1374
|
1 |
/*
|
|
2 |
* Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
class G1CollectedHeap;
|
|
26 |
class CMTask;
|
|
27 |
typedef GenericTaskQueue<oop> CMTaskQueue;
|
|
28 |
typedef GenericTaskQueueSet<oop> CMTaskQueueSet;
|
|
29 |
|
|
30 |
// A generic CM bit map. This is essentially a wrapper around the BitMap
|
|
31 |
// class, with one bit per (1<<_shifter) HeapWords.
|
|
32 |
|
|
33 |
class CMBitMapRO {
|
|
34 |
protected:
|
|
35 |
HeapWord* _bmStartWord; // base address of range covered by map
|
|
36 |
size_t _bmWordSize; // map size (in #HeapWords covered)
|
|
37 |
const int _shifter; // map to char or bit
|
|
38 |
VirtualSpace _virtual_space; // underlying the bit map
|
|
39 |
BitMap _bm; // the bit map itself
|
|
40 |
|
|
41 |
public:
|
|
42 |
// constructor
|
|
43 |
CMBitMapRO(ReservedSpace rs, int shifter);
|
|
44 |
|
|
45 |
enum { do_yield = true };
|
|
46 |
|
|
47 |
// inquiries
|
|
48 |
HeapWord* startWord() const { return _bmStartWord; }
|
|
49 |
size_t sizeInWords() const { return _bmWordSize; }
|
|
50 |
// the following is one past the last word in space
|
|
51 |
HeapWord* endWord() const { return _bmStartWord + _bmWordSize; }
|
|
52 |
|
|
53 |
// read marks
|
|
54 |
|
|
55 |
bool isMarked(HeapWord* addr) const {
|
|
56 |
assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
|
|
57 |
"outside underlying space?");
|
|
58 |
return _bm.at(heapWordToOffset(addr));
|
|
59 |
}
|
|
60 |
|
|
61 |
// iteration
|
|
62 |
bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
|
|
63 |
bool iterate(BitMapClosure* cl, MemRegion mr);
|
|
64 |
|
|
65 |
// Return the address corresponding to the next marked bit at or after
|
|
66 |
// "addr", and before "limit", if "limit" is non-NULL. If there is no
|
|
67 |
// such bit, returns "limit" if that is non-NULL, or else "endWord()".
|
|
68 |
HeapWord* getNextMarkedWordAddress(HeapWord* addr,
|
|
69 |
HeapWord* limit = NULL) const;
|
|
70 |
// Return the address corresponding to the next unmarked bit at or after
|
|
71 |
// "addr", and before "limit", if "limit" is non-NULL. If there is no
|
|
72 |
// such bit, returns "limit" if that is non-NULL, or else "endWord()".
|
|
73 |
HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
|
|
74 |
HeapWord* limit = NULL) const;
|
|
75 |
|
|
76 |
// conversion utilities
|
|
77 |
// XXX Fix these so that offsets are size_t's...
|
|
78 |
HeapWord* offsetToHeapWord(size_t offset) const {
|
|
79 |
return _bmStartWord + (offset << _shifter);
|
|
80 |
}
|
|
81 |
size_t heapWordToOffset(HeapWord* addr) const {
|
|
82 |
return pointer_delta(addr, _bmStartWord) >> _shifter;
|
|
83 |
}
|
|
84 |
int heapWordDiffToOffsetDiff(size_t diff) const;
|
|
85 |
HeapWord* nextWord(HeapWord* addr) {
|
|
86 |
return offsetToHeapWord(heapWordToOffset(addr) + 1);
|
|
87 |
}
|
|
88 |
|
|
89 |
void mostly_disjoint_range_union(BitMap* from_bitmap,
|
|
90 |
size_t from_start_index,
|
|
91 |
HeapWord* to_start_word,
|
|
92 |
size_t word_num);
|
|
93 |
|
|
94 |
// debugging
|
|
95 |
NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
|
|
96 |
};
|
|
97 |
|
|
98 |
class CMBitMap : public CMBitMapRO {
|
|
99 |
|
|
100 |
public:
|
|
101 |
// constructor
|
|
102 |
CMBitMap(ReservedSpace rs, int shifter) :
|
|
103 |
CMBitMapRO(rs, shifter) {}
|
|
104 |
|
|
105 |
// write marks
|
|
106 |
void mark(HeapWord* addr) {
|
|
107 |
assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
|
|
108 |
"outside underlying space?");
|
|
109 |
_bm.at_put(heapWordToOffset(addr), true);
|
|
110 |
}
|
|
111 |
void clear(HeapWord* addr) {
|
|
112 |
assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
|
|
113 |
"outside underlying space?");
|
|
114 |
_bm.at_put(heapWordToOffset(addr), false);
|
|
115 |
}
|
|
116 |
bool parMark(HeapWord* addr) {
|
|
117 |
assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
|
|
118 |
"outside underlying space?");
|
|
119 |
return _bm.par_at_put(heapWordToOffset(addr), true);
|
|
120 |
}
|
|
121 |
bool parClear(HeapWord* addr) {
|
|
122 |
assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
|
|
123 |
"outside underlying space?");
|
|
124 |
return _bm.par_at_put(heapWordToOffset(addr), false);
|
|
125 |
}
|
|
126 |
void markRange(MemRegion mr);
|
|
127 |
void clearAll();
|
|
128 |
void clearRange(MemRegion mr);
|
|
129 |
|
|
130 |
// Starting at the bit corresponding to "addr" (inclusive), find the next
|
|
131 |
// "1" bit, if any. This bit starts some run of consecutive "1"'s; find
|
|
132 |
// the end of this run (stopping at "end_addr"). Return the MemRegion
|
|
133 |
// covering from the start of the region corresponding to the first bit
|
|
134 |
// of the run to the end of the region corresponding to the last bit of
|
|
135 |
// the run. If there is no "1" bit at or after "addr", return an empty
|
|
136 |
// MemRegion.
|
|
137 |
MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
|
|
138 |
};
|
|
139 |
|
|
140 |
// Represents a marking stack used by the CM collector.
|
|
141 |
// Ideally this should be GrowableArray<> just like MSC's marking stack(s).
|
|
142 |
class CMMarkStack {
|
|
143 |
ConcurrentMark* _cm;
|
|
144 |
oop* _base; // bottom of stack
|
|
145 |
jint _index; // one more than last occupied index
|
|
146 |
jint _capacity; // max #elements
|
|
147 |
jint _oops_do_bound; // Number of elements to include in next iteration.
|
|
148 |
NOT_PRODUCT(jint _max_depth;) // max depth plumbed during run
|
|
149 |
|
|
150 |
bool _overflow;
|
|
151 |
DEBUG_ONLY(bool _drain_in_progress;)
|
|
152 |
DEBUG_ONLY(bool _drain_in_progress_yields;)
|
|
153 |
|
|
154 |
public:
|
|
155 |
CMMarkStack(ConcurrentMark* cm);
|
|
156 |
~CMMarkStack();
|
|
157 |
|
|
158 |
void allocate(size_t size);
|
|
159 |
|
|
160 |
oop pop() {
|
|
161 |
if (!isEmpty()) {
|
|
162 |
return _base[--_index] ;
|
|
163 |
}
|
|
164 |
return NULL;
|
|
165 |
}
|
|
166 |
|
|
167 |
// If overflow happens, don't do the push, and record the overflow.
|
|
168 |
// *Requires* that "ptr" is already marked.
|
|
169 |
void push(oop ptr) {
|
|
170 |
if (isFull()) {
|
|
171 |
// Record overflow.
|
|
172 |
_overflow = true;
|
|
173 |
return;
|
|
174 |
} else {
|
|
175 |
_base[_index++] = ptr;
|
|
176 |
NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
|
|
177 |
}
|
|
178 |
}
|
|
179 |
// Non-block impl. Note: concurrency is allowed only with other
|
|
180 |
// "par_push" operations, not with "pop" or "drain". We would need
|
|
181 |
// parallel versions of them if such concurrency was desired.
|
|
182 |
void par_push(oop ptr);
|
|
183 |
|
|
184 |
// Pushes the first "n" elements of "ptr_arr" on the stack.
|
|
185 |
// Non-block impl. Note: concurrency is allowed only with other
|
|
186 |
// "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
|
|
187 |
void par_adjoin_arr(oop* ptr_arr, int n);
|
|
188 |
|
|
189 |
// Pushes the first "n" elements of "ptr_arr" on the stack.
|
|
190 |
// Locking impl: concurrency is allowed only with
|
|
191 |
// "par_push_arr" and/or "par_pop_arr" operations, which use the same
|
|
192 |
// locking strategy.
|
|
193 |
void par_push_arr(oop* ptr_arr, int n);
|
|
194 |
|
|
195 |
// If returns false, the array was empty. Otherwise, removes up to "max"
|
|
196 |
// elements from the stack, and transfers them to "ptr_arr" in an
|
|
197 |
// unspecified order. The actual number transferred is given in "n" ("n
|
|
198 |
// == 0" is deliberately redundant with the return value.) Locking impl:
|
|
199 |
// concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
|
|
200 |
// operations, which use the same locking strategy.
|
|
201 |
bool par_pop_arr(oop* ptr_arr, int max, int* n);
|
|
202 |
|
|
203 |
// Drain the mark stack, applying the given closure to all fields of
|
|
204 |
// objects on the stack. (That is, continue until the stack is empty,
|
|
205 |
// even if closure applications add entries to the stack.) The "bm"
|
|
206 |
// argument, if non-null, may be used to verify that only marked objects
|
|
207 |
// are on the mark stack. If "yield_after" is "true", then the
|
|
208 |
// concurrent marker performing the drain offers to yield after
|
|
209 |
// processing each object. If a yield occurs, stops the drain operation
|
|
210 |
// and returns false. Otherwise, returns true.
|
|
211 |
template<class OopClosureClass>
|
|
212 |
bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
|
|
213 |
|
|
214 |
bool isEmpty() { return _index == 0; }
|
|
215 |
bool isFull() { return _index == _capacity; }
|
|
216 |
int maxElems() { return _capacity; }
|
|
217 |
|
|
218 |
bool overflow() { return _overflow; }
|
|
219 |
void clear_overflow() { _overflow = false; }
|
|
220 |
|
|
221 |
int size() { return _index; }
|
|
222 |
|
|
223 |
void setEmpty() { _index = 0; clear_overflow(); }
|
|
224 |
|
|
225 |
// Record the current size; a subsequent "oops_do" will iterate only over
|
|
226 |
// indices valid at the time of this call.
|
|
227 |
void set_oops_do_bound(jint bound = -1) {
|
|
228 |
if (bound == -1) {
|
|
229 |
_oops_do_bound = _index;
|
|
230 |
} else {
|
|
231 |
_oops_do_bound = bound;
|
|
232 |
}
|
|
233 |
}
|
|
234 |
jint oops_do_bound() { return _oops_do_bound; }
|
|
235 |
// iterate over the oops in the mark stack, up to the bound recorded via
|
|
236 |
// the call above.
|
|
237 |
void oops_do(OopClosure* f);
|
|
238 |
};
|
|
239 |
|
|
240 |
class CMRegionStack {
|
|
241 |
MemRegion* _base;
|
|
242 |
jint _capacity;
|
|
243 |
jint _index;
|
|
244 |
jint _oops_do_bound;
|
|
245 |
bool _overflow;
|
|
246 |
public:
|
|
247 |
CMRegionStack();
|
|
248 |
~CMRegionStack();
|
|
249 |
void allocate(size_t size);
|
|
250 |
|
|
251 |
// This is lock-free; assumes that it will only be called in parallel
|
|
252 |
// with other "push" operations (no pops).
|
|
253 |
void push(MemRegion mr);
|
|
254 |
|
|
255 |
// Lock-free; assumes that it will only be called in parallel
|
|
256 |
// with other "pop" operations (no pushes).
|
|
257 |
MemRegion pop();
|
|
258 |
|
|
259 |
bool isEmpty() { return _index == 0; }
|
|
260 |
bool isFull() { return _index == _capacity; }
|
|
261 |
|
|
262 |
bool overflow() { return _overflow; }
|
|
263 |
void clear_overflow() { _overflow = false; }
|
|
264 |
|
|
265 |
int size() { return _index; }
|
|
266 |
|
|
267 |
// It iterates over the entries in the region stack and it
|
|
268 |
// invalidates (i.e. assigns MemRegion()) the ones that point to
|
|
269 |
// regions in the collection set.
|
|
270 |
bool invalidate_entries_into_cset();
|
|
271 |
|
|
272 |
// This gives an upper bound up to which the iteration in
|
|
273 |
// invalidate_entries_into_cset() will reach. This prevents
|
|
274 |
// newly-added entries to be unnecessarily scanned.
|
|
275 |
void set_oops_do_bound() {
|
|
276 |
_oops_do_bound = _index;
|
|
277 |
}
|
|
278 |
|
|
279 |
void setEmpty() { _index = 0; clear_overflow(); }
|
|
280 |
};
|
|
281 |
|
|
282 |
// this will enable a variety of different statistics per GC task
|
|
283 |
#define _MARKING_STATS_ 0
|
|
284 |
// this will enable the higher verbose levels
|
|
285 |
#define _MARKING_VERBOSE_ 0
|
|
286 |
|
|
287 |
#if _MARKING_STATS_
|
|
288 |
#define statsOnly(statement) \
|
|
289 |
do { \
|
|
290 |
statement ; \
|
|
291 |
} while (0)
|
|
292 |
#else // _MARKING_STATS_
|
|
293 |
#define statsOnly(statement) \
|
|
294 |
do { \
|
|
295 |
} while (0)
|
|
296 |
#endif // _MARKING_STATS_
|
|
297 |
|
|
298 |
// Some extra guarantees that I like to also enable in optimised mode
|
|
299 |
// when debugging. If you want to enable them, comment out the assert
|
|
300 |
// macro and uncomment out the guaratee macro
|
|
301 |
// #define tmp_guarantee_CM(expr, str) guarantee(expr, str)
|
|
302 |
#define tmp_guarantee_CM(expr, str) assert(expr, str)
|
|
303 |
|
|
304 |
typedef enum {
|
|
305 |
no_verbose = 0, // verbose turned off
|
|
306 |
stats_verbose, // only prints stats at the end of marking
|
|
307 |
low_verbose, // low verbose, mostly per region and per major event
|
|
308 |
medium_verbose, // a bit more detailed than low
|
|
309 |
high_verbose // per object verbose
|
|
310 |
} CMVerboseLevel;
|
|
311 |
|
|
312 |
|
|
313 |
class ConcurrentMarkThread;
|
|
314 |
|
|
315 |
class ConcurrentMark {
|
|
316 |
friend class ConcurrentMarkThread;
|
|
317 |
friend class CMTask;
|
|
318 |
friend class CMBitMapClosure;
|
|
319 |
friend class CSMarkOopClosure;
|
|
320 |
friend class CMGlobalObjectClosure;
|
|
321 |
friend class CMRemarkTask;
|
|
322 |
friend class CMConcurrentMarkingTask;
|
|
323 |
friend class G1ParNoteEndTask;
|
|
324 |
friend class CalcLiveObjectsClosure;
|
|
325 |
|
|
326 |
protected:
|
|
327 |
ConcurrentMarkThread* _cmThread; // the thread doing the work
|
|
328 |
G1CollectedHeap* _g1h; // the heap.
|
|
329 |
size_t _parallel_marking_threads; // the number of marking
|
|
330 |
// threads we'll use
|
|
331 |
double _sleep_factor; // how much we have to sleep, with
|
|
332 |
// respect to the work we just did, to
|
|
333 |
// meet the marking overhead goal
|
|
334 |
double _marking_task_overhead; // marking target overhead for
|
|
335 |
// a single task
|
|
336 |
|
|
337 |
// same as the two above, but for the cleanup task
|
|
338 |
double _cleanup_sleep_factor;
|
|
339 |
double _cleanup_task_overhead;
|
|
340 |
|
|
341 |
// Stuff related to age cohort processing.
|
|
342 |
struct ParCleanupThreadState {
|
|
343 |
char _pre[64];
|
|
344 |
UncleanRegionList list;
|
|
345 |
char _post[64];
|
|
346 |
};
|
|
347 |
ParCleanupThreadState** _par_cleanup_thread_state;
|
|
348 |
|
|
349 |
// CMS marking support structures
|
|
350 |
CMBitMap _markBitMap1;
|
|
351 |
CMBitMap _markBitMap2;
|
|
352 |
CMBitMapRO* _prevMarkBitMap; // completed mark bitmap
|
|
353 |
CMBitMap* _nextMarkBitMap; // under-construction mark bitmap
|
|
354 |
bool _at_least_one_mark_complete;
|
|
355 |
|
|
356 |
BitMap _region_bm;
|
|
357 |
BitMap _card_bm;
|
|
358 |
|
|
359 |
// Heap bounds
|
|
360 |
HeapWord* _heap_start;
|
|
361 |
HeapWord* _heap_end;
|
|
362 |
|
|
363 |
// For gray objects
|
|
364 |
CMMarkStack _markStack; // Grey objects behind global finger.
|
|
365 |
CMRegionStack _regionStack; // Grey regions behind global finger.
|
|
366 |
HeapWord* volatile _finger; // the global finger, region aligned,
|
|
367 |
// always points to the end of the
|
|
368 |
// last claimed region
|
|
369 |
|
|
370 |
// marking tasks
|
|
371 |
size_t _max_task_num; // maximum task number
|
|
372 |
size_t _active_tasks; // task num currently active
|
|
373 |
CMTask** _tasks; // task queue array (max_task_num len)
|
|
374 |
CMTaskQueueSet* _task_queues; // task queue set
|
|
375 |
ParallelTaskTerminator _terminator; // for termination
|
|
376 |
|
|
377 |
// Two sync barriers that are used to synchronise tasks when an
|
|
378 |
// overflow occurs. The algorithm is the following. All tasks enter
|
|
379 |
// the first one to ensure that they have all stopped manipulating
|
|
380 |
// the global data structures. After they exit it, they re-initialise
|
|
381 |
// their data structures and task 0 re-initialises the global data
|
|
382 |
// structures. Then, they enter the second sync barrier. This
|
|
383 |
// ensure, that no task starts doing work before all data
|
|
384 |
// structures (local and global) have been re-initialised. When they
|
|
385 |
// exit it, they are free to start working again.
|
|
386 |
WorkGangBarrierSync _first_overflow_barrier_sync;
|
|
387 |
WorkGangBarrierSync _second_overflow_barrier_sync;
|
|
388 |
|
|
389 |
|
|
390 |
// this is set by any task, when an overflow on the global data
|
|
391 |
// structures is detected.
|
|
392 |
volatile bool _has_overflown;
|
|
393 |
// true: marking is concurrent, false: we're in remark
|
|
394 |
volatile bool _concurrent;
|
|
395 |
// set at the end of a Full GC so that marking aborts
|
|
396 |
volatile bool _has_aborted;
|
|
397 |
// used when remark aborts due to an overflow to indicate that
|
|
398 |
// another concurrent marking phase should start
|
|
399 |
volatile bool _restart_for_overflow;
|
|
400 |
|
|
401 |
// This is true from the very start of concurrent marking until the
|
|
402 |
// point when all the tasks complete their work. It is really used
|
|
403 |
// to determine the points between the end of concurrent marking and
|
|
404 |
// time of remark.
|
|
405 |
volatile bool _concurrent_marking_in_progress;
|
|
406 |
|
|
407 |
// verbose level
|
|
408 |
CMVerboseLevel _verbose_level;
|
|
409 |
|
|
410 |
COTracker _cleanup_co_tracker;
|
|
411 |
|
|
412 |
// These two fields are used to implement the optimisation that
|
|
413 |
// avoids pushing objects on the global/region stack if there are
|
|
414 |
// no collection set regions above the lowest finger.
|
|
415 |
|
|
416 |
// This is the lowest finger (among the global and local fingers),
|
|
417 |
// which is calculated before a new collection set is chosen.
|
|
418 |
HeapWord* _min_finger;
|
|
419 |
// If this flag is true, objects/regions that are marked below the
|
|
420 |
// finger should be pushed on the stack(s). If this is flag is
|
|
421 |
// false, it is safe not to push them on the stack(s).
|
|
422 |
bool _should_gray_objects;
|
|
423 |
|
|
424 |
// All of these times are in ms.
|
|
425 |
NumberSeq _init_times;
|
|
426 |
NumberSeq _remark_times;
|
|
427 |
NumberSeq _remark_mark_times;
|
|
428 |
NumberSeq _remark_weak_ref_times;
|
|
429 |
NumberSeq _cleanup_times;
|
|
430 |
double _total_counting_time;
|
|
431 |
double _total_rs_scrub_time;
|
|
432 |
|
|
433 |
double* _accum_task_vtime; // accumulated task vtime
|
|
434 |
|
|
435 |
WorkGang* _parallel_workers;
|
|
436 |
|
|
437 |
void weakRefsWork(bool clear_all_soft_refs);
|
|
438 |
|
|
439 |
void swapMarkBitMaps();
|
|
440 |
|
|
441 |
// It resets the global marking data structures, as well as the
|
|
442 |
// task local ones; should be called during initial mark.
|
|
443 |
void reset();
|
|
444 |
// It resets all the marking data structures.
|
|
445 |
void clear_marking_state();
|
|
446 |
|
|
447 |
// It should be called to indicate which phase we're in (concurrent
|
|
448 |
// mark or remark) and how many threads are currently active.
|
|
449 |
void set_phase(size_t active_tasks, bool concurrent);
|
|
450 |
// We do this after we're done with marking so that the marking data
|
|
451 |
// structures are initialised to a sensible and predictable state.
|
|
452 |
void set_non_marking_state();
|
|
453 |
|
|
454 |
// prints all gathered CM-related statistics
|
|
455 |
void print_stats();
|
|
456 |
|
|
457 |
// accessor methods
|
|
458 |
size_t parallel_marking_threads() { return _parallel_marking_threads; }
|
|
459 |
double sleep_factor() { return _sleep_factor; }
|
|
460 |
double marking_task_overhead() { return _marking_task_overhead;}
|
|
461 |
double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
|
|
462 |
double cleanup_task_overhead() { return _cleanup_task_overhead;}
|
|
463 |
|
|
464 |
HeapWord* finger() { return _finger; }
|
|
465 |
bool concurrent() { return _concurrent; }
|
|
466 |
size_t active_tasks() { return _active_tasks; }
|
|
467 |
ParallelTaskTerminator* terminator() { return &_terminator; }
|
|
468 |
|
|
469 |
// It claims the next available region to be scanned by a marking
|
|
470 |
// task. It might return NULL if the next region is empty or we have
|
|
471 |
// run out of regions. In the latter case, out_of_regions()
|
|
472 |
// determines whether we've really run out of regions or the task
|
|
473 |
// should call claim_region() again. This might seem a bit
|
|
474 |
// awkward. Originally, the code was written so that claim_region()
|
|
475 |
// either successfully returned with a non-empty region or there
|
|
476 |
// were no more regions to be claimed. The problem with this was
|
|
477 |
// that, in certain circumstances, it iterated over large chunks of
|
|
478 |
// the heap finding only empty regions and, while it was working, it
|
|
479 |
// was preventing the calling task to call its regular clock
|
|
480 |
// method. So, this way, each task will spend very little time in
|
|
481 |
// claim_region() and is allowed to call the regular clock method
|
|
482 |
// frequently.
|
|
483 |
HeapRegion* claim_region(int task);
|
|
484 |
|
|
485 |
// It determines whether we've run out of regions to scan.
|
|
486 |
bool out_of_regions() { return _finger == _heap_end; }
|
|
487 |
|
|
488 |
// Returns the task with the given id
|
|
489 |
CMTask* task(int id) {
|
|
490 |
guarantee( 0 <= id && id < (int) _active_tasks, "task id not within "
|
|
491 |
"active bounds" );
|
|
492 |
return _tasks[id];
|
|
493 |
}
|
|
494 |
|
|
495 |
// Returns the task queue with the given id
|
|
496 |
CMTaskQueue* task_queue(int id) {
|
|
497 |
guarantee( 0 <= id && id < (int) _active_tasks, "task queue id not within "
|
|
498 |
"active bounds" );
|
|
499 |
return (CMTaskQueue*) _task_queues->queue(id);
|
|
500 |
}
|
|
501 |
|
|
502 |
// Returns the task queue set
|
|
503 |
CMTaskQueueSet* task_queues() { return _task_queues; }
|
|
504 |
|
|
505 |
// Access / manipulation of the overflow flag which is set to
|
|
506 |
// indicate that the global stack or region stack has overflown
|
|
507 |
bool has_overflown() { return _has_overflown; }
|
|
508 |
void set_has_overflown() { _has_overflown = true; }
|
|
509 |
void clear_has_overflown() { _has_overflown = false; }
|
|
510 |
|
|
511 |
bool has_aborted() { return _has_aborted; }
|
|
512 |
bool restart_for_overflow() { return _restart_for_overflow; }
|
|
513 |
|
|
514 |
// Methods to enter the two overflow sync barriers
|
|
515 |
void enter_first_sync_barrier(int task_num);
|
|
516 |
void enter_second_sync_barrier(int task_num);
|
|
517 |
|
|
518 |
public:
|
|
519 |
// Manipulation of the global mark stack.
|
|
520 |
// Notice that the first mark_stack_push is CAS-based, whereas the
|
|
521 |
// two below are Mutex-based. This is OK since the first one is only
|
|
522 |
// called during evacuation pauses and doesn't compete with the
|
|
523 |
// other two (which are called by the marking tasks during
|
|
524 |
// concurrent marking or remark).
|
|
525 |
bool mark_stack_push(oop p) {
|
|
526 |
_markStack.par_push(p);
|
|
527 |
if (_markStack.overflow()) {
|
|
528 |
set_has_overflown();
|
|
529 |
return false;
|
|
530 |
}
|
|
531 |
return true;
|
|
532 |
}
|
|
533 |
bool mark_stack_push(oop* arr, int n) {
|
|
534 |
_markStack.par_push_arr(arr, n);
|
|
535 |
if (_markStack.overflow()) {
|
|
536 |
set_has_overflown();
|
|
537 |
return false;
|
|
538 |
}
|
|
539 |
return true;
|
|
540 |
}
|
|
541 |
void mark_stack_pop(oop* arr, int max, int* n) {
|
|
542 |
_markStack.par_pop_arr(arr, max, n);
|
|
543 |
}
|
|
544 |
size_t mark_stack_size() { return _markStack.size(); }
|
|
545 |
size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
|
|
546 |
bool mark_stack_overflow() { return _markStack.overflow(); }
|
|
547 |
bool mark_stack_empty() { return _markStack.isEmpty(); }
|
|
548 |
|
|
549 |
// Manipulation of the region stack
|
|
550 |
bool region_stack_push(MemRegion mr) {
|
|
551 |
_regionStack.push(mr);
|
|
552 |
if (_regionStack.overflow()) {
|
|
553 |
set_has_overflown();
|
|
554 |
return false;
|
|
555 |
}
|
|
556 |
return true;
|
|
557 |
}
|
|
558 |
MemRegion region_stack_pop() { return _regionStack.pop(); }
|
|
559 |
int region_stack_size() { return _regionStack.size(); }
|
|
560 |
bool region_stack_overflow() { return _regionStack.overflow(); }
|
|
561 |
bool region_stack_empty() { return _regionStack.isEmpty(); }
|
|
562 |
|
|
563 |
bool concurrent_marking_in_progress() {
|
|
564 |
return _concurrent_marking_in_progress;
|
|
565 |
}
|
|
566 |
void set_concurrent_marking_in_progress() {
|
|
567 |
_concurrent_marking_in_progress = true;
|
|
568 |
}
|
|
569 |
void clear_concurrent_marking_in_progress() {
|
|
570 |
_concurrent_marking_in_progress = false;
|
|
571 |
}
|
|
572 |
|
|
573 |
void update_accum_task_vtime(int i, double vtime) {
|
|
574 |
_accum_task_vtime[i] += vtime;
|
|
575 |
}
|
|
576 |
|
|
577 |
double all_task_accum_vtime() {
|
|
578 |
double ret = 0.0;
|
|
579 |
for (int i = 0; i < (int)_max_task_num; ++i)
|
|
580 |
ret += _accum_task_vtime[i];
|
|
581 |
return ret;
|
|
582 |
}
|
|
583 |
|
|
584 |
// Attempts to steal an object from the task queues of other tasks
|
|
585 |
bool try_stealing(int task_num, int* hash_seed, oop& obj) {
|
|
586 |
return _task_queues->steal(task_num, hash_seed, obj);
|
|
587 |
}
|
|
588 |
|
|
589 |
// It grays an object by first marking it. Then, if it's behind the
|
|
590 |
// global finger, it also pushes it on the global stack.
|
|
591 |
void deal_with_reference(oop obj);
|
|
592 |
|
|
593 |
ConcurrentMark(ReservedSpace rs, int max_regions);
|
|
594 |
~ConcurrentMark();
|
|
595 |
ConcurrentMarkThread* cmThread() { return _cmThread; }
|
|
596 |
|
|
597 |
CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
|
|
598 |
CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
|
|
599 |
|
|
600 |
// The following three are interaction between CM and
|
|
601 |
// G1CollectedHeap
|
|
602 |
|
|
603 |
// This notifies CM that a root during initial-mark needs to be
|
|
604 |
// grayed and it's MT-safe. Currently, we just mark it. But, in the
|
|
605 |
// future, we can experiment with pushing it on the stack and we can
|
|
606 |
// do this without changing G1CollectedHeap.
|
|
607 |
void grayRoot(oop p);
|
|
608 |
// It's used during evacuation pauses to gray a region, if
|
|
609 |
// necessary, and it's MT-safe. It assumes that the caller has
|
|
610 |
// marked any objects on that region. If _should_gray_objects is
|
|
611 |
// true and we're still doing concurrent marking, the region is
|
|
612 |
// pushed on the region stack, if it is located below the global
|
|
613 |
// finger, otherwise we do nothing.
|
|
614 |
void grayRegionIfNecessary(MemRegion mr);
|
|
615 |
// It's used during evacuation pauses to mark and, if necessary,
|
|
616 |
// gray a single object and it's MT-safe. It assumes the caller did
|
|
617 |
// not mark the object. If _should_gray_objects is true and we're
|
|
618 |
// still doing concurrent marking, the objects is pushed on the
|
|
619 |
// global stack, if it is located below the global finger, otherwise
|
|
620 |
// we do nothing.
|
|
621 |
void markAndGrayObjectIfNecessary(oop p);
|
|
622 |
|
|
623 |
// This iterates over the bitmap of the previous marking and prints
|
|
624 |
// out all objects that are marked on the bitmap and indicates
|
|
625 |
// whether what they point to is also marked or not.
|
|
626 |
void print_prev_bitmap_reachable();
|
|
627 |
|
|
628 |
// Clear the next marking bitmap (will be called concurrently).
|
|
629 |
void clearNextBitmap();
|
|
630 |
|
|
631 |
// main CMS steps and related support
|
|
632 |
void checkpointRootsInitial();
|
|
633 |
|
|
634 |
// These two do the work that needs to be done before and after the
|
|
635 |
// initial root checkpoint. Since this checkpoint can be done at two
|
|
636 |
// different points (i.e. an explicit pause or piggy-backed on a
|
|
637 |
// young collection), then it's nice to be able to easily share the
|
|
638 |
// pre/post code. It might be the case that we can put everything in
|
|
639 |
// the post method. TP
|
|
640 |
void checkpointRootsInitialPre();
|
|
641 |
void checkpointRootsInitialPost();
|
|
642 |
|
|
643 |
// Do concurrent phase of marking, to a tentative transitive closure.
|
|
644 |
void markFromRoots();
|
|
645 |
|
|
646 |
// Process all unprocessed SATB buffers. It is called at the
|
|
647 |
// beginning of an evacuation pause.
|
|
648 |
void drainAllSATBBuffers();
|
|
649 |
|
|
650 |
void checkpointRootsFinal(bool clear_all_soft_refs);
|
|
651 |
void checkpointRootsFinalWork();
|
|
652 |
void calcDesiredRegions();
|
|
653 |
void cleanup();
|
|
654 |
void completeCleanup();
|
|
655 |
|
|
656 |
// Mark in the previous bitmap. NB: this is usually read-only, so use
|
|
657 |
// this carefully!
|
|
658 |
void markPrev(oop p);
|
|
659 |
void clear(oop p);
|
|
660 |
// Clears marks for all objects in the given range, for both prev and
|
|
661 |
// next bitmaps. NB: the previous bitmap is usually read-only, so use
|
|
662 |
// this carefully!
|
|
663 |
void clearRangeBothMaps(MemRegion mr);
|
|
664 |
|
|
665 |
// Record the current top of the mark and region stacks; a
|
|
666 |
// subsequent oops_do() on the mark stack and
|
|
667 |
// invalidate_entries_into_cset() on the region stack will iterate
|
|
668 |
// only over indices valid at the time of this call.
|
|
669 |
void set_oops_do_bound() {
|
|
670 |
_markStack.set_oops_do_bound();
|
|
671 |
_regionStack.set_oops_do_bound();
|
|
672 |
}
|
|
673 |
// Iterate over the oops in the mark stack and all local queues. It
|
|
674 |
// also calls invalidate_entries_into_cset() on the region stack.
|
|
675 |
void oops_do(OopClosure* f);
|
|
676 |
// It is called at the end of an evacuation pause during marking so
|
|
677 |
// that CM is notified of where the new end of the heap is. It
|
|
678 |
// doesn't do anything if concurrent_marking_in_progress() is false,
|
|
679 |
// unless the force parameter is true.
|
|
680 |
void update_g1_committed(bool force = false);
|
|
681 |
|
|
682 |
void complete_marking_in_collection_set();
|
|
683 |
|
|
684 |
// It indicates that a new collection set is being chosen.
|
|
685 |
void newCSet();
|
|
686 |
// It registers a collection set heap region with CM. This is used
|
|
687 |
// to determine whether any heap regions are located above the finger.
|
|
688 |
void registerCSetRegion(HeapRegion* hr);
|
|
689 |
|
|
690 |
// Returns "true" if at least one mark has been completed.
|
|
691 |
bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
|
|
692 |
|
|
693 |
bool isMarked(oop p) const {
|
|
694 |
assert(p != NULL && p->is_oop(), "expected an oop");
|
|
695 |
HeapWord* addr = (HeapWord*)p;
|
|
696 |
assert(addr >= _nextMarkBitMap->startWord() ||
|
|
697 |
addr < _nextMarkBitMap->endWord(), "in a region");
|
|
698 |
|
|
699 |
return _nextMarkBitMap->isMarked(addr);
|
|
700 |
}
|
|
701 |
|
|
702 |
inline bool not_yet_marked(oop p) const;
|
|
703 |
|
|
704 |
// XXX Debug code
|
|
705 |
bool containing_card_is_marked(void* p);
|
|
706 |
bool containing_cards_are_marked(void* start, void* last);
|
|
707 |
|
|
708 |
bool isPrevMarked(oop p) const {
|
|
709 |
assert(p != NULL && p->is_oop(), "expected an oop");
|
|
710 |
HeapWord* addr = (HeapWord*)p;
|
|
711 |
assert(addr >= _prevMarkBitMap->startWord() ||
|
|
712 |
addr < _prevMarkBitMap->endWord(), "in a region");
|
|
713 |
|
|
714 |
return _prevMarkBitMap->isMarked(addr);
|
|
715 |
}
|
|
716 |
|
|
717 |
inline bool do_yield_check(int worker_i = 0);
|
|
718 |
inline bool should_yield();
|
|
719 |
|
|
720 |
// Called to abort the marking cycle after a Full GC takes palce.
|
|
721 |
void abort();
|
|
722 |
|
|
723 |
void disable_co_trackers();
|
|
724 |
|
|
725 |
// This prints the global/local fingers. It is used for debugging.
|
|
726 |
NOT_PRODUCT(void print_finger();)
|
|
727 |
|
|
728 |
void print_summary_info();
|
|
729 |
|
|
730 |
// The following indicate whether a given verbose level has been
|
|
731 |
// set. Notice that anything above stats is conditional to
|
|
732 |
// _MARKING_VERBOSE_ having been set to 1
|
|
733 |
bool verbose_stats()
|
|
734 |
{ return _verbose_level >= stats_verbose; }
|
|
735 |
bool verbose_low()
|
|
736 |
{ return _MARKING_VERBOSE_ && _verbose_level >= low_verbose; }
|
|
737 |
bool verbose_medium()
|
|
738 |
{ return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose; }
|
|
739 |
bool verbose_high()
|
|
740 |
{ return _MARKING_VERBOSE_ && _verbose_level >= high_verbose; }
|
|
741 |
};
|
|
742 |
|
|
743 |
// A class representing a marking task.
|
|
744 |
class CMTask : public TerminatorTerminator {
|
|
745 |
private:
|
|
746 |
enum PrivateConstants {
|
|
747 |
// the regular clock call is called once the scanned words reaches
|
|
748 |
// this limit
|
|
749 |
words_scanned_period = 12*1024,
|
|
750 |
// the regular clock call is called once the number of visited
|
|
751 |
// references reaches this limit
|
|
752 |
refs_reached_period = 384,
|
|
753 |
// initial value for the hash seed, used in the work stealing code
|
|
754 |
init_hash_seed = 17,
|
|
755 |
// how many entries will be transferred between global stack and
|
|
756 |
// local queues
|
|
757 |
global_stack_transfer_size = 16
|
|
758 |
};
|
|
759 |
|
|
760 |
int _task_id;
|
|
761 |
G1CollectedHeap* _g1h;
|
|
762 |
ConcurrentMark* _cm;
|
|
763 |
CMBitMap* _nextMarkBitMap;
|
|
764 |
// the task queue of this task
|
|
765 |
CMTaskQueue* _task_queue;
|
|
766 |
// the task queue set---needed for stealing
|
|
767 |
CMTaskQueueSet* _task_queues;
|
|
768 |
// indicates whether the task has been claimed---this is only for
|
|
769 |
// debugging purposes
|
|
770 |
bool _claimed;
|
|
771 |
|
|
772 |
// number of calls to this task
|
|
773 |
int _calls;
|
|
774 |
|
|
775 |
// concurrent overhead over a single CPU for this task
|
|
776 |
COTracker _co_tracker;
|
|
777 |
|
|
778 |
// when the virtual timer reaches this time, the marking step should
|
|
779 |
// exit
|
|
780 |
double _time_target_ms;
|
|
781 |
// the start time of the current marking step
|
|
782 |
double _start_time_ms;
|
|
783 |
|
|
784 |
// the oop closure used for iterations over oops
|
|
785 |
OopClosure* _oop_closure;
|
|
786 |
|
|
787 |
// the region this task is scanning, NULL if we're not scanning any
|
|
788 |
HeapRegion* _curr_region;
|
|
789 |
// the local finger of this task, NULL if we're not scanning a region
|
|
790 |
HeapWord* _finger;
|
|
791 |
// limit of the region this task is scanning, NULL if we're not scanning one
|
|
792 |
HeapWord* _region_limit;
|
|
793 |
|
|
794 |
// This is used only when we scan regions popped from the region
|
|
795 |
// stack. It records what the last object on such a region we
|
|
796 |
// scanned was. It is used to ensure that, if we abort region
|
|
797 |
// iteration, we do not rescan the first part of the region. This
|
|
798 |
// should be NULL when we're not scanning a region from the region
|
|
799 |
// stack.
|
|
800 |
HeapWord* _region_finger;
|
|
801 |
|
|
802 |
// the number of words this task has scanned
|
|
803 |
size_t _words_scanned;
|
|
804 |
// When _words_scanned reaches this limit, the regular clock is
|
|
805 |
// called. Notice that this might be decreased under certain
|
|
806 |
// circumstances (i.e. when we believe that we did an expensive
|
|
807 |
// operation).
|
|
808 |
size_t _words_scanned_limit;
|
|
809 |
// the initial value of _words_scanned_limit (i.e. what it was
|
|
810 |
// before it was decreased).
|
|
811 |
size_t _real_words_scanned_limit;
|
|
812 |
|
|
813 |
// the number of references this task has visited
|
|
814 |
size_t _refs_reached;
|
|
815 |
// When _refs_reached reaches this limit, the regular clock is
|
|
816 |
// called. Notice this this might be decreased under certain
|
|
817 |
// circumstances (i.e. when we believe that we did an expensive
|
|
818 |
// operation).
|
|
819 |
size_t _refs_reached_limit;
|
|
820 |
// the initial value of _refs_reached_limit (i.e. what it was before
|
|
821 |
// it was decreased).
|
|
822 |
size_t _real_refs_reached_limit;
|
|
823 |
|
|
824 |
// used by the work stealing stuff
|
|
825 |
int _hash_seed;
|
|
826 |
// if this is true, then the task has aborted for some reason
|
|
827 |
bool _has_aborted;
|
|
828 |
// set when the task aborts because it has met its time quota
|
|
829 |
bool _has_aborted_timed_out;
|
|
830 |
// true when we're draining SATB buffers; this avoids the task
|
|
831 |
// aborting due to SATB buffers being available (as we're already
|
|
832 |
// dealing with them)
|
|
833 |
bool _draining_satb_buffers;
|
|
834 |
|
|
835 |
// number sequence of past step times
|
|
836 |
NumberSeq _step_times_ms;
|
|
837 |
// elapsed time of this task
|
|
838 |
double _elapsed_time_ms;
|
|
839 |
// termination time of this task
|
|
840 |
double _termination_time_ms;
|
|
841 |
// when this task got into the termination protocol
|
|
842 |
double _termination_start_time_ms;
|
|
843 |
|
|
844 |
// true when the task is during a concurrent phase, false when it is
|
|
845 |
// in the remark phase (so, in the latter case, we do not have to
|
|
846 |
// check all the things that we have to check during the concurrent
|
|
847 |
// phase, i.e. SATB buffer availability...)
|
|
848 |
bool _concurrent;
|
|
849 |
|
|
850 |
TruncatedSeq _marking_step_diffs_ms;
|
|
851 |
|
|
852 |
// LOTS of statistics related with this task
|
|
853 |
#if _MARKING_STATS_
|
|
854 |
NumberSeq _all_clock_intervals_ms;
|
|
855 |
double _interval_start_time_ms;
|
|
856 |
|
|
857 |
int _aborted;
|
|
858 |
int _aborted_overflow;
|
|
859 |
int _aborted_cm_aborted;
|
|
860 |
int _aborted_yield;
|
|
861 |
int _aborted_timed_out;
|
|
862 |
int _aborted_satb;
|
|
863 |
int _aborted_termination;
|
|
864 |
|
|
865 |
int _steal_attempts;
|
|
866 |
int _steals;
|
|
867 |
|
|
868 |
int _clock_due_to_marking;
|
|
869 |
int _clock_due_to_scanning;
|
|
870 |
|
|
871 |
int _local_pushes;
|
|
872 |
int _local_pops;
|
|
873 |
int _local_max_size;
|
|
874 |
int _objs_scanned;
|
|
875 |
|
|
876 |
int _global_pushes;
|
|
877 |
int _global_pops;
|
|
878 |
int _global_max_size;
|
|
879 |
|
|
880 |
int _global_transfers_to;
|
|
881 |
int _global_transfers_from;
|
|
882 |
|
|
883 |
int _region_stack_pops;
|
|
884 |
|
|
885 |
int _regions_claimed;
|
|
886 |
int _objs_found_on_bitmap;
|
|
887 |
|
|
888 |
int _satb_buffers_processed;
|
|
889 |
#endif // _MARKING_STATS_
|
|
890 |
|
|
891 |
// it updates the local fields after this task has claimed
|
|
892 |
// a new region to scan
|
|
893 |
void setup_for_region(HeapRegion* hr);
|
|
894 |
// it brings up-to-date the limit of the region
|
|
895 |
void update_region_limit();
|
|
896 |
// it resets the local fields after a task has finished scanning a
|
|
897 |
// region
|
|
898 |
void giveup_current_region();
|
|
899 |
|
|
900 |
// called when either the words scanned or the refs visited limit
|
|
901 |
// has been reached
|
|
902 |
void reached_limit();
|
|
903 |
// recalculates the words scanned and refs visited limits
|
|
904 |
void recalculate_limits();
|
|
905 |
// decreases the words scanned and refs visited limits when we reach
|
|
906 |
// an expensive operation
|
|
907 |
void decrease_limits();
|
|
908 |
// it checks whether the words scanned or refs visited reached their
|
|
909 |
// respective limit and calls reached_limit() if they have
|
|
910 |
void check_limits() {
|
|
911 |
if (_words_scanned >= _words_scanned_limit ||
|
|
912 |
_refs_reached >= _refs_reached_limit)
|
|
913 |
reached_limit();
|
|
914 |
}
|
|
915 |
// this is supposed to be called regularly during a marking step as
|
|
916 |
// it checks a bunch of conditions that might cause the marking step
|
|
917 |
// to abort
|
|
918 |
void regular_clock_call();
|
|
919 |
bool concurrent() { return _concurrent; }
|
|
920 |
|
|
921 |
public:
|
|
922 |
// It resets the task; it should be called right at the beginning of
|
|
923 |
// a marking phase.
|
|
924 |
void reset(CMBitMap* _nextMarkBitMap);
|
|
925 |
// it clears all the fields that correspond to a claimed region.
|
|
926 |
void clear_region_fields();
|
|
927 |
|
|
928 |
void set_concurrent(bool concurrent) { _concurrent = concurrent; }
|
|
929 |
|
|
930 |
void enable_co_tracker() {
|
|
931 |
guarantee( !_co_tracker.enabled(), "invariant" );
|
|
932 |
_co_tracker.enable();
|
|
933 |
}
|
|
934 |
void disable_co_tracker() {
|
|
935 |
guarantee( _co_tracker.enabled(), "invariant" );
|
|
936 |
_co_tracker.disable();
|
|
937 |
}
|
|
938 |
bool co_tracker_enabled() {
|
|
939 |
return _co_tracker.enabled();
|
|
940 |
}
|
|
941 |
void reset_co_tracker(double starting_conc_overhead = 0.0) {
|
|
942 |
_co_tracker.reset(starting_conc_overhead);
|
|
943 |
}
|
|
944 |
void start_co_tracker() {
|
|
945 |
_co_tracker.start();
|
|
946 |
}
|
|
947 |
void update_co_tracker(bool force_end = false) {
|
|
948 |
_co_tracker.update(force_end);
|
|
949 |
}
|
|
950 |
|
|
951 |
// The main method of this class which performs a marking step
|
|
952 |
// trying not to exceed the given duration. However, it might exit
|
|
953 |
// prematurely, according to some conditions (i.e. SATB buffers are
|
|
954 |
// available for processing).
|
|
955 |
void do_marking_step(double target_ms);
|
|
956 |
|
|
957 |
// These two calls start and stop the timer
|
|
958 |
void record_start_time() {
|
|
959 |
_elapsed_time_ms = os::elapsedTime() * 1000.0;
|
|
960 |
}
|
|
961 |
void record_end_time() {
|
|
962 |
_elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
|
|
963 |
}
|
|
964 |
|
|
965 |
// returns the task ID
|
|
966 |
int task_id() { return _task_id; }
|
|
967 |
|
|
968 |
// From TerminatorTerminator. It determines whether this task should
|
|
969 |
// exit the termination protocol after it's entered it.
|
|
970 |
virtual bool should_exit_termination();
|
|
971 |
|
|
972 |
HeapWord* finger() { return _finger; }
|
|
973 |
|
|
974 |
bool has_aborted() { return _has_aborted; }
|
|
975 |
void set_has_aborted() { _has_aborted = true; }
|
|
976 |
void clear_has_aborted() { _has_aborted = false; }
|
|
977 |
bool claimed() { return _claimed; }
|
|
978 |
|
|
979 |
void set_oop_closure(OopClosure* oop_closure) {
|
|
980 |
_oop_closure = oop_closure;
|
|
981 |
}
|
|
982 |
|
|
983 |
// It grays the object by marking it and, if necessary, pushing it
|
|
984 |
// on the local queue
|
|
985 |
void deal_with_reference(oop obj);
|
|
986 |
|
|
987 |
// It scans an object and visits its children.
|
|
988 |
void scan_object(oop obj) {
|
|
989 |
tmp_guarantee_CM( _nextMarkBitMap->isMarked((HeapWord*) obj),
|
|
990 |
"invariant" );
|
|
991 |
|
|
992 |
if (_cm->verbose_high())
|
|
993 |
gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
|
|
994 |
_task_id, (void*) obj);
|
|
995 |
|
|
996 |
size_t obj_size = obj->size();
|
|
997 |
_words_scanned += obj_size;
|
|
998 |
|
|
999 |
obj->oop_iterate(_oop_closure);
|
|
1000 |
statsOnly( ++_objs_scanned );
|
|
1001 |
check_limits();
|
|
1002 |
}
|
|
1003 |
|
|
1004 |
// It pushes an object on the local queue.
|
|
1005 |
void push(oop obj);
|
|
1006 |
|
|
1007 |
// These two move entries to/from the global stack.
|
|
1008 |
void move_entries_to_global_stack();
|
|
1009 |
void get_entries_from_global_stack();
|
|
1010 |
|
|
1011 |
// It pops and scans objects from the local queue. If partially is
|
|
1012 |
// true, then it stops when the queue size is of a given limit. If
|
|
1013 |
// partially is false, then it stops when the queue is empty.
|
|
1014 |
void drain_local_queue(bool partially);
|
|
1015 |
// It moves entries from the global stack to the local queue and
|
|
1016 |
// drains the local queue. If partially is true, then it stops when
|
|
1017 |
// both the global stack and the local queue reach a given size. If
|
|
1018 |
// partially if false, it tries to empty them totally.
|
|
1019 |
void drain_global_stack(bool partially);
|
|
1020 |
// It keeps picking SATB buffers and processing them until no SATB
|
|
1021 |
// buffers are available.
|
|
1022 |
void drain_satb_buffers();
|
|
1023 |
// It keeps popping regions from the region stack and processing
|
|
1024 |
// them until the region stack is empty.
|
|
1025 |
void drain_region_stack(BitMapClosure* closure);
|
|
1026 |
|
|
1027 |
// moves the local finger to a new location
|
|
1028 |
inline void move_finger_to(HeapWord* new_finger) {
|
|
1029 |
tmp_guarantee_CM( new_finger >= _finger && new_finger < _region_limit,
|
|
1030 |
"invariant" );
|
|
1031 |
_finger = new_finger;
|
|
1032 |
}
|
|
1033 |
|
|
1034 |
// moves the region finger to a new location
|
|
1035 |
inline void move_region_finger_to(HeapWord* new_finger) {
|
|
1036 |
tmp_guarantee_CM( new_finger < _cm->finger(), "invariant" );
|
|
1037 |
_region_finger = new_finger;
|
|
1038 |
}
|
|
1039 |
|
|
1040 |
CMTask(int task_num, ConcurrentMark *cm,
|
|
1041 |
CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
|
|
1042 |
|
|
1043 |
// it prints statistics associated with this task
|
|
1044 |
void print_stats();
|
|
1045 |
|
|
1046 |
#if _MARKING_STATS_
|
|
1047 |
void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
|
|
1048 |
#endif // _MARKING_STATS_
|
|
1049 |
};
|