jdk/src/share/classes/java/awt/MultipleGradientPaintContext.java
changeset 2 90ce3da70b43
child 5506 202f599c92aa
equal deleted inserted replaced
0:fd16c54261b3 2:90ce3da70b43
       
     1 /*
       
     2  * Copyright 2006-2007 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.  Sun designates this
       
     8  * particular file as subject to the "Classpath" exception as provided
       
     9  * by Sun in the LICENSE file that accompanied this code.
       
    10  *
       
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    14  * version 2 for more details (a copy is included in the LICENSE file that
       
    15  * accompanied this code).
       
    16  *
       
    17  * You should have received a copy of the GNU General Public License version
       
    18  * 2 along with this work; if not, write to the Free Software Foundation,
       
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    20  *
       
    21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    22  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    23  * have any questions.
       
    24  */
       
    25 
       
    26 package java.awt;
       
    27 
       
    28 import java.awt.MultipleGradientPaint.CycleMethod;
       
    29 import java.awt.MultipleGradientPaint.ColorSpaceType;
       
    30 import java.awt.color.ColorSpace;
       
    31 import java.awt.geom.AffineTransform;
       
    32 import java.awt.geom.NoninvertibleTransformException;
       
    33 import java.awt.geom.Rectangle2D;
       
    34 import java.awt.image.ColorModel;
       
    35 import java.awt.image.DataBuffer;
       
    36 import java.awt.image.DataBufferInt;
       
    37 import java.awt.image.DirectColorModel;
       
    38 import java.awt.image.Raster;
       
    39 import java.awt.image.SinglePixelPackedSampleModel;
       
    40 import java.awt.image.WritableRaster;
       
    41 import java.lang.ref.SoftReference;
       
    42 import java.lang.ref.WeakReference;
       
    43 import java.util.Arrays;
       
    44 
       
    45 /**
       
    46  * This is the superclass for all PaintContexts which use a multiple color
       
    47  * gradient to fill in their raster.  It provides the actual color
       
    48  * interpolation functionality.  Subclasses only have to deal with using
       
    49  * the gradient to fill pixels in a raster.
       
    50  *
       
    51  * @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans
       
    52  */
       
    53 abstract class MultipleGradientPaintContext implements PaintContext {
       
    54 
       
    55     /**
       
    56      * The PaintContext's ColorModel.  This is ARGB if colors are not all
       
    57      * opaque, otherwise it is RGB.
       
    58      */
       
    59     protected ColorModel model;
       
    60 
       
    61     /** Color model used if gradient colors are all opaque. */
       
    62     private static ColorModel xrgbmodel =
       
    63         new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff);
       
    64 
       
    65     /** The cached ColorModel. */
       
    66     protected static ColorModel cachedModel;
       
    67 
       
    68     /** The cached raster, which is reusable among instances. */
       
    69     protected static WeakReference<Raster> cached;
       
    70 
       
    71     /** Raster is reused whenever possible. */
       
    72     protected Raster saved;
       
    73 
       
    74     /** The method to use when painting out of the gradient bounds. */
       
    75     protected CycleMethod cycleMethod;
       
    76 
       
    77     /** The ColorSpace in which to perform the interpolation */
       
    78     protected ColorSpaceType colorSpace;
       
    79 
       
    80     /** Elements of the inverse transform matrix. */
       
    81     protected float a00, a01, a10, a11, a02, a12;
       
    82 
       
    83     /**
       
    84      * This boolean specifies wether we are in simple lookup mode, where an
       
    85      * input value between 0 and 1 may be used to directly index into a single
       
    86      * array of gradient colors.  If this boolean value is false, then we have
       
    87      * to use a 2-step process where we have to determine which gradient array
       
    88      * we fall into, then determine the index into that array.
       
    89      */
       
    90     protected boolean isSimpleLookup;
       
    91 
       
    92     /**
       
    93      * Size of gradients array for scaling the 0-1 index when looking up
       
    94      * colors the fast way.
       
    95      */
       
    96     protected int fastGradientArraySize;
       
    97 
       
    98     /**
       
    99      * Array which contains the interpolated color values for each interval,
       
   100      * used by calculateSingleArrayGradient().  It is protected for possible
       
   101      * direct access by subclasses.
       
   102      */
       
   103     protected int[] gradient;
       
   104 
       
   105     /**
       
   106      * Array of gradient arrays, one array for each interval.  Used by
       
   107      * calculateMultipleArrayGradient().
       
   108      */
       
   109     private int[][] gradients;
       
   110 
       
   111     /** Normalized intervals array. */
       
   112     private float[] normalizedIntervals;
       
   113 
       
   114     /** Fractions array. */
       
   115     private float[] fractions;
       
   116 
       
   117     /** Used to determine if gradient colors are all opaque. */
       
   118     private int transparencyTest;
       
   119 
       
   120     /** Color space conversion lookup tables. */
       
   121     private static final int SRGBtoLinearRGB[] = new int[256];
       
   122     private static final int LinearRGBtoSRGB[] = new int[256];
       
   123 
       
   124     static {
       
   125         // build the tables
       
   126         for (int k = 0; k < 256; k++) {
       
   127             SRGBtoLinearRGB[k] = convertSRGBtoLinearRGB(k);
       
   128             LinearRGBtoSRGB[k] = convertLinearRGBtoSRGB(k);
       
   129         }
       
   130     }
       
   131 
       
   132     /**
       
   133      * Constant number of max colors between any 2 arbitrary colors.
       
   134      * Used for creating and indexing gradients arrays.
       
   135      */
       
   136     protected static final int GRADIENT_SIZE = 256;
       
   137     protected static final int GRADIENT_SIZE_INDEX = GRADIENT_SIZE -1;
       
   138 
       
   139     /**
       
   140      * Maximum length of the fast single-array.  If the estimated array size
       
   141      * is greater than this, switch over to the slow lookup method.
       
   142      * No particular reason for choosing this number, but it seems to provide
       
   143      * satisfactory performance for the common case (fast lookup).
       
   144      */
       
   145     private static final int MAX_GRADIENT_ARRAY_SIZE = 5000;
       
   146 
       
   147     /**
       
   148      * Constructor for MultipleGradientPaintContext superclass.
       
   149      */
       
   150     protected MultipleGradientPaintContext(MultipleGradientPaint mgp,
       
   151                                            ColorModel cm,
       
   152                                            Rectangle deviceBounds,
       
   153                                            Rectangle2D userBounds,
       
   154                                            AffineTransform t,
       
   155                                            RenderingHints hints,
       
   156                                            float[] fractions,
       
   157                                            Color[] colors,
       
   158                                            CycleMethod cycleMethod,
       
   159                                            ColorSpaceType colorSpace)
       
   160     {
       
   161         if (deviceBounds == null) {
       
   162             throw new NullPointerException("Device bounds cannot be null");
       
   163         }
       
   164 
       
   165         if (userBounds == null) {
       
   166             throw new NullPointerException("User bounds cannot be null");
       
   167         }
       
   168 
       
   169         if (t == null) {
       
   170             throw new NullPointerException("Transform cannot be null");
       
   171         }
       
   172 
       
   173         if (hints == null) {
       
   174             throw new NullPointerException("RenderingHints cannot be null");
       
   175         }
       
   176 
       
   177         // The inverse transform is needed to go from device to user space.
       
   178         // Get all the components of the inverse transform matrix.
       
   179         AffineTransform tInv;
       
   180         try {
       
   181             // the following assumes that the caller has copied the incoming
       
   182             // transform and is not concerned about it being modified
       
   183             t.invert();
       
   184             tInv = t;
       
   185         } catch (NoninvertibleTransformException e) {
       
   186             // just use identity transform in this case; better to show
       
   187             // (incorrect) results than to throw an exception and/or no-op
       
   188             tInv = new AffineTransform();
       
   189         }
       
   190         double m[] = new double[6];
       
   191         tInv.getMatrix(m);
       
   192         a00 = (float)m[0];
       
   193         a10 = (float)m[1];
       
   194         a01 = (float)m[2];
       
   195         a11 = (float)m[3];
       
   196         a02 = (float)m[4];
       
   197         a12 = (float)m[5];
       
   198 
       
   199         // copy some flags
       
   200         this.cycleMethod = cycleMethod;
       
   201         this.colorSpace = colorSpace;
       
   202 
       
   203         // we can avoid copying this array since we do not modify its values
       
   204         this.fractions = fractions;
       
   205 
       
   206         // note that only one of these values can ever be non-null (we either
       
   207         // store the fast gradient array or the slow one, but never both
       
   208         // at the same time)
       
   209         int[] gradient =
       
   210             (mgp.gradient != null) ? mgp.gradient.get() : null;
       
   211         int[][] gradients =
       
   212             (mgp.gradients != null) ? mgp.gradients.get() : null;
       
   213 
       
   214         if (gradient == null && gradients == null) {
       
   215             // we need to (re)create the appropriate values
       
   216             calculateLookupData(colors);
       
   217 
       
   218             // now cache the calculated values in the
       
   219             // MultipleGradientPaint instance for future use
       
   220             mgp.model               = this.model;
       
   221             mgp.normalizedIntervals = this.normalizedIntervals;
       
   222             mgp.isSimpleLookup      = this.isSimpleLookup;
       
   223             if (isSimpleLookup) {
       
   224                 // only cache the fast array
       
   225                 mgp.fastGradientArraySize = this.fastGradientArraySize;
       
   226                 mgp.gradient = new SoftReference<int[]>(this.gradient);
       
   227             } else {
       
   228                 // only cache the slow array
       
   229                 mgp.gradients = new SoftReference<int[][]>(this.gradients);
       
   230             }
       
   231         } else {
       
   232             // use the values cached in the MultipleGradientPaint instance
       
   233             this.model                 = mgp.model;
       
   234             this.normalizedIntervals   = mgp.normalizedIntervals;
       
   235             this.isSimpleLookup        = mgp.isSimpleLookup;
       
   236             this.gradient              = gradient;
       
   237             this.fastGradientArraySize = mgp.fastGradientArraySize;
       
   238             this.gradients             = gradients;
       
   239         }
       
   240     }
       
   241 
       
   242     /**
       
   243      * This function is the meat of this class.  It calculates an array of
       
   244      * gradient colors based on an array of fractions and color values at
       
   245      * those fractions.
       
   246      */
       
   247     private void calculateLookupData(Color[] colors) {
       
   248         Color[] normalizedColors;
       
   249         if (colorSpace == ColorSpaceType.LINEAR_RGB) {
       
   250             // create a new colors array
       
   251             normalizedColors = new Color[colors.length];
       
   252             // convert the colors using the lookup table
       
   253             for (int i = 0; i < colors.length; i++) {
       
   254                 int argb = colors[i].getRGB();
       
   255                 int a = argb >>> 24;
       
   256                 int r = SRGBtoLinearRGB[(argb >> 16) & 0xff];
       
   257                 int g = SRGBtoLinearRGB[(argb >>  8) & 0xff];
       
   258                 int b = SRGBtoLinearRGB[(argb      ) & 0xff];
       
   259                 normalizedColors[i] = new Color(r, g, b, a);
       
   260             }
       
   261         } else {
       
   262             // we can just use this array by reference since we do not
       
   263             // modify its values in the case of SRGB
       
   264             normalizedColors = colors;
       
   265         }
       
   266 
       
   267         // this will store the intervals (distances) between gradient stops
       
   268         normalizedIntervals = new float[fractions.length-1];
       
   269 
       
   270         // convert from fractions into intervals
       
   271         for (int i = 0; i < normalizedIntervals.length; i++) {
       
   272             // interval distance is equal to the difference in positions
       
   273             normalizedIntervals[i] = this.fractions[i+1] - this.fractions[i];
       
   274         }
       
   275 
       
   276         // initialize to be fully opaque for ANDing with colors
       
   277         transparencyTest = 0xff000000;
       
   278 
       
   279         // array of interpolation arrays
       
   280         gradients = new int[normalizedIntervals.length][];
       
   281 
       
   282         // find smallest interval
       
   283         float Imin = 1;
       
   284         for (int i = 0; i < normalizedIntervals.length; i++) {
       
   285             Imin = (Imin > normalizedIntervals[i]) ?
       
   286                 normalizedIntervals[i] : Imin;
       
   287         }
       
   288 
       
   289         // Estimate the size of the entire gradients array.
       
   290         // This is to prevent a tiny interval from causing the size of array
       
   291         // to explode.  If the estimated size is too large, break to using
       
   292         // separate arrays for each interval, and using an indexing scheme at
       
   293         // look-up time.
       
   294         int estimatedSize = 0;
       
   295         for (int i = 0; i < normalizedIntervals.length; i++) {
       
   296             estimatedSize += (normalizedIntervals[i]/Imin) * GRADIENT_SIZE;
       
   297         }
       
   298 
       
   299         if (estimatedSize > MAX_GRADIENT_ARRAY_SIZE) {
       
   300             // slow method
       
   301             calculateMultipleArrayGradient(normalizedColors);
       
   302         } else {
       
   303             // fast method
       
   304             calculateSingleArrayGradient(normalizedColors, Imin);
       
   305         }
       
   306 
       
   307         // use the most "economical" model
       
   308         if ((transparencyTest >>> 24) == 0xff) {
       
   309             model = xrgbmodel;
       
   310         } else {
       
   311             model = ColorModel.getRGBdefault();
       
   312         }
       
   313     }
       
   314 
       
   315     /**
       
   316      * FAST LOOKUP METHOD
       
   317      *
       
   318      * This method calculates the gradient color values and places them in a
       
   319      * single int array, gradient[].  It does this by allocating space for
       
   320      * each interval based on its size relative to the smallest interval in
       
   321      * the array.  The smallest interval is allocated 255 interpolated values
       
   322      * (the maximum number of unique in-between colors in a 24 bit color
       
   323      * system), and all other intervals are allocated
       
   324      * size = (255 * the ratio of their size to the smallest interval).
       
   325      *
       
   326      * This scheme expedites a speedy retrieval because the colors are
       
   327      * distributed along the array according to their user-specified
       
   328      * distribution.  All that is needed is a relative index from 0 to 1.
       
   329      *
       
   330      * The only problem with this method is that the possibility exists for
       
   331      * the array size to balloon in the case where there is a
       
   332      * disproportionately small gradient interval.  In this case the other
       
   333      * intervals will be allocated huge space, but much of that data is
       
   334      * redundant.  We thus need to use the space conserving scheme below.
       
   335      *
       
   336      * @param Imin the size of the smallest interval
       
   337      */
       
   338     private void calculateSingleArrayGradient(Color[] colors, float Imin) {
       
   339         // set the flag so we know later it is a simple (fast) lookup
       
   340         isSimpleLookup = true;
       
   341 
       
   342         // 2 colors to interpolate
       
   343         int rgb1, rgb2;
       
   344 
       
   345         //the eventual size of the single array
       
   346         int gradientsTot = 1;
       
   347 
       
   348         // for every interval (transition between 2 colors)
       
   349         for (int i = 0; i < gradients.length; i++) {
       
   350             // create an array whose size is based on the ratio to the
       
   351             // smallest interval
       
   352             int nGradients = (int)((normalizedIntervals[i]/Imin)*255f);
       
   353             gradientsTot += nGradients;
       
   354             gradients[i] = new int[nGradients];
       
   355 
       
   356             // the 2 colors (keyframes) to interpolate between
       
   357             rgb1 = colors[i].getRGB();
       
   358             rgb2 = colors[i+1].getRGB();
       
   359 
       
   360             // fill this array with the colors in between rgb1 and rgb2
       
   361             interpolate(rgb1, rgb2, gradients[i]);
       
   362 
       
   363             // if the colors are opaque, transparency should still
       
   364             // be 0xff000000
       
   365             transparencyTest &= rgb1;
       
   366             transparencyTest &= rgb2;
       
   367         }
       
   368 
       
   369         // put all gradients in a single array
       
   370         gradient = new int[gradientsTot];
       
   371         int curOffset = 0;
       
   372         for (int i = 0; i < gradients.length; i++){
       
   373             System.arraycopy(gradients[i], 0, gradient,
       
   374                              curOffset, gradients[i].length);
       
   375             curOffset += gradients[i].length;
       
   376         }
       
   377         gradient[gradient.length-1] = colors[colors.length-1].getRGB();
       
   378 
       
   379         // if interpolation occurred in Linear RGB space, convert the
       
   380         // gradients back to sRGB using the lookup table
       
   381         if (colorSpace == ColorSpaceType.LINEAR_RGB) {
       
   382             for (int i = 0; i < gradient.length; i++) {
       
   383                 gradient[i] = convertEntireColorLinearRGBtoSRGB(gradient[i]);
       
   384             }
       
   385         }
       
   386 
       
   387         fastGradientArraySize = gradient.length - 1;
       
   388     }
       
   389 
       
   390     /**
       
   391      * SLOW LOOKUP METHOD
       
   392      *
       
   393      * This method calculates the gradient color values for each interval and
       
   394      * places each into its own 255 size array.  The arrays are stored in
       
   395      * gradients[][].  (255 is used because this is the maximum number of
       
   396      * unique colors between 2 arbitrary colors in a 24 bit color system.)
       
   397      *
       
   398      * This method uses the minimum amount of space (only 255 * number of
       
   399      * intervals), but it aggravates the lookup procedure, because now we
       
   400      * have to find out which interval to select, then calculate the index
       
   401      * within that interval.  This causes a significant performance hit,
       
   402      * because it requires this calculation be done for every point in
       
   403      * the rendering loop.
       
   404      *
       
   405      * For those of you who are interested, this is a classic example of the
       
   406      * time-space tradeoff.
       
   407      */
       
   408     private void calculateMultipleArrayGradient(Color[] colors) {
       
   409         // set the flag so we know later it is a non-simple lookup
       
   410         isSimpleLookup = false;
       
   411 
       
   412         // 2 colors to interpolate
       
   413         int rgb1, rgb2;
       
   414 
       
   415         // for every interval (transition between 2 colors)
       
   416         for (int i = 0; i < gradients.length; i++){
       
   417             // create an array of the maximum theoretical size for
       
   418             // each interval
       
   419             gradients[i] = new int[GRADIENT_SIZE];
       
   420 
       
   421             // get the the 2 colors
       
   422             rgb1 = colors[i].getRGB();
       
   423             rgb2 = colors[i+1].getRGB();
       
   424 
       
   425             // fill this array with the colors in between rgb1 and rgb2
       
   426             interpolate(rgb1, rgb2, gradients[i]);
       
   427 
       
   428             // if the colors are opaque, transparency should still
       
   429             // be 0xff000000
       
   430             transparencyTest &= rgb1;
       
   431             transparencyTest &= rgb2;
       
   432         }
       
   433 
       
   434         // if interpolation occurred in Linear RGB space, convert the
       
   435         // gradients back to SRGB using the lookup table
       
   436         if (colorSpace == ColorSpaceType.LINEAR_RGB) {
       
   437             for (int j = 0; j < gradients.length; j++) {
       
   438                 for (int i = 0; i < gradients[j].length; i++) {
       
   439                     gradients[j][i] =
       
   440                         convertEntireColorLinearRGBtoSRGB(gradients[j][i]);
       
   441                 }
       
   442             }
       
   443         }
       
   444     }
       
   445 
       
   446     /**
       
   447      * Yet another helper function.  This one linearly interpolates between
       
   448      * 2 colors, filling up the output array.
       
   449      *
       
   450      * @param rgb1 the start color
       
   451      * @param rgb2 the end color
       
   452      * @param output the output array of colors; must not be null
       
   453      */
       
   454     private void interpolate(int rgb1, int rgb2, int[] output) {
       
   455         // color components
       
   456         int a1, r1, g1, b1, da, dr, dg, db;
       
   457 
       
   458         // step between interpolated values
       
   459         float stepSize = 1.0f / output.length;
       
   460 
       
   461         // extract color components from packed integer
       
   462         a1 = (rgb1 >> 24) & 0xff;
       
   463         r1 = (rgb1 >> 16) & 0xff;
       
   464         g1 = (rgb1 >>  8) & 0xff;
       
   465         b1 = (rgb1      ) & 0xff;
       
   466 
       
   467         // calculate the total change in alpha, red, green, blue
       
   468         da = ((rgb2 >> 24) & 0xff) - a1;
       
   469         dr = ((rgb2 >> 16) & 0xff) - r1;
       
   470         dg = ((rgb2 >>  8) & 0xff) - g1;
       
   471         db = ((rgb2      ) & 0xff) - b1;
       
   472 
       
   473         // for each step in the interval calculate the in-between color by
       
   474         // multiplying the normalized current position by the total color
       
   475         // change (0.5 is added to prevent truncation round-off error)
       
   476         for (int i = 0; i < output.length; i++) {
       
   477             output[i] =
       
   478                 (((int) ((a1 + i * da * stepSize) + 0.5) << 24)) |
       
   479                 (((int) ((r1 + i * dr * stepSize) + 0.5) << 16)) |
       
   480                 (((int) ((g1 + i * dg * stepSize) + 0.5) <<  8)) |
       
   481                 (((int) ((b1 + i * db * stepSize) + 0.5)      ));
       
   482         }
       
   483     }
       
   484 
       
   485     /**
       
   486      * Yet another helper function.  This one extracts the color components
       
   487      * of an integer RGB triple, converts them from LinearRGB to SRGB, then
       
   488      * recompacts them into an int.
       
   489      */
       
   490     private int convertEntireColorLinearRGBtoSRGB(int rgb) {
       
   491         // color components
       
   492         int a1, r1, g1, b1;
       
   493 
       
   494         // extract red, green, blue components
       
   495         a1 = (rgb >> 24) & 0xff;
       
   496         r1 = (rgb >> 16) & 0xff;
       
   497         g1 = (rgb >>  8) & 0xff;
       
   498         b1 = (rgb      ) & 0xff;
       
   499 
       
   500         // use the lookup table
       
   501         r1 = LinearRGBtoSRGB[r1];
       
   502         g1 = LinearRGBtoSRGB[g1];
       
   503         b1 = LinearRGBtoSRGB[b1];
       
   504 
       
   505         // re-compact the components
       
   506         return ((a1 << 24) |
       
   507                 (r1 << 16) |
       
   508                 (g1 <<  8) |
       
   509                 (b1      ));
       
   510     }
       
   511 
       
   512     /**
       
   513      * Helper function to index into the gradients array.  This is necessary
       
   514      * because each interval has an array of colors with uniform size 255.
       
   515      * However, the color intervals are not necessarily of uniform length, so
       
   516      * a conversion is required.
       
   517      *
       
   518      * @param position the unmanipulated position, which will be mapped
       
   519      *                 into the range 0 to 1
       
   520      * @returns integer color to display
       
   521      */
       
   522     protected final int indexIntoGradientsArrays(float position) {
       
   523         // first, manipulate position value depending on the cycle method
       
   524         if (cycleMethod == CycleMethod.NO_CYCLE) {
       
   525             if (position > 1) {
       
   526                 // upper bound is 1
       
   527                 position = 1;
       
   528             } else if (position < 0) {
       
   529                 // lower bound is 0
       
   530                 position = 0;
       
   531             }
       
   532         } else if (cycleMethod == CycleMethod.REPEAT) {
       
   533             // get the fractional part
       
   534             // (modulo behavior discards integer component)
       
   535             position = position - (int)position;
       
   536 
       
   537             //position should now be between -1 and 1
       
   538             if (position < 0) {
       
   539                 // force it to be in the range 0-1
       
   540                 position = position + 1;
       
   541             }
       
   542         } else { // cycleMethod == CycleMethod.REFLECT
       
   543             if (position < 0) {
       
   544                 // take absolute value
       
   545                 position = -position;
       
   546             }
       
   547 
       
   548             // get the integer part
       
   549             int part = (int)position;
       
   550 
       
   551             // get the fractional part
       
   552             position = position - part;
       
   553 
       
   554             if ((part & 1) == 1) {
       
   555                 // integer part is odd, get reflected color instead
       
   556                 position = 1 - position;
       
   557             }
       
   558         }
       
   559 
       
   560         // now, get the color based on this 0-1 position...
       
   561 
       
   562         if (isSimpleLookup) {
       
   563             // easy to compute: just scale index by array size
       
   564             return gradient[(int)(position * fastGradientArraySize)];
       
   565         } else {
       
   566             // more complicated computation, to save space
       
   567 
       
   568             // for all the gradient interval arrays
       
   569             for (int i = 0; i < gradients.length; i++) {
       
   570                 if (position < fractions[i+1]) {
       
   571                     // this is the array we want
       
   572                     float delta = position - fractions[i];
       
   573 
       
   574                     // this is the interval we want
       
   575                     int index = (int)((delta / normalizedIntervals[i])
       
   576                                       * (GRADIENT_SIZE_INDEX));
       
   577 
       
   578                     return gradients[i][index];
       
   579                 }
       
   580             }
       
   581         }
       
   582 
       
   583         return gradients[gradients.length - 1][GRADIENT_SIZE_INDEX];
       
   584     }
       
   585 
       
   586     /**
       
   587      * Helper function to convert a color component in sRGB space to linear
       
   588      * RGB space.  Used to build a static lookup table.
       
   589      */
       
   590     private static int convertSRGBtoLinearRGB(int color) {
       
   591         float input, output;
       
   592 
       
   593         input = color / 255.0f;
       
   594         if (input <= 0.04045f) {
       
   595             output = input / 12.92f;
       
   596         } else {
       
   597             output = (float)Math.pow((input + 0.055) / 1.055, 2.4);
       
   598         }
       
   599 
       
   600         return Math.round(output * 255.0f);
       
   601     }
       
   602 
       
   603     /**
       
   604      * Helper function to convert a color component in linear RGB space to
       
   605      * SRGB space.  Used to build a static lookup table.
       
   606      */
       
   607     private static int convertLinearRGBtoSRGB(int color) {
       
   608         float input, output;
       
   609 
       
   610         input = color/255.0f;
       
   611         if (input <= 0.0031308) {
       
   612             output = input * 12.92f;
       
   613         } else {
       
   614             output = (1.055f *
       
   615                 ((float) Math.pow(input, (1.0 / 2.4)))) - 0.055f;
       
   616         }
       
   617 
       
   618         return Math.round(output * 255.0f);
       
   619     }
       
   620 
       
   621     /**
       
   622      * {@inheritDoc}
       
   623      */
       
   624     public final Raster getRaster(int x, int y, int w, int h) {
       
   625         // If working raster is big enough, reuse it. Otherwise,
       
   626         // build a large enough new one.
       
   627         Raster raster = saved;
       
   628         if (raster == null ||
       
   629             raster.getWidth() < w || raster.getHeight() < h)
       
   630         {
       
   631             raster = getCachedRaster(model, w, h);
       
   632             saved = raster;
       
   633         }
       
   634 
       
   635         // Access raster internal int array. Because we use a DirectColorModel,
       
   636         // we know the DataBuffer is of type DataBufferInt and the SampleModel
       
   637         // is SinglePixelPackedSampleModel.
       
   638         // Adjust for initial offset in DataBuffer and also for the scanline
       
   639         // stride.
       
   640         // These calls make the DataBuffer non-acceleratable, but the
       
   641         // Raster is never Stable long enough to accelerate anyway...
       
   642         DataBufferInt rasterDB = (DataBufferInt)raster.getDataBuffer();
       
   643         int[] pixels = rasterDB.getData(0);
       
   644         int off = rasterDB.getOffset();
       
   645         int scanlineStride = ((SinglePixelPackedSampleModel)
       
   646                               raster.getSampleModel()).getScanlineStride();
       
   647         int adjust = scanlineStride - w;
       
   648 
       
   649         fillRaster(pixels, off, adjust, x, y, w, h); // delegate to subclass
       
   650 
       
   651         return raster;
       
   652     }
       
   653 
       
   654     protected abstract void fillRaster(int pixels[], int off, int adjust,
       
   655                                        int x, int y, int w, int h);
       
   656 
       
   657 
       
   658     /**
       
   659      * Took this cacheRaster code from GradientPaint. It appears to recycle
       
   660      * rasters for use by any other instance, as long as they are sufficiently
       
   661      * large.
       
   662      */
       
   663     private static synchronized Raster getCachedRaster(ColorModel cm,
       
   664                                                        int w, int h)
       
   665     {
       
   666         if (cm == cachedModel) {
       
   667             if (cached != null) {
       
   668                 Raster ras = (Raster) cached.get();
       
   669                 if (ras != null &&
       
   670                     ras.getWidth() >= w &&
       
   671                     ras.getHeight() >= h)
       
   672                 {
       
   673                     cached = null;
       
   674                     return ras;
       
   675                 }
       
   676             }
       
   677         }
       
   678         return cm.createCompatibleWritableRaster(w, h);
       
   679     }
       
   680 
       
   681     /**
       
   682      * Took this cacheRaster code from GradientPaint. It appears to recycle
       
   683      * rasters for use by any other instance, as long as they are sufficiently
       
   684      * large.
       
   685      */
       
   686     private static synchronized void putCachedRaster(ColorModel cm,
       
   687                                                      Raster ras)
       
   688     {
       
   689         if (cached != null) {
       
   690             Raster cras = (Raster) cached.get();
       
   691             if (cras != null) {
       
   692                 int cw = cras.getWidth();
       
   693                 int ch = cras.getHeight();
       
   694                 int iw = ras.getWidth();
       
   695                 int ih = ras.getHeight();
       
   696                 if (cw >= iw && ch >= ih) {
       
   697                     return;
       
   698                 }
       
   699                 if (cw * ch >= iw * ih) {
       
   700                     return;
       
   701                 }
       
   702             }
       
   703         }
       
   704         cachedModel = cm;
       
   705         cached = new WeakReference<Raster>(ras);
       
   706     }
       
   707 
       
   708     /**
       
   709      * {@inheritDoc}
       
   710      */
       
   711     public final void dispose() {
       
   712         if (saved != null) {
       
   713             putCachedRaster(model, saved);
       
   714             saved = null;
       
   715         }
       
   716     }
       
   717 
       
   718     /**
       
   719      * {@inheritDoc}
       
   720      */
       
   721     public final ColorModel getColorModel() {
       
   722         return model;
       
   723     }
       
   724 }