((int) ((r1 + i * dr * stepSize) + 0.5) << 16)) |
+                (((int) ((g1 + i * dg * stepSize) + 0.5) <<  8)) |
+                (((int) ((b1 + i * db * stepSize) + 0.5)      ));
+        }
+    }
+
+    /**
+     * Yet another helper function.  This one extracts the color components
+     * of an integer RGB triple, converts them from LinearRGB to SRGB, then
+     * recompacts them into an int.
+     */
+    private int convertEntireColorLinearRGBtoSRGB(int rgb) {
+        // color components
+        int a1, r1, g1, b1;
+
+        // extract red, green, blue components
+        a1 = (rgb >> 24) & 0xff;
+        r1 = (rgb >> 16) & 0xff;
+        g1 = (rgb >>  8) & 0xff;
+        b1 = (rgb      ) & 0xff;
+
+        // use the lookup table
+        r1 = LinearRGBtoSRGB[r1];
+        g1 = LinearRGBtoSRGB[g1];
+        b1 = LinearRGBtoSRGB[b1];
+
+        // re-compact the components
+        return ((a1 << 24) |
+                (r1 << 16) |
+                (g1 <<  8) |
+                (b1      ));
+    }
+
+    /**
+     * Helper function to index into the gradients array.  This is necessary
+     * because each interval has an array of colors with uniform size 255.
+     * However, the color intervals are not necessarily of uniform length, so
+     * a conversion is required.
+     *
+     * @param position the unmanipulated position, which will be mapped
+     *                 into the range 0 to 1
+     * @returns integer color to display
+     */
+    protected final int indexIntoGradientsArrays(float position) {
+        // first, manipulate position value depending on the cycle method
+        if (cycleMethod == CycleMethod.NO_CYCLE) {
+            if (position > 1) {
+                // upper bound is 1
+                position = 1;
+            } else if (position < 0) {
+                // lower bound is 0
+                position = 0;
+            }
+        } else if (cycleMethod == CycleMethod.REPEAT) {
+            // get the fractional part
+            // (modulo behavior discards integer component)
+            position = position - (int)position;
+
+            //position should now be between -1 and 1
+            if (position < 0) {
+                // force it to be in the range 0-1
+                position = position + 1;
+            }
+        } else { // cycleMethod == CycleMethod.REFLECT
+            if (position < 0) {
+                // take absolute value
+                position = -position;
+            }
+
+            // get the integer part
+            int part = (int)position;
+
+            // get the fractional part
+            position = position - part;
+
+            if ((part & 1) == 1) {
+                // integer part is odd, get reflected color instead
+                position = 1 - position;
+            }
+        }
+
+        // now, get the color based on this 0-1 position...
+
+        if (isSimpleLookup) {
+            // easy to compute: just scale index by array size
+            return gradient[(int)(position * fastGradientArraySize)];
+        } else {
+            // more complicated computation, to save space
+
+            // for all the gradient interval arrays
+            for (int i = 0; i < gradients.length; i++) {
+                if (position < fractions[i+1]) {
+                    // this is the array we want
+                    float delta = position - fractions[i];
+
+                    // this is the interval we want
+                    int index = (int)((delta / normalizedIntervals[i])
+                                      * (GRADIENT_SIZE_INDEX));
+
+                    return gradients[i][index];
+                }
+            }
+        }
+
+        return gradients[gradients.length - 1][GRADIENT_SIZE_INDEX];
+    }
+
+    /**
+     * Helper function to convert a color component in sRGB space to linear
+     * RGB space.  Used to build a static lookup table.
+     */
+    private static int convertSRGBtoLinearRGB(int color) {
+        float input, output;
+
+        input = color / 255.0f;
+        if (input <= 0.04045f) {
+            output = input / 12.92f;
+        } else {
+            output = (float)Math.pow((input + 0.055) / 1.055, 2.4);
+        }
+
+        return Math.round(output * 255.0f);
+    }
+
+    /**
+     * Helper function to convert a color component in linear RGB space to
+     * SRGB space.  Used to build a static lookup table.
+     */
+    private static int convertLinearRGBtoSRGB(int color) {
+        float input, output;
+
+        input = color/255.0f;
+        if (input <= 0.0031308) {
+            output = input * 12.92f;
+        } else {
+            output = (1.055f *
+                ((float) Math.pow(input, (1.0 / 2.4)))) - 0.055f;
+        }
+
+        return Math.round(output * 255.0f);
+    }
+
+    /**
+     * {@inheritDoc}
+     */
+    public final Raster getRaster(int x, int y, int w, int h) {
+        // If working raster is big enough, reuse it. Otherwise,
+        // build a large enough new one.
+        Raster raster = saved;
+        if (raster == null ||
+            raster.getWidth() < w || raster.getHeight() < h)
+        {
+            raster = getCachedRaster(model, w, h);
+            saved = raster;
+        }
+
+        // Access raster internal int array. Because we use a DirectColorModel,
+        // we know the DataBuffer is of type DataBufferInt and the SampleModel
+        // is SinglePixelPackedSampleModel.
+        // Adjust for initial offset in DataBuffer and also for the scanline
+        // stride.
+        // These calls make the DataBuffer non-acceleratable, but the
+        // Raster is never Stable long enough to accelerate anyway...
+        DataBufferInt rasterDB = (DataBufferInt)raster.getDataBuffer();
+        int[] pixels = rasterDB.getData(0);
+        int off = rasterDB.getOffset();
+        int scanlineStride = ((SinglePixelPackedSampleModel)
+                              raster.getSampleModel()).getScanlineStride();
+        int adjust = scanlineStride - w;
+
+        fillRaster(pixels, off, adjust, x, y, w, h); // delegate to subclass
+
+        return raster;
+    }
+
+    protected abstract void fillRaster(int pixels[], int off, int adjust,
+                                       int x, int y, int w, int h);
+
+
+    /**
+     * Took this cacheRaster code from GradientPaint. It appears to recycle
+     * rasters for use by any other instance, as long as they are sufficiently
+     * large.
+     */
+    private static synchronized Raster getCachedRaster(ColorModel cm,
+                                                       int w, int h)
+    {
+        if (cm == cachedModel) {
+            if (cached != null) {
+                Raster ras = (Raster) cached.get();
+                if (ras != null &&
+                    ras.getWidth() >= w &&
+                    ras.getHeight() >= h)
+                {
+                    cached = null;
+                    return ras;
+                }
+            }
+        }
+        return cm.createCompatibleWritableRaster(w, h);
+    }
+
+    /**
+     * Took this cacheRaster code from GradientPaint. It appears to recycle
+     * rasters for use by any other instance, as long as they are sufficiently
+     * large.
+     */
+    private static synchronized void putCachedRaster(ColorModel cm,
+                                                     Raster ras)
+    {
+        if (cached != null) {
+            Raster cras = (Raster) cached.get();
+            if (cras != null) {
+                int cw = cras.getWidth();
+                int ch = cras.getHeight();
+                int iw = ras.getWidth();
+                int ih = ras.getHeight();
+                if (cw >= iw && ch >= ih) {
+                    return;
+                }
+                if (cw * ch >= iw * ih) {
+                    return;
+                }
+            }
+        }
+        cachedModel = cm;
+        cached = new WeakReference<Raster>(ras);
+    }
+
+    /**
+     * {@inheritDoc}
+     */
+    public final void dispose() {
+        if (saved != null) {
+            putCachedRaster(model, saved);
+            saved = null;
+        }
+    }
+
+    /**
+     * {@inheritDoc}
+     */
+    public final ColorModel getColorModel() {
+        return model;
+    }
+}