1
|
1 |
/*
|
|
2 |
* Copyright 2003-2004 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
// A memory pool represents the memory area that the VM manages.
|
|
26 |
// The Java virtual machine has at least one memory pool
|
|
27 |
// and it may create or remove memory pools during execution.
|
|
28 |
// A memory pool can belong to the heap or the non-heap memory.
|
|
29 |
// A Java virtual machine may also have memory pools belonging to
|
|
30 |
// both heap and non-heap memory.
|
|
31 |
|
|
32 |
// Forward declaration
|
|
33 |
class MemoryManager;
|
|
34 |
class SensorInfo;
|
|
35 |
class Generation;
|
|
36 |
class DefNewGeneration;
|
|
37 |
class PSPermGen;
|
|
38 |
class PermGen;
|
|
39 |
class ThresholdSupport;
|
|
40 |
|
|
41 |
class MemoryPool : public CHeapObj {
|
|
42 |
friend class MemoryManager;
|
|
43 |
public:
|
|
44 |
enum PoolType {
|
|
45 |
Heap = 1,
|
|
46 |
NonHeap = 2
|
|
47 |
};
|
|
48 |
|
|
49 |
private:
|
|
50 |
enum {
|
|
51 |
max_num_managers = 5
|
|
52 |
};
|
|
53 |
|
|
54 |
// We could make some of the following as performance counters
|
|
55 |
// for external monitoring.
|
|
56 |
const char* _name;
|
|
57 |
PoolType _type;
|
|
58 |
size_t _initial_size;
|
|
59 |
size_t _max_size;
|
|
60 |
bool _available_for_allocation; // Default is true
|
|
61 |
MemoryManager* _managers[max_num_managers];
|
|
62 |
int _num_managers;
|
|
63 |
MemoryUsage _peak_usage; // Peak memory usage
|
|
64 |
MemoryUsage _after_gc_usage; // After GC memory usage
|
|
65 |
|
|
66 |
ThresholdSupport* _usage_threshold;
|
|
67 |
ThresholdSupport* _gc_usage_threshold;
|
|
68 |
|
|
69 |
SensorInfo* _usage_sensor;
|
|
70 |
SensorInfo* _gc_usage_sensor;
|
|
71 |
|
|
72 |
volatile instanceOop _memory_pool_obj;
|
|
73 |
|
|
74 |
void add_manager(MemoryManager* mgr);
|
|
75 |
|
|
76 |
public:
|
|
77 |
MemoryPool(const char* name,
|
|
78 |
PoolType type,
|
|
79 |
size_t init_size,
|
|
80 |
size_t max_size,
|
|
81 |
bool support_usage_threshold,
|
|
82 |
bool support_gc_threshold);
|
|
83 |
|
|
84 |
const char* name() { return _name; }
|
|
85 |
bool is_heap() { return _type == Heap; }
|
|
86 |
bool is_non_heap() { return _type == NonHeap; }
|
|
87 |
size_t initial_size() const { return _initial_size; }
|
|
88 |
int num_memory_managers() const { return _num_managers; }
|
|
89 |
// max size could be changed
|
|
90 |
virtual size_t max_size() const { return _max_size; }
|
|
91 |
|
|
92 |
bool is_pool(instanceHandle pool) { return (pool() == _memory_pool_obj); }
|
|
93 |
|
|
94 |
bool available_for_allocation() { return _available_for_allocation; }
|
|
95 |
bool set_available_for_allocation(bool value) {
|
|
96 |
bool prev = _available_for_allocation;
|
|
97 |
_available_for_allocation = value;
|
|
98 |
return prev;
|
|
99 |
}
|
|
100 |
|
|
101 |
MemoryManager* get_memory_manager(int index) {
|
|
102 |
assert(index >= 0 && index < _num_managers, "Invalid index");
|
|
103 |
return _managers[index];
|
|
104 |
}
|
|
105 |
|
|
106 |
// Records current memory usage if it's a peak usage
|
|
107 |
void record_peak_memory_usage();
|
|
108 |
|
|
109 |
MemoryUsage get_peak_memory_usage() {
|
|
110 |
// check current memory usage first and then return peak usage
|
|
111 |
record_peak_memory_usage();
|
|
112 |
return _peak_usage;
|
|
113 |
}
|
|
114 |
void reset_peak_memory_usage() {
|
|
115 |
_peak_usage = get_memory_usage();
|
|
116 |
}
|
|
117 |
|
|
118 |
ThresholdSupport* usage_threshold() { return _usage_threshold; }
|
|
119 |
ThresholdSupport* gc_usage_threshold() { return _gc_usage_threshold; }
|
|
120 |
|
|
121 |
SensorInfo* usage_sensor() { return _usage_sensor; }
|
|
122 |
SensorInfo* gc_usage_sensor() { return _gc_usage_sensor; }
|
|
123 |
|
|
124 |
void set_usage_sensor_obj(instanceHandle s);
|
|
125 |
void set_gc_usage_sensor_obj(instanceHandle s);
|
|
126 |
void set_last_collection_usage(MemoryUsage u) { _after_gc_usage = u; }
|
|
127 |
|
|
128 |
virtual instanceOop get_memory_pool_instance(TRAPS);
|
|
129 |
virtual MemoryUsage get_memory_usage() = 0;
|
|
130 |
virtual size_t used_in_bytes() = 0;
|
|
131 |
virtual bool is_collected_pool() { return false; }
|
|
132 |
virtual MemoryUsage get_last_collection_usage() { return _after_gc_usage; }
|
|
133 |
|
|
134 |
// GC support
|
|
135 |
void oops_do(OopClosure* f);
|
|
136 |
};
|
|
137 |
|
|
138 |
class CollectedMemoryPool : public MemoryPool {
|
|
139 |
public:
|
|
140 |
CollectedMemoryPool(const char* name, PoolType type, size_t init_size, size_t max_size, bool support_usage_threshold) :
|
|
141 |
MemoryPool(name, type, init_size, max_size, support_usage_threshold, true) {};
|
|
142 |
bool is_collected_pool() { return true; }
|
|
143 |
};
|
|
144 |
|
|
145 |
class ContiguousSpacePool : public CollectedMemoryPool {
|
|
146 |
private:
|
|
147 |
ContiguousSpace* _space;
|
|
148 |
|
|
149 |
public:
|
|
150 |
ContiguousSpacePool(ContiguousSpace* space, const char* name, PoolType type, size_t max_size, bool support_usage_threshold);
|
|
151 |
|
|
152 |
ContiguousSpace* space() { return _space; }
|
|
153 |
MemoryUsage get_memory_usage();
|
|
154 |
size_t used_in_bytes() { return space()->used(); }
|
|
155 |
};
|
|
156 |
|
|
157 |
class SurvivorContiguousSpacePool : public CollectedMemoryPool {
|
|
158 |
private:
|
|
159 |
DefNewGeneration* _gen;
|
|
160 |
|
|
161 |
public:
|
|
162 |
SurvivorContiguousSpacePool(DefNewGeneration* gen,
|
|
163 |
const char* name,
|
|
164 |
PoolType type,
|
|
165 |
size_t max_size,
|
|
166 |
bool support_usage_threshold);
|
|
167 |
|
|
168 |
MemoryUsage get_memory_usage();
|
|
169 |
|
|
170 |
size_t used_in_bytes() {
|
|
171 |
return _gen->from()->used();
|
|
172 |
}
|
|
173 |
size_t committed_in_bytes() {
|
|
174 |
return _gen->from()->capacity();
|
|
175 |
}
|
|
176 |
};
|
|
177 |
|
|
178 |
#ifndef SERIALGC
|
|
179 |
class CompactibleFreeListSpacePool : public CollectedMemoryPool {
|
|
180 |
private:
|
|
181 |
CompactibleFreeListSpace* _space;
|
|
182 |
public:
|
|
183 |
CompactibleFreeListSpacePool(CompactibleFreeListSpace* space,
|
|
184 |
const char* name,
|
|
185 |
PoolType type,
|
|
186 |
size_t max_size,
|
|
187 |
bool support_usage_threshold);
|
|
188 |
|
|
189 |
MemoryUsage get_memory_usage();
|
|
190 |
size_t used_in_bytes() { return _space->used(); }
|
|
191 |
};
|
|
192 |
#endif // SERIALGC
|
|
193 |
|
|
194 |
|
|
195 |
class GenerationPool : public CollectedMemoryPool {
|
|
196 |
private:
|
|
197 |
Generation* _gen;
|
|
198 |
public:
|
|
199 |
GenerationPool(Generation* gen, const char* name, PoolType type, bool support_usage_threshold);
|
|
200 |
|
|
201 |
MemoryUsage get_memory_usage();
|
|
202 |
size_t used_in_bytes() { return _gen->used(); }
|
|
203 |
};
|
|
204 |
|
|
205 |
class CodeHeapPool: public MemoryPool {
|
|
206 |
private:
|
|
207 |
CodeHeap* _codeHeap;
|
|
208 |
public:
|
|
209 |
CodeHeapPool(CodeHeap* codeHeap, const char* name, bool support_usage_threshold);
|
|
210 |
MemoryUsage get_memory_usage();
|
|
211 |
size_t used_in_bytes() { return _codeHeap->allocated_capacity(); }
|
|
212 |
};
|