2
|
1 |
/*
|
|
2 |
* Copyright 1998-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation. Sun designates this
|
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
|
9 |
* by Sun in the LICENSE file that accompanied this code.
|
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
|
21 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
22 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
23 |
* have any questions.
|
|
24 |
*/
|
|
25 |
|
|
26 |
/*
|
|
27 |
* (C) Copyright IBM Corp. 1998-2003, All Rights Reserved
|
|
28 |
*
|
|
29 |
*/
|
|
30 |
|
|
31 |
package java.awt.font;
|
|
32 |
|
|
33 |
import java.awt.Color;
|
|
34 |
import java.awt.Font;
|
|
35 |
import java.awt.Graphics2D;
|
|
36 |
import java.awt.Rectangle;
|
|
37 |
import java.awt.Shape;
|
|
38 |
import java.awt.geom.AffineTransform;
|
|
39 |
import java.awt.geom.GeneralPath;
|
|
40 |
import java.awt.geom.Point2D;
|
|
41 |
import java.awt.geom.Rectangle2D;
|
|
42 |
import java.awt.im.InputMethodHighlight;
|
|
43 |
import java.awt.image.BufferedImage;
|
|
44 |
import java.text.Annotation;
|
|
45 |
import java.text.AttributedCharacterIterator;
|
|
46 |
import java.text.Bidi;
|
|
47 |
import java.text.CharacterIterator;
|
|
48 |
import java.util.Hashtable;
|
|
49 |
import java.util.Map;
|
|
50 |
import sun.font.AttributeValues;
|
|
51 |
import sun.font.BidiUtils;
|
|
52 |
import sun.font.CoreMetrics;
|
|
53 |
import sun.font.Decoration;
|
|
54 |
import sun.font.FontLineMetrics;
|
|
55 |
import sun.font.FontResolver;
|
|
56 |
import sun.font.GraphicComponent;
|
|
57 |
import sun.font.LayoutPathImpl;
|
|
58 |
import sun.font.LayoutPathImpl.EmptyPath;
|
|
59 |
import sun.font.LayoutPathImpl.SegmentPathBuilder;
|
|
60 |
import sun.font.TextLabelFactory;
|
|
61 |
import sun.font.TextLineComponent;
|
|
62 |
import sun.text.CodePointIterator;
|
|
63 |
|
|
64 |
import java.awt.geom.Line2D;
|
|
65 |
|
|
66 |
final class TextLine {
|
|
67 |
|
|
68 |
static final class TextLineMetrics {
|
|
69 |
public final float ascent;
|
|
70 |
public final float descent;
|
|
71 |
public final float leading;
|
|
72 |
public final float advance;
|
|
73 |
|
|
74 |
public TextLineMetrics(float ascent,
|
|
75 |
float descent,
|
|
76 |
float leading,
|
|
77 |
float advance) {
|
|
78 |
this.ascent = ascent;
|
|
79 |
this.descent = descent;
|
|
80 |
this.leading = leading;
|
|
81 |
this.advance = advance;
|
|
82 |
}
|
|
83 |
}
|
|
84 |
|
|
85 |
private TextLineComponent[] fComponents;
|
|
86 |
private float[] fBaselineOffsets;
|
|
87 |
private int[] fComponentVisualOrder; // if null, ltr
|
|
88 |
private float[] locs; // x,y pairs for components in visual order
|
|
89 |
private char[] fChars;
|
|
90 |
private int fCharsStart;
|
|
91 |
private int fCharsLimit;
|
|
92 |
private int[] fCharVisualOrder; // if null, ltr
|
|
93 |
private int[] fCharLogicalOrder; // if null, ltr
|
|
94 |
private byte[] fCharLevels; // if null, 0
|
|
95 |
private boolean fIsDirectionLTR;
|
|
96 |
private LayoutPathImpl lp;
|
|
97 |
private boolean isSimple;
|
|
98 |
private Rectangle pixelBounds;
|
|
99 |
private FontRenderContext frc;
|
|
100 |
|
|
101 |
private TextLineMetrics fMetrics = null; // built on demand in getMetrics
|
|
102 |
|
|
103 |
public TextLine(FontRenderContext frc,
|
|
104 |
TextLineComponent[] components,
|
|
105 |
float[] baselineOffsets,
|
|
106 |
char[] chars,
|
|
107 |
int charsStart,
|
|
108 |
int charsLimit,
|
|
109 |
int[] charLogicalOrder,
|
|
110 |
byte[] charLevels,
|
|
111 |
boolean isDirectionLTR) {
|
|
112 |
|
|
113 |
int[] componentVisualOrder = computeComponentOrder(components,
|
|
114 |
charLogicalOrder);
|
|
115 |
|
|
116 |
this.frc = frc;
|
|
117 |
fComponents = components;
|
|
118 |
fBaselineOffsets = baselineOffsets;
|
|
119 |
fComponentVisualOrder = componentVisualOrder;
|
|
120 |
fChars = chars;
|
|
121 |
fCharsStart = charsStart;
|
|
122 |
fCharsLimit = charsLimit;
|
|
123 |
fCharLogicalOrder = charLogicalOrder;
|
|
124 |
fCharLevels = charLevels;
|
|
125 |
fIsDirectionLTR = isDirectionLTR;
|
|
126 |
checkCtorArgs();
|
|
127 |
|
|
128 |
init();
|
|
129 |
}
|
|
130 |
|
|
131 |
private void checkCtorArgs() {
|
|
132 |
|
|
133 |
int checkCharCount = 0;
|
|
134 |
for (int i=0; i < fComponents.length; i++) {
|
|
135 |
checkCharCount += fComponents[i].getNumCharacters();
|
|
136 |
}
|
|
137 |
|
|
138 |
if (checkCharCount != this.characterCount()) {
|
|
139 |
throw new IllegalArgumentException("Invalid TextLine! " +
|
|
140 |
"char count is different from " +
|
|
141 |
"sum of char counts of components.");
|
|
142 |
}
|
|
143 |
}
|
|
144 |
|
|
145 |
private void init() {
|
|
146 |
|
|
147 |
// first, we need to check for graphic components on the TOP or BOTTOM baselines. So
|
|
148 |
// we perform the work that used to be in getMetrics here.
|
|
149 |
|
|
150 |
float ascent = 0;
|
|
151 |
float descent = 0;
|
|
152 |
float leading = 0;
|
|
153 |
float advance = 0;
|
|
154 |
|
|
155 |
// ascent + descent must not be less than this value
|
|
156 |
float maxGraphicHeight = 0;
|
|
157 |
float maxGraphicHeightWithLeading = 0;
|
|
158 |
|
|
159 |
// walk through EGA's
|
|
160 |
TextLineComponent tlc;
|
|
161 |
boolean fitTopAndBottomGraphics = false;
|
|
162 |
|
|
163 |
isSimple = true;
|
|
164 |
|
|
165 |
for (int i = 0; i < fComponents.length; i++) {
|
|
166 |
tlc = fComponents[i];
|
|
167 |
|
|
168 |
isSimple &= tlc.isSimple();
|
|
169 |
|
|
170 |
CoreMetrics cm = tlc.getCoreMetrics();
|
|
171 |
|
|
172 |
byte baseline = (byte)cm.baselineIndex;
|
|
173 |
|
|
174 |
if (baseline >= 0) {
|
|
175 |
float baselineOffset = fBaselineOffsets[baseline];
|
|
176 |
|
|
177 |
ascent = Math.max(ascent, -baselineOffset + cm.ascent);
|
|
178 |
|
|
179 |
float gd = baselineOffset + cm.descent;
|
|
180 |
descent = Math.max(descent, gd);
|
|
181 |
|
|
182 |
leading = Math.max(leading, gd + cm.leading);
|
|
183 |
}
|
|
184 |
else {
|
|
185 |
fitTopAndBottomGraphics = true;
|
|
186 |
float graphicHeight = cm.ascent + cm.descent;
|
|
187 |
float graphicHeightWithLeading = graphicHeight + cm.leading;
|
|
188 |
maxGraphicHeight = Math.max(maxGraphicHeight, graphicHeight);
|
|
189 |
maxGraphicHeightWithLeading = Math.max(maxGraphicHeightWithLeading,
|
|
190 |
graphicHeightWithLeading);
|
|
191 |
}
|
|
192 |
}
|
|
193 |
|
|
194 |
if (fitTopAndBottomGraphics) {
|
|
195 |
if (maxGraphicHeight > ascent + descent) {
|
|
196 |
descent = maxGraphicHeight - ascent;
|
|
197 |
}
|
|
198 |
if (maxGraphicHeightWithLeading > ascent + leading) {
|
|
199 |
leading = maxGraphicHeightWithLeading - ascent;
|
|
200 |
}
|
|
201 |
}
|
|
202 |
|
|
203 |
leading -= descent;
|
|
204 |
|
|
205 |
// we now know enough to compute the locs, but we need the final loc
|
|
206 |
// for the advance before we can create the metrics object
|
|
207 |
|
|
208 |
if (fitTopAndBottomGraphics) {
|
|
209 |
// we have top or bottom baselines, so expand the baselines array
|
|
210 |
// full offsets are needed by CoreMetrics.effectiveBaselineOffset
|
|
211 |
fBaselineOffsets = new float[] {
|
|
212 |
fBaselineOffsets[0],
|
|
213 |
fBaselineOffsets[1],
|
|
214 |
fBaselineOffsets[2],
|
|
215 |
descent,
|
|
216 |
-ascent
|
|
217 |
};
|
|
218 |
}
|
|
219 |
|
|
220 |
float x = 0;
|
|
221 |
float y = 0;
|
|
222 |
CoreMetrics pcm = null;
|
|
223 |
|
|
224 |
boolean needPath = false;
|
|
225 |
locs = new float[fComponents.length * 2 + 2];
|
|
226 |
|
|
227 |
for (int i = 0, n = 0; i < fComponents.length; ++i, n += 2) {
|
|
228 |
tlc = fComponents[getComponentLogicalIndex(i)];
|
|
229 |
CoreMetrics cm = tlc.getCoreMetrics();
|
|
230 |
|
|
231 |
if ((pcm != null) &&
|
|
232 |
(pcm.italicAngle != 0 || cm.italicAngle != 0) && // adjust because of italics
|
|
233 |
(pcm.italicAngle != cm.italicAngle ||
|
|
234 |
pcm.baselineIndex != cm.baselineIndex ||
|
|
235 |
pcm.ssOffset != cm.ssOffset)) {
|
|
236 |
|
|
237 |
// 1) compute the area of overlap - min effective ascent and min effective descent
|
|
238 |
// 2) compute the x positions along italic angle of ascent and descent for left and right
|
|
239 |
// 3) compute maximum left - right, adjust right position by this value
|
|
240 |
// this is a crude form of kerning between textcomponents
|
|
241 |
|
|
242 |
// note glyphvectors preposition glyphs based on offset,
|
|
243 |
// so tl doesn't need to adjust glyphvector position
|
|
244 |
// 1)
|
|
245 |
float pb = pcm.effectiveBaselineOffset(fBaselineOffsets);
|
|
246 |
float pa = pb - pcm.ascent;
|
|
247 |
float pd = pb + pcm.descent;
|
|
248 |
// pb += pcm.ssOffset;
|
|
249 |
|
|
250 |
float cb = cm.effectiveBaselineOffset(fBaselineOffsets);
|
|
251 |
float ca = cb - cm.ascent;
|
|
252 |
float cd = cb + cm.descent;
|
|
253 |
// cb += cm.ssOffset;
|
|
254 |
|
|
255 |
float a = Math.max(pa, ca);
|
|
256 |
float d = Math.min(pd, cd);
|
|
257 |
|
|
258 |
// 2)
|
|
259 |
float pax = pcm.italicAngle * (pb - a);
|
|
260 |
float pdx = pcm.italicAngle * (pb - d);
|
|
261 |
|
|
262 |
float cax = cm.italicAngle * (cb - a);
|
|
263 |
float cdx = cm.italicAngle * (cb - d);
|
|
264 |
|
|
265 |
// 3)
|
|
266 |
float dax = pax - cax;
|
|
267 |
float ddx = pdx - cdx;
|
|
268 |
float dx = Math.max(dax, ddx);
|
|
269 |
|
|
270 |
x += dx;
|
|
271 |
y = cb;
|
|
272 |
} else {
|
|
273 |
// no italic adjustment for x, but still need to compute y
|
|
274 |
y = cm.effectiveBaselineOffset(fBaselineOffsets); // + cm.ssOffset;
|
|
275 |
}
|
|
276 |
|
|
277 |
locs[n] = x;
|
|
278 |
locs[n+1] = y;
|
|
279 |
|
|
280 |
x += tlc.getAdvance();
|
|
281 |
pcm = cm;
|
|
282 |
|
|
283 |
needPath |= tlc.getBaselineTransform() != null;
|
|
284 |
}
|
|
285 |
|
|
286 |
// do we want italic padding at the right of the line?
|
|
287 |
if (pcm.italicAngle != 0) {
|
|
288 |
float pb = pcm.effectiveBaselineOffset(fBaselineOffsets);
|
|
289 |
float pa = pb - pcm.ascent;
|
|
290 |
float pd = pb + pcm.descent;
|
|
291 |
pb += pcm.ssOffset;
|
|
292 |
|
|
293 |
float d;
|
|
294 |
if (pcm.italicAngle > 0) {
|
|
295 |
d = pb + pcm.ascent;
|
|
296 |
} else {
|
|
297 |
d = pb - pcm.descent;
|
|
298 |
}
|
|
299 |
d *= pcm.italicAngle;
|
|
300 |
|
|
301 |
x += d;
|
|
302 |
}
|
|
303 |
locs[locs.length - 2] = x;
|
|
304 |
// locs[locs.length - 1] = 0; // final offset is always back on baseline
|
|
305 |
|
|
306 |
// ok, build fMetrics since we have the final advance
|
|
307 |
advance = x;
|
|
308 |
fMetrics = new TextLineMetrics(ascent, descent, leading, advance);
|
|
309 |
|
|
310 |
// build path if we need it
|
|
311 |
if (needPath) {
|
|
312 |
isSimple = false;
|
|
313 |
|
|
314 |
Point2D.Double pt = new Point2D.Double();
|
|
315 |
double tx = 0, ty = 0;
|
|
316 |
SegmentPathBuilder builder = new SegmentPathBuilder();
|
|
317 |
builder.moveTo(locs[0], 0);
|
|
318 |
for (int i = 0, n = 0; i < fComponents.length; ++i, n += 2) {
|
|
319 |
tlc = fComponents[getComponentLogicalIndex(i)];
|
|
320 |
AffineTransform at = tlc.getBaselineTransform();
|
|
321 |
if (at != null && ((at.getType() & at.TYPE_TRANSLATION) != 0)) {
|
|
322 |
double dx = at.getTranslateX();
|
|
323 |
double dy = at.getTranslateY();
|
|
324 |
builder.moveTo(tx += dx, ty += dy);
|
|
325 |
}
|
|
326 |
pt.x = locs[n+2] - locs[n];
|
|
327 |
pt.y = 0;
|
|
328 |
if (at != null) {
|
|
329 |
at.deltaTransform(pt, pt);
|
|
330 |
}
|
|
331 |
builder.lineTo(tx += pt.x, ty += pt.y);
|
|
332 |
}
|
|
333 |
lp = builder.complete();
|
|
334 |
|
|
335 |
if (lp == null) { // empty path
|
|
336 |
tlc = fComponents[getComponentLogicalIndex(0)];
|
|
337 |
AffineTransform at = tlc.getBaselineTransform();
|
|
338 |
if (at != null) {
|
|
339 |
lp = new EmptyPath(at);
|
|
340 |
}
|
|
341 |
}
|
|
342 |
}
|
|
343 |
}
|
|
344 |
|
|
345 |
public Rectangle getPixelBounds(FontRenderContext frc, float x, float y) {
|
|
346 |
Rectangle result = null;
|
|
347 |
|
|
348 |
// if we have a matching frc, set it to null so we don't have to test it
|
|
349 |
// for each component
|
|
350 |
if (frc != null && frc.equals(this.frc)) {
|
|
351 |
frc = null;
|
|
352 |
}
|
|
353 |
|
|
354 |
// only cache integral locations with the default frc, this is a bit strict
|
|
355 |
int ix = (int)Math.floor(x);
|
|
356 |
int iy = (int)Math.floor(y);
|
|
357 |
float rx = x - ix;
|
|
358 |
float ry = y - iy;
|
|
359 |
boolean canCache = frc == null && rx == 0 && ry == 0;
|
|
360 |
|
|
361 |
if (canCache && pixelBounds != null) {
|
|
362 |
result = new Rectangle(pixelBounds);
|
|
363 |
result.x += ix;
|
|
364 |
result.y += iy;
|
|
365 |
return result;
|
|
366 |
}
|
|
367 |
|
|
368 |
// couldn't use cache, or didn't have it, so compute
|
|
369 |
|
|
370 |
if (isSimple) { // all glyphvectors with no decorations, no layout path
|
|
371 |
for (int i = 0, n = 0; i < fComponents.length; i++, n += 2) {
|
|
372 |
TextLineComponent tlc = fComponents[getComponentLogicalIndex(i)];
|
|
373 |
Rectangle pb = tlc.getPixelBounds(frc, locs[n] + rx, locs[n+1] + ry);
|
|
374 |
if (!pb.isEmpty()) {
|
|
375 |
if (result == null) {
|
|
376 |
result = pb;
|
|
377 |
} else {
|
|
378 |
result.add(pb);
|
|
379 |
}
|
|
380 |
}
|
|
381 |
}
|
|
382 |
if (result == null) {
|
|
383 |
result = new Rectangle(0, 0, 0, 0);
|
|
384 |
}
|
|
385 |
} else { // draw and test
|
|
386 |
final int MARGIN = 3;
|
|
387 |
Rectangle2D r2d = getVisualBounds();
|
|
388 |
if (lp != null) {
|
|
389 |
r2d = lp.mapShape(r2d).getBounds();
|
|
390 |
}
|
|
391 |
Rectangle bounds = r2d.getBounds();
|
|
392 |
BufferedImage im = new BufferedImage(bounds.width + MARGIN * 2,
|
|
393 |
bounds.height + MARGIN * 2,
|
|
394 |
BufferedImage.TYPE_INT_ARGB);
|
|
395 |
|
|
396 |
Graphics2D g2d = im.createGraphics();
|
|
397 |
g2d.setColor(Color.WHITE);
|
|
398 |
g2d.fillRect(0, 0, im.getWidth(), im.getHeight());
|
|
399 |
|
|
400 |
g2d.setColor(Color.BLACK);
|
|
401 |
draw(g2d, rx + MARGIN - bounds.x, ry + MARGIN - bounds.y);
|
|
402 |
|
|
403 |
result = computePixelBounds(im);
|
|
404 |
result.x -= MARGIN - bounds.x;
|
|
405 |
result.y -= MARGIN - bounds.y;
|
|
406 |
}
|
|
407 |
|
|
408 |
if (canCache) {
|
|
409 |
pixelBounds = new Rectangle(result);
|
|
410 |
}
|
|
411 |
|
|
412 |
result.x += ix;
|
|
413 |
result.y += iy;
|
|
414 |
return result;
|
|
415 |
}
|
|
416 |
|
|
417 |
static Rectangle computePixelBounds(BufferedImage im) {
|
|
418 |
int w = im.getWidth();
|
|
419 |
int h = im.getHeight();
|
|
420 |
|
|
421 |
int l = -1, t = -1, r = w, b = h;
|
|
422 |
|
|
423 |
{
|
|
424 |
// get top
|
|
425 |
int[] buf = new int[w];
|
|
426 |
loop: while (++t < h) {
|
|
427 |
im.getRGB(0, t, buf.length, 1, buf, 0, w); // w ignored
|
|
428 |
for (int i = 0; i < buf.length; i++) {
|
|
429 |
if (buf[i] != -1) {
|
|
430 |
break loop;
|
|
431 |
}
|
|
432 |
}
|
|
433 |
}
|
|
434 |
}
|
|
435 |
|
|
436 |
// get bottom
|
|
437 |
{
|
|
438 |
int[] buf = new int[w];
|
|
439 |
loop: while (--b > t) {
|
|
440 |
im.getRGB(0, b, buf.length, 1, buf, 0, w); // w ignored
|
|
441 |
for (int i = 0; i < buf.length; ++i) {
|
|
442 |
if (buf[i] != -1) {
|
|
443 |
break loop;
|
|
444 |
}
|
|
445 |
}
|
|
446 |
}
|
|
447 |
++b;
|
|
448 |
}
|
|
449 |
|
|
450 |
// get left
|
|
451 |
{
|
|
452 |
loop: while (++l < r) {
|
|
453 |
for (int i = t; i < b; ++i) {
|
|
454 |
int v = im.getRGB(l, i);
|
|
455 |
if (v != -1) {
|
|
456 |
break loop;
|
|
457 |
}
|
|
458 |
}
|
|
459 |
}
|
|
460 |
}
|
|
461 |
|
|
462 |
// get right
|
|
463 |
{
|
|
464 |
loop: while (--r > l) {
|
|
465 |
for (int i = t; i < b; ++i) {
|
|
466 |
int v = im.getRGB(r, i);
|
|
467 |
if (v != -1) {
|
|
468 |
break loop;
|
|
469 |
}
|
|
470 |
}
|
|
471 |
}
|
|
472 |
++r;
|
|
473 |
}
|
|
474 |
|
|
475 |
return new Rectangle(l, t, r-l, b-t);
|
|
476 |
}
|
|
477 |
|
|
478 |
private abstract static class Function {
|
|
479 |
|
|
480 |
abstract float computeFunction(TextLine line,
|
|
481 |
int componentIndex,
|
|
482 |
int indexInArray);
|
|
483 |
}
|
|
484 |
|
|
485 |
private static Function fgPosAdvF = new Function() {
|
|
486 |
float computeFunction(TextLine line,
|
|
487 |
int componentIndex,
|
|
488 |
int indexInArray) {
|
|
489 |
|
|
490 |
TextLineComponent tlc = line.fComponents[componentIndex];
|
|
491 |
int vi = line.getComponentVisualIndex(componentIndex);
|
|
492 |
return line.locs[vi * 2] + tlc.getCharX(indexInArray) + tlc.getCharAdvance(indexInArray);
|
|
493 |
}
|
|
494 |
};
|
|
495 |
|
|
496 |
private static Function fgAdvanceF = new Function() {
|
|
497 |
|
|
498 |
float computeFunction(TextLine line,
|
|
499 |
int componentIndex,
|
|
500 |
int indexInArray) {
|
|
501 |
|
|
502 |
TextLineComponent tlc = line.fComponents[componentIndex];
|
|
503 |
return tlc.getCharAdvance(indexInArray);
|
|
504 |
}
|
|
505 |
};
|
|
506 |
|
|
507 |
private static Function fgXPositionF = new Function() {
|
|
508 |
|
|
509 |
float computeFunction(TextLine line,
|
|
510 |
int componentIndex,
|
|
511 |
int indexInArray) {
|
|
512 |
|
|
513 |
int vi = line.getComponentVisualIndex(componentIndex);
|
|
514 |
TextLineComponent tlc = line.fComponents[componentIndex];
|
|
515 |
return line.locs[vi * 2] + tlc.getCharX(indexInArray);
|
|
516 |
}
|
|
517 |
};
|
|
518 |
|
|
519 |
private static Function fgYPositionF = new Function() {
|
|
520 |
|
|
521 |
float computeFunction(TextLine line,
|
|
522 |
int componentIndex,
|
|
523 |
int indexInArray) {
|
|
524 |
|
|
525 |
TextLineComponent tlc = line.fComponents[componentIndex];
|
|
526 |
float charPos = tlc.getCharY(indexInArray);
|
|
527 |
|
|
528 |
// charPos is relative to the component - adjust for
|
|
529 |
// baseline
|
|
530 |
|
|
531 |
return charPos + line.getComponentShift(componentIndex);
|
|
532 |
}
|
|
533 |
};
|
|
534 |
|
|
535 |
public int characterCount() {
|
|
536 |
|
|
537 |
return fCharsLimit - fCharsStart;
|
|
538 |
}
|
|
539 |
|
|
540 |
public boolean isDirectionLTR() {
|
|
541 |
|
|
542 |
return fIsDirectionLTR;
|
|
543 |
}
|
|
544 |
|
|
545 |
public TextLineMetrics getMetrics() {
|
|
546 |
return fMetrics;
|
|
547 |
}
|
|
548 |
|
|
549 |
public int visualToLogical(int visualIndex) {
|
|
550 |
|
|
551 |
if (fCharLogicalOrder == null) {
|
|
552 |
return visualIndex;
|
|
553 |
}
|
|
554 |
|
|
555 |
if (fCharVisualOrder == null) {
|
|
556 |
fCharVisualOrder = BidiUtils.createInverseMap(fCharLogicalOrder);
|
|
557 |
}
|
|
558 |
|
|
559 |
return fCharVisualOrder[visualIndex];
|
|
560 |
}
|
|
561 |
|
|
562 |
public int logicalToVisual(int logicalIndex) {
|
|
563 |
|
|
564 |
return (fCharLogicalOrder == null)?
|
|
565 |
logicalIndex : fCharLogicalOrder[logicalIndex];
|
|
566 |
}
|
|
567 |
|
|
568 |
public byte getCharLevel(int logicalIndex) {
|
|
569 |
|
|
570 |
return fCharLevels==null? 0 : fCharLevels[logicalIndex];
|
|
571 |
}
|
|
572 |
|
|
573 |
public boolean isCharLTR(int logicalIndex) {
|
|
574 |
|
|
575 |
return (getCharLevel(logicalIndex) & 0x1) == 0;
|
|
576 |
}
|
|
577 |
|
|
578 |
public int getCharType(int logicalIndex) {
|
|
579 |
|
|
580 |
return Character.getType(fChars[logicalIndex + fCharsStart]);
|
|
581 |
}
|
|
582 |
|
|
583 |
public boolean isCharSpace(int logicalIndex) {
|
|
584 |
|
|
585 |
return Character.isSpaceChar(fChars[logicalIndex + fCharsStart]);
|
|
586 |
}
|
|
587 |
|
|
588 |
public boolean isCharWhitespace(int logicalIndex) {
|
|
589 |
|
|
590 |
return Character.isWhitespace(fChars[logicalIndex + fCharsStart]);
|
|
591 |
}
|
|
592 |
|
|
593 |
public float getCharAngle(int logicalIndex) {
|
|
594 |
|
|
595 |
return getCoreMetricsAt(logicalIndex).italicAngle;
|
|
596 |
}
|
|
597 |
|
|
598 |
public CoreMetrics getCoreMetricsAt(int logicalIndex) {
|
|
599 |
|
|
600 |
if (logicalIndex < 0) {
|
|
601 |
throw new IllegalArgumentException("Negative logicalIndex.");
|
|
602 |
}
|
|
603 |
|
|
604 |
if (logicalIndex > fCharsLimit - fCharsStart) {
|
|
605 |
throw new IllegalArgumentException("logicalIndex too large.");
|
|
606 |
}
|
|
607 |
|
|
608 |
int currentTlc = 0;
|
|
609 |
int tlcStart = 0;
|
|
610 |
int tlcLimit = 0;
|
|
611 |
|
|
612 |
do {
|
|
613 |
tlcLimit += fComponents[currentTlc].getNumCharacters();
|
|
614 |
if (tlcLimit > logicalIndex) {
|
|
615 |
break;
|
|
616 |
}
|
|
617 |
++currentTlc;
|
|
618 |
tlcStart = tlcLimit;
|
|
619 |
} while(currentTlc < fComponents.length);
|
|
620 |
|
|
621 |
return fComponents[currentTlc].getCoreMetrics();
|
|
622 |
}
|
|
623 |
|
|
624 |
public float getCharAscent(int logicalIndex) {
|
|
625 |
|
|
626 |
return getCoreMetricsAt(logicalIndex).ascent;
|
|
627 |
}
|
|
628 |
|
|
629 |
public float getCharDescent(int logicalIndex) {
|
|
630 |
|
|
631 |
return getCoreMetricsAt(logicalIndex).descent;
|
|
632 |
}
|
|
633 |
|
|
634 |
public float getCharShift(int logicalIndex) {
|
|
635 |
|
|
636 |
return getCoreMetricsAt(logicalIndex).ssOffset;
|
|
637 |
}
|
|
638 |
|
|
639 |
private float applyFunctionAtIndex(int logicalIndex, Function f) {
|
|
640 |
|
|
641 |
if (logicalIndex < 0) {
|
|
642 |
throw new IllegalArgumentException("Negative logicalIndex.");
|
|
643 |
}
|
|
644 |
|
|
645 |
int tlcStart = 0;
|
|
646 |
|
|
647 |
for(int i=0; i < fComponents.length; i++) {
|
|
648 |
|
|
649 |
int tlcLimit = tlcStart + fComponents[i].getNumCharacters();
|
|
650 |
if (tlcLimit > logicalIndex) {
|
|
651 |
return f.computeFunction(this, i, logicalIndex - tlcStart);
|
|
652 |
}
|
|
653 |
else {
|
|
654 |
tlcStart = tlcLimit;
|
|
655 |
}
|
|
656 |
}
|
|
657 |
|
|
658 |
throw new IllegalArgumentException("logicalIndex too large.");
|
|
659 |
}
|
|
660 |
|
|
661 |
public float getCharAdvance(int logicalIndex) {
|
|
662 |
|
|
663 |
return applyFunctionAtIndex(logicalIndex, fgAdvanceF);
|
|
664 |
}
|
|
665 |
|
|
666 |
public float getCharXPosition(int logicalIndex) {
|
|
667 |
|
|
668 |
return applyFunctionAtIndex(logicalIndex, fgXPositionF);
|
|
669 |
}
|
|
670 |
|
|
671 |
public float getCharYPosition(int logicalIndex) {
|
|
672 |
|
|
673 |
return applyFunctionAtIndex(logicalIndex, fgYPositionF);
|
|
674 |
}
|
|
675 |
|
|
676 |
public float getCharLinePosition(int logicalIndex) {
|
|
677 |
|
|
678 |
return getCharXPosition(logicalIndex);
|
|
679 |
}
|
|
680 |
|
|
681 |
public float getCharLinePosition(int logicalIndex, boolean leading) {
|
|
682 |
Function f = isCharLTR(logicalIndex) == leading ? fgXPositionF : fgPosAdvF;
|
|
683 |
return applyFunctionAtIndex(logicalIndex, f);
|
|
684 |
}
|
|
685 |
|
|
686 |
public boolean caretAtOffsetIsValid(int offset) {
|
|
687 |
|
|
688 |
if (offset < 0) {
|
|
689 |
throw new IllegalArgumentException("Negative offset.");
|
|
690 |
}
|
|
691 |
|
|
692 |
int tlcStart = 0;
|
|
693 |
|
|
694 |
for(int i=0; i < fComponents.length; i++) {
|
|
695 |
|
|
696 |
int tlcLimit = tlcStart + fComponents[i].getNumCharacters();
|
|
697 |
if (tlcLimit > offset) {
|
|
698 |
return fComponents[i].caretAtOffsetIsValid(offset-tlcStart);
|
|
699 |
}
|
|
700 |
else {
|
|
701 |
tlcStart = tlcLimit;
|
|
702 |
}
|
|
703 |
}
|
|
704 |
|
|
705 |
throw new IllegalArgumentException("logicalIndex too large.");
|
|
706 |
}
|
|
707 |
|
|
708 |
/**
|
|
709 |
* map a component visual index to the logical index.
|
|
710 |
*/
|
|
711 |
private int getComponentLogicalIndex(int vi) {
|
|
712 |
if (fComponentVisualOrder == null) {
|
|
713 |
return vi;
|
|
714 |
}
|
|
715 |
return fComponentVisualOrder[vi];
|
|
716 |
}
|
|
717 |
|
|
718 |
/**
|
|
719 |
* map a component logical index to the visual index.
|
|
720 |
*/
|
|
721 |
private int getComponentVisualIndex(int li) {
|
|
722 |
if (fComponentVisualOrder == null) {
|
|
723 |
return li;
|
|
724 |
}
|
|
725 |
for (int i = 0; i < fComponentVisualOrder.length; ++i) {
|
|
726 |
if (fComponentVisualOrder[i] == li) {
|
|
727 |
return i;
|
|
728 |
}
|
|
729 |
}
|
|
730 |
throw new IndexOutOfBoundsException("bad component index: " + li);
|
|
731 |
}
|
|
732 |
|
|
733 |
public Rectangle2D getCharBounds(int logicalIndex) {
|
|
734 |
|
|
735 |
if (logicalIndex < 0) {
|
|
736 |
throw new IllegalArgumentException("Negative logicalIndex.");
|
|
737 |
}
|
|
738 |
|
|
739 |
int tlcStart = 0;
|
|
740 |
|
|
741 |
for (int i=0; i < fComponents.length; i++) {
|
|
742 |
|
|
743 |
int tlcLimit = tlcStart + fComponents[i].getNumCharacters();
|
|
744 |
if (tlcLimit > logicalIndex) {
|
|
745 |
|
|
746 |
TextLineComponent tlc = fComponents[i];
|
|
747 |
int indexInTlc = logicalIndex - tlcStart;
|
|
748 |
Rectangle2D chBounds = tlc.getCharVisualBounds(indexInTlc);
|
|
749 |
|
|
750 |
int vi = getComponentVisualIndex(i);
|
|
751 |
chBounds.setRect(chBounds.getX() + locs[vi * 2],
|
|
752 |
chBounds.getY() + locs[vi * 2 + 1],
|
|
753 |
chBounds.getWidth(),
|
|
754 |
chBounds.getHeight());
|
|
755 |
return chBounds;
|
|
756 |
}
|
|
757 |
else {
|
|
758 |
tlcStart = tlcLimit;
|
|
759 |
}
|
|
760 |
}
|
|
761 |
|
|
762 |
throw new IllegalArgumentException("logicalIndex too large.");
|
|
763 |
}
|
|
764 |
|
|
765 |
private float getComponentShift(int index) {
|
|
766 |
CoreMetrics cm = fComponents[index].getCoreMetrics();
|
|
767 |
return cm.effectiveBaselineOffset(fBaselineOffsets);
|
|
768 |
}
|
|
769 |
|
|
770 |
public void draw(Graphics2D g2, float x, float y) {
|
|
771 |
if (lp == null) {
|
|
772 |
for (int i = 0, n = 0; i < fComponents.length; i++, n += 2) {
|
|
773 |
TextLineComponent tlc = fComponents[getComponentLogicalIndex(i)];
|
|
774 |
tlc.draw(g2, locs[n] + x, locs[n+1] + y);
|
|
775 |
}
|
|
776 |
} else {
|
|
777 |
AffineTransform oldTx = g2.getTransform();
|
|
778 |
Point2D.Float pt = new Point2D.Float();
|
|
779 |
for (int i = 0, n = 0; i < fComponents.length; i++, n += 2) {
|
|
780 |
TextLineComponent tlc = fComponents[getComponentLogicalIndex(i)];
|
|
781 |
lp.pathToPoint(locs[n], locs[n+1], false, pt);
|
|
782 |
pt.x += x;
|
|
783 |
pt.y += y;
|
|
784 |
AffineTransform at = tlc.getBaselineTransform();
|
|
785 |
|
|
786 |
if (at != null) {
|
|
787 |
g2.translate(pt.x - at.getTranslateX(), pt.y - at.getTranslateY());
|
|
788 |
g2.transform(at);
|
|
789 |
tlc.draw(g2, 0, 0);
|
|
790 |
g2.setTransform(oldTx);
|
|
791 |
} else {
|
|
792 |
tlc.draw(g2, pt.x, pt.y);
|
|
793 |
}
|
|
794 |
}
|
|
795 |
}
|
|
796 |
}
|
|
797 |
|
|
798 |
/**
|
|
799 |
* Return the union of the visual bounds of all the components.
|
|
800 |
* This incorporates the path. It does not include logical
|
|
801 |
* bounds (used by carets).
|
|
802 |
*/
|
|
803 |
public Rectangle2D getVisualBounds() {
|
|
804 |
Rectangle2D result = null;
|
|
805 |
|
|
806 |
for (int i = 0, n = 0; i < fComponents.length; i++, n += 2) {
|
|
807 |
TextLineComponent tlc = fComponents[getComponentLogicalIndex(i)];
|
|
808 |
Rectangle2D r = tlc.getVisualBounds();
|
|
809 |
|
|
810 |
Point2D.Float pt = new Point2D.Float(locs[n], locs[n+1]);
|
|
811 |
if (lp == null) {
|
|
812 |
r.setRect(r.getMinX() + pt.x, r.getMinY() + pt.y,
|
|
813 |
r.getWidth(), r.getHeight());
|
|
814 |
} else {
|
|
815 |
lp.pathToPoint(pt, false, pt);
|
|
816 |
|
|
817 |
AffineTransform at = tlc.getBaselineTransform();
|
|
818 |
if (at != null) {
|
|
819 |
AffineTransform tx = AffineTransform.getTranslateInstance
|
|
820 |
(pt.x - at.getTranslateX(), pt.y - at.getTranslateY());
|
|
821 |
tx.concatenate(at);
|
|
822 |
r = tx.createTransformedShape(r).getBounds2D();
|
|
823 |
} else {
|
|
824 |
r.setRect(r.getMinX() + pt.x, r.getMinY() + pt.y,
|
|
825 |
r.getWidth(), r.getHeight());
|
|
826 |
}
|
|
827 |
}
|
|
828 |
|
|
829 |
if (result == null) {
|
|
830 |
result = r;
|
|
831 |
} else {
|
|
832 |
result.add(r);
|
|
833 |
}
|
|
834 |
}
|
|
835 |
|
|
836 |
if (result == null) {
|
|
837 |
result = new Rectangle2D.Float(Float.MAX_VALUE, Float.MAX_VALUE, Float.MIN_VALUE, Float.MIN_VALUE);
|
|
838 |
}
|
|
839 |
|
|
840 |
return result;
|
|
841 |
}
|
|
842 |
|
|
843 |
public Rectangle2D getItalicBounds() {
|
|
844 |
|
|
845 |
float left = Float.MAX_VALUE, right = -Float.MAX_VALUE;
|
|
846 |
float top = Float.MAX_VALUE, bottom = -Float.MAX_VALUE;
|
|
847 |
|
|
848 |
for (int i=0, n = 0; i < fComponents.length; i++, n += 2) {
|
|
849 |
TextLineComponent tlc = fComponents[getComponentLogicalIndex(i)];
|
|
850 |
|
|
851 |
Rectangle2D tlcBounds = tlc.getItalicBounds();
|
|
852 |
float x = locs[n];
|
|
853 |
float y = locs[n+1];
|
|
854 |
|
|
855 |
left = Math.min(left, x + (float)tlcBounds.getX());
|
|
856 |
right = Math.max(right, x + (float)tlcBounds.getMaxX());
|
|
857 |
|
|
858 |
top = Math.min(top, y + (float)tlcBounds.getY());
|
|
859 |
bottom = Math.max(bottom, y + (float)tlcBounds.getMaxY());
|
|
860 |
}
|
|
861 |
|
|
862 |
return new Rectangle2D.Float(left, top, right-left, bottom-top);
|
|
863 |
}
|
|
864 |
|
|
865 |
public Shape getOutline(AffineTransform tx) {
|
|
866 |
|
|
867 |
GeneralPath dstShape = new GeneralPath(GeneralPath.WIND_NON_ZERO);
|
|
868 |
|
|
869 |
for (int i=0, n = 0; i < fComponents.length; i++, n += 2) {
|
|
870 |
TextLineComponent tlc = fComponents[getComponentLogicalIndex(i)];
|
|
871 |
|
|
872 |
dstShape.append(tlc.getOutline(locs[n], locs[n+1]), false);
|
|
873 |
}
|
|
874 |
|
|
875 |
if (tx != null) {
|
|
876 |
dstShape.transform(tx);
|
|
877 |
}
|
|
878 |
return dstShape;
|
|
879 |
}
|
|
880 |
|
|
881 |
public int hashCode() {
|
|
882 |
return (fComponents.length << 16) ^
|
|
883 |
(fComponents[0].hashCode() << 3) ^ (fCharsLimit-fCharsStart);
|
|
884 |
}
|
|
885 |
|
|
886 |
public String toString() {
|
|
887 |
StringBuilder buf = new StringBuilder();
|
|
888 |
|
|
889 |
for (int i = 0; i < fComponents.length; i++) {
|
|
890 |
buf.append(fComponents[i]);
|
|
891 |
}
|
|
892 |
|
|
893 |
return buf.toString();
|
|
894 |
}
|
|
895 |
|
|
896 |
/**
|
|
897 |
* Create a TextLine from the text. The Font must be able to
|
|
898 |
* display all of the text.
|
|
899 |
* attributes==null is equivalent to using an empty Map for
|
|
900 |
* attributes
|
|
901 |
*/
|
|
902 |
public static TextLine fastCreateTextLine(FontRenderContext frc,
|
|
903 |
char[] chars,
|
|
904 |
Font font,
|
|
905 |
CoreMetrics lm,
|
|
906 |
Map attributes) {
|
|
907 |
|
|
908 |
boolean isDirectionLTR = true;
|
|
909 |
byte[] levels = null;
|
|
910 |
int[] charsLtoV = null;
|
|
911 |
Bidi bidi = null;
|
|
912 |
int characterCount = chars.length;
|
|
913 |
|
|
914 |
boolean requiresBidi = false;
|
|
915 |
byte[] embs = null;
|
|
916 |
|
|
917 |
AttributeValues values = null;
|
|
918 |
if (attributes != null) {
|
|
919 |
values = AttributeValues.fromMap(attributes);
|
|
920 |
if (values.getRunDirection() >= 0) {
|
|
921 |
isDirectionLTR = values.getRunDirection() == 0;
|
|
922 |
requiresBidi = !isDirectionLTR;
|
|
923 |
}
|
|
924 |
if (values.getBidiEmbedding() != 0) {
|
|
925 |
requiresBidi = true;
|
|
926 |
byte level = (byte)values.getBidiEmbedding();
|
|
927 |
embs = new byte[characterCount];
|
|
928 |
for (int i = 0; i < embs.length; ++i) {
|
|
929 |
embs[i] = level;
|
|
930 |
}
|
|
931 |
}
|
|
932 |
}
|
|
933 |
|
|
934 |
// dlf: get baseRot from font for now???
|
|
935 |
|
|
936 |
if (!requiresBidi) {
|
|
937 |
requiresBidi = Bidi.requiresBidi(chars, 0, chars.length);
|
|
938 |
}
|
|
939 |
|
|
940 |
if (requiresBidi) {
|
|
941 |
int bidiflags = values == null
|
|
942 |
? Bidi.DIRECTION_DEFAULT_LEFT_TO_RIGHT
|
|
943 |
: values.getRunDirection();
|
|
944 |
|
|
945 |
bidi = new Bidi(chars, 0, embs, 0, chars.length, bidiflags);
|
|
946 |
if (!bidi.isLeftToRight()) {
|
|
947 |
levels = BidiUtils.getLevels(bidi);
|
|
948 |
int[] charsVtoL = BidiUtils.createVisualToLogicalMap(levels);
|
|
949 |
charsLtoV = BidiUtils.createInverseMap(charsVtoL);
|
|
950 |
isDirectionLTR = bidi.baseIsLeftToRight();
|
|
951 |
}
|
|
952 |
}
|
|
953 |
|
|
954 |
Decoration decorator = Decoration.getDecoration(values);
|
|
955 |
|
|
956 |
int layoutFlags = 0; // no extra info yet, bidi determines run and line direction
|
|
957 |
TextLabelFactory factory = new TextLabelFactory(frc, chars, bidi, layoutFlags);
|
|
958 |
|
|
959 |
TextLineComponent[] components = new TextLineComponent[1];
|
|
960 |
|
|
961 |
components = createComponentsOnRun(0, chars.length,
|
|
962 |
chars,
|
|
963 |
charsLtoV, levels,
|
|
964 |
factory, font, lm,
|
|
965 |
frc,
|
|
966 |
decorator,
|
|
967 |
components,
|
|
968 |
0);
|
|
969 |
|
|
970 |
int numComponents = components.length;
|
|
971 |
while (components[numComponents-1] == null) {
|
|
972 |
numComponents -= 1;
|
|
973 |
}
|
|
974 |
|
|
975 |
if (numComponents != components.length) {
|
|
976 |
TextLineComponent[] temp = new TextLineComponent[numComponents];
|
|
977 |
System.arraycopy(components, 0, temp, 0, numComponents);
|
|
978 |
components = temp;
|
|
979 |
}
|
|
980 |
|
|
981 |
return new TextLine(frc, components, lm.baselineOffsets,
|
|
982 |
chars, 0, chars.length, charsLtoV, levels, isDirectionLTR);
|
|
983 |
}
|
|
984 |
|
|
985 |
private static TextLineComponent[] expandArray(TextLineComponent[] orig) {
|
|
986 |
|
|
987 |
TextLineComponent[] newComponents = new TextLineComponent[orig.length + 8];
|
|
988 |
System.arraycopy(orig, 0, newComponents, 0, orig.length);
|
|
989 |
|
|
990 |
return newComponents;
|
|
991 |
}
|
|
992 |
|
|
993 |
/**
|
|
994 |
* Returns an array in logical order of the TextLineComponents on
|
|
995 |
* the text in the given range, with the given attributes.
|
|
996 |
*/
|
|
997 |
public static TextLineComponent[] createComponentsOnRun(int runStart,
|
|
998 |
int runLimit,
|
|
999 |
char[] chars,
|
|
1000 |
int[] charsLtoV,
|
|
1001 |
byte[] levels,
|
|
1002 |
TextLabelFactory factory,
|
|
1003 |
Font font,
|
|
1004 |
CoreMetrics cm,
|
|
1005 |
FontRenderContext frc,
|
|
1006 |
Decoration decorator,
|
|
1007 |
TextLineComponent[] components,
|
|
1008 |
int numComponents) {
|
|
1009 |
|
|
1010 |
int pos = runStart;
|
|
1011 |
do {
|
|
1012 |
int chunkLimit = firstVisualChunk(charsLtoV, levels, pos, runLimit); // <= displayLimit
|
|
1013 |
|
|
1014 |
do {
|
|
1015 |
int startPos = pos;
|
|
1016 |
int lmCount;
|
|
1017 |
|
|
1018 |
if (cm == null) {
|
|
1019 |
LineMetrics lineMetrics = font.getLineMetrics(chars, startPos, chunkLimit, frc);
|
|
1020 |
cm = CoreMetrics.get(lineMetrics);
|
|
1021 |
lmCount = lineMetrics.getNumChars();
|
|
1022 |
}
|
|
1023 |
else {
|
|
1024 |
lmCount = (chunkLimit-startPos);
|
|
1025 |
}
|
|
1026 |
|
|
1027 |
TextLineComponent nextComponent =
|
|
1028 |
factory.createExtended(font, cm, decorator, startPos, startPos + lmCount);
|
|
1029 |
|
|
1030 |
++numComponents;
|
|
1031 |
if (numComponents >= components.length) {
|
|
1032 |
components = expandArray(components);
|
|
1033 |
}
|
|
1034 |
|
|
1035 |
components[numComponents-1] = nextComponent;
|
|
1036 |
|
|
1037 |
pos += lmCount;
|
|
1038 |
} while (pos < chunkLimit);
|
|
1039 |
|
|
1040 |
} while (pos < runLimit);
|
|
1041 |
|
|
1042 |
return components;
|
|
1043 |
}
|
|
1044 |
|
|
1045 |
/**
|
|
1046 |
* Returns an array (in logical order) of the TextLineComponents representing
|
|
1047 |
* the text. The components are both logically and visually contiguous.
|
|
1048 |
*/
|
|
1049 |
public static TextLineComponent[] getComponents(StyledParagraph styledParagraph,
|
|
1050 |
char[] chars,
|
|
1051 |
int textStart,
|
|
1052 |
int textLimit,
|
|
1053 |
int[] charsLtoV,
|
|
1054 |
byte[] levels,
|
|
1055 |
TextLabelFactory factory) {
|
|
1056 |
|
|
1057 |
FontRenderContext frc = factory.getFontRenderContext();
|
|
1058 |
|
|
1059 |
int numComponents = 0;
|
|
1060 |
TextLineComponent[] tempComponents = new TextLineComponent[1];
|
|
1061 |
|
|
1062 |
int pos = textStart;
|
|
1063 |
do {
|
|
1064 |
int runLimit = Math.min(styledParagraph.getRunLimit(pos), textLimit);
|
|
1065 |
|
|
1066 |
Decoration decorator = styledParagraph.getDecorationAt(pos);
|
|
1067 |
|
|
1068 |
Object graphicOrFont = styledParagraph.getFontOrGraphicAt(pos);
|
|
1069 |
|
|
1070 |
if (graphicOrFont instanceof GraphicAttribute) {
|
|
1071 |
// AffineTransform baseRot = styledParagraph.getBaselineRotationAt(pos);
|
|
1072 |
// !!! For now, let's assign runs of text with both fonts and graphic attributes
|
|
1073 |
// a null rotation (e.g. the baseline rotation goes away when a graphic
|
|
1074 |
// is applied.
|
|
1075 |
AffineTransform baseRot = null;
|
|
1076 |
GraphicAttribute graphicAttribute = (GraphicAttribute) graphicOrFont;
|
|
1077 |
do {
|
|
1078 |
int chunkLimit = firstVisualChunk(charsLtoV, levels,
|
|
1079 |
pos, runLimit);
|
|
1080 |
|
|
1081 |
GraphicComponent nextGraphic =
|
|
1082 |
new GraphicComponent(graphicAttribute, decorator, charsLtoV, levels, pos, chunkLimit, baseRot);
|
|
1083 |
pos = chunkLimit;
|
|
1084 |
|
|
1085 |
++numComponents;
|
|
1086 |
if (numComponents >= tempComponents.length) {
|
|
1087 |
tempComponents = expandArray(tempComponents);
|
|
1088 |
}
|
|
1089 |
|
|
1090 |
tempComponents[numComponents-1] = nextGraphic;
|
|
1091 |
|
|
1092 |
} while(pos < runLimit);
|
|
1093 |
}
|
|
1094 |
else {
|
|
1095 |
Font font = (Font) graphicOrFont;
|
|
1096 |
|
|
1097 |
tempComponents = createComponentsOnRun(pos, runLimit,
|
|
1098 |
chars,
|
|
1099 |
charsLtoV, levels,
|
|
1100 |
factory, font, null,
|
|
1101 |
frc,
|
|
1102 |
decorator,
|
|
1103 |
tempComponents,
|
|
1104 |
numComponents);
|
|
1105 |
pos = runLimit;
|
|
1106 |
numComponents = tempComponents.length;
|
|
1107 |
while (tempComponents[numComponents-1] == null) {
|
|
1108 |
numComponents -= 1;
|
|
1109 |
}
|
|
1110 |
}
|
|
1111 |
|
|
1112 |
} while (pos < textLimit);
|
|
1113 |
|
|
1114 |
TextLineComponent[] components;
|
|
1115 |
if (tempComponents.length == numComponents) {
|
|
1116 |
components = tempComponents;
|
|
1117 |
}
|
|
1118 |
else {
|
|
1119 |
components = new TextLineComponent[numComponents];
|
|
1120 |
System.arraycopy(tempComponents, 0, components, 0, numComponents);
|
|
1121 |
}
|
|
1122 |
|
|
1123 |
return components;
|
|
1124 |
}
|
|
1125 |
|
|
1126 |
/**
|
|
1127 |
* Create a TextLine from the Font and character data over the
|
|
1128 |
* range. The range is relative to both the StyledParagraph and the
|
|
1129 |
* character array.
|
|
1130 |
*/
|
|
1131 |
public static TextLine createLineFromText(char[] chars,
|
|
1132 |
StyledParagraph styledParagraph,
|
|
1133 |
TextLabelFactory factory,
|
|
1134 |
boolean isDirectionLTR,
|
|
1135 |
float[] baselineOffsets) {
|
|
1136 |
|
|
1137 |
factory.setLineContext(0, chars.length);
|
|
1138 |
|
|
1139 |
Bidi lineBidi = factory.getLineBidi();
|
|
1140 |
int[] charsLtoV = null;
|
|
1141 |
byte[] levels = null;
|
|
1142 |
|
|
1143 |
if (lineBidi != null) {
|
|
1144 |
levels = BidiUtils.getLevels(lineBidi);
|
|
1145 |
int[] charsVtoL = BidiUtils.createVisualToLogicalMap(levels);
|
|
1146 |
charsLtoV = BidiUtils.createInverseMap(charsVtoL);
|
|
1147 |
}
|
|
1148 |
|
|
1149 |
TextLineComponent[] components =
|
|
1150 |
getComponents(styledParagraph, chars, 0, chars.length, charsLtoV, levels, factory);
|
|
1151 |
|
|
1152 |
return new TextLine(factory.getFontRenderContext(), components, baselineOffsets,
|
|
1153 |
chars, 0, chars.length, charsLtoV, levels, isDirectionLTR);
|
|
1154 |
}
|
|
1155 |
|
|
1156 |
/**
|
|
1157 |
* Compute the components order from the given components array and
|
|
1158 |
* logical-to-visual character mapping. May return null if canonical.
|
|
1159 |
*/
|
|
1160 |
private static int[] computeComponentOrder(TextLineComponent[] components,
|
|
1161 |
int[] charsLtoV) {
|
|
1162 |
|
|
1163 |
/*
|
|
1164 |
* Create a visual ordering for the glyph sets. The important thing
|
|
1165 |
* here is that the values have the proper rank with respect to
|
|
1166 |
* each other, not the exact values. For example, the first glyph
|
|
1167 |
* set that appears visually should have the lowest value. The last
|
|
1168 |
* should have the highest value. The values are then normalized
|
|
1169 |
* to map 1-1 with positions in glyphs.
|
|
1170 |
*
|
|
1171 |
*/
|
|
1172 |
int[] componentOrder = null;
|
|
1173 |
if (charsLtoV != null && components.length > 1) {
|
|
1174 |
componentOrder = new int[components.length];
|
|
1175 |
int gStart = 0;
|
|
1176 |
for (int i = 0; i < components.length; i++) {
|
|
1177 |
componentOrder[i] = charsLtoV[gStart];
|
|
1178 |
gStart += components[i].getNumCharacters();
|
|
1179 |
}
|
|
1180 |
|
|
1181 |
componentOrder = BidiUtils.createContiguousOrder(componentOrder);
|
|
1182 |
componentOrder = BidiUtils.createInverseMap(componentOrder);
|
|
1183 |
}
|
|
1184 |
return componentOrder;
|
|
1185 |
}
|
|
1186 |
|
|
1187 |
|
|
1188 |
/**
|
|
1189 |
* Create a TextLine from the text. chars is just the text in the iterator.
|
|
1190 |
*/
|
|
1191 |
public static TextLine standardCreateTextLine(FontRenderContext frc,
|
|
1192 |
AttributedCharacterIterator text,
|
|
1193 |
char[] chars,
|
|
1194 |
float[] baselineOffsets) {
|
|
1195 |
|
|
1196 |
StyledParagraph styledParagraph = new StyledParagraph(text, chars);
|
|
1197 |
Bidi bidi = new Bidi(text);
|
|
1198 |
if (bidi.isLeftToRight()) {
|
|
1199 |
bidi = null;
|
|
1200 |
}
|
|
1201 |
int layoutFlags = 0; // no extra info yet, bidi determines run and line direction
|
|
1202 |
TextLabelFactory factory = new TextLabelFactory(frc, chars, bidi, layoutFlags);
|
|
1203 |
|
|
1204 |
boolean isDirectionLTR = true;
|
|
1205 |
if (bidi != null) {
|
|
1206 |
isDirectionLTR = bidi.baseIsLeftToRight();
|
|
1207 |
}
|
|
1208 |
return createLineFromText(chars, styledParagraph, factory, isDirectionLTR, baselineOffsets);
|
|
1209 |
}
|
|
1210 |
|
|
1211 |
|
|
1212 |
|
|
1213 |
/*
|
|
1214 |
* A utility to get a range of text that is both logically and visually
|
|
1215 |
* contiguous.
|
|
1216 |
* If the entire range is ok, return limit, otherwise return the first
|
|
1217 |
* directional change after start. We could do better than this, but
|
|
1218 |
* it doesn't seem worth it at the moment.
|
|
1219 |
private static int firstVisualChunk(int order[], byte direction[],
|
|
1220 |
int start, int limit)
|
|
1221 |
{
|
|
1222 |
if (order != null) {
|
|
1223 |
int min = order[start];
|
|
1224 |
int max = order[start];
|
|
1225 |
int count = limit - start;
|
|
1226 |
for (int i = start + 1; i < limit; i++) {
|
|
1227 |
min = Math.min(min, order[i]);
|
|
1228 |
max = Math.max(max, order[i]);
|
|
1229 |
if (max - min >= count) {
|
|
1230 |
if (direction != null) {
|
|
1231 |
byte baseLevel = direction[start];
|
|
1232 |
for (int j = start + 1; j < i; j++) {
|
|
1233 |
if (direction[j] != baseLevel) {
|
|
1234 |
return j;
|
|
1235 |
}
|
|
1236 |
}
|
|
1237 |
}
|
|
1238 |
return i;
|
|
1239 |
}
|
|
1240 |
}
|
|
1241 |
}
|
|
1242 |
return limit;
|
|
1243 |
}
|
|
1244 |
*/
|
|
1245 |
|
|
1246 |
/**
|
|
1247 |
* When this returns, the ACI's current position will be at the start of the
|
|
1248 |
* first run which does NOT contain a GraphicAttribute. If no such run exists
|
|
1249 |
* the ACI's position will be at the end, and this method will return false.
|
|
1250 |
*/
|
|
1251 |
static boolean advanceToFirstFont(AttributedCharacterIterator aci) {
|
|
1252 |
|
|
1253 |
for (char ch = aci.first(); ch != aci.DONE; ch = aci.setIndex(aci.getRunLimit())) {
|
|
1254 |
|
|
1255 |
if (aci.getAttribute(TextAttribute.CHAR_REPLACEMENT) == null) {
|
|
1256 |
return true;
|
|
1257 |
}
|
|
1258 |
}
|
|
1259 |
|
|
1260 |
return false;
|
|
1261 |
}
|
|
1262 |
|
|
1263 |
static float[] getNormalizedOffsets(float[] baselineOffsets, byte baseline) {
|
|
1264 |
|
|
1265 |
if (baselineOffsets[baseline] != 0) {
|
|
1266 |
float base = baselineOffsets[baseline];
|
|
1267 |
float[] temp = new float[baselineOffsets.length];
|
|
1268 |
for (int i = 0; i < temp.length; i++)
|
|
1269 |
temp[i] = baselineOffsets[i] - base;
|
|
1270 |
baselineOffsets = temp;
|
|
1271 |
}
|
|
1272 |
return baselineOffsets;
|
|
1273 |
}
|
|
1274 |
|
|
1275 |
static Font getFontAtCurrentPos(AttributedCharacterIterator aci) {
|
|
1276 |
|
|
1277 |
Object value = aci.getAttribute(TextAttribute.FONT);
|
|
1278 |
if (value != null) {
|
|
1279 |
return (Font) value;
|
|
1280 |
}
|
|
1281 |
if (aci.getAttribute(TextAttribute.FAMILY) != null) {
|
|
1282 |
return Font.getFont(aci.getAttributes());
|
|
1283 |
}
|
|
1284 |
|
|
1285 |
int ch = CodePointIterator.create(aci).next();
|
|
1286 |
if (ch != CodePointIterator.DONE) {
|
|
1287 |
FontResolver resolver = FontResolver.getInstance();
|
|
1288 |
return resolver.getFont(resolver.getFontIndex(ch), aci.getAttributes());
|
|
1289 |
}
|
|
1290 |
return null;
|
|
1291 |
}
|
|
1292 |
|
|
1293 |
/*
|
|
1294 |
* The new version requires that chunks be at the same level.
|
|
1295 |
*/
|
|
1296 |
private static int firstVisualChunk(int order[], byte direction[],
|
|
1297 |
int start, int limit)
|
|
1298 |
{
|
|
1299 |
if (order != null && direction != null) {
|
|
1300 |
byte dir = direction[start];
|
|
1301 |
while (++start < limit && direction[start] == dir) {}
|
|
1302 |
return start;
|
|
1303 |
}
|
|
1304 |
return limit;
|
|
1305 |
}
|
|
1306 |
|
|
1307 |
/*
|
|
1308 |
* create a new line with characters between charStart and charLimit
|
|
1309 |
* justified using the provided width and ratio.
|
|
1310 |
*/
|
|
1311 |
public TextLine getJustifiedLine(float justificationWidth, float justifyRatio, int justStart, int justLimit) {
|
|
1312 |
|
|
1313 |
TextLineComponent[] newComponents = new TextLineComponent[fComponents.length];
|
|
1314 |
System.arraycopy(fComponents, 0, newComponents, 0, fComponents.length);
|
|
1315 |
|
|
1316 |
float leftHang = 0;
|
|
1317 |
float adv = 0;
|
|
1318 |
float justifyDelta = 0;
|
|
1319 |
boolean rejustify = false;
|
|
1320 |
do {
|
|
1321 |
adv = getAdvanceBetween(newComponents, 0, characterCount());
|
|
1322 |
|
|
1323 |
// all characters outside the justification range must be in the base direction
|
|
1324 |
// of the layout, otherwise justification makes no sense.
|
|
1325 |
|
|
1326 |
float justifyAdvance = getAdvanceBetween(newComponents, justStart, justLimit);
|
|
1327 |
|
|
1328 |
// get the actual justification delta
|
|
1329 |
justifyDelta = (justificationWidth - justifyAdvance) * justifyRatio;
|
|
1330 |
|
|
1331 |
// generate an array of GlyphJustificationInfo records to pass to
|
|
1332 |
// the justifier. Array is visually ordered.
|
|
1333 |
|
|
1334 |
// get positions that each component will be using
|
|
1335 |
int[] infoPositions = new int[newComponents.length];
|
|
1336 |
int infoCount = 0;
|
|
1337 |
for (int visIndex = 0; visIndex < newComponents.length; visIndex++) {
|
|
1338 |
int logIndex = getComponentLogicalIndex(visIndex);
|
|
1339 |
infoPositions[logIndex] = infoCount;
|
|
1340 |
infoCount += newComponents[logIndex].getNumJustificationInfos();
|
|
1341 |
}
|
|
1342 |
GlyphJustificationInfo[] infos = new GlyphJustificationInfo[infoCount];
|
|
1343 |
|
|
1344 |
// get justification infos
|
|
1345 |
int compStart = 0;
|
|
1346 |
for (int i = 0; i < newComponents.length; i++) {
|
|
1347 |
TextLineComponent comp = newComponents[i];
|
|
1348 |
int compLength = comp.getNumCharacters();
|
|
1349 |
int compLimit = compStart + compLength;
|
|
1350 |
if (compLimit > justStart) {
|
|
1351 |
int rangeMin = Math.max(0, justStart - compStart);
|
|
1352 |
int rangeMax = Math.min(compLength, justLimit - compStart);
|
|
1353 |
comp.getJustificationInfos(infos, infoPositions[i], rangeMin, rangeMax);
|
|
1354 |
|
|
1355 |
if (compLimit >= justLimit) {
|
|
1356 |
break;
|
|
1357 |
}
|
|
1358 |
}
|
|
1359 |
}
|
|
1360 |
|
|
1361 |
// records are visually ordered, and contiguous, so start and end are
|
|
1362 |
// simply the places where we didn't fetch records
|
|
1363 |
int infoStart = 0;
|
|
1364 |
int infoLimit = infoCount;
|
|
1365 |
while (infoStart < infoLimit && infos[infoStart] == null) {
|
|
1366 |
++infoStart;
|
|
1367 |
}
|
|
1368 |
|
|
1369 |
while (infoLimit > infoStart && infos[infoLimit - 1] == null) {
|
|
1370 |
--infoLimit;
|
|
1371 |
}
|
|
1372 |
|
|
1373 |
// invoke justifier on the records
|
|
1374 |
TextJustifier justifier = new TextJustifier(infos, infoStart, infoLimit);
|
|
1375 |
|
|
1376 |
float[] deltas = justifier.justify(justifyDelta);
|
|
1377 |
|
|
1378 |
boolean canRejustify = rejustify == false;
|
|
1379 |
boolean wantRejustify = false;
|
|
1380 |
boolean[] flags = new boolean[1];
|
|
1381 |
|
|
1382 |
// apply justification deltas
|
|
1383 |
compStart = 0;
|
|
1384 |
for (int i = 0; i < newComponents.length; i++) {
|
|
1385 |
TextLineComponent comp = newComponents[i];
|
|
1386 |
int compLength = comp.getNumCharacters();
|
|
1387 |
int compLimit = compStart + compLength;
|
|
1388 |
if (compLimit > justStart) {
|
|
1389 |
int rangeMin = Math.max(0, justStart - compStart);
|
|
1390 |
int rangeMax = Math.min(compLength, justLimit - compStart);
|
|
1391 |
newComponents[i] = comp.applyJustificationDeltas(deltas, infoPositions[i] * 2, flags);
|
|
1392 |
|
|
1393 |
wantRejustify |= flags[0];
|
|
1394 |
|
|
1395 |
if (compLimit >= justLimit) {
|
|
1396 |
break;
|
|
1397 |
}
|
|
1398 |
}
|
|
1399 |
}
|
|
1400 |
|
|
1401 |
rejustify = wantRejustify && !rejustify; // only make two passes
|
|
1402 |
} while (rejustify);
|
|
1403 |
|
|
1404 |
return new TextLine(frc, newComponents, fBaselineOffsets, fChars, fCharsStart,
|
|
1405 |
fCharsLimit, fCharLogicalOrder, fCharLevels,
|
|
1406 |
fIsDirectionLTR);
|
|
1407 |
}
|
|
1408 |
|
|
1409 |
// return the sum of the advances of text between the logical start and limit
|
|
1410 |
public static float getAdvanceBetween(TextLineComponent[] components, int start, int limit) {
|
|
1411 |
float advance = 0;
|
|
1412 |
|
|
1413 |
int tlcStart = 0;
|
|
1414 |
for(int i = 0; i < components.length; i++) {
|
|
1415 |
TextLineComponent comp = components[i];
|
|
1416 |
|
|
1417 |
int tlcLength = comp.getNumCharacters();
|
|
1418 |
int tlcLimit = tlcStart + tlcLength;
|
|
1419 |
if (tlcLimit > start) {
|
|
1420 |
int measureStart = Math.max(0, start - tlcStart);
|
|
1421 |
int measureLimit = Math.min(tlcLength, limit - tlcStart);
|
|
1422 |
advance += comp.getAdvanceBetween(measureStart, measureLimit);
|
|
1423 |
if (tlcLimit >= limit) {
|
|
1424 |
break;
|
|
1425 |
}
|
|
1426 |
}
|
|
1427 |
|
|
1428 |
tlcStart = tlcLimit;
|
|
1429 |
}
|
|
1430 |
|
|
1431 |
return advance;
|
|
1432 |
}
|
|
1433 |
|
|
1434 |
LayoutPathImpl getLayoutPath() {
|
|
1435 |
return lp;
|
|
1436 |
}
|
|
1437 |
}
|