2
|
1 |
/*
|
5506
|
2 |
* Copyright (c) 2001, 2008, Oracle and/or its affiliates. All rights reserved.
|
2
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
5506
|
7 |
* published by the Free Software Foundation. Oracle designates this
|
2
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
5506
|
9 |
* by Oracle in the LICENSE file that accompanied this code.
|
2
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
5506
|
21 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
22 |
* or visit www.oracle.com if you need additional information or have any
|
|
23 |
* questions.
|
2
|
24 |
*/
|
|
25 |
|
|
26 |
package sun.java2d.pipe;
|
|
27 |
|
|
28 |
import java.awt.AlphaComposite;
|
|
29 |
import java.awt.Color;
|
|
30 |
import java.awt.Graphics2D;
|
|
31 |
import java.awt.Image;
|
|
32 |
import java.awt.Rectangle;
|
|
33 |
import java.awt.Transparency;
|
|
34 |
import java.awt.geom.AffineTransform;
|
|
35 |
import java.awt.geom.NoninvertibleTransformException;
|
|
36 |
import java.awt.image.AffineTransformOp;
|
|
37 |
import java.awt.image.BufferedImage;
|
|
38 |
import java.awt.image.BufferedImageOp;
|
|
39 |
import java.awt.image.ColorModel;
|
|
40 |
import java.awt.image.DataBuffer;
|
|
41 |
import java.awt.image.DirectColorModel;
|
|
42 |
import java.awt.image.ImageObserver;
|
|
43 |
import java.awt.image.IndexColorModel;
|
|
44 |
import java.awt.image.Raster;
|
|
45 |
import java.awt.image.VolatileImage;
|
|
46 |
import java.awt.image.WritableRaster;
|
|
47 |
import java.awt.image.ImagingOpException;
|
|
48 |
import sun.awt.SunHints;
|
|
49 |
import sun.awt.image.ImageRepresentation;
|
|
50 |
import sun.awt.image.ToolkitImage;
|
|
51 |
import sun.java2d.InvalidPipeException;
|
|
52 |
import sun.java2d.SunGraphics2D;
|
|
53 |
import sun.java2d.SurfaceData;
|
|
54 |
import sun.java2d.loops.Blit;
|
|
55 |
import sun.java2d.loops.BlitBg;
|
|
56 |
import sun.java2d.loops.TransformHelper;
|
|
57 |
import sun.java2d.loops.MaskBlit;
|
|
58 |
import sun.java2d.loops.CompositeType;
|
|
59 |
import sun.java2d.loops.ScaledBlit;
|
|
60 |
import sun.java2d.loops.SurfaceType;
|
|
61 |
|
|
62 |
public class DrawImage implements DrawImagePipe
|
|
63 |
{
|
|
64 |
public boolean copyImage(SunGraphics2D sg, Image img,
|
|
65 |
int x, int y,
|
|
66 |
Color bgColor)
|
|
67 |
{
|
|
68 |
int imgw = img.getWidth(null);
|
|
69 |
int imgh = img.getHeight(null);
|
|
70 |
if (isSimpleTranslate(sg)) {
|
|
71 |
return renderImageCopy(sg, img, bgColor,
|
|
72 |
x + sg.transX, y + sg.transY,
|
|
73 |
0, 0, imgw, imgh);
|
|
74 |
}
|
|
75 |
AffineTransform atfm = sg.transform;
|
|
76 |
if ((x | y) != 0) {
|
|
77 |
atfm = new AffineTransform(atfm);
|
|
78 |
atfm.translate(x, y);
|
|
79 |
}
|
|
80 |
transformImage(sg, img, atfm, sg.interpolationType,
|
|
81 |
0, 0, imgw, imgh, bgColor);
|
|
82 |
return true;
|
|
83 |
}
|
|
84 |
|
|
85 |
public boolean copyImage(SunGraphics2D sg, Image img,
|
|
86 |
int dx, int dy, int sx, int sy, int w, int h,
|
|
87 |
Color bgColor)
|
|
88 |
{
|
|
89 |
if (isSimpleTranslate(sg)) {
|
|
90 |
return renderImageCopy(sg, img, bgColor,
|
|
91 |
dx + sg.transX, dy + sg.transY,
|
|
92 |
sx, sy, w, h);
|
|
93 |
}
|
|
94 |
scaleImage(sg, img, dx, dy, (dx + w), (dy + h),
|
|
95 |
sx, sy, (sx + w), (sy + h), bgColor);
|
|
96 |
return true;
|
|
97 |
}
|
|
98 |
|
|
99 |
public boolean scaleImage(SunGraphics2D sg, Image img, int x, int y,
|
|
100 |
int width, int height,
|
|
101 |
Color bgColor)
|
|
102 |
{
|
|
103 |
int imgw = img.getWidth(null);
|
|
104 |
int imgh = img.getHeight(null);
|
|
105 |
// Only accelerate scale if:
|
|
106 |
// - w/h positive values
|
|
107 |
// - sg transform integer translate/identity only
|
|
108 |
// - no bgColor in operation
|
|
109 |
if ((width > 0) && (height > 0) && isSimpleTranslate(sg)) {
|
|
110 |
double dx1 = x + sg.transX;
|
|
111 |
double dy1 = y + sg.transY;
|
|
112 |
double dx2 = dx1 + width;
|
|
113 |
double dy2 = dy1 + height;
|
|
114 |
if (renderImageScale(sg, img, bgColor, sg.interpolationType,
|
|
115 |
0, 0, imgw, imgh,
|
|
116 |
dx1, dy1, dx2, dy2))
|
|
117 |
{
|
|
118 |
return true;
|
|
119 |
}
|
|
120 |
}
|
|
121 |
|
|
122 |
AffineTransform atfm = sg.transform;
|
|
123 |
if ((x | y) != 0 || width != imgw || height != imgh) {
|
|
124 |
atfm = new AffineTransform(atfm);
|
|
125 |
atfm.translate(x, y);
|
|
126 |
atfm.scale(((double)width)/imgw, ((double)height)/imgh);
|
|
127 |
}
|
|
128 |
transformImage(sg, img, atfm, sg.interpolationType,
|
|
129 |
0, 0, imgw, imgh, bgColor);
|
|
130 |
return true;
|
|
131 |
}
|
|
132 |
|
|
133 |
/*
|
|
134 |
* This method is only called in those circumstances where the
|
|
135 |
* operation has a non-null secondary transform specfied. Its
|
|
136 |
* role is to check for various optimizations based on the types
|
|
137 |
* of both the secondary and SG2D transforms and to do some
|
|
138 |
* quick calculations to avoid having to combine the transforms
|
|
139 |
* and/or to call a more generalized method.
|
|
140 |
*/
|
|
141 |
protected void transformImage(SunGraphics2D sg, Image img, int x, int y,
|
|
142 |
AffineTransform extraAT, int interpType)
|
|
143 |
{
|
|
144 |
int txtype = extraAT.getType();
|
|
145 |
int imgw = img.getWidth(null);
|
|
146 |
int imgh = img.getHeight(null);
|
|
147 |
boolean checkfinalxform;
|
|
148 |
|
|
149 |
if (sg.transformState <= sg.TRANSFORM_ANY_TRANSLATE &&
|
|
150 |
(txtype == AffineTransform.TYPE_IDENTITY ||
|
|
151 |
txtype == AffineTransform.TYPE_TRANSLATION))
|
|
152 |
{
|
|
153 |
// First optimization - both are some kind of translate
|
|
154 |
|
|
155 |
// Combine the translations and check if interpolation is necessary.
|
|
156 |
double tx = extraAT.getTranslateX();
|
|
157 |
double ty = extraAT.getTranslateY();
|
|
158 |
tx += sg.transform.getTranslateX();
|
|
159 |
ty += sg.transform.getTranslateY();
|
|
160 |
int itx = (int) Math.floor(tx + 0.5);
|
|
161 |
int ity = (int) Math.floor(ty + 0.5);
|
|
162 |
if (interpType == AffineTransformOp.TYPE_NEAREST_NEIGHBOR ||
|
|
163 |
(closeToInteger(itx, tx) && closeToInteger(ity, ty)))
|
|
164 |
{
|
|
165 |
renderImageCopy(sg, img, null, x+itx, y+ity, 0, 0, imgw, imgh);
|
|
166 |
return;
|
|
167 |
}
|
|
168 |
checkfinalxform = false;
|
|
169 |
} else if (sg.transformState <= sg.TRANSFORM_TRANSLATESCALE &&
|
|
170 |
((txtype & (AffineTransform.TYPE_FLIP |
|
|
171 |
AffineTransform.TYPE_MASK_ROTATION |
|
|
172 |
AffineTransform.TYPE_GENERAL_TRANSFORM)) == 0))
|
|
173 |
{
|
|
174 |
// Second optimization - both are some kind of translate or scale
|
|
175 |
|
|
176 |
// Combine the scales and check if interpolation is necessary.
|
|
177 |
|
|
178 |
// Transform source bounds by extraAT,
|
|
179 |
// then translate the bounds again by x, y
|
|
180 |
// then transform the bounds again by sg.transform
|
|
181 |
double coords[] = new double[] {
|
|
182 |
0, 0, imgw, imgh,
|
|
183 |
};
|
|
184 |
extraAT.transform(coords, 0, coords, 0, 2);
|
|
185 |
coords[0] += x;
|
|
186 |
coords[1] += y;
|
|
187 |
coords[2] += x;
|
|
188 |
coords[3] += y;
|
|
189 |
sg.transform.transform(coords, 0, coords, 0, 2);
|
|
190 |
|
|
191 |
if (tryCopyOrScale(sg, img, 0, 0, imgw, imgh,
|
|
192 |
null, interpType, coords))
|
|
193 |
{
|
|
194 |
return;
|
|
195 |
}
|
|
196 |
checkfinalxform = false;
|
|
197 |
} else {
|
|
198 |
checkfinalxform = true;
|
|
199 |
}
|
|
200 |
|
|
201 |
// Begin Transform
|
|
202 |
AffineTransform tx = new AffineTransform(sg.transform);
|
|
203 |
tx.translate(x, y);
|
|
204 |
tx.concatenate(extraAT);
|
|
205 |
|
|
206 |
// Do not try any more optimizations if either of the cases
|
|
207 |
// above was tried as we have already verified that the
|
|
208 |
// resulting transform will not simplify.
|
|
209 |
if (checkfinalxform) {
|
|
210 |
// In this case neither of the above simple transform
|
|
211 |
// pairs was found so we will do some final tests on
|
|
212 |
// the final rendering transform which may be the
|
|
213 |
// simple product of two complex transforms.
|
|
214 |
transformImage(sg, img, tx, interpType, 0, 0, imgw, imgh, null);
|
|
215 |
} else {
|
|
216 |
renderImageXform(sg, img, tx, interpType, 0, 0, imgw, imgh, null);
|
|
217 |
}
|
|
218 |
}
|
|
219 |
|
|
220 |
/*
|
|
221 |
* This method is called with a final rendering transform that
|
|
222 |
* has combined all of the information about the Graphics2D
|
|
223 |
* transform attribute with the transformations specified by
|
|
224 |
* the arguments to the drawImage call.
|
|
225 |
* Its role is to see if the combined transform ends up being
|
|
226 |
* acceleratable by either a renderImageCopy or renderImageScale
|
|
227 |
* once all of the math is done.
|
|
228 |
*
|
|
229 |
* Note: The transform supplied here has an origin that is
|
|
230 |
* already adjusted to point to the device location where
|
|
231 |
* the (sx1, sy1) location of the source image should be placed.
|
|
232 |
*/
|
|
233 |
protected void transformImage(SunGraphics2D sg, Image img,
|
|
234 |
AffineTransform tx, int interpType,
|
|
235 |
int sx1, int sy1, int sx2, int sy2,
|
|
236 |
Color bgColor)
|
|
237 |
{
|
|
238 |
// Transform 3 source corners by tx and analyze them
|
|
239 |
// for simplified operations (Copy or Scale). Using
|
|
240 |
// 3 points lets us analyze any kind of transform,
|
|
241 |
// even transforms that involve very tiny amounts of
|
|
242 |
// rotation or skew to see if they degenerate to a
|
|
243 |
// simple scale or copy operation within the allowable
|
|
244 |
// error bounds.
|
|
245 |
// Note that we use (0,0,w,h) instead of (sx1,sy1,sx2,sy2)
|
|
246 |
// because the transform is already translated such that
|
|
247 |
// the origin is where sx1, sy1 should go.
|
|
248 |
double coords[] = new double[6];
|
|
249 |
/* index: 0 1 2 3 4 5 */
|
|
250 |
/* coord: (0, 0), (w, h), (0, h) */
|
|
251 |
coords[2] = sx2 - sx1;
|
|
252 |
coords[3] = coords[5] = sy2 - sy1;
|
|
253 |
tx.transform(coords, 0, coords, 0, 3);
|
|
254 |
// First test if the X coords of the transformed UL
|
|
255 |
// and LL points match and that the Y coords of the
|
|
256 |
// transformed LR and LL points also match.
|
|
257 |
// If they do then it is a "rectilinear" transform and
|
|
258 |
// tryCopyOrScale will make sure it is upright and
|
|
259 |
// integer-based.
|
|
260 |
if (Math.abs(coords[0] - coords[4]) < MAX_TX_ERROR &&
|
|
261 |
Math.abs(coords[3] - coords[5]) < MAX_TX_ERROR &&
|
|
262 |
tryCopyOrScale(sg, img, sx1, sy1, sx2, sy2,
|
|
263 |
bgColor, interpType, coords))
|
|
264 |
{
|
|
265 |
return;
|
|
266 |
}
|
|
267 |
|
|
268 |
renderImageXform(sg, img, tx, interpType, sx1, sy1, sx2, sy2, bgColor);
|
|
269 |
}
|
|
270 |
|
|
271 |
/*
|
|
272 |
* Check the bounding coordinates of the transformed source
|
|
273 |
* image to see if they fall on integer coordinates such
|
|
274 |
* that they will cause no interpolation anomalies if we
|
|
275 |
* use our simplified Blit or ScaledBlit operations instead
|
|
276 |
* of a full transform operation.
|
|
277 |
*/
|
|
278 |
protected boolean tryCopyOrScale(SunGraphics2D sg,
|
|
279 |
Image img,
|
|
280 |
int sx1, int sy1,
|
|
281 |
int sx2, int sy2,
|
|
282 |
Color bgColor, int interpType,
|
|
283 |
double coords[])
|
|
284 |
{
|
|
285 |
double dx = coords[0];
|
|
286 |
double dy = coords[1];
|
|
287 |
double dw = coords[2] - dx;
|
|
288 |
double dh = coords[3] - dy;
|
|
289 |
// First check if width and height are very close to img w&h.
|
|
290 |
if (closeToInteger(sx2-sx1, dw) && closeToInteger(sy2-sy1, dh)) {
|
|
291 |
// Round location to nearest pixel and then test
|
|
292 |
// if it will cause interpolation anomalies.
|
|
293 |
int idx = (int) Math.floor(dx + 0.5);
|
|
294 |
int idy = (int) Math.floor(dy + 0.5);
|
|
295 |
if (interpType == AffineTransformOp.TYPE_NEAREST_NEIGHBOR ||
|
|
296 |
(closeToInteger(idx, dx) && closeToInteger(idy, dy)))
|
|
297 |
{
|
|
298 |
renderImageCopy(sg, img, bgColor,
|
|
299 |
idx, idy,
|
|
300 |
sx1, sy1, sx2-sx1, sy2-sy1);
|
|
301 |
return true;
|
|
302 |
}
|
|
303 |
}
|
|
304 |
// (For now) We can only use our ScaledBlits if the image
|
|
305 |
// is upright (i.e. dw & dh both > 0)
|
|
306 |
if (dw > 0 && dh > 0) {
|
|
307 |
if (renderImageScale(sg, img, bgColor, interpType,
|
|
308 |
sx1, sy1, sx2, sy2,
|
|
309 |
coords[0], coords[1], coords[2], coords[3]))
|
|
310 |
{
|
|
311 |
return true;
|
|
312 |
}
|
|
313 |
}
|
|
314 |
return false;
|
|
315 |
}
|
|
316 |
|
|
317 |
/*
|
|
318 |
* Return a BufferedImage of the requested type with the indicated
|
|
319 |
* subimage of the original image located at 0,0 in the new image.
|
|
320 |
* If a bgColor is supplied, composite the original image over that
|
|
321 |
* color with a SrcOver operation, otherwise make a SrcNoEa copy.
|
|
322 |
*/
|
|
323 |
BufferedImage makeBufferedImage(Image img, Color bgColor, int type,
|
|
324 |
int sx1, int sy1, int sx2, int sy2)
|
|
325 |
{
|
|
326 |
BufferedImage bimg = new BufferedImage(sx2-sx1, sy2-sy1, type);
|
|
327 |
Graphics2D g2d = bimg.createGraphics();
|
|
328 |
g2d.setComposite(AlphaComposite.Src);
|
|
329 |
if (bgColor != null) {
|
|
330 |
g2d.setColor(bgColor);
|
|
331 |
g2d.fillRect(0, 0, sx2-sx1, sy2-sy1);
|
|
332 |
g2d.setComposite(AlphaComposite.SrcOver);
|
|
333 |
}
|
|
334 |
g2d.drawImage(img, -sx1, -sy1, null);
|
|
335 |
g2d.dispose();
|
|
336 |
return bimg;
|
|
337 |
}
|
|
338 |
|
|
339 |
protected void renderImageXform(SunGraphics2D sg, Image img,
|
|
340 |
AffineTransform tx, int interpType,
|
|
341 |
int sx1, int sy1, int sx2, int sy2,
|
|
342 |
Color bgColor)
|
|
343 |
{
|
|
344 |
Region clip = sg.getCompClip();
|
|
345 |
SurfaceData dstData = sg.surfaceData;
|
|
346 |
SurfaceData srcData = dstData.getSourceSurfaceData(img,
|
|
347 |
sg.TRANSFORM_GENERIC,
|
|
348 |
sg.imageComp,
|
|
349 |
bgColor);
|
|
350 |
|
|
351 |
if (srcData == null) {
|
|
352 |
img = getBufferedImage(img);
|
|
353 |
srcData = dstData.getSourceSurfaceData(img,
|
|
354 |
sg.TRANSFORM_GENERIC,
|
|
355 |
sg.imageComp,
|
|
356 |
bgColor);
|
|
357 |
if (srcData == null) {
|
|
358 |
// REMIND: Is this correct? Can this happen?
|
|
359 |
return;
|
|
360 |
}
|
|
361 |
}
|
|
362 |
|
|
363 |
if (isBgOperation(srcData, bgColor)) {
|
|
364 |
// We cannot perform bg operations during transform so make
|
|
365 |
// an opaque temp image with the appropriate background
|
|
366 |
// and work from there.
|
|
367 |
img = makeBufferedImage(img, bgColor, BufferedImage.TYPE_INT_RGB,
|
|
368 |
sx1, sy1, sx2, sy2);
|
|
369 |
// Temp image has appropriate subimage at 0,0 now.
|
|
370 |
sx2 -= sx1;
|
|
371 |
sy2 -= sy1;
|
|
372 |
sx1 = sy1 = 0;
|
|
373 |
|
|
374 |
srcData = dstData.getSourceSurfaceData(img,
|
|
375 |
sg.TRANSFORM_GENERIC,
|
|
376 |
sg.imageComp,
|
|
377 |
bgColor);
|
|
378 |
}
|
|
379 |
|
|
380 |
SurfaceType srcType = srcData.getSurfaceType();
|
|
381 |
TransformHelper helper = TransformHelper.getFromCache(srcType);
|
|
382 |
|
|
383 |
if (helper == null) {
|
|
384 |
/* We have no helper for this source image type.
|
|
385 |
* But we know that we do have helpers for both RGB and ARGB,
|
|
386 |
* so convert to one of those types depending on transparency.
|
|
387 |
* ARGB_PRE might be a better choice if the source image has
|
|
388 |
* alpha, but it may cause some recursion here since we only
|
|
389 |
* tend to have converters that convert to ARGB.
|
|
390 |
*/
|
|
391 |
int type = ((srcData.getTransparency() == Transparency.OPAQUE)
|
|
392 |
? BufferedImage.TYPE_INT_RGB
|
|
393 |
: BufferedImage.TYPE_INT_ARGB);
|
|
394 |
img = makeBufferedImage(img, null, type, sx1, sy1, sx2, sy2);
|
|
395 |
// Temp image has appropriate subimage at 0,0 now.
|
|
396 |
sx2 -= sx1;
|
|
397 |
sy2 -= sy1;
|
|
398 |
sx1 = sy1 = 0;
|
|
399 |
|
|
400 |
srcData = dstData.getSourceSurfaceData(img,
|
|
401 |
sg.TRANSFORM_GENERIC,
|
|
402 |
sg.imageComp,
|
|
403 |
null);
|
|
404 |
srcType = srcData.getSurfaceType();
|
|
405 |
helper = TransformHelper.getFromCache(srcType);
|
|
406 |
// assert(helper != null);
|
|
407 |
}
|
|
408 |
|
|
409 |
AffineTransform itx;
|
|
410 |
try {
|
|
411 |
itx = tx.createInverse();
|
|
412 |
} catch (NoninvertibleTransformException e) {
|
|
413 |
// Non-invertible transform means no output
|
|
414 |
return;
|
|
415 |
}
|
|
416 |
|
|
417 |
/*
|
|
418 |
* Find the maximum bounds on the destination that will be
|
|
419 |
* affected by the transformed source. First, transform all
|
|
420 |
* four corners of the source and then min and max the resulting
|
|
421 |
* destination coordinates of the transformed corners.
|
|
422 |
* Note that tx already has the offset to sx1,sy1 accounted
|
|
423 |
* for so we use the box (0, 0, sx2-sx1, sy2-sy1) as the
|
|
424 |
* source coordinates.
|
|
425 |
*/
|
|
426 |
double coords[] = new double[8];
|
|
427 |
/* corner: UL UR LL LR */
|
|
428 |
/* index: 0 1 2 3 4 5 6 7 */
|
|
429 |
/* coord: (0, 0), (w, 0), (0, h), (w, h) */
|
|
430 |
coords[2] = coords[6] = sx2 - sx1;
|
|
431 |
coords[5] = coords[7] = sy2 - sy1;
|
|
432 |
tx.transform(coords, 0, coords, 0, 4);
|
|
433 |
double ddx1, ddy1, ddx2, ddy2;
|
|
434 |
ddx1 = ddx2 = coords[0];
|
|
435 |
ddy1 = ddy2 = coords[1];
|
|
436 |
for (int i = 2; i < coords.length; i += 2) {
|
|
437 |
double d = coords[i];
|
|
438 |
if (ddx1 > d) ddx1 = d;
|
|
439 |
else if (ddx2 < d) ddx2 = d;
|
|
440 |
d = coords[i+1];
|
|
441 |
if (ddy1 > d) ddy1 = d;
|
|
442 |
else if (ddy2 < d) ddy2 = d;
|
|
443 |
}
|
|
444 |
int dx1 = (int) Math.floor(ddx1);
|
|
445 |
int dy1 = (int) Math.floor(ddy1);
|
|
446 |
int dx2 = (int) Math.ceil(ddx2);
|
|
447 |
int dy2 = (int) Math.ceil(ddy2);
|
|
448 |
|
|
449 |
SurfaceType dstType = dstData.getSurfaceType();
|
|
450 |
MaskBlit maskblit;
|
|
451 |
Blit blit;
|
|
452 |
if (sg.compositeState <= sg.COMP_ALPHA) {
|
|
453 |
/* NOTE: We either have, or we can make,
|
|
454 |
* a MaskBlit for any alpha composite type
|
|
455 |
*/
|
|
456 |
maskblit = MaskBlit.getFromCache(SurfaceType.IntArgbPre,
|
|
457 |
sg.imageComp,
|
|
458 |
dstType);
|
|
459 |
|
|
460 |
/* NOTE: We can only use the native TransformHelper
|
|
461 |
* func to go directly to the dest if both the helper
|
|
462 |
* and the MaskBlit are native.
|
|
463 |
* All helpers are native at this point, but some MaskBlit
|
|
464 |
* objects are implemented in Java, so we need to check.
|
|
465 |
*/
|
|
466 |
if (maskblit.getNativePrim() != 0) {
|
|
467 |
// We can render directly.
|
|
468 |
helper.Transform(maskblit, srcData, dstData,
|
|
469 |
sg.composite, clip,
|
|
470 |
itx, interpType,
|
|
471 |
sx1, sy1, sx2, sy2,
|
|
472 |
dx1, dy1, dx2, dy2,
|
|
473 |
null, 0, 0);
|
|
474 |
return;
|
|
475 |
}
|
|
476 |
blit = null;
|
|
477 |
} else {
|
|
478 |
/* NOTE: We either have, or we can make,
|
|
479 |
* a Blit for any composite type, even Custom
|
|
480 |
*/
|
|
481 |
maskblit = null;
|
|
482 |
blit = Blit.getFromCache(SurfaceType.IntArgbPre,
|
|
483 |
sg.imageComp,
|
|
484 |
dstType);
|
|
485 |
}
|
|
486 |
|
|
487 |
// We need to transform to a temp image and then copy
|
|
488 |
// just the pieces that are valid data to the dest.
|
|
489 |
BufferedImage tmpimg = new BufferedImage(dx2-dx1, dy2-dy1,
|
|
490 |
BufferedImage.TYPE_INT_ARGB);
|
|
491 |
SurfaceData tmpData = SurfaceData.getPrimarySurfaceData(tmpimg);
|
|
492 |
SurfaceType tmpType = tmpData.getSurfaceType();
|
|
493 |
MaskBlit tmpmaskblit =
|
|
494 |
MaskBlit.getFromCache(SurfaceType.IntArgbPre,
|
|
495 |
CompositeType.SrcNoEa,
|
|
496 |
tmpType);
|
|
497 |
/*
|
|
498 |
* The helper function fills a temporary edges buffer
|
|
499 |
* for us with the bounding coordinates of each scanline
|
|
500 |
* in the following format:
|
|
501 |
*
|
|
502 |
* edges[0, 1] = [top y, bottom y)
|
|
503 |
* edges[2, 3] = [left x, right x) of top row
|
|
504 |
* ...
|
|
505 |
* edges[h*2, h*2+1] = [left x, right x) of bottom row
|
|
506 |
*
|
|
507 |
* all coordinates in the edges array will be relative to dx1, dy1
|
|
508 |
*
|
|
509 |
* edges thus has to be h*2+2 in length
|
|
510 |
*/
|
|
511 |
int edges[] = new int[(dy2-dy1)*2+2];
|
|
512 |
helper.Transform(tmpmaskblit, srcData, tmpData,
|
|
513 |
AlphaComposite.Src, null,
|
|
514 |
itx, interpType,
|
|
515 |
sx1, sy1, sx2, sy2,
|
|
516 |
0, 0, dx2-dx1, dy2-dy1,
|
|
517 |
edges, dx1, dy1);
|
|
518 |
|
|
519 |
/*
|
|
520 |
* Now copy the results, scanline by scanline, into the dest.
|
|
521 |
* The edges array helps us minimize the work.
|
|
522 |
*/
|
|
523 |
int index = 2;
|
|
524 |
for (int y = edges[0]; y < edges[1]; y++) {
|
|
525 |
int relx1 = edges[index++];
|
|
526 |
int relx2 = edges[index++];
|
|
527 |
if (relx1 >= relx2) {
|
|
528 |
continue;
|
|
529 |
}
|
|
530 |
if (maskblit != null) {
|
|
531 |
maskblit.MaskBlit(tmpData, dstData,
|
|
532 |
sg.composite, clip,
|
|
533 |
relx1, y,
|
|
534 |
dx1+relx1, dy1+y,
|
|
535 |
relx2 - relx1, 1,
|
|
536 |
null, 0, 0);
|
|
537 |
} else {
|
|
538 |
blit.Blit(tmpData, dstData,
|
|
539 |
sg.composite, clip,
|
|
540 |
relx1, y,
|
|
541 |
dx1+relx1, dy1+y,
|
|
542 |
relx2 - relx1, 1);
|
|
543 |
}
|
|
544 |
}
|
|
545 |
}
|
|
546 |
|
|
547 |
// Render an image using only integer translation
|
|
548 |
// (no scale or transform or sub-pixel interpolated translations).
|
|
549 |
protected boolean renderImageCopy(SunGraphics2D sg, Image img,
|
|
550 |
Color bgColor,
|
|
551 |
int dx, int dy,
|
|
552 |
int sx, int sy,
|
|
553 |
int w, int h)
|
|
554 |
{
|
|
555 |
Region clip = sg.getCompClip();
|
|
556 |
SurfaceData dstData = sg.surfaceData;
|
|
557 |
|
|
558 |
int attempts = 0;
|
|
559 |
// Loop up to twice through; this gives us a chance to
|
|
560 |
// revalidate the surfaceData objects in case of an exception
|
|
561 |
// and try it once more
|
|
562 |
while (true) {
|
|
563 |
SurfaceData srcData =
|
|
564 |
dstData.getSourceSurfaceData(img,
|
|
565 |
sg.TRANSFORM_ISIDENT,
|
|
566 |
sg.imageComp,
|
|
567 |
bgColor);
|
|
568 |
if (srcData == null) {
|
|
569 |
return false;
|
|
570 |
}
|
|
571 |
|
|
572 |
try {
|
|
573 |
SurfaceType srcType = srcData.getSurfaceType();
|
|
574 |
SurfaceType dstType = dstData.getSurfaceType();
|
|
575 |
blitSurfaceData(sg, clip,
|
|
576 |
srcData, dstData, srcType, dstType,
|
|
577 |
sx, sy, dx, dy, w, h, bgColor);
|
|
578 |
return true;
|
|
579 |
} catch (NullPointerException e) {
|
|
580 |
if (!(SurfaceData.isNull(dstData) ||
|
|
581 |
SurfaceData.isNull(srcData)))
|
|
582 |
{
|
|
583 |
// Something else caused the exception, throw it...
|
|
584 |
throw e;
|
|
585 |
}
|
|
586 |
return false;
|
|
587 |
// NOP if we have been disposed
|
|
588 |
} catch (InvalidPipeException e) {
|
|
589 |
// Always catch the exception; try this a couple of times
|
|
590 |
// and fail silently if the system is not yet ready to
|
|
591 |
// revalidate the source or dest surfaceData objects.
|
|
592 |
++attempts;
|
|
593 |
clip = sg.getCompClip(); // ensures sg.surfaceData is valid
|
|
594 |
dstData = sg.surfaceData;
|
|
595 |
if (SurfaceData.isNull(dstData) ||
|
|
596 |
SurfaceData.isNull(srcData) || (attempts > 1))
|
|
597 |
{
|
|
598 |
return false;
|
|
599 |
}
|
|
600 |
}
|
|
601 |
}
|
|
602 |
}
|
|
603 |
|
|
604 |
// Render an image using only integer scaling (no transform).
|
|
605 |
protected boolean renderImageScale(SunGraphics2D sg, Image img,
|
|
606 |
Color bgColor, int interpType,
|
|
607 |
int sx1, int sy1,
|
|
608 |
int sx2, int sy2,
|
|
609 |
double dx1, double dy1,
|
|
610 |
double dx2, double dy2)
|
|
611 |
{
|
|
612 |
// Currently only NEAREST_NEIGHBOR interpolation is implemented
|
|
613 |
// for ScaledBlit operations.
|
|
614 |
if (interpType != AffineTransformOp.TYPE_NEAREST_NEIGHBOR) {
|
|
615 |
return false;
|
|
616 |
}
|
|
617 |
|
|
618 |
Region clip = sg.getCompClip();
|
|
619 |
SurfaceData dstData = sg.surfaceData;
|
|
620 |
|
|
621 |
int attempts = 0;
|
|
622 |
// Loop up to twice through; this gives us a chance to
|
|
623 |
// revalidate the surfaceData objects in case of an exception
|
|
624 |
// and try it once more
|
|
625 |
while (true) {
|
|
626 |
SurfaceData srcData =
|
|
627 |
dstData.getSourceSurfaceData(img,
|
|
628 |
sg.TRANSFORM_TRANSLATESCALE,
|
|
629 |
sg.imageComp,
|
|
630 |
bgColor);
|
|
631 |
|
|
632 |
if (srcData == null || isBgOperation(srcData, bgColor)) {
|
|
633 |
return false;
|
|
634 |
}
|
|
635 |
|
|
636 |
try {
|
|
637 |
SurfaceType srcType = srcData.getSurfaceType();
|
|
638 |
SurfaceType dstType = dstData.getSurfaceType();
|
|
639 |
return scaleSurfaceData(sg, clip,
|
|
640 |
srcData, dstData, srcType, dstType,
|
|
641 |
sx1, sy1, sx2, sy2,
|
|
642 |
dx1, dy1, dx2, dy2);
|
|
643 |
} catch (NullPointerException e) {
|
|
644 |
if (!SurfaceData.isNull(dstData)) {
|
|
645 |
// Something else caused the exception, throw it...
|
|
646 |
throw e;
|
|
647 |
}
|
|
648 |
return false;
|
|
649 |
// NOP if we have been disposed
|
|
650 |
} catch (InvalidPipeException e) {
|
|
651 |
// Always catch the exception; try this a couple of times
|
|
652 |
// and fail silently if the system is not yet ready to
|
|
653 |
// revalidate the source or dest surfaceData objects.
|
|
654 |
++attempts;
|
|
655 |
clip = sg.getCompClip(); // ensures sg.surfaceData is valid
|
|
656 |
dstData = sg.surfaceData;
|
|
657 |
if (SurfaceData.isNull(dstData) ||
|
|
658 |
SurfaceData.isNull(srcData) || (attempts > 1))
|
|
659 |
{
|
|
660 |
return false;
|
|
661 |
}
|
|
662 |
}
|
|
663 |
}
|
|
664 |
}
|
|
665 |
|
|
666 |
public boolean scaleImage(SunGraphics2D sg, Image img,
|
|
667 |
int dx1, int dy1, int dx2, int dy2,
|
|
668 |
int sx1, int sy1, int sx2, int sy2,
|
|
669 |
Color bgColor)
|
|
670 |
{
|
|
671 |
int srcW, srcH, dstW, dstH;
|
|
672 |
int srcX, srcY, dstX, dstY;
|
|
673 |
boolean srcWidthFlip = false;
|
|
674 |
boolean srcHeightFlip = false;
|
|
675 |
boolean dstWidthFlip = false;
|
|
676 |
boolean dstHeightFlip = false;
|
|
677 |
|
|
678 |
if (sx2 > sx1) {
|
|
679 |
srcW = sx2 - sx1;
|
|
680 |
srcX = sx1;
|
|
681 |
} else {
|
|
682 |
srcWidthFlip = true;
|
|
683 |
srcW = sx1 - sx2;
|
|
684 |
srcX = sx2;
|
|
685 |
}
|
|
686 |
if (sy2 > sy1) {
|
|
687 |
srcH = sy2-sy1;
|
|
688 |
srcY = sy1;
|
|
689 |
} else {
|
|
690 |
srcHeightFlip = true;
|
|
691 |
srcH = sy1-sy2;
|
|
692 |
srcY = sy2;
|
|
693 |
}
|
|
694 |
if (dx2 > dx1) {
|
|
695 |
dstW = dx2 - dx1;
|
|
696 |
dstX = dx1;
|
|
697 |
} else {
|
|
698 |
dstW = dx1 - dx2;
|
|
699 |
dstWidthFlip = true;
|
|
700 |
dstX = dx2;
|
|
701 |
}
|
|
702 |
if (dy2 > dy1) {
|
|
703 |
dstH = dy2 - dy1;
|
|
704 |
dstY = dy1;
|
|
705 |
} else {
|
|
706 |
dstH = dy1 - dy2;
|
|
707 |
dstHeightFlip = true;
|
|
708 |
dstY = dy2;
|
|
709 |
}
|
|
710 |
if (srcW <= 0 || srcH <= 0) {
|
|
711 |
return true;
|
|
712 |
}
|
|
713 |
// Only accelerate scale if it does not involve a flip or transform
|
|
714 |
if ((srcWidthFlip == dstWidthFlip) &&
|
|
715 |
(srcHeightFlip == dstHeightFlip) &&
|
|
716 |
isSimpleTranslate(sg))
|
|
717 |
{
|
|
718 |
double ddx1 = dstX + sg.transX;
|
|
719 |
double ddy1 = dstY + sg.transY;
|
|
720 |
double ddx2 = ddx1 + dstW;
|
|
721 |
double ddy2 = ddy1 + dstH;
|
|
722 |
if (renderImageScale(sg, img, bgColor, sg.interpolationType,
|
|
723 |
srcX, srcY, srcX+srcW, srcY+srcH,
|
|
724 |
ddx1, ddy1, ddx2, ddy2))
|
|
725 |
{
|
|
726 |
return true;
|
|
727 |
}
|
|
728 |
}
|
|
729 |
|
|
730 |
AffineTransform atfm = new AffineTransform(sg.transform);
|
|
731 |
atfm.translate(dx1, dy1);
|
|
732 |
double m00 = (double)(dx2-dx1)/(sx2-sx1);
|
|
733 |
double m11 = (double)(dy2-dy1)/(sy2-sy1);
|
|
734 |
atfm.scale(m00, m11);
|
|
735 |
atfm.translate(srcX-sx1, srcY-sy1);
|
|
736 |
|
|
737 |
int imgW = img.getWidth(null);
|
|
738 |
int imgH = img.getHeight(null);
|
|
739 |
srcW += srcX;
|
|
740 |
srcH += srcY;
|
|
741 |
// Make sure we are not out of bounds
|
|
742 |
if (srcW > imgW) {
|
|
743 |
srcW = imgW;
|
|
744 |
}
|
|
745 |
if (srcH > imgH) {
|
|
746 |
srcH = imgH;
|
|
747 |
}
|
|
748 |
if (srcX < 0) {
|
|
749 |
atfm.translate(-srcX, 0);
|
|
750 |
srcX = 0;
|
|
751 |
}
|
|
752 |
if (srcY < 0) {
|
|
753 |
atfm.translate(0, -srcY);
|
|
754 |
srcY = 0;
|
|
755 |
}
|
|
756 |
if (srcX >= srcW || srcY >= srcH) {
|
|
757 |
return true;
|
|
758 |
}
|
|
759 |
// Note: src[WH] are currently the right and bottom coordinates.
|
|
760 |
// The following two lines would adjust src[WH] back to being
|
|
761 |
// dimensions.
|
|
762 |
// srcW -= srcX;
|
|
763 |
// srcH -= srcY;
|
|
764 |
// Since transformImage needs right and bottom coords we will
|
|
765 |
// omit this adjustment.
|
|
766 |
|
|
767 |
transformImage(sg, img, atfm, sg.interpolationType,
|
|
768 |
srcX, srcY, srcW, srcH, bgColor);
|
|
769 |
return true;
|
|
770 |
}
|
|
771 |
|
|
772 |
/**
|
|
773 |
** Utilities
|
|
774 |
** The following methods are used by the public methods above
|
|
775 |
** for performing various operations
|
|
776 |
**/
|
|
777 |
|
|
778 |
/*
|
|
779 |
* This constant represents a tradeoff between the
|
|
780 |
* need to make sure that image transformations are
|
|
781 |
* "very close" to integer device coordinates before
|
|
782 |
* we decide to use an integer scale or copy operation
|
|
783 |
* as a substitute and the fact that roundoff errors
|
|
784 |
* in AffineTransforms are frequently introduced by
|
|
785 |
* performing multiple sequential operations on them.
|
|
786 |
*
|
|
787 |
* The evaluation of bug 4990624 details the potential
|
|
788 |
* for this error cutoff to result in display anomalies
|
|
789 |
* in different types of image operations and how this
|
|
790 |
* value represents a good compromise here.
|
|
791 |
*/
|
|
792 |
private static final double MAX_TX_ERROR = .0001;
|
|
793 |
|
|
794 |
public static boolean closeToInteger(int i, double d) {
|
|
795 |
return (Math.abs(d-i) < MAX_TX_ERROR);
|
|
796 |
}
|
|
797 |
|
|
798 |
public static boolean isSimpleTranslate(SunGraphics2D sg) {
|
|
799 |
int ts = sg.transformState;
|
|
800 |
if (ts <= sg.TRANSFORM_INT_TRANSLATE) {
|
|
801 |
// Integer translates are always "simple"
|
|
802 |
return true;
|
|
803 |
}
|
|
804 |
if (ts >= sg.TRANSFORM_TRANSLATESCALE) {
|
|
805 |
// Scales and beyond are always "not simple"
|
|
806 |
return false;
|
|
807 |
}
|
|
808 |
// non-integer translates are only simple when not interpolating
|
|
809 |
if (sg.interpolationType == AffineTransformOp.TYPE_NEAREST_NEIGHBOR) {
|
|
810 |
return true;
|
|
811 |
}
|
|
812 |
return false;
|
|
813 |
}
|
|
814 |
|
|
815 |
protected static boolean isBgOperation(SurfaceData srcData, Color bgColor) {
|
|
816 |
// If we cannot get the srcData, then cannot assume anything about
|
|
817 |
// the image
|
|
818 |
return ((srcData == null) ||
|
|
819 |
((bgColor != null) &&
|
|
820 |
(srcData.getTransparency() != Transparency.OPAQUE)));
|
|
821 |
}
|
|
822 |
|
|
823 |
protected BufferedImage getBufferedImage(Image img) {
|
|
824 |
if (img instanceof BufferedImage) {
|
|
825 |
return (BufferedImage)img;
|
|
826 |
}
|
|
827 |
// Must be VolatileImage; get BufferedImage representation
|
|
828 |
return ((VolatileImage)img).getSnapshot();
|
|
829 |
}
|
|
830 |
|
|
831 |
/*
|
|
832 |
* Return the color model to be used with this BufferedImage and
|
|
833 |
* transform.
|
|
834 |
*/
|
|
835 |
private ColorModel getTransformColorModel(SunGraphics2D sg,
|
|
836 |
BufferedImage bImg,
|
|
837 |
AffineTransform tx) {
|
|
838 |
ColorModel cm = bImg.getColorModel();
|
|
839 |
ColorModel dstCM = cm;
|
|
840 |
|
|
841 |
if (tx.isIdentity()) {
|
|
842 |
return dstCM;
|
|
843 |
}
|
|
844 |
int type = tx.getType();
|
|
845 |
boolean needTrans =
|
|
846 |
((type&(tx.TYPE_MASK_ROTATION|tx.TYPE_GENERAL_TRANSFORM)) != 0);
|
|
847 |
if (! needTrans && type != tx.TYPE_TRANSLATION && type != tx.TYPE_IDENTITY)
|
|
848 |
{
|
|
849 |
double[] mtx = new double[4];
|
|
850 |
tx.getMatrix(mtx);
|
|
851 |
// Check out the matrix. A non-integral scale will force ARGB
|
|
852 |
// since the edge conditions cannot be guaranteed.
|
|
853 |
needTrans = (mtx[0] != (int)mtx[0] || mtx[3] != (int)mtx[3]);
|
|
854 |
}
|
|
855 |
|
|
856 |
if (sg.renderHint != SunHints.INTVAL_RENDER_QUALITY) {
|
|
857 |
if (cm instanceof IndexColorModel) {
|
|
858 |
Raster raster = bImg.getRaster();
|
|
859 |
IndexColorModel icm = (IndexColorModel) cm;
|
|
860 |
// Just need to make sure that we have a transparent pixel
|
|
861 |
if (needTrans && cm.getTransparency() == cm.OPAQUE) {
|
|
862 |
// Fix 4221407
|
|
863 |
if (raster instanceof sun.awt.image.BytePackedRaster) {
|
|
864 |
dstCM = ColorModel.getRGBdefault();
|
|
865 |
}
|
|
866 |
else {
|
|
867 |
double[] matrix = new double[6];
|
|
868 |
tx.getMatrix(matrix);
|
|
869 |
if (matrix[1] == 0. && matrix[2] ==0.
|
|
870 |
&& matrix[4] == 0. && matrix[5] == 0.) {
|
|
871 |
// Only scaling so do not need to create
|
|
872 |
}
|
|
873 |
else {
|
|
874 |
int mapSize = icm.getMapSize();
|
|
875 |
if (mapSize < 256) {
|
|
876 |
int[] cmap = new int[mapSize+1];
|
|
877 |
icm.getRGBs(cmap);
|
|
878 |
cmap[mapSize] = 0x0000;
|
|
879 |
dstCM = new
|
|
880 |
IndexColorModel(icm.getPixelSize(),
|
|
881 |
mapSize+1,
|
|
882 |
cmap, 0, true, mapSize,
|
|
883 |
DataBuffer.TYPE_BYTE);
|
|
884 |
}
|
|
885 |
else {
|
|
886 |
dstCM = ColorModel.getRGBdefault();
|
|
887 |
}
|
|
888 |
} /* if (matrix[0] < 1.f ...) */
|
|
889 |
} /* raster instanceof sun.awt.image.BytePackedRaster */
|
|
890 |
} /* if (cm.getTransparency() == cm.OPAQUE) */
|
|
891 |
} /* if (cm instanceof IndexColorModel) */
|
|
892 |
else if (needTrans && cm.getTransparency() == cm.OPAQUE) {
|
|
893 |
// Need a bitmask transparency
|
|
894 |
// REMIND: for now, use full transparency since no loops
|
|
895 |
// for bitmask
|
|
896 |
dstCM = ColorModel.getRGBdefault();
|
|
897 |
}
|
|
898 |
} /* if (sg.renderHint == RENDER_QUALITY) */
|
|
899 |
else {
|
|
900 |
|
|
901 |
if (cm instanceof IndexColorModel ||
|
|
902 |
(needTrans && cm.getTransparency() == cm.OPAQUE))
|
|
903 |
{
|
|
904 |
// Need a bitmask transparency
|
|
905 |
// REMIND: for now, use full transparency since no loops
|
|
906 |
// for bitmask
|
|
907 |
dstCM = ColorModel.getRGBdefault();
|
|
908 |
}
|
|
909 |
}
|
|
910 |
|
|
911 |
return dstCM;
|
|
912 |
}
|
|
913 |
|
|
914 |
protected void blitSurfaceData(SunGraphics2D sg,
|
|
915 |
Region clipRegion,
|
|
916 |
SurfaceData srcData,
|
|
917 |
SurfaceData dstData,
|
|
918 |
SurfaceType srcType,
|
|
919 |
SurfaceType dstType,
|
|
920 |
int sx, int sy, int dx, int dy,
|
|
921 |
int w, int h,
|
|
922 |
Color bgColor)
|
|
923 |
{
|
|
924 |
if (w <= 0 || h <= 0) {
|
|
925 |
/*
|
|
926 |
* Fix for bugid 4783274 - BlitBg throws an exception for
|
|
927 |
* a particular set of anomalous parameters.
|
|
928 |
* REMIND: The native loops do proper clipping and would
|
|
929 |
* detect this situation themselves, but the Java loops
|
|
930 |
* all seem to trust their parameters a little too well
|
|
931 |
* to the point where they will try to process a negative
|
|
932 |
* area of pixels and throw exceptions. The real fix is
|
|
933 |
* to modify the Java loops to do proper clipping so that
|
|
934 |
* they can deal with negative dimensions as well as
|
|
935 |
* improperly large dimensions, but that fix is too risky
|
|
936 |
* to integrate for Mantis at this point. In the meantime
|
|
937 |
* eliminating the negative or zero dimensions here is
|
|
938 |
* "correct" and saves them from some nasty exceptional
|
|
939 |
* conditions, one of which is the test case of 4783274.
|
|
940 |
*/
|
|
941 |
return;
|
|
942 |
}
|
|
943 |
CompositeType comp = sg.imageComp;
|
|
944 |
if (CompositeType.SrcOverNoEa.equals(comp) &&
|
|
945 |
(srcData.getTransparency() == Transparency.OPAQUE ||
|
|
946 |
(bgColor != null &&
|
|
947 |
bgColor.getTransparency() == Transparency.OPAQUE)))
|
|
948 |
{
|
|
949 |
comp = CompositeType.SrcNoEa;
|
|
950 |
}
|
|
951 |
if (!isBgOperation(srcData, bgColor)) {
|
|
952 |
Blit blit = Blit.getFromCache(srcType, comp, dstType);
|
|
953 |
blit.Blit(srcData, dstData, sg.composite, clipRegion,
|
|
954 |
sx, sy, dx, dy, w, h);
|
|
955 |
} else {
|
|
956 |
BlitBg blit = BlitBg.getFromCache(srcType, comp, dstType);
|
|
957 |
blit.BlitBg(srcData, dstData, sg.composite, clipRegion,
|
887
|
958 |
bgColor.getRGB(), sx, sy, dx, dy, w, h);
|
2
|
959 |
}
|
|
960 |
}
|
|
961 |
|
|
962 |
protected boolean scaleSurfaceData(SunGraphics2D sg,
|
|
963 |
Region clipRegion,
|
|
964 |
SurfaceData srcData,
|
|
965 |
SurfaceData dstData,
|
|
966 |
SurfaceType srcType,
|
|
967 |
SurfaceType dstType,
|
|
968 |
int sx1, int sy1,
|
|
969 |
int sx2, int sy2,
|
|
970 |
double dx1, double dy1,
|
|
971 |
double dx2, double dy2)
|
|
972 |
{
|
|
973 |
CompositeType comp = sg.imageComp;
|
|
974 |
if (CompositeType.SrcOverNoEa.equals(comp) &&
|
|
975 |
(srcData.getTransparency() == Transparency.OPAQUE))
|
|
976 |
{
|
|
977 |
comp = CompositeType.SrcNoEa;
|
|
978 |
}
|
|
979 |
|
|
980 |
ScaledBlit blit = ScaledBlit.getFromCache(srcType, comp, dstType);
|
|
981 |
if (blit != null) {
|
|
982 |
blit.Scale(srcData, dstData, sg.composite, clipRegion,
|
|
983 |
sx1, sy1, sx2, sy2, dx1, dy1, dx2, dy2);
|
|
984 |
return true;
|
|
985 |
}
|
|
986 |
return false;
|
|
987 |
}
|
|
988 |
|
|
989 |
protected static boolean imageReady(ToolkitImage sunimg,
|
|
990 |
ImageObserver observer)
|
|
991 |
{
|
|
992 |
if (sunimg.hasError()) {
|
|
993 |
if (observer != null) {
|
|
994 |
observer.imageUpdate(sunimg,
|
|
995 |
ImageObserver.ERROR|ImageObserver.ABORT,
|
|
996 |
-1, -1, -1, -1);
|
|
997 |
}
|
|
998 |
return false;
|
|
999 |
}
|
|
1000 |
return true;
|
|
1001 |
}
|
|
1002 |
|
|
1003 |
public boolean copyImage(SunGraphics2D sg, Image img,
|
|
1004 |
int x, int y,
|
|
1005 |
Color bgColor,
|
|
1006 |
ImageObserver observer) {
|
|
1007 |
if (!(img instanceof ToolkitImage)) {
|
|
1008 |
return copyImage(sg, img, x, y, bgColor);
|
|
1009 |
} else {
|
|
1010 |
ToolkitImage sunimg = (ToolkitImage)img;
|
|
1011 |
if (!imageReady(sunimg, observer)) {
|
|
1012 |
return false;
|
|
1013 |
}
|
|
1014 |
ImageRepresentation ir = sunimg.getImageRep();
|
|
1015 |
return ir.drawToBufImage(sg, sunimg, x, y, bgColor, observer);
|
|
1016 |
}
|
|
1017 |
}
|
|
1018 |
|
|
1019 |
public boolean copyImage(SunGraphics2D sg, Image img,
|
|
1020 |
int dx, int dy, int sx, int sy, int w, int h,
|
|
1021 |
Color bgColor,
|
|
1022 |
ImageObserver observer) {
|
|
1023 |
if (!(img instanceof ToolkitImage)) {
|
|
1024 |
return copyImage(sg, img, dx, dy, sx, sy, w, h, bgColor);
|
|
1025 |
} else {
|
|
1026 |
ToolkitImage sunimg = (ToolkitImage)img;
|
|
1027 |
if (!imageReady(sunimg, observer)) {
|
|
1028 |
return false;
|
|
1029 |
}
|
|
1030 |
ImageRepresentation ir = sunimg.getImageRep();
|
|
1031 |
return ir.drawToBufImage(sg, sunimg,
|
|
1032 |
dx, dy, (dx + w), (dy + h),
|
|
1033 |
sx, sy, (sx + w), (sy + h),
|
|
1034 |
bgColor, observer);
|
|
1035 |
}
|
|
1036 |
}
|
|
1037 |
|
|
1038 |
public boolean scaleImage(SunGraphics2D sg, Image img,
|
|
1039 |
int x, int y,
|
|
1040 |
int width, int height,
|
|
1041 |
Color bgColor,
|
|
1042 |
ImageObserver observer) {
|
|
1043 |
if (!(img instanceof ToolkitImage)) {
|
|
1044 |
return scaleImage(sg, img, x, y, width, height, bgColor);
|
|
1045 |
} else {
|
|
1046 |
ToolkitImage sunimg = (ToolkitImage)img;
|
|
1047 |
if (!imageReady(sunimg, observer)) {
|
|
1048 |
return false;
|
|
1049 |
}
|
|
1050 |
ImageRepresentation ir = sunimg.getImageRep();
|
|
1051 |
return ir.drawToBufImage(sg, sunimg, x, y, width, height, bgColor,
|
|
1052 |
observer);
|
|
1053 |
}
|
|
1054 |
}
|
|
1055 |
|
|
1056 |
public boolean scaleImage(SunGraphics2D sg, Image img,
|
|
1057 |
int dx1, int dy1, int dx2, int dy2,
|
|
1058 |
int sx1, int sy1, int sx2, int sy2,
|
|
1059 |
Color bgColor,
|
|
1060 |
ImageObserver observer) {
|
|
1061 |
if (!(img instanceof ToolkitImage)) {
|
|
1062 |
return scaleImage(sg, img, dx1, dy1, dx2, dy2,
|
|
1063 |
sx1, sy1, sx2, sy2, bgColor);
|
|
1064 |
} else {
|
|
1065 |
ToolkitImage sunimg = (ToolkitImage)img;
|
|
1066 |
if (!imageReady(sunimg, observer)) {
|
|
1067 |
return false;
|
|
1068 |
}
|
|
1069 |
ImageRepresentation ir = sunimg.getImageRep();
|
|
1070 |
return ir.drawToBufImage(sg, sunimg, dx1, dy1, dx2, dy2,
|
|
1071 |
sx1, sy1, sx2, sy2, bgColor, observer);
|
|
1072 |
}
|
|
1073 |
}
|
|
1074 |
|
|
1075 |
public boolean transformImage(SunGraphics2D sg, Image img,
|
|
1076 |
AffineTransform atfm,
|
|
1077 |
ImageObserver observer) {
|
|
1078 |
if (!(img instanceof ToolkitImage)) {
|
|
1079 |
transformImage(sg, img, 0, 0, atfm, sg.interpolationType);
|
|
1080 |
return true;
|
|
1081 |
} else {
|
|
1082 |
ToolkitImage sunimg = (ToolkitImage)img;
|
|
1083 |
if (!imageReady(sunimg, observer)) {
|
|
1084 |
return false;
|
|
1085 |
}
|
|
1086 |
ImageRepresentation ir = sunimg.getImageRep();
|
|
1087 |
return ir.drawToBufImage(sg, sunimg, atfm, observer);
|
|
1088 |
}
|
|
1089 |
}
|
|
1090 |
|
|
1091 |
public void transformImage(SunGraphics2D sg, BufferedImage img,
|
|
1092 |
BufferedImageOp op, int x, int y)
|
|
1093 |
{
|
|
1094 |
if (op != null) {
|
|
1095 |
if (op instanceof AffineTransformOp) {
|
|
1096 |
AffineTransformOp atop = (AffineTransformOp) op;
|
|
1097 |
transformImage(sg, img, x, y,
|
|
1098 |
atop.getTransform(),
|
|
1099 |
atop.getInterpolationType());
|
|
1100 |
return;
|
|
1101 |
} else {
|
|
1102 |
img = op.filter(img, null);
|
|
1103 |
}
|
|
1104 |
}
|
|
1105 |
copyImage(sg, img, x, y, null);
|
|
1106 |
}
|
|
1107 |
}
|