1
|
1 |
/*
|
|
2 |
* Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
// Optimization - Graph Style
|
|
26 |
|
|
27 |
#include "incls/_precompiled.incl"
|
|
28 |
#include "incls/_lcm.cpp.incl"
|
|
29 |
|
|
30 |
//------------------------------implicit_null_check----------------------------
|
|
31 |
// Detect implicit-null-check opportunities. Basically, find NULL checks
|
|
32 |
// with suitable memory ops nearby. Use the memory op to do the NULL check.
|
|
33 |
// I can generate a memory op if there is not one nearby.
|
|
34 |
// The proj is the control projection for the not-null case.
|
|
35 |
// The val is the pointer being checked for nullness.
|
|
36 |
void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
|
|
37 |
// Assume if null check need for 0 offset then always needed
|
|
38 |
// Intel solaris doesn't support any null checks yet and no
|
|
39 |
// mechanism exists (yet) to set the switches at an os_cpu level
|
|
40 |
if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
|
|
41 |
|
|
42 |
// Make sure the ptr-is-null path appears to be uncommon!
|
|
43 |
float f = end()->as_MachIf()->_prob;
|
|
44 |
if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
|
|
45 |
if( f > PROB_UNLIKELY_MAG(4) ) return;
|
|
46 |
|
|
47 |
uint bidx = 0; // Capture index of value into memop
|
|
48 |
bool was_store; // Memory op is a store op
|
|
49 |
|
|
50 |
// Get the successor block for if the test ptr is non-null
|
|
51 |
Block* not_null_block; // this one goes with the proj
|
|
52 |
Block* null_block;
|
|
53 |
if (_nodes[_nodes.size()-1] == proj) {
|
|
54 |
null_block = _succs[0];
|
|
55 |
not_null_block = _succs[1];
|
|
56 |
} else {
|
|
57 |
assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
|
|
58 |
not_null_block = _succs[0];
|
|
59 |
null_block = _succs[1];
|
|
60 |
}
|
|
61 |
|
|
62 |
// Search the exception block for an uncommon trap.
|
|
63 |
// (See Parse::do_if and Parse::do_ifnull for the reason
|
|
64 |
// we need an uncommon trap. Briefly, we need a way to
|
|
65 |
// detect failure of this optimization, as in 6366351.)
|
|
66 |
{
|
|
67 |
bool found_trap = false;
|
|
68 |
for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
|
|
69 |
Node* nn = null_block->_nodes[i1];
|
|
70 |
if (nn->is_MachCall() &&
|
|
71 |
nn->as_MachCall()->entry_point() ==
|
|
72 |
SharedRuntime::uncommon_trap_blob()->instructions_begin()) {
|
|
73 |
const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
|
|
74 |
if (trtype->isa_int() && trtype->is_int()->is_con()) {
|
|
75 |
jint tr_con = trtype->is_int()->get_con();
|
|
76 |
Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
|
|
77 |
Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
|
|
78 |
assert((int)reason < (int)BitsPerInt, "recode bit map");
|
|
79 |
if (is_set_nth_bit(allowed_reasons, (int) reason)
|
|
80 |
&& action != Deoptimization::Action_none) {
|
|
81 |
// This uncommon trap is sure to recompile, eventually.
|
|
82 |
// When that happens, C->too_many_traps will prevent
|
|
83 |
// this transformation from happening again.
|
|
84 |
found_trap = true;
|
|
85 |
}
|
|
86 |
}
|
|
87 |
break;
|
|
88 |
}
|
|
89 |
}
|
|
90 |
if (!found_trap) {
|
|
91 |
// We did not find an uncommon trap.
|
|
92 |
return;
|
|
93 |
}
|
|
94 |
}
|
|
95 |
|
|
96 |
// Search the successor block for a load or store who's base value is also
|
|
97 |
// the tested value. There may be several.
|
|
98 |
Node_List *out = new Node_List(Thread::current()->resource_area());
|
|
99 |
MachNode *best = NULL; // Best found so far
|
|
100 |
for (DUIterator i = val->outs(); val->has_out(i); i++) {
|
|
101 |
Node *m = val->out(i);
|
|
102 |
if( !m->is_Mach() ) continue;
|
|
103 |
MachNode *mach = m->as_Mach();
|
|
104 |
was_store = false;
|
|
105 |
switch( mach->ideal_Opcode() ) {
|
|
106 |
case Op_LoadB:
|
|
107 |
case Op_LoadC:
|
|
108 |
case Op_LoadD:
|
|
109 |
case Op_LoadF:
|
|
110 |
case Op_LoadI:
|
|
111 |
case Op_LoadL:
|
|
112 |
case Op_LoadP:
|
|
113 |
case Op_LoadS:
|
|
114 |
case Op_LoadKlass:
|
|
115 |
case Op_LoadRange:
|
|
116 |
case Op_LoadD_unaligned:
|
|
117 |
case Op_LoadL_unaligned:
|
|
118 |
break;
|
|
119 |
case Op_StoreB:
|
|
120 |
case Op_StoreC:
|
|
121 |
case Op_StoreCM:
|
|
122 |
case Op_StoreD:
|
|
123 |
case Op_StoreF:
|
|
124 |
case Op_StoreI:
|
|
125 |
case Op_StoreL:
|
|
126 |
case Op_StoreP:
|
|
127 |
was_store = true; // Memory op is a store op
|
|
128 |
// Stores will have their address in slot 2 (memory in slot 1).
|
|
129 |
// If the value being nul-checked is in another slot, it means we
|
|
130 |
// are storing the checked value, which does NOT check the value!
|
|
131 |
if( mach->in(2) != val ) continue;
|
|
132 |
break; // Found a memory op?
|
|
133 |
case Op_StrComp:
|
|
134 |
// Not a legit memory op for implicit null check regardless of
|
|
135 |
// embedded loads
|
|
136 |
continue;
|
|
137 |
default: // Also check for embedded loads
|
|
138 |
if( !mach->needs_anti_dependence_check() )
|
|
139 |
continue; // Not an memory op; skip it
|
|
140 |
break;
|
|
141 |
}
|
|
142 |
// check if the offset is not too high for implicit exception
|
|
143 |
{
|
|
144 |
intptr_t offset = 0;
|
|
145 |
const TypePtr *adr_type = NULL; // Do not need this return value here
|
|
146 |
const Node* base = mach->get_base_and_disp(offset, adr_type);
|
|
147 |
if (base == NULL || base == NodeSentinel) {
|
|
148 |
// cannot reason about it; is probably not implicit null exception
|
|
149 |
} else {
|
|
150 |
const TypePtr* tptr = base->bottom_type()->is_ptr();
|
|
151 |
// Give up if offset is not a compile-time constant
|
|
152 |
if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
|
|
153 |
continue;
|
|
154 |
offset += tptr->_offset; // correct if base is offseted
|
|
155 |
if( MacroAssembler::needs_explicit_null_check(offset) )
|
|
156 |
continue; // Give up is reference is beyond 4K page size
|
|
157 |
}
|
|
158 |
}
|
|
159 |
|
|
160 |
// Check ctrl input to see if the null-check dominates the memory op
|
|
161 |
Block *cb = cfg->_bbs[mach->_idx];
|
|
162 |
cb = cb->_idom; // Always hoist at least 1 block
|
|
163 |
if( !was_store ) { // Stores can be hoisted only one block
|
|
164 |
while( cb->_dom_depth > (_dom_depth + 1))
|
|
165 |
cb = cb->_idom; // Hoist loads as far as we want
|
|
166 |
// The non-null-block should dominate the memory op, too. Live
|
|
167 |
// range spilling will insert a spill in the non-null-block if it is
|
|
168 |
// needs to spill the memory op for an implicit null check.
|
|
169 |
if (cb->_dom_depth == (_dom_depth + 1)) {
|
|
170 |
if (cb != not_null_block) continue;
|
|
171 |
cb = cb->_idom;
|
|
172 |
}
|
|
173 |
}
|
|
174 |
if( cb != this ) continue;
|
|
175 |
|
|
176 |
// Found a memory user; see if it can be hoisted to check-block
|
|
177 |
uint vidx = 0; // Capture index of value into memop
|
|
178 |
uint j;
|
|
179 |
for( j = mach->req()-1; j > 0; j-- ) {
|
|
180 |
if( mach->in(j) == val ) vidx = j;
|
|
181 |
// Block of memory-op input
|
|
182 |
Block *inb = cfg->_bbs[mach->in(j)->_idx];
|
|
183 |
Block *b = this; // Start from nul check
|
|
184 |
while( b != inb && b->_dom_depth > inb->_dom_depth )
|
|
185 |
b = b->_idom; // search upwards for input
|
|
186 |
// See if input dominates null check
|
|
187 |
if( b != inb )
|
|
188 |
break;
|
|
189 |
}
|
|
190 |
if( j > 0 )
|
|
191 |
continue;
|
|
192 |
Block *mb = cfg->_bbs[mach->_idx];
|
|
193 |
// Hoisting stores requires more checks for the anti-dependence case.
|
|
194 |
// Give up hoisting if we have to move the store past any load.
|
|
195 |
if( was_store ) {
|
|
196 |
Block *b = mb; // Start searching here for a local load
|
|
197 |
// mach use (faulting) trying to hoist
|
|
198 |
// n might be blocker to hoisting
|
|
199 |
while( b != this ) {
|
|
200 |
uint k;
|
|
201 |
for( k = 1; k < b->_nodes.size(); k++ ) {
|
|
202 |
Node *n = b->_nodes[k];
|
|
203 |
if( n->needs_anti_dependence_check() &&
|
|
204 |
n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
|
|
205 |
break; // Found anti-dependent load
|
|
206 |
}
|
|
207 |
if( k < b->_nodes.size() )
|
|
208 |
break; // Found anti-dependent load
|
|
209 |
// Make sure control does not do a merge (would have to check allpaths)
|
|
210 |
if( b->num_preds() != 2 ) break;
|
|
211 |
b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
|
|
212 |
}
|
|
213 |
if( b != this ) continue;
|
|
214 |
}
|
|
215 |
|
|
216 |
// Make sure this memory op is not already being used for a NullCheck
|
|
217 |
Node *e = mb->end();
|
|
218 |
if( e->is_MachNullCheck() && e->in(1) == mach )
|
|
219 |
continue; // Already being used as a NULL check
|
|
220 |
|
|
221 |
// Found a candidate! Pick one with least dom depth - the highest
|
|
222 |
// in the dom tree should be closest to the null check.
|
|
223 |
if( !best ||
|
|
224 |
cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
|
|
225 |
best = mach;
|
|
226 |
bidx = vidx;
|
|
227 |
|
|
228 |
}
|
|
229 |
}
|
|
230 |
// No candidate!
|
|
231 |
if( !best ) return;
|
|
232 |
|
|
233 |
// ---- Found an implicit null check
|
|
234 |
extern int implicit_null_checks;
|
|
235 |
implicit_null_checks++;
|
|
236 |
|
|
237 |
// Hoist the memory candidate up to the end of the test block.
|
|
238 |
Block *old_block = cfg->_bbs[best->_idx];
|
|
239 |
old_block->find_remove(best);
|
|
240 |
add_inst(best);
|
|
241 |
cfg->_bbs.map(best->_idx,this);
|
|
242 |
|
|
243 |
// Move the control dependence
|
|
244 |
if (best->in(0) && best->in(0) == old_block->_nodes[0])
|
|
245 |
best->set_req(0, _nodes[0]);
|
|
246 |
|
|
247 |
// Check for flag-killing projections that also need to be hoisted
|
|
248 |
// Should be DU safe because no edge updates.
|
|
249 |
for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
|
|
250 |
Node* n = best->fast_out(j);
|
|
251 |
if( n->Opcode() == Op_MachProj ) {
|
|
252 |
cfg->_bbs[n->_idx]->find_remove(n);
|
|
253 |
add_inst(n);
|
|
254 |
cfg->_bbs.map(n->_idx,this);
|
|
255 |
}
|
|
256 |
}
|
|
257 |
|
|
258 |
Compile *C = cfg->C;
|
|
259 |
// proj==Op_True --> ne test; proj==Op_False --> eq test.
|
|
260 |
// One of two graph shapes got matched:
|
|
261 |
// (IfTrue (If (Bool NE (CmpP ptr NULL))))
|
|
262 |
// (IfFalse (If (Bool EQ (CmpP ptr NULL))))
|
|
263 |
// NULL checks are always branch-if-eq. If we see a IfTrue projection
|
|
264 |
// then we are replacing a 'ne' test with a 'eq' NULL check test.
|
|
265 |
// We need to flip the projections to keep the same semantics.
|
|
266 |
if( proj->Opcode() == Op_IfTrue ) {
|
|
267 |
// Swap order of projections in basic block to swap branch targets
|
|
268 |
Node *tmp1 = _nodes[end_idx()+1];
|
|
269 |
Node *tmp2 = _nodes[end_idx()+2];
|
|
270 |
_nodes.map(end_idx()+1, tmp2);
|
|
271 |
_nodes.map(end_idx()+2, tmp1);
|
|
272 |
Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
|
|
273 |
tmp1->replace_by(tmp);
|
|
274 |
tmp2->replace_by(tmp1);
|
|
275 |
tmp->replace_by(tmp2);
|
|
276 |
tmp->destruct();
|
|
277 |
}
|
|
278 |
|
|
279 |
// Remove the existing null check; use a new implicit null check instead.
|
|
280 |
// Since schedule-local needs precise def-use info, we need to correct
|
|
281 |
// it as well.
|
|
282 |
Node *old_tst = proj->in(0);
|
|
283 |
MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
|
|
284 |
_nodes.map(end_idx(),nul_chk);
|
|
285 |
cfg->_bbs.map(nul_chk->_idx,this);
|
|
286 |
// Redirect users of old_test to nul_chk
|
|
287 |
for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
|
|
288 |
old_tst->last_out(i2)->set_req(0, nul_chk);
|
|
289 |
// Clean-up any dead code
|
|
290 |
for (uint i3 = 0; i3 < old_tst->req(); i3++)
|
|
291 |
old_tst->set_req(i3, NULL);
|
|
292 |
|
|
293 |
cfg->latency_from_uses(nul_chk);
|
|
294 |
cfg->latency_from_uses(best);
|
|
295 |
}
|
|
296 |
|
|
297 |
|
|
298 |
//------------------------------select-----------------------------------------
|
|
299 |
// Select a nice fellow from the worklist to schedule next. If there is only
|
|
300 |
// one choice, then use it. Projections take top priority for correctness
|
|
301 |
// reasons - if I see a projection, then it is next. There are a number of
|
|
302 |
// other special cases, for instructions that consume condition codes, et al.
|
|
303 |
// These are chosen immediately. Some instructions are required to immediately
|
|
304 |
// precede the last instruction in the block, and these are taken last. Of the
|
|
305 |
// remaining cases (most), choose the instruction with the greatest latency
|
|
306 |
// (that is, the most number of pseudo-cycles required to the end of the
|
|
307 |
// routine). If there is a tie, choose the instruction with the most inputs.
|
|
308 |
Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
|
|
309 |
|
|
310 |
// If only a single entry on the stack, use it
|
|
311 |
uint cnt = worklist.size();
|
|
312 |
if (cnt == 1) {
|
|
313 |
Node *n = worklist[0];
|
|
314 |
worklist.map(0,worklist.pop());
|
|
315 |
return n;
|
|
316 |
}
|
|
317 |
|
|
318 |
uint choice = 0; // Bigger is most important
|
|
319 |
uint latency = 0; // Bigger is scheduled first
|
|
320 |
uint score = 0; // Bigger is better
|
|
321 |
uint idx; // Index in worklist
|
|
322 |
|
|
323 |
for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
|
|
324 |
// Order in worklist is used to break ties.
|
|
325 |
// See caller for how this is used to delay scheduling
|
|
326 |
// of induction variable increments to after the other
|
|
327 |
// uses of the phi are scheduled.
|
|
328 |
Node *n = worklist[i]; // Get Node on worklist
|
|
329 |
|
|
330 |
int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
|
|
331 |
if( n->is_Proj() || // Projections always win
|
|
332 |
n->Opcode()== Op_Con || // So does constant 'Top'
|
|
333 |
iop == Op_CreateEx || // Create-exception must start block
|
|
334 |
iop == Op_CheckCastPP
|
|
335 |
) {
|
|
336 |
worklist.map(i,worklist.pop());
|
|
337 |
return n;
|
|
338 |
}
|
|
339 |
|
|
340 |
// Final call in a block must be adjacent to 'catch'
|
|
341 |
Node *e = end();
|
|
342 |
if( e->is_Catch() && e->in(0)->in(0) == n )
|
|
343 |
continue;
|
|
344 |
|
|
345 |
// Memory op for an implicit null check has to be at the end of the block
|
|
346 |
if( e->is_MachNullCheck() && e->in(1) == n )
|
|
347 |
continue;
|
|
348 |
|
|
349 |
uint n_choice = 2;
|
|
350 |
|
|
351 |
// See if this instruction is consumed by a branch. If so, then (as the
|
|
352 |
// branch is the last instruction in the basic block) force it to the
|
|
353 |
// end of the basic block
|
|
354 |
if ( must_clone[iop] ) {
|
|
355 |
// See if any use is a branch
|
|
356 |
bool found_machif = false;
|
|
357 |
|
|
358 |
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
|
|
359 |
Node* use = n->fast_out(j);
|
|
360 |
|
|
361 |
// The use is a conditional branch, make them adjacent
|
|
362 |
if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
|
|
363 |
found_machif = true;
|
|
364 |
break;
|
|
365 |
}
|
|
366 |
|
|
367 |
// More than this instruction pending for successor to be ready,
|
|
368 |
// don't choose this if other opportunities are ready
|
|
369 |
if (ready_cnt[use->_idx] > 1)
|
|
370 |
n_choice = 1;
|
|
371 |
}
|
|
372 |
|
|
373 |
// loop terminated, prefer not to use this instruction
|
|
374 |
if (found_machif)
|
|
375 |
continue;
|
|
376 |
}
|
|
377 |
|
|
378 |
// See if this has a predecessor that is "must_clone", i.e. sets the
|
|
379 |
// condition code. If so, choose this first
|
|
380 |
for (uint j = 0; j < n->req() ; j++) {
|
|
381 |
Node *inn = n->in(j);
|
|
382 |
if (inn) {
|
|
383 |
if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
|
|
384 |
n_choice = 3;
|
|
385 |
break;
|
|
386 |
}
|
|
387 |
}
|
|
388 |
}
|
|
389 |
|
|
390 |
// MachTemps should be scheduled last so they are near their uses
|
|
391 |
if (n->is_MachTemp()) {
|
|
392 |
n_choice = 1;
|
|
393 |
}
|
|
394 |
|
|
395 |
uint n_latency = cfg->_node_latency.at_grow(n->_idx);
|
|
396 |
uint n_score = n->req(); // Many inputs get high score to break ties
|
|
397 |
|
|
398 |
// Keep best latency found
|
|
399 |
if( choice < n_choice ||
|
|
400 |
( choice == n_choice &&
|
|
401 |
( latency < n_latency ||
|
|
402 |
( latency == n_latency &&
|
|
403 |
( score < n_score ))))) {
|
|
404 |
choice = n_choice;
|
|
405 |
latency = n_latency;
|
|
406 |
score = n_score;
|
|
407 |
idx = i; // Also keep index in worklist
|
|
408 |
}
|
|
409 |
} // End of for all ready nodes in worklist
|
|
410 |
|
|
411 |
Node *n = worklist[idx]; // Get the winner
|
|
412 |
|
|
413 |
worklist.map(idx,worklist.pop()); // Compress worklist
|
|
414 |
return n;
|
|
415 |
}
|
|
416 |
|
|
417 |
|
|
418 |
//------------------------------set_next_call----------------------------------
|
|
419 |
void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
|
|
420 |
if( next_call.test_set(n->_idx) ) return;
|
|
421 |
for( uint i=0; i<n->len(); i++ ) {
|
|
422 |
Node *m = n->in(i);
|
|
423 |
if( !m ) continue; // must see all nodes in block that precede call
|
|
424 |
if( bbs[m->_idx] == this )
|
|
425 |
set_next_call( m, next_call, bbs );
|
|
426 |
}
|
|
427 |
}
|
|
428 |
|
|
429 |
//------------------------------needed_for_next_call---------------------------
|
|
430 |
// Set the flag 'next_call' for each Node that is needed for the next call to
|
|
431 |
// be scheduled. This flag lets me bias scheduling so Nodes needed for the
|
|
432 |
// next subroutine call get priority - basically it moves things NOT needed
|
|
433 |
// for the next call till after the call. This prevents me from trying to
|
|
434 |
// carry lots of stuff live across a call.
|
|
435 |
void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
|
|
436 |
// Find the next control-defining Node in this block
|
|
437 |
Node* call = NULL;
|
|
438 |
for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
|
|
439 |
Node* m = this_call->fast_out(i);
|
|
440 |
if( bbs[m->_idx] == this && // Local-block user
|
|
441 |
m != this_call && // Not self-start node
|
|
442 |
m->is_Call() )
|
|
443 |
call = m;
|
|
444 |
break;
|
|
445 |
}
|
|
446 |
if (call == NULL) return; // No next call (e.g., block end is near)
|
|
447 |
// Set next-call for all inputs to this call
|
|
448 |
set_next_call(call, next_call, bbs);
|
|
449 |
}
|
|
450 |
|
|
451 |
//------------------------------sched_call-------------------------------------
|
|
452 |
uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
|
|
453 |
RegMask regs;
|
|
454 |
|
|
455 |
// Schedule all the users of the call right now. All the users are
|
|
456 |
// projection Nodes, so they must be scheduled next to the call.
|
|
457 |
// Collect all the defined registers.
|
|
458 |
for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
|
|
459 |
Node* n = mcall->fast_out(i);
|
|
460 |
assert( n->Opcode()==Op_MachProj, "" );
|
|
461 |
--ready_cnt[n->_idx];
|
|
462 |
assert( !ready_cnt[n->_idx], "" );
|
|
463 |
// Schedule next to call
|
|
464 |
_nodes.map(node_cnt++, n);
|
|
465 |
// Collect defined registers
|
|
466 |
regs.OR(n->out_RegMask());
|
|
467 |
// Check for scheduling the next control-definer
|
|
468 |
if( n->bottom_type() == Type::CONTROL )
|
|
469 |
// Warm up next pile of heuristic bits
|
|
470 |
needed_for_next_call(n, next_call, bbs);
|
|
471 |
|
|
472 |
// Children of projections are now all ready
|
|
473 |
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
|
|
474 |
Node* m = n->fast_out(j); // Get user
|
|
475 |
if( bbs[m->_idx] != this ) continue;
|
|
476 |
if( m->is_Phi() ) continue;
|
|
477 |
if( !--ready_cnt[m->_idx] )
|
|
478 |
worklist.push(m);
|
|
479 |
}
|
|
480 |
|
|
481 |
}
|
|
482 |
|
|
483 |
// Act as if the call defines the Frame Pointer.
|
|
484 |
// Certainly the FP is alive and well after the call.
|
|
485 |
regs.Insert(matcher.c_frame_pointer());
|
|
486 |
|
|
487 |
// Set all registers killed and not already defined by the call.
|
|
488 |
uint r_cnt = mcall->tf()->range()->cnt();
|
|
489 |
int op = mcall->ideal_Opcode();
|
|
490 |
MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
|
|
491 |
bbs.map(proj->_idx,this);
|
|
492 |
_nodes.insert(node_cnt++, proj);
|
|
493 |
|
|
494 |
// Select the right register save policy.
|
|
495 |
const char * save_policy;
|
|
496 |
switch (op) {
|
|
497 |
case Op_CallRuntime:
|
|
498 |
case Op_CallLeaf:
|
|
499 |
case Op_CallLeafNoFP:
|
|
500 |
// Calling C code so use C calling convention
|
|
501 |
save_policy = matcher._c_reg_save_policy;
|
|
502 |
break;
|
|
503 |
|
|
504 |
case Op_CallStaticJava:
|
|
505 |
case Op_CallDynamicJava:
|
|
506 |
// Calling Java code so use Java calling convention
|
|
507 |
save_policy = matcher._register_save_policy;
|
|
508 |
break;
|
|
509 |
|
|
510 |
default:
|
|
511 |
ShouldNotReachHere();
|
|
512 |
}
|
|
513 |
|
|
514 |
// When using CallRuntime mark SOE registers as killed by the call
|
|
515 |
// so values that could show up in the RegisterMap aren't live in a
|
|
516 |
// callee saved register since the register wouldn't know where to
|
|
517 |
// find them. CallLeaf and CallLeafNoFP are ok because they can't
|
|
518 |
// have debug info on them. Strictly speaking this only needs to be
|
|
519 |
// done for oops since idealreg2debugmask takes care of debug info
|
|
520 |
// references but there no way to handle oops differently than other
|
|
521 |
// pointers as far as the kill mask goes.
|
|
522 |
bool exclude_soe = op == Op_CallRuntime;
|
|
523 |
|
|
524 |
// Fill in the kill mask for the call
|
|
525 |
for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
|
|
526 |
if( !regs.Member(r) ) { // Not already defined by the call
|
|
527 |
// Save-on-call register?
|
|
528 |
if ((save_policy[r] == 'C') ||
|
|
529 |
(save_policy[r] == 'A') ||
|
|
530 |
((save_policy[r] == 'E') && exclude_soe)) {
|
|
531 |
proj->_rout.Insert(r);
|
|
532 |
}
|
|
533 |
}
|
|
534 |
}
|
|
535 |
|
|
536 |
return node_cnt;
|
|
537 |
}
|
|
538 |
|
|
539 |
|
|
540 |
//------------------------------schedule_local---------------------------------
|
|
541 |
// Topological sort within a block. Someday become a real scheduler.
|
|
542 |
bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
|
|
543 |
// Already "sorted" are the block start Node (as the first entry), and
|
|
544 |
// the block-ending Node and any trailing control projections. We leave
|
|
545 |
// these alone. PhiNodes and ParmNodes are made to follow the block start
|
|
546 |
// Node. Everything else gets topo-sorted.
|
|
547 |
|
|
548 |
#ifndef PRODUCT
|
|
549 |
if (cfg->trace_opto_pipelining()) {
|
|
550 |
tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
|
|
551 |
for (uint i = 0;i < _nodes.size();i++) {
|
|
552 |
tty->print("# ");
|
|
553 |
_nodes[i]->fast_dump();
|
|
554 |
}
|
|
555 |
tty->print_cr("#");
|
|
556 |
}
|
|
557 |
#endif
|
|
558 |
|
|
559 |
// RootNode is already sorted
|
|
560 |
if( _nodes.size() == 1 ) return true;
|
|
561 |
|
|
562 |
// Move PhiNodes and ParmNodes from 1 to cnt up to the start
|
|
563 |
uint node_cnt = end_idx();
|
|
564 |
uint phi_cnt = 1;
|
|
565 |
uint i;
|
|
566 |
for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
|
|
567 |
Node *n = _nodes[i];
|
|
568 |
if( n->is_Phi() || // Found a PhiNode or ParmNode
|
|
569 |
(n->is_Proj() && n->in(0) == head()) ) {
|
|
570 |
// Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
|
|
571 |
_nodes.map(i,_nodes[phi_cnt]);
|
|
572 |
_nodes.map(phi_cnt++,n); // swap Phi/Parm up front
|
|
573 |
} else { // All others
|
|
574 |
// Count block-local inputs to 'n'
|
|
575 |
uint cnt = n->len(); // Input count
|
|
576 |
uint local = 0;
|
|
577 |
for( uint j=0; j<cnt; j++ ) {
|
|
578 |
Node *m = n->in(j);
|
|
579 |
if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
|
|
580 |
local++; // One more block-local input
|
|
581 |
}
|
|
582 |
ready_cnt[n->_idx] = local; // Count em up
|
|
583 |
|
|
584 |
// A few node types require changing a required edge to a precedence edge
|
|
585 |
// before allocation.
|
|
586 |
if( UseConcMarkSweepGC ) {
|
|
587 |
if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
|
|
588 |
// Note: Required edges with an index greater than oper_input_base
|
|
589 |
// are not supported by the allocator.
|
|
590 |
// Note2: Can only depend on unmatched edge being last,
|
|
591 |
// can not depend on its absolute position.
|
|
592 |
Node *oop_store = n->in(n->req() - 1);
|
|
593 |
n->del_req(n->req() - 1);
|
|
594 |
n->add_prec(oop_store);
|
|
595 |
assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
|
|
596 |
}
|
|
597 |
}
|
|
598 |
if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ) {
|
|
599 |
Node *x = n->in(TypeFunc::Parms);
|
|
600 |
n->del_req(TypeFunc::Parms);
|
|
601 |
n->add_prec(x);
|
|
602 |
}
|
|
603 |
}
|
|
604 |
}
|
|
605 |
for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
|
|
606 |
ready_cnt[_nodes[i2]->_idx] = 0;
|
|
607 |
|
|
608 |
// All the prescheduled guys do not hold back internal nodes
|
|
609 |
uint i3;
|
|
610 |
for(i3 = 0; i3<phi_cnt; i3++ ) { // For all pre-scheduled
|
|
611 |
Node *n = _nodes[i3]; // Get pre-scheduled
|
|
612 |
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
|
|
613 |
Node* m = n->fast_out(j);
|
|
614 |
if( cfg->_bbs[m->_idx] ==this ) // Local-block user
|
|
615 |
ready_cnt[m->_idx]--; // Fix ready count
|
|
616 |
}
|
|
617 |
}
|
|
618 |
|
|
619 |
Node_List delay;
|
|
620 |
// Make a worklist
|
|
621 |
Node_List worklist;
|
|
622 |
for(uint i4=i3; i4<node_cnt; i4++ ) { // Put ready guys on worklist
|
|
623 |
Node *m = _nodes[i4];
|
|
624 |
if( !ready_cnt[m->_idx] ) { // Zero ready count?
|
|
625 |
if (m->is_iteratively_computed()) {
|
|
626 |
// Push induction variable increments last to allow other uses
|
|
627 |
// of the phi to be scheduled first. The select() method breaks
|
|
628 |
// ties in scheduling by worklist order.
|
|
629 |
delay.push(m);
|
|
630 |
} else {
|
|
631 |
worklist.push(m); // Then on to worklist!
|
|
632 |
}
|
|
633 |
}
|
|
634 |
}
|
|
635 |
while (delay.size()) {
|
|
636 |
Node* d = delay.pop();
|
|
637 |
worklist.push(d);
|
|
638 |
}
|
|
639 |
|
|
640 |
// Warm up the 'next_call' heuristic bits
|
|
641 |
needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
|
|
642 |
|
|
643 |
#ifndef PRODUCT
|
|
644 |
if (cfg->trace_opto_pipelining()) {
|
|
645 |
for (uint j=0; j<_nodes.size(); j++) {
|
|
646 |
Node *n = _nodes[j];
|
|
647 |
int idx = n->_idx;
|
|
648 |
tty->print("# ready cnt:%3d ", ready_cnt[idx]);
|
|
649 |
tty->print("latency:%3d ", cfg->_node_latency.at_grow(idx));
|
|
650 |
tty->print("%4d: %s\n", idx, n->Name());
|
|
651 |
}
|
|
652 |
}
|
|
653 |
#endif
|
|
654 |
|
|
655 |
// Pull from worklist and schedule
|
|
656 |
while( worklist.size() ) { // Worklist is not ready
|
|
657 |
|
|
658 |
#ifndef PRODUCT
|
|
659 |
if (cfg->trace_opto_pipelining()) {
|
|
660 |
tty->print("# ready list:");
|
|
661 |
for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
|
|
662 |
Node *n = worklist[i]; // Get Node on worklist
|
|
663 |
tty->print(" %d", n->_idx);
|
|
664 |
}
|
|
665 |
tty->cr();
|
|
666 |
}
|
|
667 |
#endif
|
|
668 |
|
|
669 |
// Select and pop a ready guy from worklist
|
|
670 |
Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
|
|
671 |
_nodes.map(phi_cnt++,n); // Schedule him next
|
|
672 |
|
|
673 |
#ifndef PRODUCT
|
|
674 |
if (cfg->trace_opto_pipelining()) {
|
|
675 |
tty->print("# select %d: %s", n->_idx, n->Name());
|
|
676 |
tty->print(", latency:%d", cfg->_node_latency.at_grow(n->_idx));
|
|
677 |
n->dump();
|
|
678 |
if (Verbose) {
|
|
679 |
tty->print("# ready list:");
|
|
680 |
for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
|
|
681 |
Node *n = worklist[i]; // Get Node on worklist
|
|
682 |
tty->print(" %d", n->_idx);
|
|
683 |
}
|
|
684 |
tty->cr();
|
|
685 |
}
|
|
686 |
}
|
|
687 |
|
|
688 |
#endif
|
|
689 |
if( n->is_MachCall() ) {
|
|
690 |
MachCallNode *mcall = n->as_MachCall();
|
|
691 |
phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
|
|
692 |
continue;
|
|
693 |
}
|
|
694 |
// Children are now all ready
|
|
695 |
for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
|
|
696 |
Node* m = n->fast_out(i5); // Get user
|
|
697 |
if( cfg->_bbs[m->_idx] != this ) continue;
|
|
698 |
if( m->is_Phi() ) continue;
|
|
699 |
if( !--ready_cnt[m->_idx] )
|
|
700 |
worklist.push(m);
|
|
701 |
}
|
|
702 |
}
|
|
703 |
|
|
704 |
if( phi_cnt != end_idx() ) {
|
|
705 |
// did not schedule all. Retry, Bailout, or Die
|
|
706 |
Compile* C = matcher.C;
|
|
707 |
if (C->subsume_loads() == true && !C->failing()) {
|
|
708 |
// Retry with subsume_loads == false
|
|
709 |
// If this is the first failure, the sentinel string will "stick"
|
|
710 |
// to the Compile object, and the C2Compiler will see it and retry.
|
|
711 |
C->record_failure(C2Compiler::retry_no_subsuming_loads());
|
|
712 |
}
|
|
713 |
// assert( phi_cnt == end_idx(), "did not schedule all" );
|
|
714 |
return false;
|
|
715 |
}
|
|
716 |
|
|
717 |
#ifndef PRODUCT
|
|
718 |
if (cfg->trace_opto_pipelining()) {
|
|
719 |
tty->print_cr("#");
|
|
720 |
tty->print_cr("# after schedule_local");
|
|
721 |
for (uint i = 0;i < _nodes.size();i++) {
|
|
722 |
tty->print("# ");
|
|
723 |
_nodes[i]->fast_dump();
|
|
724 |
}
|
|
725 |
tty->cr();
|
|
726 |
}
|
|
727 |
#endif
|
|
728 |
|
|
729 |
|
|
730 |
return true;
|
|
731 |
}
|
|
732 |
|
|
733 |
//--------------------------catch_cleanup_fix_all_inputs-----------------------
|
|
734 |
static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
|
|
735 |
for (uint l = 0; l < use->len(); l++) {
|
|
736 |
if (use->in(l) == old_def) {
|
|
737 |
if (l < use->req()) {
|
|
738 |
use->set_req(l, new_def);
|
|
739 |
} else {
|
|
740 |
use->rm_prec(l);
|
|
741 |
use->add_prec(new_def);
|
|
742 |
l--;
|
|
743 |
}
|
|
744 |
}
|
|
745 |
}
|
|
746 |
}
|
|
747 |
|
|
748 |
//------------------------------catch_cleanup_find_cloned_def------------------
|
|
749 |
static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
|
|
750 |
assert( use_blk != def_blk, "Inter-block cleanup only");
|
|
751 |
|
|
752 |
// The use is some block below the Catch. Find and return the clone of the def
|
|
753 |
// that dominates the use. If there is no clone in a dominating block, then
|
|
754 |
// create a phi for the def in a dominating block.
|
|
755 |
|
|
756 |
// Find which successor block dominates this use. The successor
|
|
757 |
// blocks must all be single-entry (from the Catch only; I will have
|
|
758 |
// split blocks to make this so), hence they all dominate.
|
|
759 |
while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
|
|
760 |
use_blk = use_blk->_idom;
|
|
761 |
|
|
762 |
// Find the successor
|
|
763 |
Node *fixup = NULL;
|
|
764 |
|
|
765 |
uint j;
|
|
766 |
for( j = 0; j < def_blk->_num_succs; j++ )
|
|
767 |
if( use_blk == def_blk->_succs[j] )
|
|
768 |
break;
|
|
769 |
|
|
770 |
if( j == def_blk->_num_succs ) {
|
|
771 |
// Block at same level in dom-tree is not a successor. It needs a
|
|
772 |
// PhiNode, the PhiNode uses from the def and IT's uses need fixup.
|
|
773 |
Node_Array inputs = new Node_List(Thread::current()->resource_area());
|
|
774 |
for(uint k = 1; k < use_blk->num_preds(); k++) {
|
|
775 |
inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
|
|
776 |
}
|
|
777 |
|
|
778 |
// Check to see if the use_blk already has an identical phi inserted.
|
|
779 |
// If it exists, it will be at the first position since all uses of a
|
|
780 |
// def are processed together.
|
|
781 |
Node *phi = use_blk->_nodes[1];
|
|
782 |
if( phi->is_Phi() ) {
|
|
783 |
fixup = phi;
|
|
784 |
for (uint k = 1; k < use_blk->num_preds(); k++) {
|
|
785 |
if (phi->in(k) != inputs[k]) {
|
|
786 |
// Not a match
|
|
787 |
fixup = NULL;
|
|
788 |
break;
|
|
789 |
}
|
|
790 |
}
|
|
791 |
}
|
|
792 |
|
|
793 |
// If an existing PhiNode was not found, make a new one.
|
|
794 |
if (fixup == NULL) {
|
|
795 |
Node *new_phi = PhiNode::make(use_blk->head(), def);
|
|
796 |
use_blk->_nodes.insert(1, new_phi);
|
|
797 |
bbs.map(new_phi->_idx, use_blk);
|
|
798 |
for (uint k = 1; k < use_blk->num_preds(); k++) {
|
|
799 |
new_phi->set_req(k, inputs[k]);
|
|
800 |
}
|
|
801 |
fixup = new_phi;
|
|
802 |
}
|
|
803 |
|
|
804 |
} else {
|
|
805 |
// Found the use just below the Catch. Make it use the clone.
|
|
806 |
fixup = use_blk->_nodes[n_clone_idx];
|
|
807 |
}
|
|
808 |
|
|
809 |
return fixup;
|
|
810 |
}
|
|
811 |
|
|
812 |
//--------------------------catch_cleanup_intra_block--------------------------
|
|
813 |
// Fix all input edges in use that reference "def". The use is in the same
|
|
814 |
// block as the def and both have been cloned in each successor block.
|
|
815 |
static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
|
|
816 |
|
|
817 |
// Both the use and def have been cloned. For each successor block,
|
|
818 |
// get the clone of the use, and make its input the clone of the def
|
|
819 |
// found in that block.
|
|
820 |
|
|
821 |
uint use_idx = blk->find_node(use);
|
|
822 |
uint offset_idx = use_idx - beg;
|
|
823 |
for( uint k = 0; k < blk->_num_succs; k++ ) {
|
|
824 |
// Get clone in each successor block
|
|
825 |
Block *sb = blk->_succs[k];
|
|
826 |
Node *clone = sb->_nodes[offset_idx+1];
|
|
827 |
assert( clone->Opcode() == use->Opcode(), "" );
|
|
828 |
|
|
829 |
// Make use-clone reference the def-clone
|
|
830 |
catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
|
|
831 |
}
|
|
832 |
}
|
|
833 |
|
|
834 |
//------------------------------catch_cleanup_inter_block---------------------
|
|
835 |
// Fix all input edges in use that reference "def". The use is in a different
|
|
836 |
// block than the def.
|
|
837 |
static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
|
|
838 |
if( !use_blk ) return; // Can happen if the use is a precedence edge
|
|
839 |
|
|
840 |
Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
|
|
841 |
catch_cleanup_fix_all_inputs(use, def, new_def);
|
|
842 |
}
|
|
843 |
|
|
844 |
//------------------------------call_catch_cleanup-----------------------------
|
|
845 |
// If we inserted any instructions between a Call and his CatchNode,
|
|
846 |
// clone the instructions on all paths below the Catch.
|
|
847 |
void Block::call_catch_cleanup(Block_Array &bbs) {
|
|
848 |
|
|
849 |
// End of region to clone
|
|
850 |
uint end = end_idx();
|
|
851 |
if( !_nodes[end]->is_Catch() ) return;
|
|
852 |
// Start of region to clone
|
|
853 |
uint beg = end;
|
|
854 |
while( _nodes[beg-1]->Opcode() != Op_MachProj ||
|
|
855 |
!_nodes[beg-1]->in(0)->is_Call() ) {
|
|
856 |
beg--;
|
|
857 |
assert(beg > 0,"Catch cleanup walking beyond block boundary");
|
|
858 |
}
|
|
859 |
// Range of inserted instructions is [beg, end)
|
|
860 |
if( beg == end ) return;
|
|
861 |
|
|
862 |
// Clone along all Catch output paths. Clone area between the 'beg' and
|
|
863 |
// 'end' indices.
|
|
864 |
for( uint i = 0; i < _num_succs; i++ ) {
|
|
865 |
Block *sb = _succs[i];
|
|
866 |
// Clone the entire area; ignoring the edge fixup for now.
|
|
867 |
for( uint j = end; j > beg; j-- ) {
|
|
868 |
Node *clone = _nodes[j-1]->clone();
|
|
869 |
sb->_nodes.insert( 1, clone );
|
|
870 |
bbs.map(clone->_idx,sb);
|
|
871 |
}
|
|
872 |
}
|
|
873 |
|
|
874 |
|
|
875 |
// Fixup edges. Check the def-use info per cloned Node
|
|
876 |
for(uint i2 = beg; i2 < end; i2++ ) {
|
|
877 |
uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
|
|
878 |
Node *n = _nodes[i2]; // Node that got cloned
|
|
879 |
// Need DU safe iterator because of edge manipulation in calls.
|
|
880 |
Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
|
|
881 |
for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
|
|
882 |
out->push(n->fast_out(j1));
|
|
883 |
}
|
|
884 |
uint max = out->size();
|
|
885 |
for (uint j = 0; j < max; j++) {// For all users
|
|
886 |
Node *use = out->pop();
|
|
887 |
Block *buse = bbs[use->_idx];
|
|
888 |
if( use->is_Phi() ) {
|
|
889 |
for( uint k = 1; k < use->req(); k++ )
|
|
890 |
if( use->in(k) == n ) {
|
|
891 |
Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
|
|
892 |
use->set_req(k, fixup);
|
|
893 |
}
|
|
894 |
} else {
|
|
895 |
if (this == buse) {
|
|
896 |
catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
|
|
897 |
} else {
|
|
898 |
catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
|
|
899 |
}
|
|
900 |
}
|
|
901 |
} // End for all users
|
|
902 |
|
|
903 |
} // End of for all Nodes in cloned area
|
|
904 |
|
|
905 |
// Remove the now-dead cloned ops
|
|
906 |
for(uint i3 = beg; i3 < end; i3++ ) {
|
|
907 |
_nodes[beg]->disconnect_inputs(NULL);
|
|
908 |
_nodes.remove(beg);
|
|
909 |
}
|
|
910 |
|
|
911 |
// If the successor blocks have a CreateEx node, move it back to the top
|
|
912 |
for(uint i4 = 0; i4 < _num_succs; i4++ ) {
|
|
913 |
Block *sb = _succs[i4];
|
|
914 |
uint new_cnt = end - beg;
|
|
915 |
// Remove any newly created, but dead, nodes.
|
|
916 |
for( uint j = new_cnt; j > 0; j-- ) {
|
|
917 |
Node *n = sb->_nodes[j];
|
|
918 |
if (n->outcnt() == 0 &&
|
|
919 |
(!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
|
|
920 |
n->disconnect_inputs(NULL);
|
|
921 |
sb->_nodes.remove(j);
|
|
922 |
new_cnt--;
|
|
923 |
}
|
|
924 |
}
|
|
925 |
// If any newly created nodes remain, move the CreateEx node to the top
|
|
926 |
if (new_cnt > 0) {
|
|
927 |
Node *cex = sb->_nodes[1+new_cnt];
|
|
928 |
if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
|
|
929 |
sb->_nodes.remove(1+new_cnt);
|
|
930 |
sb->_nodes.insert(1,cex);
|
|
931 |
}
|
|
932 |
}
|
|
933 |
}
|
|
934 |
}
|