author | darcy |
Thu, 14 Apr 2011 21:27:10 -0700 | |
changeset 9269 | f66626469aa8 |
parent 7517 | 7303bc0e78d6 |
child 10122 | bf8e763fcceb |
permissions | -rw-r--r-- |
2 | 1 |
/* |
9269
f66626469aa8
6430675: Math.round has surprising behavior for 0x1.fffffffffffffp-2
darcy
parents:
7517
diff
changeset
|
2 |
* Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved. |
2 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
5506 | 7 |
* published by the Free Software Foundation. Oracle designates this |
2 | 8 |
* particular file as subject to the "Classpath" exception as provided |
5506 | 9 |
* by Oracle in the LICENSE file that accompanied this code. |
2 | 10 |
* |
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
15 |
* accompanied this code). |
|
16 |
* |
|
17 |
* You should have received a copy of the GNU General Public License version |
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 |
* |
|
5506 | 21 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 |
* or visit www.oracle.com if you need additional information or have any |
|
23 |
* questions. |
|
2 | 24 |
*/ |
25 |
||
26 |
package java.lang; |
|
27 |
import java.util.Random; |
|
28 |
import sun.misc.FpUtils; |
|
4520
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
29 |
import sun.misc.DoubleConsts; |
2 | 30 |
|
31 |
/** |
|
32 |
* The class {@code StrictMath} contains methods for performing basic |
|
33 |
* numeric operations such as the elementary exponential, logarithm, |
|
34 |
* square root, and trigonometric functions. |
|
35 |
* |
|
36 |
* <p>To help ensure portability of Java programs, the definitions of |
|
37 |
* some of the numeric functions in this package require that they |
|
38 |
* produce the same results as certain published algorithms. These |
|
39 |
* algorithms are available from the well-known network library |
|
40 |
* {@code netlib} as the package "Freely Distributable Math |
|
41 |
* Library," <a |
|
42 |
* href="ftp://ftp.netlib.org/fdlibm.tar">{@code fdlibm}</a>. These |
|
43 |
* algorithms, which are written in the C programming language, are |
|
44 |
* then to be understood as executed with all floating-point |
|
45 |
* operations following the rules of Java floating-point arithmetic. |
|
46 |
* |
|
47 |
* <p>The Java math library is defined with respect to |
|
48 |
* {@code fdlibm} version 5.3. Where {@code fdlibm} provides |
|
49 |
* more than one definition for a function (such as |
|
50 |
* {@code acos}), use the "IEEE 754 core function" version |
|
51 |
* (residing in a file whose name begins with the letter |
|
52 |
* {@code e}). The methods which require {@code fdlibm} |
|
53 |
* semantics are {@code sin}, {@code cos}, {@code tan}, |
|
54 |
* {@code asin}, {@code acos}, {@code atan}, |
|
55 |
* {@code exp}, {@code log}, {@code log10}, |
|
56 |
* {@code cbrt}, {@code atan2}, {@code pow}, |
|
57 |
* {@code sinh}, {@code cosh}, {@code tanh}, |
|
58 |
* {@code hypot}, {@code expm1}, and {@code log1p}. |
|
59 |
* |
|
60 |
* @author unascribed |
|
61 |
* @author Joseph D. Darcy |
|
62 |
* @since 1.3 |
|
63 |
*/ |
|
64 |
||
65 |
public final class StrictMath { |
|
66 |
||
67 |
/** |
|
68 |
* Don't let anyone instantiate this class. |
|
69 |
*/ |
|
70 |
private StrictMath() {} |
|
71 |
||
72 |
/** |
|
73 |
* The {@code double} value that is closer than any other to |
|
74 |
* <i>e</i>, the base of the natural logarithms. |
|
75 |
*/ |
|
76 |
public static final double E = 2.7182818284590452354; |
|
77 |
||
78 |
/** |
|
79 |
* The {@code double} value that is closer than any other to |
|
80 |
* <i>pi</i>, the ratio of the circumference of a circle to its |
|
81 |
* diameter. |
|
82 |
*/ |
|
83 |
public static final double PI = 3.14159265358979323846; |
|
84 |
||
85 |
/** |
|
86 |
* Returns the trigonometric sine of an angle. Special cases: |
|
87 |
* <ul><li>If the argument is NaN or an infinity, then the |
|
88 |
* result is NaN. |
|
89 |
* <li>If the argument is zero, then the result is a zero with the |
|
90 |
* same sign as the argument.</ul> |
|
91 |
* |
|
92 |
* @param a an angle, in radians. |
|
93 |
* @return the sine of the argument. |
|
94 |
*/ |
|
95 |
public static native double sin(double a); |
|
96 |
||
97 |
/** |
|
98 |
* Returns the trigonometric cosine of an angle. Special cases: |
|
99 |
* <ul><li>If the argument is NaN or an infinity, then the |
|
100 |
* result is NaN.</ul> |
|
101 |
* |
|
102 |
* @param a an angle, in radians. |
|
103 |
* @return the cosine of the argument. |
|
104 |
*/ |
|
105 |
public static native double cos(double a); |
|
106 |
||
107 |
/** |
|
108 |
* Returns the trigonometric tangent of an angle. Special cases: |
|
109 |
* <ul><li>If the argument is NaN or an infinity, then the result |
|
110 |
* is NaN. |
|
111 |
* <li>If the argument is zero, then the result is a zero with the |
|
112 |
* same sign as the argument.</ul> |
|
113 |
* |
|
114 |
* @param a an angle, in radians. |
|
115 |
* @return the tangent of the argument. |
|
116 |
*/ |
|
117 |
public static native double tan(double a); |
|
118 |
||
119 |
/** |
|
120 |
* Returns the arc sine of a value; the returned angle is in the |
|
121 |
* range -<i>pi</i>/2 through <i>pi</i>/2. Special cases: |
|
122 |
* <ul><li>If the argument is NaN or its absolute value is greater |
|
123 |
* than 1, then the result is NaN. |
|
124 |
* <li>If the argument is zero, then the result is a zero with the |
|
125 |
* same sign as the argument.</ul> |
|
126 |
* |
|
127 |
* @param a the value whose arc sine is to be returned. |
|
128 |
* @return the arc sine of the argument. |
|
129 |
*/ |
|
130 |
public static native double asin(double a); |
|
131 |
||
132 |
/** |
|
133 |
* Returns the arc cosine of a value; the returned angle is in the |
|
134 |
* range 0.0 through <i>pi</i>. Special case: |
|
135 |
* <ul><li>If the argument is NaN or its absolute value is greater |
|
136 |
* than 1, then the result is NaN.</ul> |
|
137 |
* |
|
138 |
* @param a the value whose arc cosine is to be returned. |
|
139 |
* @return the arc cosine of the argument. |
|
140 |
*/ |
|
141 |
public static native double acos(double a); |
|
142 |
||
143 |
/** |
|
144 |
* Returns the arc tangent of a value; the returned angle is in the |
|
145 |
* range -<i>pi</i>/2 through <i>pi</i>/2. Special cases: |
|
146 |
* <ul><li>If the argument is NaN, then the result is NaN. |
|
147 |
* <li>If the argument is zero, then the result is a zero with the |
|
148 |
* same sign as the argument.</ul> |
|
149 |
* |
|
150 |
* @param a the value whose arc tangent is to be returned. |
|
151 |
* @return the arc tangent of the argument. |
|
152 |
*/ |
|
153 |
public static native double atan(double a); |
|
154 |
||
155 |
/** |
|
156 |
* Converts an angle measured in degrees to an approximately |
|
157 |
* equivalent angle measured in radians. The conversion from |
|
158 |
* degrees to radians is generally inexact. |
|
159 |
* |
|
160 |
* @param angdeg an angle, in degrees |
|
161 |
* @return the measurement of the angle {@code angdeg} |
|
162 |
* in radians. |
|
163 |
*/ |
|
164 |
public static strictfp double toRadians(double angdeg) { |
|
165 |
return angdeg / 180.0 * PI; |
|
166 |
} |
|
167 |
||
168 |
/** |
|
169 |
* Converts an angle measured in radians to an approximately |
|
170 |
* equivalent angle measured in degrees. The conversion from |
|
171 |
* radians to degrees is generally inexact; users should |
|
172 |
* <i>not</i> expect {@code cos(toRadians(90.0))} to exactly |
|
173 |
* equal {@code 0.0}. |
|
174 |
* |
|
175 |
* @param angrad an angle, in radians |
|
176 |
* @return the measurement of the angle {@code angrad} |
|
177 |
* in degrees. |
|
178 |
*/ |
|
179 |
public static strictfp double toDegrees(double angrad) { |
|
180 |
return angrad * 180.0 / PI; |
|
181 |
} |
|
182 |
||
183 |
/** |
|
184 |
* Returns Euler's number <i>e</i> raised to the power of a |
|
185 |
* {@code double} value. Special cases: |
|
186 |
* <ul><li>If the argument is NaN, the result is NaN. |
|
187 |
* <li>If the argument is positive infinity, then the result is |
|
188 |
* positive infinity. |
|
189 |
* <li>If the argument is negative infinity, then the result is |
|
190 |
* positive zero.</ul> |
|
191 |
* |
|
192 |
* @param a the exponent to raise <i>e</i> to. |
|
193 |
* @return the value <i>e</i><sup>{@code a}</sup>, |
|
194 |
* where <i>e</i> is the base of the natural logarithms. |
|
195 |
*/ |
|
196 |
public static native double exp(double a); |
|
197 |
||
198 |
/** |
|
199 |
* Returns the natural logarithm (base <i>e</i>) of a {@code double} |
|
200 |
* value. Special cases: |
|
201 |
* <ul><li>If the argument is NaN or less than zero, then the result |
|
202 |
* is NaN. |
|
203 |
* <li>If the argument is positive infinity, then the result is |
|
204 |
* positive infinity. |
|
205 |
* <li>If the argument is positive zero or negative zero, then the |
|
206 |
* result is negative infinity.</ul> |
|
207 |
* |
|
208 |
* @param a a value |
|
209 |
* @return the value ln {@code a}, the natural logarithm of |
|
210 |
* {@code a}. |
|
211 |
*/ |
|
212 |
public static native double log(double a); |
|
213 |
||
214 |
||
215 |
/** |
|
216 |
* Returns the base 10 logarithm of a {@code double} value. |
|
217 |
* Special cases: |
|
218 |
* |
|
219 |
* <ul><li>If the argument is NaN or less than zero, then the result |
|
220 |
* is NaN. |
|
221 |
* <li>If the argument is positive infinity, then the result is |
|
222 |
* positive infinity. |
|
223 |
* <li>If the argument is positive zero or negative zero, then the |
|
224 |
* result is negative infinity. |
|
225 |
* <li> If the argument is equal to 10<sup><i>n</i></sup> for |
|
226 |
* integer <i>n</i>, then the result is <i>n</i>. |
|
227 |
* </ul> |
|
228 |
* |
|
229 |
* @param a a value |
|
230 |
* @return the base 10 logarithm of {@code a}. |
|
231 |
* @since 1.5 |
|
232 |
*/ |
|
233 |
public static native double log10(double a); |
|
234 |
||
235 |
/** |
|
236 |
* Returns the correctly rounded positive square root of a |
|
237 |
* {@code double} value. |
|
238 |
* Special cases: |
|
239 |
* <ul><li>If the argument is NaN or less than zero, then the result |
|
240 |
* is NaN. |
|
241 |
* <li>If the argument is positive infinity, then the result is positive |
|
242 |
* infinity. |
|
243 |
* <li>If the argument is positive zero or negative zero, then the |
|
244 |
* result is the same as the argument.</ul> |
|
245 |
* Otherwise, the result is the {@code double} value closest to |
|
246 |
* the true mathematical square root of the argument value. |
|
247 |
* |
|
248 |
* @param a a value. |
|
249 |
* @return the positive square root of {@code a}. |
|
250 |
*/ |
|
251 |
public static native double sqrt(double a); |
|
252 |
||
253 |
/** |
|
254 |
* Returns the cube root of a {@code double} value. For |
|
255 |
* positive finite {@code x}, {@code cbrt(-x) == |
|
256 |
* -cbrt(x)}; that is, the cube root of a negative value is |
|
257 |
* the negative of the cube root of that value's magnitude. |
|
258 |
* Special cases: |
|
259 |
* |
|
260 |
* <ul> |
|
261 |
* |
|
262 |
* <li>If the argument is NaN, then the result is NaN. |
|
263 |
* |
|
264 |
* <li>If the argument is infinite, then the result is an infinity |
|
265 |
* with the same sign as the argument. |
|
266 |
* |
|
267 |
* <li>If the argument is zero, then the result is a zero with the |
|
268 |
* same sign as the argument. |
|
269 |
* |
|
270 |
* </ul> |
|
271 |
* |
|
272 |
* @param a a value. |
|
273 |
* @return the cube root of {@code a}. |
|
274 |
* @since 1.5 |
|
275 |
*/ |
|
276 |
public static native double cbrt(double a); |
|
277 |
||
278 |
/** |
|
279 |
* Computes the remainder operation on two arguments as prescribed |
|
280 |
* by the IEEE 754 standard. |
|
281 |
* The remainder value is mathematically equal to |
|
282 |
* <code>f1 - f2</code> × <i>n</i>, |
|
283 |
* where <i>n</i> is the mathematical integer closest to the exact |
|
284 |
* mathematical value of the quotient {@code f1/f2}, and if two |
|
285 |
* mathematical integers are equally close to {@code f1/f2}, |
|
286 |
* then <i>n</i> is the integer that is even. If the remainder is |
|
287 |
* zero, its sign is the same as the sign of the first argument. |
|
288 |
* Special cases: |
|
289 |
* <ul><li>If either argument is NaN, or the first argument is infinite, |
|
290 |
* or the second argument is positive zero or negative zero, then the |
|
291 |
* result is NaN. |
|
292 |
* <li>If the first argument is finite and the second argument is |
|
293 |
* infinite, then the result is the same as the first argument.</ul> |
|
294 |
* |
|
295 |
* @param f1 the dividend. |
|
296 |
* @param f2 the divisor. |
|
297 |
* @return the remainder when {@code f1} is divided by |
|
298 |
* {@code f2}. |
|
299 |
*/ |
|
300 |
public static native double IEEEremainder(double f1, double f2); |
|
301 |
||
302 |
/** |
|
303 |
* Returns the smallest (closest to negative infinity) |
|
304 |
* {@code double} value that is greater than or equal to the |
|
305 |
* argument and is equal to a mathematical integer. Special cases: |
|
306 |
* <ul><li>If the argument value is already equal to a |
|
307 |
* mathematical integer, then the result is the same as the |
|
308 |
* argument. <li>If the argument is NaN or an infinity or |
|
309 |
* positive zero or negative zero, then the result is the same as |
|
310 |
* the argument. <li>If the argument value is less than zero but |
|
311 |
* greater than -1.0, then the result is negative zero.</ul> Note |
|
312 |
* that the value of {@code StrictMath.ceil(x)} is exactly the |
|
313 |
* value of {@code -StrictMath.floor(-x)}. |
|
314 |
* |
|
315 |
* @param a a value. |
|
316 |
* @return the smallest (closest to negative infinity) |
|
317 |
* floating-point value that is greater than or equal to |
|
318 |
* the argument and is equal to a mathematical integer. |
|
319 |
*/ |
|
4520
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
320 |
public static double ceil(double a) { |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
321 |
return floorOrCeil(a, -0.0, 1.0, 1.0); |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
322 |
} |
2 | 323 |
|
324 |
/** |
|
325 |
* Returns the largest (closest to positive infinity) |
|
326 |
* {@code double} value that is less than or equal to the |
|
327 |
* argument and is equal to a mathematical integer. Special cases: |
|
328 |
* <ul><li>If the argument value is already equal to a |
|
329 |
* mathematical integer, then the result is the same as the |
|
330 |
* argument. <li>If the argument is NaN or an infinity or |
|
331 |
* positive zero or negative zero, then the result is the same as |
|
332 |
* the argument.</ul> |
|
333 |
* |
|
334 |
* @param a a value. |
|
335 |
* @return the largest (closest to positive infinity) |
|
336 |
* floating-point value that less than or equal to the argument |
|
337 |
* and is equal to a mathematical integer. |
|
338 |
*/ |
|
4520
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
339 |
public static double floor(double a) { |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
340 |
return floorOrCeil(a, -1.0, 0.0, -1.0); |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
341 |
} |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
342 |
|
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
343 |
/** |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
344 |
* Internal method to share logic between floor and ceil. |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
345 |
* |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
346 |
* @param a the value to be floored or ceiled |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
347 |
* @param negativeBoundary result for values in (-1, 0) |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
348 |
* @param positiveBoundary result for values in (0, 1) |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
349 |
* @param increment value to add when the argument is non-integral |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
350 |
*/ |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
351 |
private static double floorOrCeil(double a, |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
352 |
double negativeBoundary, |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
353 |
double positiveBoundary, |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
354 |
double sign) { |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
355 |
int exponent = Math.getExponent(a); |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
356 |
|
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
357 |
if (exponent < 0) { |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
358 |
/* |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
359 |
* Absolute value of argument is less than 1. |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
360 |
* floorOrceil(-0.0) => -0.0 |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
361 |
* floorOrceil(+0.0) => +0.0 |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
362 |
*/ |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
363 |
return ((a == 0.0) ? a : |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
364 |
( (a < 0.0) ? negativeBoundary : positiveBoundary) ); |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
365 |
} else if (exponent >= 52) { |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
366 |
/* |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
367 |
* Infinity, NaN, or a value so large it must be integral. |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
368 |
*/ |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
369 |
return a; |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
370 |
} |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
371 |
// Else the argument is either an integral value already XOR it |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
372 |
// has to be rounded to one. |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
373 |
assert exponent >= 0 && exponent <= 51; |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
374 |
|
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
375 |
long doppel = Double.doubleToRawLongBits(a); |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
376 |
long mask = DoubleConsts.SIGNIF_BIT_MASK >> exponent; |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
377 |
|
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
378 |
if ( (mask & doppel) == 0L ) |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
379 |
return a; // integral value |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
380 |
else { |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
381 |
double result = Double.longBitsToDouble(doppel & (~mask)); |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
382 |
if (sign*a > 0.0) |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
383 |
result = result + sign; |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
384 |
return result; |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
385 |
} |
d2c9d06b5b31
6908131: Pure Java implementations of StrictMath.floor(double) & StrictMath.ceil(double)
darcy
parents:
2
diff
changeset
|
386 |
} |
2 | 387 |
|
388 |
/** |
|
389 |
* Returns the {@code double} value that is closest in value |
|
390 |
* to the argument and is equal to a mathematical integer. If two |
|
391 |
* {@code double} values that are mathematical integers are |
|
392 |
* equally close to the value of the argument, the result is the |
|
393 |
* integer value that is even. Special cases: |
|
394 |
* <ul><li>If the argument value is already equal to a mathematical |
|
395 |
* integer, then the result is the same as the argument. |
|
396 |
* <li>If the argument is NaN or an infinity or positive zero or negative |
|
397 |
* zero, then the result is the same as the argument.</ul> |
|
398 |
* |
|
399 |
* @param a a value. |
|
400 |
* @return the closest floating-point value to {@code a} that is |
|
401 |
* equal to a mathematical integer. |
|
402 |
* @author Joseph D. Darcy |
|
403 |
*/ |
|
404 |
public static double rint(double a) { |
|
405 |
/* |
|
406 |
* If the absolute value of a is not less than 2^52, it |
|
407 |
* is either a finite integer (the double format does not have |
|
408 |
* enough significand bits for a number that large to have any |
|
409 |
* fractional portion), an infinity, or a NaN. In any of |
|
410 |
* these cases, rint of the argument is the argument. |
|
411 |
* |
|
412 |
* Otherwise, the sum (twoToThe52 + a ) will properly round |
|
413 |
* away any fractional portion of a since ulp(twoToThe52) == |
|
414 |
* 1.0; subtracting out twoToThe52 from this sum will then be |
|
415 |
* exact and leave the rounded integer portion of a. |
|
416 |
* |
|
417 |
* This method does *not* need to be declared strictfp to get |
|
418 |
* fully reproducible results. Whether or not a method is |
|
419 |
* declared strictfp can only make a difference in the |
|
420 |
* returned result if some operation would overflow or |
|
421 |
* underflow with strictfp semantics. The operation |
|
422 |
* (twoToThe52 + a ) cannot overflow since large values of a |
|
423 |
* are screened out; the add cannot underflow since twoToThe52 |
|
424 |
* is too large. The subtraction ((twoToThe52 + a ) - |
|
425 |
* twoToThe52) will be exact as discussed above and thus |
|
426 |
* cannot overflow or meaningfully underflow. Finally, the |
|
427 |
* last multiply in the return statement is by plus or minus |
|
428 |
* 1.0, which is exact too. |
|
429 |
*/ |
|
430 |
double twoToThe52 = (double)(1L << 52); // 2^52 |
|
431 |
double sign = FpUtils.rawCopySign(1.0, a); // preserve sign info |
|
432 |
a = Math.abs(a); |
|
433 |
||
434 |
if (a < twoToThe52) { // E_min <= ilogb(a) <= 51 |
|
435 |
a = ((twoToThe52 + a ) - twoToThe52); |
|
436 |
} |
|
437 |
||
438 |
return sign * a; // restore original sign |
|
439 |
} |
|
440 |
||
441 |
/** |
|
442 |
* Returns the angle <i>theta</i> from the conversion of rectangular |
|
443 |
* coordinates ({@code x}, {@code y}) to polar |
|
444 |
* coordinates (r, <i>theta</i>). |
|
445 |
* This method computes the phase <i>theta</i> by computing an arc tangent |
|
446 |
* of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special |
|
447 |
* cases: |
|
448 |
* <ul><li>If either argument is NaN, then the result is NaN. |
|
449 |
* <li>If the first argument is positive zero and the second argument |
|
450 |
* is positive, or the first argument is positive and finite and the |
|
451 |
* second argument is positive infinity, then the result is positive |
|
452 |
* zero. |
|
453 |
* <li>If the first argument is negative zero and the second argument |
|
454 |
* is positive, or the first argument is negative and finite and the |
|
455 |
* second argument is positive infinity, then the result is negative zero. |
|
456 |
* <li>If the first argument is positive zero and the second argument |
|
457 |
* is negative, or the first argument is positive and finite and the |
|
458 |
* second argument is negative infinity, then the result is the |
|
459 |
* {@code double} value closest to <i>pi</i>. |
|
460 |
* <li>If the first argument is negative zero and the second argument |
|
461 |
* is negative, or the first argument is negative and finite and the |
|
462 |
* second argument is negative infinity, then the result is the |
|
463 |
* {@code double} value closest to -<i>pi</i>. |
|
464 |
* <li>If the first argument is positive and the second argument is |
|
465 |
* positive zero or negative zero, or the first argument is positive |
|
466 |
* infinity and the second argument is finite, then the result is the |
|
467 |
* {@code double} value closest to <i>pi</i>/2. |
|
468 |
* <li>If the first argument is negative and the second argument is |
|
469 |
* positive zero or negative zero, or the first argument is negative |
|
470 |
* infinity and the second argument is finite, then the result is the |
|
471 |
* {@code double} value closest to -<i>pi</i>/2. |
|
472 |
* <li>If both arguments are positive infinity, then the result is the |
|
473 |
* {@code double} value closest to <i>pi</i>/4. |
|
474 |
* <li>If the first argument is positive infinity and the second argument |
|
475 |
* is negative infinity, then the result is the {@code double} |
|
476 |
* value closest to 3*<i>pi</i>/4. |
|
477 |
* <li>If the first argument is negative infinity and the second argument |
|
478 |
* is positive infinity, then the result is the {@code double} value |
|
479 |
* closest to -<i>pi</i>/4. |
|
480 |
* <li>If both arguments are negative infinity, then the result is the |
|
481 |
* {@code double} value closest to -3*<i>pi</i>/4.</ul> |
|
482 |
* |
|
483 |
* @param y the ordinate coordinate |
|
484 |
* @param x the abscissa coordinate |
|
485 |
* @return the <i>theta</i> component of the point |
|
486 |
* (<i>r</i>, <i>theta</i>) |
|
487 |
* in polar coordinates that corresponds to the point |
|
488 |
* (<i>x</i>, <i>y</i>) in Cartesian coordinates. |
|
489 |
*/ |
|
490 |
public static native double atan2(double y, double x); |
|
491 |
||
492 |
||
493 |
/** |
|
494 |
* Returns the value of the first argument raised to the power of the |
|
495 |
* second argument. Special cases: |
|
496 |
* |
|
497 |
* <ul><li>If the second argument is positive or negative zero, then the |
|
498 |
* result is 1.0. |
|
499 |
* <li>If the second argument is 1.0, then the result is the same as the |
|
500 |
* first argument. |
|
501 |
* <li>If the second argument is NaN, then the result is NaN. |
|
502 |
* <li>If the first argument is NaN and the second argument is nonzero, |
|
503 |
* then the result is NaN. |
|
504 |
* |
|
505 |
* <li>If |
|
506 |
* <ul> |
|
507 |
* <li>the absolute value of the first argument is greater than 1 |
|
508 |
* and the second argument is positive infinity, or |
|
509 |
* <li>the absolute value of the first argument is less than 1 and |
|
510 |
* the second argument is negative infinity, |
|
511 |
* </ul> |
|
512 |
* then the result is positive infinity. |
|
513 |
* |
|
514 |
* <li>If |
|
515 |
* <ul> |
|
516 |
* <li>the absolute value of the first argument is greater than 1 and |
|
517 |
* the second argument is negative infinity, or |
|
518 |
* <li>the absolute value of the |
|
519 |
* first argument is less than 1 and the second argument is positive |
|
520 |
* infinity, |
|
521 |
* </ul> |
|
522 |
* then the result is positive zero. |
|
523 |
* |
|
524 |
* <li>If the absolute value of the first argument equals 1 and the |
|
525 |
* second argument is infinite, then the result is NaN. |
|
526 |
* |
|
527 |
* <li>If |
|
528 |
* <ul> |
|
529 |
* <li>the first argument is positive zero and the second argument |
|
530 |
* is greater than zero, or |
|
531 |
* <li>the first argument is positive infinity and the second |
|
532 |
* argument is less than zero, |
|
533 |
* </ul> |
|
534 |
* then the result is positive zero. |
|
535 |
* |
|
536 |
* <li>If |
|
537 |
* <ul> |
|
538 |
* <li>the first argument is positive zero and the second argument |
|
539 |
* is less than zero, or |
|
540 |
* <li>the first argument is positive infinity and the second |
|
541 |
* argument is greater than zero, |
|
542 |
* </ul> |
|
543 |
* then the result is positive infinity. |
|
544 |
* |
|
545 |
* <li>If |
|
546 |
* <ul> |
|
547 |
* <li>the first argument is negative zero and the second argument |
|
548 |
* is greater than zero but not a finite odd integer, or |
|
549 |
* <li>the first argument is negative infinity and the second |
|
550 |
* argument is less than zero but not a finite odd integer, |
|
551 |
* </ul> |
|
552 |
* then the result is positive zero. |
|
553 |
* |
|
554 |
* <li>If |
|
555 |
* <ul> |
|
556 |
* <li>the first argument is negative zero and the second argument |
|
557 |
* is a positive finite odd integer, or |
|
558 |
* <li>the first argument is negative infinity and the second |
|
559 |
* argument is a negative finite odd integer, |
|
560 |
* </ul> |
|
561 |
* then the result is negative zero. |
|
562 |
* |
|
563 |
* <li>If |
|
564 |
* <ul> |
|
565 |
* <li>the first argument is negative zero and the second argument |
|
566 |
* is less than zero but not a finite odd integer, or |
|
567 |
* <li>the first argument is negative infinity and the second |
|
568 |
* argument is greater than zero but not a finite odd integer, |
|
569 |
* </ul> |
|
570 |
* then the result is positive infinity. |
|
571 |
* |
|
572 |
* <li>If |
|
573 |
* <ul> |
|
574 |
* <li>the first argument is negative zero and the second argument |
|
575 |
* is a negative finite odd integer, or |
|
576 |
* <li>the first argument is negative infinity and the second |
|
577 |
* argument is a positive finite odd integer, |
|
578 |
* </ul> |
|
579 |
* then the result is negative infinity. |
|
580 |
* |
|
581 |
* <li>If the first argument is finite and less than zero |
|
582 |
* <ul> |
|
583 |
* <li> if the second argument is a finite even integer, the |
|
584 |
* result is equal to the result of raising the absolute value of |
|
585 |
* the first argument to the power of the second argument |
|
586 |
* |
|
587 |
* <li>if the second argument is a finite odd integer, the result |
|
588 |
* is equal to the negative of the result of raising the absolute |
|
589 |
* value of the first argument to the power of the second |
|
590 |
* argument |
|
591 |
* |
|
592 |
* <li>if the second argument is finite and not an integer, then |
|
593 |
* the result is NaN. |
|
594 |
* </ul> |
|
595 |
* |
|
596 |
* <li>If both arguments are integers, then the result is exactly equal |
|
597 |
* to the mathematical result of raising the first argument to the power |
|
598 |
* of the second argument if that result can in fact be represented |
|
599 |
* exactly as a {@code double} value.</ul> |
|
600 |
* |
|
601 |
* <p>(In the foregoing descriptions, a floating-point value is |
|
602 |
* considered to be an integer if and only if it is finite and a |
|
603 |
* fixed point of the method {@link #ceil ceil} or, |
|
604 |
* equivalently, a fixed point of the method {@link #floor |
|
605 |
* floor}. A value is a fixed point of a one-argument |
|
606 |
* method if and only if the result of applying the method to the |
|
607 |
* value is equal to the value.) |
|
608 |
* |
|
609 |
* @param a base. |
|
610 |
* @param b the exponent. |
|
611 |
* @return the value {@code a}<sup>{@code b}</sup>. |
|
612 |
*/ |
|
613 |
public static native double pow(double a, double b); |
|
614 |
||
615 |
/** |
|
9269
f66626469aa8
6430675: Math.round has surprising behavior for 0x1.fffffffffffffp-2
darcy
parents:
7517
diff
changeset
|
616 |
* Returns the closest {@code int} to the argument, with ties |
f66626469aa8
6430675: Math.round has surprising behavior for 0x1.fffffffffffffp-2
darcy
parents:
7517
diff
changeset
|
617 |
* rounding up. |
2 | 618 |
* |
619 |
* <p>Special cases: |
|
620 |
* <ul><li>If the argument is NaN, the result is 0. |
|
621 |
* <li>If the argument is negative infinity or any value less than or |
|
622 |
* equal to the value of {@code Integer.MIN_VALUE}, the result is |
|
623 |
* equal to the value of {@code Integer.MIN_VALUE}. |
|
624 |
* <li>If the argument is positive infinity or any value greater than or |
|
625 |
* equal to the value of {@code Integer.MAX_VALUE}, the result is |
|
626 |
* equal to the value of {@code Integer.MAX_VALUE}.</ul> |
|
627 |
* |
|
628 |
* @param a a floating-point value to be rounded to an integer. |
|
629 |
* @return the value of the argument rounded to the nearest |
|
630 |
* {@code int} value. |
|
631 |
* @see java.lang.Integer#MAX_VALUE |
|
632 |
* @see java.lang.Integer#MIN_VALUE |
|
633 |
*/ |
|
634 |
public static int round(float a) { |
|
9269
f66626469aa8
6430675: Math.round has surprising behavior for 0x1.fffffffffffffp-2
darcy
parents:
7517
diff
changeset
|
635 |
return Math.round(a); |
2 | 636 |
} |
637 |
||
638 |
/** |
|
9269
f66626469aa8
6430675: Math.round has surprising behavior for 0x1.fffffffffffffp-2
darcy
parents:
7517
diff
changeset
|
639 |
* Returns the closest {@code long} to the argument, with ties |
f66626469aa8
6430675: Math.round has surprising behavior for 0x1.fffffffffffffp-2
darcy
parents:
7517
diff
changeset
|
640 |
* rounding up. |
2 | 641 |
* |
642 |
* <p>Special cases: |
|
643 |
* <ul><li>If the argument is NaN, the result is 0. |
|
644 |
* <li>If the argument is negative infinity or any value less than or |
|
645 |
* equal to the value of {@code Long.MIN_VALUE}, the result is |
|
646 |
* equal to the value of {@code Long.MIN_VALUE}. |
|
647 |
* <li>If the argument is positive infinity or any value greater than or |
|
648 |
* equal to the value of {@code Long.MAX_VALUE}, the result is |
|
649 |
* equal to the value of {@code Long.MAX_VALUE}.</ul> |
|
650 |
* |
|
651 |
* @param a a floating-point value to be rounded to a |
|
652 |
* {@code long}. |
|
653 |
* @return the value of the argument rounded to the nearest |
|
654 |
* {@code long} value. |
|
655 |
* @see java.lang.Long#MAX_VALUE |
|
656 |
* @see java.lang.Long#MIN_VALUE |
|
657 |
*/ |
|
658 |
public static long round(double a) { |
|
9269
f66626469aa8
6430675: Math.round has surprising behavior for 0x1.fffffffffffffp-2
darcy
parents:
7517
diff
changeset
|
659 |
return Math.round(a); |
2 | 660 |
} |
661 |
||
662 |
private static Random randomNumberGenerator; |
|
663 |
||
5781
11a42d91eb56
6959259: Minor improvements to static Random field caching
martin
parents:
5506
diff
changeset
|
664 |
private static synchronized Random initRNG() { |
11a42d91eb56
6959259: Minor improvements to static Random field caching
martin
parents:
5506
diff
changeset
|
665 |
Random rnd = randomNumberGenerator; |
11a42d91eb56
6959259: Minor improvements to static Random field caching
martin
parents:
5506
diff
changeset
|
666 |
return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd; |
2 | 667 |
} |
668 |
||
669 |
/** |
|
670 |
* Returns a {@code double} value with a positive sign, greater |
|
671 |
* than or equal to {@code 0.0} and less than {@code 1.0}. |
|
672 |
* Returned values are chosen pseudorandomly with (approximately) |
|
673 |
* uniform distribution from that range. |
|
674 |
* |
|
675 |
* <p>When this method is first called, it creates a single new |
|
676 |
* pseudorandom-number generator, exactly as if by the expression |
|
5781
11a42d91eb56
6959259: Minor improvements to static Random field caching
martin
parents:
5506
diff
changeset
|
677 |
* |
11a42d91eb56
6959259: Minor improvements to static Random field caching
martin
parents:
5506
diff
changeset
|
678 |
* <blockquote>{@code new java.util.Random()}</blockquote> |
11a42d91eb56
6959259: Minor improvements to static Random field caching
martin
parents:
5506
diff
changeset
|
679 |
* |
11a42d91eb56
6959259: Minor improvements to static Random field caching
martin
parents:
5506
diff
changeset
|
680 |
* This new pseudorandom-number generator is used thereafter for |
11a42d91eb56
6959259: Minor improvements to static Random field caching
martin
parents:
5506
diff
changeset
|
681 |
* all calls to this method and is used nowhere else. |
2 | 682 |
* |
683 |
* <p>This method is properly synchronized to allow correct use by |
|
684 |
* more than one thread. However, if many threads need to generate |
|
685 |
* pseudorandom numbers at a great rate, it may reduce contention |
|
686 |
* for each thread to have its own pseudorandom number generator. |
|
687 |
* |
|
688 |
* @return a pseudorandom {@code double} greater than or equal |
|
689 |
* to {@code 0.0} and less than {@code 1.0}. |
|
5781
11a42d91eb56
6959259: Minor improvements to static Random field caching
martin
parents:
5506
diff
changeset
|
690 |
* @see Random#nextDouble() |
2 | 691 |
*/ |
692 |
public static double random() { |
|
5781
11a42d91eb56
6959259: Minor improvements to static Random field caching
martin
parents:
5506
diff
changeset
|
693 |
Random rnd = randomNumberGenerator; |
11a42d91eb56
6959259: Minor improvements to static Random field caching
martin
parents:
5506
diff
changeset
|
694 |
if (rnd == null) rnd = initRNG(); |
11a42d91eb56
6959259: Minor improvements to static Random field caching
martin
parents:
5506
diff
changeset
|
695 |
return rnd.nextDouble(); |
2 | 696 |
} |
697 |
||
698 |
/** |
|
699 |
* Returns the absolute value of an {@code int} value.. |
|
700 |
* If the argument is not negative, the argument is returned. |
|
701 |
* If the argument is negative, the negation of the argument is returned. |
|
702 |
* |
|
703 |
* <p>Note that if the argument is equal to the value of |
|
704 |
* {@link Integer#MIN_VALUE}, the most negative representable |
|
705 |
* {@code int} value, the result is that same value, which is |
|
706 |
* negative. |
|
707 |
* |
|
708 |
* @param a the argument whose absolute value is to be determined. |
|
709 |
* @return the absolute value of the argument. |
|
710 |
*/ |
|
711 |
public static int abs(int a) { |
|
712 |
return (a < 0) ? -a : a; |
|
713 |
} |
|
714 |
||
715 |
/** |
|
716 |
* Returns the absolute value of a {@code long} value. |
|
717 |
* If the argument is not negative, the argument is returned. |
|
718 |
* If the argument is negative, the negation of the argument is returned. |
|
719 |
* |
|
720 |
* <p>Note that if the argument is equal to the value of |
|
721 |
* {@link Long#MIN_VALUE}, the most negative representable |
|
722 |
* {@code long} value, the result is that same value, which |
|
723 |
* is negative. |
|
724 |
* |
|
725 |
* @param a the argument whose absolute value is to be determined. |
|
726 |
* @return the absolute value of the argument. |
|
727 |
*/ |
|
728 |
public static long abs(long a) { |
|
729 |
return (a < 0) ? -a : a; |
|
730 |
} |
|
731 |
||
732 |
/** |
|
733 |
* Returns the absolute value of a {@code float} value. |
|
734 |
* If the argument is not negative, the argument is returned. |
|
735 |
* If the argument is negative, the negation of the argument is returned. |
|
736 |
* Special cases: |
|
737 |
* <ul><li>If the argument is positive zero or negative zero, the |
|
738 |
* result is positive zero. |
|
739 |
* <li>If the argument is infinite, the result is positive infinity. |
|
740 |
* <li>If the argument is NaN, the result is NaN.</ul> |
|
741 |
* In other words, the result is the same as the value of the expression: |
|
742 |
* <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))} |
|
743 |
* |
|
744 |
* @param a the argument whose absolute value is to be determined |
|
745 |
* @return the absolute value of the argument. |
|
746 |
*/ |
|
747 |
public static float abs(float a) { |
|
748 |
return (a <= 0.0F) ? 0.0F - a : a; |
|
749 |
} |
|
750 |
||
751 |
/** |
|
752 |
* Returns the absolute value of a {@code double} value. |
|
753 |
* If the argument is not negative, the argument is returned. |
|
754 |
* If the argument is negative, the negation of the argument is returned. |
|
755 |
* Special cases: |
|
756 |
* <ul><li>If the argument is positive zero or negative zero, the result |
|
757 |
* is positive zero. |
|
758 |
* <li>If the argument is infinite, the result is positive infinity. |
|
759 |
* <li>If the argument is NaN, the result is NaN.</ul> |
|
760 |
* In other words, the result is the same as the value of the expression: |
|
761 |
* <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)} |
|
762 |
* |
|
763 |
* @param a the argument whose absolute value is to be determined |
|
764 |
* @return the absolute value of the argument. |
|
765 |
*/ |
|
766 |
public static double abs(double a) { |
|
767 |
return (a <= 0.0D) ? 0.0D - a : a; |
|
768 |
} |
|
769 |
||
770 |
/** |
|
771 |
* Returns the greater of two {@code int} values. That is, the |
|
772 |
* result is the argument closer to the value of |
|
773 |
* {@link Integer#MAX_VALUE}. If the arguments have the same value, |
|
774 |
* the result is that same value. |
|
775 |
* |
|
776 |
* @param a an argument. |
|
777 |
* @param b another argument. |
|
778 |
* @return the larger of {@code a} and {@code b}. |
|
779 |
*/ |
|
780 |
public static int max(int a, int b) { |
|
781 |
return (a >= b) ? a : b; |
|
782 |
} |
|
783 |
||
784 |
/** |
|
785 |
* Returns the greater of two {@code long} values. That is, the |
|
786 |
* result is the argument closer to the value of |
|
787 |
* {@link Long#MAX_VALUE}. If the arguments have the same value, |
|
788 |
* the result is that same value. |
|
789 |
* |
|
790 |
* @param a an argument. |
|
791 |
* @param b another argument. |
|
792 |
* @return the larger of {@code a} and {@code b}. |
|
793 |
*/ |
|
794 |
public static long max(long a, long b) { |
|
795 |
return (a >= b) ? a : b; |
|
796 |
} |
|
797 |
||
7517
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
798 |
// Use raw bit-wise conversions on guaranteed non-NaN arguments. |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
799 |
private static long negativeZeroFloatBits = Float.floatToRawIntBits(-0.0f); |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
800 |
private static long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d); |
2 | 801 |
|
802 |
/** |
|
803 |
* Returns the greater of two {@code float} values. That is, |
|
804 |
* the result is the argument closer to positive infinity. If the |
|
805 |
* arguments have the same value, the result is that same |
|
806 |
* value. If either value is NaN, then the result is NaN. Unlike |
|
807 |
* the numerical comparison operators, this method considers |
|
808 |
* negative zero to be strictly smaller than positive zero. If one |
|
809 |
* argument is positive zero and the other negative zero, the |
|
810 |
* result is positive zero. |
|
811 |
* |
|
812 |
* @param a an argument. |
|
813 |
* @param b another argument. |
|
814 |
* @return the larger of {@code a} and {@code b}. |
|
815 |
*/ |
|
816 |
public static float max(float a, float b) { |
|
7517
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
817 |
if (a != a) |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
818 |
return a; // a is NaN |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
819 |
if ((a == 0.0f) && |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
820 |
(b == 0.0f) && |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
821 |
(Float.floatToRawIntBits(a) == negativeZeroFloatBits)) { |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
822 |
// Raw conversion ok since NaN can't map to -0.0. |
2 | 823 |
return b; |
824 |
} |
|
825 |
return (a >= b) ? a : b; |
|
826 |
} |
|
827 |
||
828 |
/** |
|
829 |
* Returns the greater of two {@code double} values. That |
|
830 |
* is, the result is the argument closer to positive infinity. If |
|
831 |
* the arguments have the same value, the result is that same |
|
832 |
* value. If either value is NaN, then the result is NaN. Unlike |
|
833 |
* the numerical comparison operators, this method considers |
|
834 |
* negative zero to be strictly smaller than positive zero. If one |
|
835 |
* argument is positive zero and the other negative zero, the |
|
836 |
* result is positive zero. |
|
837 |
* |
|
838 |
* @param a an argument. |
|
839 |
* @param b another argument. |
|
840 |
* @return the larger of {@code a} and {@code b}. |
|
841 |
*/ |
|
842 |
public static double max(double a, double b) { |
|
7517
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
843 |
if (a != a) |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
844 |
return a; // a is NaN |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
845 |
if ((a == 0.0d) && |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
846 |
(b == 0.0d) && |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
847 |
(Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) { |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
848 |
// Raw conversion ok since NaN can't map to -0.0. |
2 | 849 |
return b; |
850 |
} |
|
851 |
return (a >= b) ? a : b; |
|
852 |
} |
|
853 |
||
854 |
/** |
|
855 |
* Returns the smaller of two {@code int} values. That is, |
|
856 |
* the result the argument closer to the value of |
|
857 |
* {@link Integer#MIN_VALUE}. If the arguments have the same |
|
858 |
* value, the result is that same value. |
|
859 |
* |
|
860 |
* @param a an argument. |
|
861 |
* @param b another argument. |
|
862 |
* @return the smaller of {@code a} and {@code b}. |
|
863 |
*/ |
|
864 |
public static int min(int a, int b) { |
|
865 |
return (a <= b) ? a : b; |
|
866 |
} |
|
867 |
||
868 |
/** |
|
869 |
* Returns the smaller of two {@code long} values. That is, |
|
870 |
* the result is the argument closer to the value of |
|
871 |
* {@link Long#MIN_VALUE}. If the arguments have the same |
|
872 |
* value, the result is that same value. |
|
873 |
* |
|
874 |
* @param a an argument. |
|
875 |
* @param b another argument. |
|
876 |
* @return the smaller of {@code a} and {@code b}. |
|
877 |
*/ |
|
878 |
public static long min(long a, long b) { |
|
879 |
return (a <= b) ? a : b; |
|
880 |
} |
|
881 |
||
882 |
/** |
|
883 |
* Returns the smaller of two {@code float} values. That is, |
|
884 |
* the result is the value closer to negative infinity. If the |
|
885 |
* arguments have the same value, the result is that same |
|
886 |
* value. If either value is NaN, then the result is NaN. Unlike |
|
887 |
* the numerical comparison operators, this method considers |
|
888 |
* negative zero to be strictly smaller than positive zero. If |
|
889 |
* one argument is positive zero and the other is negative zero, |
|
890 |
* the result is negative zero. |
|
891 |
* |
|
892 |
* @param a an argument. |
|
893 |
* @param b another argument. |
|
894 |
* @return the smaller of {@code a} and {@code b.} |
|
895 |
*/ |
|
896 |
public static float min(float a, float b) { |
|
7517
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
897 |
if (a != a) |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
898 |
return a; // a is NaN |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
899 |
if ((a == 0.0f) && |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
900 |
(b == 0.0f) && |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
901 |
(Float.floatToRawIntBits(b) == negativeZeroFloatBits)) { |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
902 |
// Raw conversion ok since NaN can't map to -0.0. |
2 | 903 |
return b; |
904 |
} |
|
905 |
return (a <= b) ? a : b; |
|
906 |
} |
|
907 |
||
908 |
/** |
|
909 |
* Returns the smaller of two {@code double} values. That |
|
910 |
* is, the result is the value closer to negative infinity. If the |
|
911 |
* arguments have the same value, the result is that same |
|
912 |
* value. If either value is NaN, then the result is NaN. Unlike |
|
913 |
* the numerical comparison operators, this method considers |
|
914 |
* negative zero to be strictly smaller than positive zero. If one |
|
915 |
* argument is positive zero and the other is negative zero, the |
|
916 |
* result is negative zero. |
|
917 |
* |
|
918 |
* @param a an argument. |
|
919 |
* @param b another argument. |
|
920 |
* @return the smaller of {@code a} and {@code b}. |
|
921 |
*/ |
|
922 |
public static double min(double a, double b) { |
|
7517
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
923 |
if (a != a) |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
924 |
return a; // a is NaN |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
925 |
if ((a == 0.0d) && |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
926 |
(b == 0.0d) && |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
927 |
(Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) { |
7303bc0e78d6
7002594: Math.max and Math.min should use floatToRawIntBits() to check for -0.0
darcy
parents:
5781
diff
changeset
|
928 |
// Raw conversion ok since NaN can't map to -0.0. |
2 | 929 |
return b; |
930 |
} |
|
931 |
return (a <= b) ? a : b; |
|
932 |
} |
|
933 |
||
934 |
/** |
|
935 |
* Returns the size of an ulp of the argument. An ulp of a |
|
936 |
* {@code double} value is the positive distance between this |
|
937 |
* floating-point value and the {@code double} value next |
|
938 |
* larger in magnitude. Note that for non-NaN <i>x</i>, |
|
939 |
* <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>. |
|
940 |
* |
|
941 |
* <p>Special Cases: |
|
942 |
* <ul> |
|
943 |
* <li> If the argument is NaN, then the result is NaN. |
|
944 |
* <li> If the argument is positive or negative infinity, then the |
|
945 |
* result is positive infinity. |
|
946 |
* <li> If the argument is positive or negative zero, then the result is |
|
947 |
* {@code Double.MIN_VALUE}. |
|
948 |
* <li> If the argument is ±{@code Double.MAX_VALUE}, then |
|
949 |
* the result is equal to 2<sup>971</sup>. |
|
950 |
* </ul> |
|
951 |
* |
|
952 |
* @param d the floating-point value whose ulp is to be returned |
|
953 |
* @return the size of an ulp of the argument |
|
954 |
* @author Joseph D. Darcy |
|
955 |
* @since 1.5 |
|
956 |
*/ |
|
957 |
public static double ulp(double d) { |
|
958 |
return sun.misc.FpUtils.ulp(d); |
|
959 |
} |
|
960 |
||
961 |
/** |
|
962 |
* Returns the size of an ulp of the argument. An ulp of a |
|
963 |
* {@code float} value is the positive distance between this |
|
964 |
* floating-point value and the {@code float} value next |
|
965 |
* larger in magnitude. Note that for non-NaN <i>x</i>, |
|
966 |
* <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>. |
|
967 |
* |
|
968 |
* <p>Special Cases: |
|
969 |
* <ul> |
|
970 |
* <li> If the argument is NaN, then the result is NaN. |
|
971 |
* <li> If the argument is positive or negative infinity, then the |
|
972 |
* result is positive infinity. |
|
973 |
* <li> If the argument is positive or negative zero, then the result is |
|
974 |
* {@code Float.MIN_VALUE}. |
|
975 |
* <li> If the argument is ±{@code Float.MAX_VALUE}, then |
|
976 |
* the result is equal to 2<sup>104</sup>. |
|
977 |
* </ul> |
|
978 |
* |
|
979 |
* @param f the floating-point value whose ulp is to be returned |
|
980 |
* @return the size of an ulp of the argument |
|
981 |
* @author Joseph D. Darcy |
|
982 |
* @since 1.5 |
|
983 |
*/ |
|
984 |
public static float ulp(float f) { |
|
985 |
return sun.misc.FpUtils.ulp(f); |
|
986 |
} |
|
987 |
||
988 |
/** |
|
989 |
* Returns the signum function of the argument; zero if the argument |
|
990 |
* is zero, 1.0 if the argument is greater than zero, -1.0 if the |
|
991 |
* argument is less than zero. |
|
992 |
* |
|
993 |
* <p>Special Cases: |
|
994 |
* <ul> |
|
995 |
* <li> If the argument is NaN, then the result is NaN. |
|
996 |
* <li> If the argument is positive zero or negative zero, then the |
|
997 |
* result is the same as the argument. |
|
998 |
* </ul> |
|
999 |
* |
|
1000 |
* @param d the floating-point value whose signum is to be returned |
|
1001 |
* @return the signum function of the argument |
|
1002 |
* @author Joseph D. Darcy |
|
1003 |
* @since 1.5 |
|
1004 |
*/ |
|
1005 |
public static double signum(double d) { |
|
1006 |
return sun.misc.FpUtils.signum(d); |
|
1007 |
} |
|
1008 |
||
1009 |
/** |
|
1010 |
* Returns the signum function of the argument; zero if the argument |
|
1011 |
* is zero, 1.0f if the argument is greater than zero, -1.0f if the |
|
1012 |
* argument is less than zero. |
|
1013 |
* |
|
1014 |
* <p>Special Cases: |
|
1015 |
* <ul> |
|
1016 |
* <li> If the argument is NaN, then the result is NaN. |
|
1017 |
* <li> If the argument is positive zero or negative zero, then the |
|
1018 |
* result is the same as the argument. |
|
1019 |
* </ul> |
|
1020 |
* |
|
1021 |
* @param f the floating-point value whose signum is to be returned |
|
1022 |
* @return the signum function of the argument |
|
1023 |
* @author Joseph D. Darcy |
|
1024 |
* @since 1.5 |
|
1025 |
*/ |
|
1026 |
public static float signum(float f) { |
|
1027 |
return sun.misc.FpUtils.signum(f); |
|
1028 |
} |
|
1029 |
||
1030 |
/** |
|
1031 |
* Returns the hyperbolic sine of a {@code double} value. |
|
1032 |
* The hyperbolic sine of <i>x</i> is defined to be |
|
1033 |
* (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/2 |
|
1034 |
* where <i>e</i> is {@linkplain Math#E Euler's number}. |
|
1035 |
* |
|
1036 |
* <p>Special cases: |
|
1037 |
* <ul> |
|
1038 |
* |
|
1039 |
* <li>If the argument is NaN, then the result is NaN. |
|
1040 |
* |
|
1041 |
* <li>If the argument is infinite, then the result is an infinity |
|
1042 |
* with the same sign as the argument. |
|
1043 |
* |
|
1044 |
* <li>If the argument is zero, then the result is a zero with the |
|
1045 |
* same sign as the argument. |
|
1046 |
* |
|
1047 |
* </ul> |
|
1048 |
* |
|
1049 |
* @param x The number whose hyperbolic sine is to be returned. |
|
1050 |
* @return The hyperbolic sine of {@code x}. |
|
1051 |
* @since 1.5 |
|
1052 |
*/ |
|
1053 |
public static native double sinh(double x); |
|
1054 |
||
1055 |
/** |
|
1056 |
* Returns the hyperbolic cosine of a {@code double} value. |
|
1057 |
* The hyperbolic cosine of <i>x</i> is defined to be |
|
1058 |
* (<i>e<sup>x</sup> + e<sup>-x</sup></i>)/2 |
|
1059 |
* where <i>e</i> is {@linkplain Math#E Euler's number}. |
|
1060 |
* |
|
1061 |
* <p>Special cases: |
|
1062 |
* <ul> |
|
1063 |
* |
|
1064 |
* <li>If the argument is NaN, then the result is NaN. |
|
1065 |
* |
|
1066 |
* <li>If the argument is infinite, then the result is positive |
|
1067 |
* infinity. |
|
1068 |
* |
|
1069 |
* <li>If the argument is zero, then the result is {@code 1.0}. |
|
1070 |
* |
|
1071 |
* </ul> |
|
1072 |
* |
|
1073 |
* @param x The number whose hyperbolic cosine is to be returned. |
|
1074 |
* @return The hyperbolic cosine of {@code x}. |
|
1075 |
* @since 1.5 |
|
1076 |
*/ |
|
1077 |
public static native double cosh(double x); |
|
1078 |
||
1079 |
/** |
|
1080 |
* Returns the hyperbolic tangent of a {@code double} value. |
|
1081 |
* The hyperbolic tangent of <i>x</i> is defined to be |
|
1082 |
* (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/(<i>e<sup>x</sup> + e<sup>-x</sup></i>), |
|
1083 |
* in other words, {@linkplain Math#sinh |
|
1084 |
* sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}. Note |
|
1085 |
* that the absolute value of the exact tanh is always less than |
|
1086 |
* 1. |
|
1087 |
* |
|
1088 |
* <p>Special cases: |
|
1089 |
* <ul> |
|
1090 |
* |
|
1091 |
* <li>If the argument is NaN, then the result is NaN. |
|
1092 |
* |
|
1093 |
* <li>If the argument is zero, then the result is a zero with the |
|
1094 |
* same sign as the argument. |
|
1095 |
* |
|
1096 |
* <li>If the argument is positive infinity, then the result is |
|
1097 |
* {@code +1.0}. |
|
1098 |
* |
|
1099 |
* <li>If the argument is negative infinity, then the result is |
|
1100 |
* {@code -1.0}. |
|
1101 |
* |
|
1102 |
* </ul> |
|
1103 |
* |
|
1104 |
* @param x The number whose hyperbolic tangent is to be returned. |
|
1105 |
* @return The hyperbolic tangent of {@code x}. |
|
1106 |
* @since 1.5 |
|
1107 |
*/ |
|
1108 |
public static native double tanh(double x); |
|
1109 |
||
1110 |
/** |
|
1111 |
* Returns sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>) |
|
1112 |
* without intermediate overflow or underflow. |
|
1113 |
* |
|
1114 |
* <p>Special cases: |
|
1115 |
* <ul> |
|
1116 |
* |
|
1117 |
* <li> If either argument is infinite, then the result |
|
1118 |
* is positive infinity. |
|
1119 |
* |
|
1120 |
* <li> If either argument is NaN and neither argument is infinite, |
|
1121 |
* then the result is NaN. |
|
1122 |
* |
|
1123 |
* </ul> |
|
1124 |
* |
|
1125 |
* @param x a value |
|
1126 |
* @param y a value |
|
1127 |
* @return sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>) |
|
1128 |
* without intermediate overflow or underflow |
|
1129 |
* @since 1.5 |
|
1130 |
*/ |
|
1131 |
public static native double hypot(double x, double y); |
|
1132 |
||
1133 |
/** |
|
1134 |
* Returns <i>e</i><sup>x</sup> -1. Note that for values of |
|
1135 |
* <i>x</i> near 0, the exact sum of |
|
1136 |
* {@code expm1(x)} + 1 is much closer to the true |
|
1137 |
* result of <i>e</i><sup>x</sup> than {@code exp(x)}. |
|
1138 |
* |
|
1139 |
* <p>Special cases: |
|
1140 |
* <ul> |
|
1141 |
* <li>If the argument is NaN, the result is NaN. |
|
1142 |
* |
|
1143 |
* <li>If the argument is positive infinity, then the result is |
|
1144 |
* positive infinity. |
|
1145 |
* |
|
1146 |
* <li>If the argument is negative infinity, then the result is |
|
1147 |
* -1.0. |
|
1148 |
* |
|
1149 |
* <li>If the argument is zero, then the result is a zero with the |
|
1150 |
* same sign as the argument. |
|
1151 |
* |
|
1152 |
* </ul> |
|
1153 |
* |
|
1154 |
* @param x the exponent to raise <i>e</i> to in the computation of |
|
1155 |
* <i>e</i><sup>{@code x}</sup> -1. |
|
1156 |
* @return the value <i>e</i><sup>{@code x}</sup> - 1. |
|
1157 |
* @since 1.5 |
|
1158 |
*/ |
|
1159 |
public static native double expm1(double x); |
|
1160 |
||
1161 |
/** |
|
1162 |
* Returns the natural logarithm of the sum of the argument and 1. |
|
1163 |
* Note that for small values {@code x}, the result of |
|
1164 |
* {@code log1p(x)} is much closer to the true result of ln(1 |
|
1165 |
* + {@code x}) than the floating-point evaluation of |
|
1166 |
* {@code log(1.0+x)}. |
|
1167 |
* |
|
1168 |
* <p>Special cases: |
|
1169 |
* <ul> |
|
1170 |
* |
|
1171 |
* <li>If the argument is NaN or less than -1, then the result is |
|
1172 |
* NaN. |
|
1173 |
* |
|
1174 |
* <li>If the argument is positive infinity, then the result is |
|
1175 |
* positive infinity. |
|
1176 |
* |
|
1177 |
* <li>If the argument is negative one, then the result is |
|
1178 |
* negative infinity. |
|
1179 |
* |
|
1180 |
* <li>If the argument is zero, then the result is a zero with the |
|
1181 |
* same sign as the argument. |
|
1182 |
* |
|
1183 |
* </ul> |
|
1184 |
* |
|
1185 |
* @param x a value |
|
1186 |
* @return the value ln({@code x} + 1), the natural |
|
1187 |
* log of {@code x} + 1 |
|
1188 |
* @since 1.5 |
|
1189 |
*/ |
|
1190 |
public static native double log1p(double x); |
|
1191 |
||
1192 |
/** |
|
1193 |
* Returns the first floating-point argument with the sign of the |
|
1194 |
* second floating-point argument. For this method, a NaN |
|
1195 |
* {@code sign} argument is always treated as if it were |
|
1196 |
* positive. |
|
1197 |
* |
|
1198 |
* @param magnitude the parameter providing the magnitude of the result |
|
1199 |
* @param sign the parameter providing the sign of the result |
|
1200 |
* @return a value with the magnitude of {@code magnitude} |
|
1201 |
* and the sign of {@code sign}. |
|
1202 |
* @since 1.6 |
|
1203 |
*/ |
|
1204 |
public static double copySign(double magnitude, double sign) { |
|
1205 |
return sun.misc.FpUtils.copySign(magnitude, sign); |
|
1206 |
} |
|
1207 |
||
1208 |
/** |
|
1209 |
* Returns the first floating-point argument with the sign of the |
|
1210 |
* second floating-point argument. For this method, a NaN |
|
1211 |
* {@code sign} argument is always treated as if it were |
|
1212 |
* positive. |
|
1213 |
* |
|
1214 |
* @param magnitude the parameter providing the magnitude of the result |
|
1215 |
* @param sign the parameter providing the sign of the result |
|
1216 |
* @return a value with the magnitude of {@code magnitude} |
|
1217 |
* and the sign of {@code sign}. |
|
1218 |
* @since 1.6 |
|
1219 |
*/ |
|
1220 |
public static float copySign(float magnitude, float sign) { |
|
1221 |
return sun.misc.FpUtils.copySign(magnitude, sign); |
|
1222 |
} |
|
1223 |
/** |
|
1224 |
* Returns the unbiased exponent used in the representation of a |
|
1225 |
* {@code float}. Special cases: |
|
1226 |
* |
|
1227 |
* <ul> |
|
1228 |
* <li>If the argument is NaN or infinite, then the result is |
|
1229 |
* {@link Float#MAX_EXPONENT} + 1. |
|
1230 |
* <li>If the argument is zero or subnormal, then the result is |
|
1231 |
* {@link Float#MIN_EXPONENT} -1. |
|
1232 |
* </ul> |
|
1233 |
* @param f a {@code float} value |
|
1234 |
* @since 1.6 |
|
1235 |
*/ |
|
1236 |
public static int getExponent(float f) { |
|
1237 |
return sun.misc.FpUtils.getExponent(f); |
|
1238 |
} |
|
1239 |
||
1240 |
/** |
|
1241 |
* Returns the unbiased exponent used in the representation of a |
|
1242 |
* {@code double}. Special cases: |
|
1243 |
* |
|
1244 |
* <ul> |
|
1245 |
* <li>If the argument is NaN or infinite, then the result is |
|
1246 |
* {@link Double#MAX_EXPONENT} + 1. |
|
1247 |
* <li>If the argument is zero or subnormal, then the result is |
|
1248 |
* {@link Double#MIN_EXPONENT} -1. |
|
1249 |
* </ul> |
|
1250 |
* @param d a {@code double} value |
|
1251 |
* @since 1.6 |
|
1252 |
*/ |
|
1253 |
public static int getExponent(double d) { |
|
1254 |
return sun.misc.FpUtils.getExponent(d); |
|
1255 |
} |
|
1256 |
||
1257 |
/** |
|
1258 |
* Returns the floating-point number adjacent to the first |
|
1259 |
* argument in the direction of the second argument. If both |
|
1260 |
* arguments compare as equal the second argument is returned. |
|
1261 |
* |
|
1262 |
* <p>Special cases: |
|
1263 |
* <ul> |
|
1264 |
* <li> If either argument is a NaN, then NaN is returned. |
|
1265 |
* |
|
1266 |
* <li> If both arguments are signed zeros, {@code direction} |
|
1267 |
* is returned unchanged (as implied by the requirement of |
|
1268 |
* returning the second argument if the arguments compare as |
|
1269 |
* equal). |
|
1270 |
* |
|
1271 |
* <li> If {@code start} is |
|
1272 |
* ±{@link Double#MIN_VALUE} and {@code direction} |
|
1273 |
* has a value such that the result should have a smaller |
|
1274 |
* magnitude, then a zero with the same sign as {@code start} |
|
1275 |
* is returned. |
|
1276 |
* |
|
1277 |
* <li> If {@code start} is infinite and |
|
1278 |
* {@code direction} has a value such that the result should |
|
1279 |
* have a smaller magnitude, {@link Double#MAX_VALUE} with the |
|
1280 |
* same sign as {@code start} is returned. |
|
1281 |
* |
|
1282 |
* <li> If {@code start} is equal to ± |
|
1283 |
* {@link Double#MAX_VALUE} and {@code direction} has a |
|
1284 |
* value such that the result should have a larger magnitude, an |
|
1285 |
* infinity with same sign as {@code start} is returned. |
|
1286 |
* </ul> |
|
1287 |
* |
|
1288 |
* @param start starting floating-point value |
|
1289 |
* @param direction value indicating which of |
|
1290 |
* {@code start}'s neighbors or {@code start} should |
|
1291 |
* be returned |
|
1292 |
* @return The floating-point number adjacent to {@code start} in the |
|
1293 |
* direction of {@code direction}. |
|
1294 |
* @since 1.6 |
|
1295 |
*/ |
|
1296 |
public static double nextAfter(double start, double direction) { |
|
1297 |
return sun.misc.FpUtils.nextAfter(start, direction); |
|
1298 |
} |
|
1299 |
||
1300 |
/** |
|
1301 |
* Returns the floating-point number adjacent to the first |
|
1302 |
* argument in the direction of the second argument. If both |
|
1303 |
* arguments compare as equal a value equivalent to the second argument |
|
1304 |
* is returned. |
|
1305 |
* |
|
1306 |
* <p>Special cases: |
|
1307 |
* <ul> |
|
1308 |
* <li> If either argument is a NaN, then NaN is returned. |
|
1309 |
* |
|
1310 |
* <li> If both arguments are signed zeros, a value equivalent |
|
1311 |
* to {@code direction} is returned. |
|
1312 |
* |
|
1313 |
* <li> If {@code start} is |
|
1314 |
* ±{@link Float#MIN_VALUE} and {@code direction} |
|
1315 |
* has a value such that the result should have a smaller |
|
1316 |
* magnitude, then a zero with the same sign as {@code start} |
|
1317 |
* is returned. |
|
1318 |
* |
|
1319 |
* <li> If {@code start} is infinite and |
|
1320 |
* {@code direction} has a value such that the result should |
|
1321 |
* have a smaller magnitude, {@link Float#MAX_VALUE} with the |
|
1322 |
* same sign as {@code start} is returned. |
|
1323 |
* |
|
1324 |
* <li> If {@code start} is equal to ± |
|
1325 |
* {@link Float#MAX_VALUE} and {@code direction} has a |
|
1326 |
* value such that the result should have a larger magnitude, an |
|
1327 |
* infinity with same sign as {@code start} is returned. |
|
1328 |
* </ul> |
|
1329 |
* |
|
1330 |
* @param start starting floating-point value |
|
1331 |
* @param direction value indicating which of |
|
1332 |
* {@code start}'s neighbors or {@code start} should |
|
1333 |
* be returned |
|
1334 |
* @return The floating-point number adjacent to {@code start} in the |
|
1335 |
* direction of {@code direction}. |
|
1336 |
* @since 1.6 |
|
1337 |
*/ |
|
1338 |
public static float nextAfter(float start, double direction) { |
|
1339 |
return sun.misc.FpUtils.nextAfter(start, direction); |
|
1340 |
} |
|
1341 |
||
1342 |
/** |
|
1343 |
* Returns the floating-point value adjacent to {@code d} in |
|
1344 |
* the direction of positive infinity. This method is |
|
1345 |
* semantically equivalent to {@code nextAfter(d, |
|
1346 |
* Double.POSITIVE_INFINITY)}; however, a {@code nextUp} |
|
1347 |
* implementation may run faster than its equivalent |
|
1348 |
* {@code nextAfter} call. |
|
1349 |
* |
|
1350 |
* <p>Special Cases: |
|
1351 |
* <ul> |
|
1352 |
* <li> If the argument is NaN, the result is NaN. |
|
1353 |
* |
|
1354 |
* <li> If the argument is positive infinity, the result is |
|
1355 |
* positive infinity. |
|
1356 |
* |
|
1357 |
* <li> If the argument is zero, the result is |
|
1358 |
* {@link Double#MIN_VALUE} |
|
1359 |
* |
|
1360 |
* </ul> |
|
1361 |
* |
|
1362 |
* @param d starting floating-point value |
|
1363 |
* @return The adjacent floating-point value closer to positive |
|
1364 |
* infinity. |
|
1365 |
* @since 1.6 |
|
1366 |
*/ |
|
1367 |
public static double nextUp(double d) { |
|
1368 |
return sun.misc.FpUtils.nextUp(d); |
|
1369 |
} |
|
1370 |
||
1371 |
/** |
|
1372 |
* Returns the floating-point value adjacent to {@code f} in |
|
1373 |
* the direction of positive infinity. This method is |
|
1374 |
* semantically equivalent to {@code nextAfter(f, |
|
1375 |
* Float.POSITIVE_INFINITY)}; however, a {@code nextUp} |
|
1376 |
* implementation may run faster than its equivalent |
|
1377 |
* {@code nextAfter} call. |
|
1378 |
* |
|
1379 |
* <p>Special Cases: |
|
1380 |
* <ul> |
|
1381 |
* <li> If the argument is NaN, the result is NaN. |
|
1382 |
* |
|
1383 |
* <li> If the argument is positive infinity, the result is |
|
1384 |
* positive infinity. |
|
1385 |
* |
|
1386 |
* <li> If the argument is zero, the result is |
|
1387 |
* {@link Float#MIN_VALUE} |
|
1388 |
* |
|
1389 |
* </ul> |
|
1390 |
* |
|
1391 |
* @param f starting floating-point value |
|
1392 |
* @return The adjacent floating-point value closer to positive |
|
1393 |
* infinity. |
|
1394 |
* @since 1.6 |
|
1395 |
*/ |
|
1396 |
public static float nextUp(float f) { |
|
1397 |
return sun.misc.FpUtils.nextUp(f); |
|
1398 |
} |
|
1399 |
||
1400 |
||
1401 |
/** |
|
1402 |
* Return {@code d} × |
|
1403 |
* 2<sup>{@code scaleFactor}</sup> rounded as if performed |
|
1404 |
* by a single correctly rounded floating-point multiply to a |
|
1405 |
* member of the double value set. See the Java |
|
1406 |
* Language Specification for a discussion of floating-point |
|
1407 |
* value sets. If the exponent of the result is between {@link |
|
1408 |
* Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the |
|
1409 |
* answer is calculated exactly. If the exponent of the result |
|
1410 |
* would be larger than {@code Double.MAX_EXPONENT}, an |
|
1411 |
* infinity is returned. Note that if the result is subnormal, |
|
1412 |
* precision may be lost; that is, when {@code scalb(x, n)} |
|
1413 |
* is subnormal, {@code scalb(scalb(x, n), -n)} may not equal |
|
1414 |
* <i>x</i>. When the result is non-NaN, the result has the same |
|
1415 |
* sign as {@code d}. |
|
1416 |
* |
|
1417 |
* <p>Special cases: |
|
1418 |
* <ul> |
|
1419 |
* <li> If the first argument is NaN, NaN is returned. |
|
1420 |
* <li> If the first argument is infinite, then an infinity of the |
|
1421 |
* same sign is returned. |
|
1422 |
* <li> If the first argument is zero, then a zero of the same |
|
1423 |
* sign is returned. |
|
1424 |
* </ul> |
|
1425 |
* |
|
1426 |
* @param d number to be scaled by a power of two. |
|
1427 |
* @param scaleFactor power of 2 used to scale {@code d} |
|
1428 |
* @return {@code d} × 2<sup>{@code scaleFactor}</sup> |
|
1429 |
* @since 1.6 |
|
1430 |
*/ |
|
1431 |
public static double scalb(double d, int scaleFactor) { |
|
1432 |
return sun.misc.FpUtils.scalb(d, scaleFactor); |
|
1433 |
} |
|
1434 |
||
1435 |
/** |
|
1436 |
* Return {@code f} × |
|
1437 |
* 2<sup>{@code scaleFactor}</sup> rounded as if performed |
|
1438 |
* by a single correctly rounded floating-point multiply to a |
|
1439 |
* member of the float value set. See the Java |
|
1440 |
* Language Specification for a discussion of floating-point |
|
1441 |
* value sets. If the exponent of the result is between {@link |
|
1442 |
* Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the |
|
1443 |
* answer is calculated exactly. If the exponent of the result |
|
1444 |
* would be larger than {@code Float.MAX_EXPONENT}, an |
|
1445 |
* infinity is returned. Note that if the result is subnormal, |
|
1446 |
* precision may be lost; that is, when {@code scalb(x, n)} |
|
1447 |
* is subnormal, {@code scalb(scalb(x, n), -n)} may not equal |
|
1448 |
* <i>x</i>. When the result is non-NaN, the result has the same |
|
1449 |
* sign as {@code f}. |
|
1450 |
* |
|
1451 |
* <p>Special cases: |
|
1452 |
* <ul> |
|
1453 |
* <li> If the first argument is NaN, NaN is returned. |
|
1454 |
* <li> If the first argument is infinite, then an infinity of the |
|
1455 |
* same sign is returned. |
|
1456 |
* <li> If the first argument is zero, then a zero of the same |
|
1457 |
* sign is returned. |
|
1458 |
* </ul> |
|
1459 |
* |
|
1460 |
* @param f number to be scaled by a power of two. |
|
1461 |
* @param scaleFactor power of 2 used to scale {@code f} |
|
1462 |
* @return {@code f} × 2<sup>{@code scaleFactor}</sup> |
|
1463 |
* @since 1.6 |
|
1464 |
*/ |
|
1465 |
public static float scalb(float f, int scaleFactor) { |
|
1466 |
return sun.misc.FpUtils.scalb(f, scaleFactor); |
|
1467 |
} |
|
1468 |
} |