diff -r fd16c54261b3 -r 90ce3da70b43 jdk/src/share/classes/java/awt/MultipleGradientPaintContext.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/jdk/src/share/classes/java/awt/MultipleGradientPaintContext.java Sat Dec 01 00:00:00 2007 +0000 @@ -0,0 +1,724 @@ +/* + * Copyright 2006-2007 Sun Microsystems, Inc. All Rights Reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Sun designates this + * particular file as subject to the "Classpath" exception as provided + * by Sun in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, + * CA 95054 USA or visit www.sun.com if you need additional information or + * have any questions. + */ + +package java.awt; + +import java.awt.MultipleGradientPaint.CycleMethod; +import java.awt.MultipleGradientPaint.ColorSpaceType; +import java.awt.color.ColorSpace; +import java.awt.geom.AffineTransform; +import java.awt.geom.NoninvertibleTransformException; +import java.awt.geom.Rectangle2D; +import java.awt.image.ColorModel; +import java.awt.image.DataBuffer; +import java.awt.image.DataBufferInt; +import java.awt.image.DirectColorModel; +import java.awt.image.Raster; +import java.awt.image.SinglePixelPackedSampleModel; +import java.awt.image.WritableRaster; +import java.lang.ref.SoftReference; +import java.lang.ref.WeakReference; +import java.util.Arrays; + +/** + * This is the superclass for all PaintContexts which use a multiple color + * gradient to fill in their raster. It provides the actual color + * interpolation functionality. Subclasses only have to deal with using + * the gradient to fill pixels in a raster. + * + * @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans + */ +abstract class MultipleGradientPaintContext implements PaintContext { + + /** + * The PaintContext's ColorModel. This is ARGB if colors are not all + * opaque, otherwise it is RGB. + */ + protected ColorModel model; + + /** Color model used if gradient colors are all opaque. */ + private static ColorModel xrgbmodel = + new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff); + + /** The cached ColorModel. */ + protected static ColorModel cachedModel; + + /** The cached raster, which is reusable among instances. */ + protected static WeakReference cached; + + /** Raster is reused whenever possible. */ + protected Raster saved; + + /** The method to use when painting out of the gradient bounds. */ + protected CycleMethod cycleMethod; + + /** The ColorSpace in which to perform the interpolation */ + protected ColorSpaceType colorSpace; + + /** Elements of the inverse transform matrix. */ + protected float a00, a01, a10, a11, a02, a12; + + /** + * This boolean specifies wether we are in simple lookup mode, where an + * input value between 0 and 1 may be used to directly index into a single + * array of gradient colors. If this boolean value is false, then we have + * to use a 2-step process where we have to determine which gradient array + * we fall into, then determine the index into that array. + */ + protected boolean isSimpleLookup; + + /** + * Size of gradients array for scaling the 0-1 index when looking up + * colors the fast way. + */ + protected int fastGradientArraySize; + + /** + * Array which contains the interpolated color values for each interval, + * used by calculateSingleArrayGradient(). It is protected for possible + * direct access by subclasses. + */ + protected int[] gradient; + + /** + * Array of gradient arrays, one array for each interval. Used by + * calculateMultipleArrayGradient(). + */ + private int[][] gradients; + + /** Normalized intervals array. */ + private float[] normalizedIntervals; + + /** Fractions array. */ + private float[] fractions; + + /** Used to determine if gradient colors are all opaque. */ + private int transparencyTest; + + /** Color space conversion lookup tables. */ + private static final int SRGBtoLinearRGB[] = new int[256]; + private static final int LinearRGBtoSRGB[] = new int[256]; + + static { + // build the tables + for (int k = 0; k < 256; k++) { + SRGBtoLinearRGB[k] = convertSRGBtoLinearRGB(k); + LinearRGBtoSRGB[k] = convertLinearRGBtoSRGB(k); + } + } + + /** + * Constant number of max colors between any 2 arbitrary colors. + * Used for creating and indexing gradients arrays. + */ + protected static final int GRADIENT_SIZE = 256; + protected static final int GRADIENT_SIZE_INDEX = GRADIENT_SIZE -1; + + /** + * Maximum length of the fast single-array. If the estimated array size + * is greater than this, switch over to the slow lookup method. + * No particular reason for choosing this number, but it seems to provide + * satisfactory performance for the common case (fast lookup). + */ + private static final int MAX_GRADIENT_ARRAY_SIZE = 5000; + + /** + * Constructor for MultipleGradientPaintContext superclass. + */ + protected MultipleGradientPaintContext(MultipleGradientPaint mgp, + ColorModel cm, + Rectangle deviceBounds, + Rectangle2D userBounds, + AffineTransform t, + RenderingHints hints, + float[] fractions, + Color[] colors, + CycleMethod cycleMethod, + ColorSpaceType colorSpace) + { + if (deviceBounds == null) { + throw new NullPointerException("Device bounds cannot be null"); + } + + if (userBounds == null) { + throw new NullPointerException("User bounds cannot be null"); + } + + if (t == null) { + throw new NullPointerException("Transform cannot be null"); + } + + if (hints == null) { + throw new NullPointerException("RenderingHints cannot be null"); + } + + // The inverse transform is needed to go from device to user space. + // Get all the components of the inverse transform matrix. + AffineTransform tInv; + try { + // the following assumes that the caller has copied the incoming + // transform and is not concerned about it being modified + t.invert(); + tInv = t; + } catch (NoninvertibleTransformException e) { + // just use identity transform in this case; better to show + // (incorrect) results than to throw an exception and/or no-op + tInv = new AffineTransform(); + } + double m[] = new double[6]; + tInv.getMatrix(m); + a00 = (float)m[0]; + a10 = (float)m[1]; + a01 = (float)m[2]; + a11 = (float)m[3]; + a02 = (float)m[4]; + a12 = (float)m[5]; + + // copy some flags + this.cycleMethod = cycleMethod; + this.colorSpace = colorSpace; + + // we can avoid copying this array since we do not modify its values + this.fractions = fractions; + + // note that only one of these values can ever be non-null (we either + // store the fast gradient array or the slow one, but never both + // at the same time) + int[] gradient = + (mgp.gradient != null) ? mgp.gradient.get() : null; + int[][] gradients = + (mgp.gradients != null) ? mgp.gradients.get() : null; + + if (gradient == null && gradients == null) { + // we need to (re)create the appropriate values + calculateLookupData(colors); + + // now cache the calculated values in the + // MultipleGradientPaint instance for future use + mgp.model = this.model; + mgp.normalizedIntervals = this.normalizedIntervals; + mgp.isSimpleLookup = this.isSimpleLookup; + if (isSimpleLookup) { + // only cache the fast array + mgp.fastGradientArraySize = this.fastGradientArraySize; + mgp.gradient = new SoftReference(this.gradient); + } else { + // only cache the slow array + mgp.gradients = new SoftReference(this.gradients); + } + } else { + // use the values cached in the MultipleGradientPaint instance + this.model = mgp.model; + this.normalizedIntervals = mgp.normalizedIntervals; + this.isSimpleLookup = mgp.isSimpleLookup; + this.gradient = gradient; + this.fastGradientArraySize = mgp.fastGradientArraySize; + this.gradients = gradients; + } + } + + /** + * This function is the meat of this class. It calculates an array of + * gradient colors based on an array of fractions and color values at + * those fractions. + */ + private void calculateLookupData(Color[] colors) { + Color[] normalizedColors; + if (colorSpace == ColorSpaceType.LINEAR_RGB) { + // create a new colors array + normalizedColors = new Color[colors.length]; + // convert the colors using the lookup table + for (int i = 0; i < colors.length; i++) { + int argb = colors[i].getRGB(); + int a = argb >>> 24; + int r = SRGBtoLinearRGB[(argb >> 16) & 0xff]; + int g = SRGBtoLinearRGB[(argb >> 8) & 0xff]; + int b = SRGBtoLinearRGB[(argb ) & 0xff]; + normalizedColors[i] = new Color(r, g, b, a); + } + } else { + // we can just use this array by reference since we do not + // modify its values in the case of SRGB + normalizedColors = colors; + } + + // this will store the intervals (distances) between gradient stops + normalizedIntervals = new float[fractions.length-1]; + + // convert from fractions into intervals + for (int i = 0; i < normalizedIntervals.length; i++) { + // interval distance is equal to the difference in positions + normalizedIntervals[i] = this.fractions[i+1] - this.fractions[i]; + } + + // initialize to be fully opaque for ANDing with colors + transparencyTest = 0xff000000; + + // array of interpolation arrays + gradients = new int[normalizedIntervals.length][]; + + // find smallest interval + float Imin = 1; + for (int i = 0; i < normalizedIntervals.length; i++) { + Imin = (Imin > normalizedIntervals[i]) ? + normalizedIntervals[i] : Imin; + } + + // Estimate the size of the entire gradients array. + // This is to prevent a tiny interval from causing the size of array + // to explode. If the estimated size is too large, break to using + // separate arrays for each interval, and using an indexing scheme at + // look-up time. + int estimatedSize = 0; + for (int i = 0; i < normalizedIntervals.length; i++) { + estimatedSize += (normalizedIntervals[i]/Imin) * GRADIENT_SIZE; + } + + if (estimatedSize > MAX_GRADIENT_ARRAY_SIZE) { + // slow method + calculateMultipleArrayGradient(normalizedColors); + } else { + // fast method + calculateSingleArrayGradient(normalizedColors, Imin); + } + + // use the most "economical" model + if ((transparencyTest >>> 24) == 0xff) { + model = xrgbmodel; + } else { + model = ColorModel.getRGBdefault(); + } + } + + /** + * FAST LOOKUP METHOD + * + * This method calculates the gradient color values and places them in a + * single int array, gradient[]. It does this by allocating space for + * each interval based on its size relative to the smallest interval in + * the array. The smallest interval is allocated 255 interpolated values + * (the maximum number of unique in-between colors in a 24 bit color + * system), and all other intervals are allocated + * size = (255 * the ratio of their size to the smallest interval). + * + * This scheme expedites a speedy retrieval because the colors are + * distributed along the array according to their user-specified + * distribution. All that is needed is a relative index from 0 to 1. + * + * The only problem with this method is that the possibility exists for + * the array size to balloon in the case where there is a + * disproportionately small gradient interval. In this case the other + * intervals will be allocated huge space, but much of that data is + * redundant. We thus need to use the space conserving scheme below. + * + * @param Imin the size of the smallest interval + */ + private void calculateSingleArrayGradient(Color[] colors, float Imin) { + // set the flag so we know later it is a simple (fast) lookup + isSimpleLookup = true; + + // 2 colors to interpolate + int rgb1, rgb2; + + //the eventual size of the single array + int gradientsTot = 1; + + // for every interval (transition between 2 colors) + for (int i = 0; i < gradients.length; i++) { + // create an array whose size is based on the ratio to the + // smallest interval + int nGradients = (int)((normalizedIntervals[i]/Imin)*255f); + gradientsTot += nGradients; + gradients[i] = new int[nGradients]; + + // the 2 colors (keyframes) to interpolate between + rgb1 = colors[i].getRGB(); + rgb2 = colors[i+1].getRGB(); + + // fill this array with the colors in between rgb1 and rgb2 + interpolate(rgb1, rgb2, gradients[i]); + + // if the colors are opaque, transparency should still + // be 0xff000000 + transparencyTest &= rgb1; + transparencyTest &= rgb2; + } + + // put all gradients in a single array + gradient = new int[gradientsTot]; + int curOffset = 0; + for (int i = 0; i < gradients.length; i++){ + System.arraycopy(gradients[i], 0, gradient, + curOffset, gradients[i].length); + curOffset += gradients[i].length; + } + gradient[gradient.length-1] = colors[colors.length-1].getRGB(); + + // if interpolation occurred in Linear RGB space, convert the + // gradients back to sRGB using the lookup table + if (colorSpace == ColorSpaceType.LINEAR_RGB) { + for (int i = 0; i < gradient.length; i++) { + gradient[i] = convertEntireColorLinearRGBtoSRGB(gradient[i]); + } + } + + fastGradientArraySize = gradient.length - 1; + } + + /** + * SLOW LOOKUP METHOD + * + * This method calculates the gradient color values for each interval and + * places each into its own 255 size array. The arrays are stored in + * gradients[][]. (255 is used because this is the maximum number of + * unique colors between 2 arbitrary colors in a 24 bit color system.) + * + * This method uses the minimum amount of space (only 255 * number of + * intervals), but it aggravates the lookup procedure, because now we + * have to find out which interval to select, then calculate the index + * within that interval. This causes a significant performance hit, + * because it requires this calculation be done for every point in + * the rendering loop. + * + * For those of you who are interested, this is a classic example of the + * time-space tradeoff. + */ + private void calculateMultipleArrayGradient(Color[] colors) { + // set the flag so we know later it is a non-simple lookup + isSimpleLookup = false; + + // 2 colors to interpolate + int rgb1, rgb2; + + // for every interval (transition between 2 colors) + for (int i = 0; i < gradients.length; i++){ + // create an array of the maximum theoretical size for + // each interval + gradients[i] = new int[GRADIENT_SIZE]; + + // get the the 2 colors + rgb1 = colors[i].getRGB(); + rgb2 = colors[i+1].getRGB(); + + // fill this array with the colors in between rgb1 and rgb2 + interpolate(rgb1, rgb2, gradients[i]); + + // if the colors are opaque, transparency should still + // be 0xff000000 + transparencyTest &= rgb1; + transparencyTest &= rgb2; + } + + // if interpolation occurred in Linear RGB space, convert the + // gradients back to SRGB using the lookup table + if (colorSpace == ColorSpaceType.LINEAR_RGB) { + for (int j = 0; j < gradients.length; j++) { + for (int i = 0; i < gradients[j].length; i++) { + gradients[j][i] = + convertEntireColorLinearRGBtoSRGB(gradients[j][i]); + } + } + } + } + + /** + * Yet another helper function. This one linearly interpolates between + * 2 colors, filling up the output array. + * + * @param rgb1 the start color + * @param rgb2 the end color + * @param output the output array of colors; must not be null + */ + private void interpolate(int rgb1, int rgb2, int[] output) { + // color components + int a1, r1, g1, b1, da, dr, dg, db; + + // step between interpolated values + float stepSize = 1.0f / output.length; + + // extract color components from packed integer + a1 = (rgb1 >> 24) & 0xff; + r1 = (rgb1 >> 16) & 0xff; + g1 = (rgb1 >> 8) & 0xff; + b1 = (rgb1 ) & 0xff; + + // calculate the total change in alpha, red, green, blue + da = ((rgb2 >> 24) & 0xff) - a1; + dr = ((rgb2 >> 16) & 0xff) - r1; + dg = ((rgb2 >> 8) & 0xff) - g1; + db = ((rgb2 ) & 0xff) - b1; + + // for each step in the interval calculate the in-between color by + // multiplying the normalized current position by the total color + // change (0.5 is added to prevent truncation round-off error) + for (int i = 0; i < output.length; i++) { + output[i] = + (((int) ((a1 + i * da * stepSize) + 0.5) << 24)) | + (((int) ((r1 + i * dr * stepSize) + 0.5) << 16)) | + (((int) ((g1 + i * dg * stepSize) + 0.5) << 8)) | + (((int) ((b1 + i * db * stepSize) + 0.5) )); + } + } + + /** + * Yet another helper function. This one extracts the color components + * of an integer RGB triple, converts them from LinearRGB to SRGB, then + * recompacts them into an int. + */ + private int convertEntireColorLinearRGBtoSRGB(int rgb) { + // color components + int a1, r1, g1, b1; + + // extract red, green, blue components + a1 = (rgb >> 24) & 0xff; + r1 = (rgb >> 16) & 0xff; + g1 = (rgb >> 8) & 0xff; + b1 = (rgb ) & 0xff; + + // use the lookup table + r1 = LinearRGBtoSRGB[r1]; + g1 = LinearRGBtoSRGB[g1]; + b1 = LinearRGBtoSRGB[b1]; + + // re-compact the components + return ((a1 << 24) | + (r1 << 16) | + (g1 << 8) | + (b1 )); + } + + /** + * Helper function to index into the gradients array. This is necessary + * because each interval has an array of colors with uniform size 255. + * However, the color intervals are not necessarily of uniform length, so + * a conversion is required. + * + * @param position the unmanipulated position, which will be mapped + * into the range 0 to 1 + * @returns integer color to display + */ + protected final int indexIntoGradientsArrays(float position) { + // first, manipulate position value depending on the cycle method + if (cycleMethod == CycleMethod.NO_CYCLE) { + if (position > 1) { + // upper bound is 1 + position = 1; + } else if (position < 0) { + // lower bound is 0 + position = 0; + } + } else if (cycleMethod == CycleMethod.REPEAT) { + // get the fractional part + // (modulo behavior discards integer component) + position = position - (int)position; + + //position should now be between -1 and 1 + if (position < 0) { + // force it to be in the range 0-1 + position = position + 1; + } + } else { // cycleMethod == CycleMethod.REFLECT + if (position < 0) { + // take absolute value + position = -position; + } + + // get the integer part + int part = (int)position; + + // get the fractional part + position = position - part; + + if ((part & 1) == 1) { + // integer part is odd, get reflected color instead + position = 1 - position; + } + } + + // now, get the color based on this 0-1 position... + + if (isSimpleLookup) { + // easy to compute: just scale index by array size + return gradient[(int)(position * fastGradientArraySize)]; + } else { + // more complicated computation, to save space + + // for all the gradient interval arrays + for (int i = 0; i < gradients.length; i++) { + if (position < fractions[i+1]) { + // this is the array we want + float delta = position - fractions[i]; + + // this is the interval we want + int index = (int)((delta / normalizedIntervals[i]) + * (GRADIENT_SIZE_INDEX)); + + return gradients[i][index]; + } + } + } + + return gradients[gradients.length - 1][GRADIENT_SIZE_INDEX]; + } + + /** + * Helper function to convert a color component in sRGB space to linear + * RGB space. Used to build a static lookup table. + */ + private static int convertSRGBtoLinearRGB(int color) { + float input, output; + + input = color / 255.0f; + if (input <= 0.04045f) { + output = input / 12.92f; + } else { + output = (float)Math.pow((input + 0.055) / 1.055, 2.4); + } + + return Math.round(output * 255.0f); + } + + /** + * Helper function to convert a color component in linear RGB space to + * SRGB space. Used to build a static lookup table. + */ + private static int convertLinearRGBtoSRGB(int color) { + float input, output; + + input = color/255.0f; + if (input <= 0.0031308) { + output = input * 12.92f; + } else { + output = (1.055f * + ((float) Math.pow(input, (1.0 / 2.4)))) - 0.055f; + } + + return Math.round(output * 255.0f); + } + + /** + * {@inheritDoc} + */ + public final Raster getRaster(int x, int y, int w, int h) { + // If working raster is big enough, reuse it. Otherwise, + // build a large enough new one. + Raster raster = saved; + if (raster == null || + raster.getWidth() < w || raster.getHeight() < h) + { + raster = getCachedRaster(model, w, h); + saved = raster; + } + + // Access raster internal int array. Because we use a DirectColorModel, + // we know the DataBuffer is of type DataBufferInt and the SampleModel + // is SinglePixelPackedSampleModel. + // Adjust for initial offset in DataBuffer and also for the scanline + // stride. + // These calls make the DataBuffer non-acceleratable, but the + // Raster is never Stable long enough to accelerate anyway... + DataBufferInt rasterDB = (DataBufferInt)raster.getDataBuffer(); + int[] pixels = rasterDB.getData(0); + int off = rasterDB.getOffset(); + int scanlineStride = ((SinglePixelPackedSampleModel) + raster.getSampleModel()).getScanlineStride(); + int adjust = scanlineStride - w; + + fillRaster(pixels, off, adjust, x, y, w, h); // delegate to subclass + + return raster; + } + + protected abstract void fillRaster(int pixels[], int off, int adjust, + int x, int y, int w, int h); + + + /** + * Took this cacheRaster code from GradientPaint. It appears to recycle + * rasters for use by any other instance, as long as they are sufficiently + * large. + */ + private static synchronized Raster getCachedRaster(ColorModel cm, + int w, int h) + { + if (cm == cachedModel) { + if (cached != null) { + Raster ras = (Raster) cached.get(); + if (ras != null && + ras.getWidth() >= w && + ras.getHeight() >= h) + { + cached = null; + return ras; + } + } + } + return cm.createCompatibleWritableRaster(w, h); + } + + /** + * Took this cacheRaster code from GradientPaint. It appears to recycle + * rasters for use by any other instance, as long as they are sufficiently + * large. + */ + private static synchronized void putCachedRaster(ColorModel cm, + Raster ras) + { + if (cached != null) { + Raster cras = (Raster) cached.get(); + if (cras != null) { + int cw = cras.getWidth(); + int ch = cras.getHeight(); + int iw = ras.getWidth(); + int ih = ras.getHeight(); + if (cw >= iw && ch >= ih) { + return; + } + if (cw * ch >= iw * ih) { + return; + } + } + } + cachedModel = cm; + cached = new WeakReference(ras); + } + + /** + * {@inheritDoc} + */ + public final void dispose() { + if (saved != null) { + putCachedRaster(model, saved); + saved = null; + } + } + + /** + * {@inheritDoc} + */ + public final ColorModel getColorModel() { + return model; + } +}