/**
* ShaderShark
* Copyright © 2023 František Kučera (Frantovo.cz, GlobalCode.info)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include <iomanip>
#include <string>
#include <charconv>
#include <memory>
#include <functional>
#include <sstream>
#include <vector>
#include "x11.h"
#include "opengl.h"
#include "EPoll.h"
#include "Logger.h"
#include "MappedFile.h"
#include "ImageLoader.h"
#include "Texture.h"
#include "Shader.h"
#include "Program.h"
#include "FileMonitor.h"
#include "XAttrs.h"
#include "Shark.h"
class Shark::Impl {
public:
struct {
GLint aVertexXYZ = -2;
GLint aTextureXY = -2;
GLint fColor = -2;
GLint uModel = -2;
GLint uView = -2;
GLint uProjection = -2;
GLint uTexture = -2;
GLint uTextureScale = -2;
} ProgAttr;
struct {
float yaw = -90.f;
float pitch = 0.f;
float roll = 0.f;
float fov = 45.0f;
glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 3.0f);
glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);
glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f);
void adjustFov(float diff) {
fov += diff;
if (fov < 1.0f) fov = 1.0f;
else if (fov > 120.0f) fov = 120.0f;
std::cerr << "field of view: " << fov << " °" << std::endl;
}
void moveForward(const float cameraSpeed) {
cameraPos += cameraSpeed * cameraFront;
}
void moveBackward(const float cameraSpeed) {
cameraPos -= cameraSpeed * cameraFront;
}
void moveLeft(const float cameraSpeed) {
cameraPos -= glm::normalize(
glm::cross(cameraFront, cameraUp)) * cameraSpeed;
}
void moveRight(const float cameraSpeed) {
cameraPos += glm::normalize(
glm::cross(cameraFront, cameraUp)) * cameraSpeed;
}
void moveUp(const float cameraSpeed) {
cameraPos += cameraSpeed * glm::normalize(cameraUp);
}
void moveDown(const float cameraSpeed) {
cameraPos -= cameraSpeed * glm::normalize(cameraUp);
}
void updateCameraFrontAndUp() {
std::cerr << "--- updateCameraFrontAndUp() --------" << std::endl;
dump("pitch, yaw, roll", glm::vec3(pitch, yaw, roll));
dump("cameraPos", cameraPos);
dump("cameraFront", cameraFront);
const auto pitchR = glm::radians(pitch); // around X axis
const auto yawR = glm::radians(yaw); // around Y axis
const auto rollR = glm::radians(roll); // around Z axis
cameraFront.x = cos(pitchR) * cos(yawR);
cameraFront.y = sin(pitchR);
cameraFront.z = cos(pitchR) * sin(yawR);
cameraFront = glm::normalize(cameraFront);
dump("cameraFront", cameraFront);
dump("cameraUp", cameraUp);
// TODO: review ROLL rotation and default angle
glm::mat4 rollMatrix = glm::rotate(
glm::mat4(1.0f), rollR, cameraFront);
cameraUp = glm::mat3(rollMatrix) * glm::vec3(0., 1., 0.);
dump("cameraUp", cameraUp);
std::cerr << "-------------------------------------" << std::endl;
}
void limitPitch() {
if (pitch > +89.0f) pitch = +89.0f;
if (pitch < -89.0f) pitch = -89.0f;
}
void turnLeft(const float angleSpeed) {
yaw -= angleSpeed;
updateCameraFrontAndUp();
}
void turnRight(const float angleSpeed) {
yaw += angleSpeed;
updateCameraFrontAndUp();
}
void turnUp(const float angleSpeed) {
pitch += angleSpeed;
limitPitch();
updateCameraFrontAndUp();
}
void turnDown(const float angleSpeed) {
pitch -= angleSpeed;
limitPitch();
updateCameraFrontAndUp();
}
void rollLeft(const float angleSpeed) {
roll += angleSpeed;
updateCameraFrontAndUp();
}
void rollRight(const float angleSpeed) {
roll -= angleSpeed;
updateCameraFrontAndUp();
}
} initialCtx, ctx;
Display* dpy;
Window win;
XVisualInfo* vi;
GLXContext glc;
FileMonitor fileMonitor;
std::vector<WatchedFile> watchedFiles;
ImageLoader imageLoader;
std::vector<std::shared_ptr<Shader>> shaders;
std::shared_ptr<Program> shaderProgram;
std::vector<std::shared_ptr<Texture>> textures;
Configuration cfg;
std::ostream& logOutput = std::cerr;
Impl(Configuration cfg) : cfg(cfg) {
}
void run();
void clear();
void runShaders();
Window getRootWindow(Window defaultValue);
void log(LogLevel level, std::string message);
int setNonBlocking(int fd);
void loadVertices();
void parametrizeTexture(std::shared_ptr<Texture> tex);
bool reloadTexture(const std::string& fileName);
void loadTextures();
void loadShaders();
void updateVariableLocations();
bool reloadShader(const std::string& fileName);
void setTitle(const std::string& suffix = "");
static const std::string getDefaultFile(const std::string& relativePath);
};
Shark::Shark(const Configuration& configuration) :
impl(new Impl(configuration)) {
}
Shark::~Shark() {
impl->textures.clear();
impl->shaders.clear();
impl->shaderProgram = nullptr;
XFree(impl->vi);
glXMakeCurrent(impl->dpy, None, NULL);
glXDestroyContext(impl->dpy, impl->glc);
XDestroyWindow(impl->dpy, impl->win);
XCloseDisplay(impl->dpy);
delete impl;
// std::cerr << "~Shark()" << std::endl;
}
void Shark::Impl::setTitle(const std::string& suffix) {
std::stringstream title;
title << "ShaderShark";
if (suffix.size()) title << ": " << suffix.c_str();
XStoreName(dpy, win, title.str().c_str());
XFlush(dpy);
}
void Shark::run() {
impl->run();
}
void Shark::Impl::run() {
dpy = XOpenDisplay(NULL);
if (dpy == NULL) throw std::logic_error("Unable to connect to X server");
GLint att[] = {GLX_RGBA, GLX_DEPTH_SIZE, 24, GLX_DOUBLEBUFFER, None};
vi = glXChooseVisual(dpy, 0, att);
Window root = DefaultRootWindow(dpy);
Window parent = cfg.rootWindow ? cfg.rootWindow : root;
XSetWindowAttributes swa;
swa.colormap = XCreateColormap(dpy, parent, vi->visual, AllocNone);
swa.event_mask = ExposureMask | KeyPressMask | PointerMotionMask
| ButtonPressMask
| StructureNotifyMask;
bool full = false;
unsigned int width = 1600;
unsigned int height = 1200;
if (parent != root) {
XWindowAttributes parentAttr;
XGetWindowAttributes(dpy, parent, &parentAttr);
width = parentAttr.width;
height = parentAttr.height;
}
win = XCreateWindow(
dpy, parent, 0, 0, width, height, 0,
vi->depth, InputOutput, vi->visual,
CWColormap | CWEventMask, &swa);
XMapWindow(dpy, win);
setTitle();
setX11PID(dpy, win);
// XSetWindowBackground(dpy, win, 0) vs. glClearColor()
glc = glXCreateContext(dpy, vi, NULL, GL_TRUE);
glXMakeCurrent(dpy, win, glc);
glEnable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
clear();
glXSwapBuffers(dpy, win);
// Load GLSL shaders:
loadShaders();
loadTextures();
loadVertices();
auto toggleFullscreen = [&]() {
full = setFullscreen(dpy, win, !full);
};
auto resetView = [&]() {
ctx = initialCtx;
ctx.updateCameraFrontAndUp();
};
// root can reize our window
// or we can listen to root resize and then resize our window ourselves
bool listenToRootResizes = true;
if (listenToRootResizes) XSelectInput(dpy, parent, StructureNotifyMask);
bool keepRunningX11 = true;
int x11fd = XConnectionNumber(dpy);
EPoll epoll;
epoll.add(x11fd);
epoll.add(fileMonitor.getFD());
try {
epoll.add(setNonBlocking(STDIN_FILENO));
} catch (const EPoll::Exception& e) {
logOutput << "Will not monitor events on STDIN: " << e.what() << "\n";
}
// rended the 3D scene even before the first event:
runShaders();
glXSwapBuffers(dpy, win);
for (XEvent xev; keepRunningX11;) {
int epollEventCount = epoll.wait();
//std::cout << "trace: epoll.wait() = " << epollEventCount << std::endl;
for (int epollEvent = 0; epollEvent < epollEventCount; epollEvent++) {
bool redraw = false;
if (epoll[epollEvent].data.fd == x11fd) {
if (!XPending(dpy)) {
// otherwise STDIN events are held until the first X11 event
logOutput << "trace: no pending X11 event" << std::endl;
break;
}
process_x11_event:
XWindowAttributes gwa;
XNextEvent(dpy, &xev);
if (xev.type == Expose) {
std::cout << "XEvent: Expose" << std::endl;
XGetWindowAttributes(dpy, win, &gwa);
glViewport(0, 0, gwa.width, gwa.height);
redraw = true;
} else if (xev.type == KeyPress) {
DecodedKey key = decodeKeycode(dpy, xev.xkey.keycode);
std::cout << "XEvent: KeyPress:"
<< " keycode=" << key.code
<< " key=" << key.name
<< std::endl;
const float cSp = 0.05f; // camera speed
const float aSp = 5.f; // angle speed
if (key.matches(XK_q, XK_Escape)) keepRunningX11 = false;
else if (key.matches(XK_Left, XK_s)) ctx.turnLeft(aSp);
else if (key.matches(XK_Right, XK_f)) ctx.turnRight(aSp);
else if (key.matches(XK_Up, XK_e)) ctx.moveForward(cSp);
else if (key.matches(XK_Down, XK_d)) ctx.moveBackward(cSp);
else if (key.matches(XK_w)) ctx.rollLeft(aSp);
else if (key.matches(XK_r)) ctx.rollRight(aSp);
else if (key.matches(XK_t)) ctx.turnUp(aSp);
else if (key.matches(XK_g)) ctx.turnDown(aSp);
else if (key.matches(XK_m)) ctx.moveLeft(cSp);
else if (key.matches(XK_comma)) ctx.moveRight(cSp);
else if (key.matches(XK_l)) ctx.moveUp(cSp);
else if (key.matches(XK_period)) ctx.moveDown(cSp);
else if (key.matches(XK_j)) ctx.moveLeft(cSp * 5);
else if (key.matches(XK_k)) ctx.moveRight(cSp * 5);
else if (key.matches(XK_u)) ctx.moveLeft(cSp * 10);
else if (key.matches(XK_i)) ctx.moveRight(cSp * 10);
else if (key.matches(XK_x)) resetView();
else if (key.matches(XK_F11, XK_y)) toggleFullscreen();
redraw = true;
} else if (xev.type == ButtonPress) {
std::cout << "XEvent: ButtonPress:"
<< " button=" << xev.xbutton.button
<< std::endl;
if (xev.xbutton.button == 1);
else if (xev.xbutton.button == 4) ctx.adjustFov(-1.0);
else if (xev.xbutton.button == 5) ctx.adjustFov(+1.0);
else if (xev.xbutton.button == 8) resetView();
else if (xev.xbutton.button == 9) keepRunningX11 = false;
redraw = true;
} else if (xev.type == MotionNotify) {
// printCursorInfo(xev.xmotion);
} else if (xev.type == ConfigureNotify) {
std::cout << "XEvent: ConfigureNotify:"
<< " window=" << xev.xconfigure.window
<< " height=" << xev.xconfigure.height
<< " width=" << xev.xconfigure.width
<< std::endl;
if (listenToRootResizes
&& xev.xconfigure.window == parent) {
XResizeWindow(dpy, win,
xev.xconfigure.width, xev.xconfigure.height);
}
} else if (xev.type == UnmapNotify) {
std::cout << "XEvent: UnmapNotify" << std::endl;
} else if (xev.type == DestroyNotify) {
std::cout << "XEvent: DestroyNotify → finish" << std::endl;
break;
} else {
std::cout << "XEvent: type=" << xev.type << std::endl;
}
if (XPending(dpy)) goto process_x11_event;
} else if (epoll[epollEvent].data.fd == STDIN_FILENO) {
int epollFD = epoll[epollEvent].data.fd;
logOutput << "other event: fd=" << epollFD << " data=";
for (char ch; read(epollFD, &ch, 1) > 0;) {
std::stringstream msg;
msg
<< std::hex
<< std::setfill('0')
<< std::setw(2)
<< (int) ch;
logOutput << msg.str();
}
logOutput << std::endl;
} else if (epoll[epollEvent].data.fd == fileMonitor.getFD()) {
std::cout << "FileMonitor event:" << std::endl;
for (FileEvent fe; fileMonitor.readEvent(fe);) {
logOutput << " "
<< " file=" << fe.fileName
<< " mask=" << fe.mask
<< std::endl;
try {
redraw |= reloadTexture(fe.fileName);
redraw |= reloadShader(fe.fileName);
setTitle();
} catch (const std::exception& e) {
setTitle("[ERROR]");
logOutput << "error while reloading '"
<< fe.fileName.c_str()
<< "': " << e.what() << std::endl;
}
}
} else {
logOutput
<< "error: event on an unexpected FD: "
<< epoll[epollEvent].data.fd
<< std::endl;
}
if (redraw) {
runShaders();
glXSwapBuffers(dpy, win);
}
}
}
}
void Shark::Impl::clear() {
glClearColor(
(cfg.backgroundColor >> 16 & 0xFF) / 256.,
(cfg.backgroundColor >> 8 & 0xFF) / 256.,
(cfg.backgroundColor & 0xFF) / 256.,
1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}
void Shark::Impl::runShaders() {
shaderProgram->use();
checkError(&std::cerr);
clear();
GLint viewport[4];
glGetIntegerv(GL_VIEWPORT, viewport);
GLfloat width = viewport[2];
GLfloat height = viewport[3];
glm::mat4 projection = glm::perspective(
glm::radians(ctx.fov),
width / height,
0.1f, 100.0f);
glUniformMatrix4fv(ProgAttr.uProjection, 1, GL_FALSE, &projection[0][0]);
glm::mat4 view = glm::lookAt(
ctx.cameraPos,
ctx.cameraPos + ctx.cameraFront,
ctx.cameraUp);
glUniformMatrix4fv(ProgAttr.uView, 1, GL_FALSE, &view[0][0]);
// glBindVertexArray(vao);
glm::mat4 model = glm::mat4(1.0f); // identity matrix
glUniformMatrix4fv(ProgAttr.uModel, 1, GL_FALSE, &model[0][0]);
// TODO: draw a rectangle for each texture
glUniform1f(ProgAttr.uTextureScale, textures[0]->getScale());
glDrawArrays(GL_TRIANGLES, 0, 2 * 3); // see loadVertices()
std::cerr << "GLSL: glDrawArrays()" << std::endl;
}
void Shark::Impl::log(LogLevel level, std::string message) {
::log(logOutput, level, message);
}
int Shark::Impl::setNonBlocking(int fd) {
int flags = fcntl(fd, F_GETFL, 0);
fcntl(fd, F_SETFL, flags | O_NONBLOCK);
return fd;
}
void Shark::Impl::loadVertices() {
for (int i = 0; i < textures.size(); i++) {
std::shared_ptr<Texture> tex = textures[i];
// TODO: draw a rectangle for each texture
GLfloat ratio = tex->getRatio();
const std::vector<GLfloat> vertices = {
// Vertex XYZ Texture XY
-0.80f * ratio, +0.80f, +0.0, /**/ 0.0, 0.0,
+0.80f * ratio, +0.80f, +0.0, /**/ 1.0, 0.0,
-0.80f * ratio, -0.80f, +0.0, /**/ 0.0, 1.0,
-0.80f * ratio, -0.80f, +0.0, /**/ 0.0, 1.0,
+0.80f * ratio, -0.80f, +0.0, /**/ 1.0, 1.0,
+0.80f * ratio, +0.80f, +0.0, /**/ 1.0, 0.0,
// see glDrawArrays(), where we set start offset and count
};
// Vertex data:
glVertexAttribPointer(ProgAttr.aVertexXYZ, 3, // vertex items
GL_FLOAT, GL_FALSE, 5 * sizeof (float),
(void*) 0);
glEnableVertexAttribArray(ProgAttr.aVertexXYZ);
// Texture positions:
glVertexAttribPointer(ProgAttr.aTextureXY, 2, // texture items
GL_FLOAT, GL_FALSE, 5 * sizeof (float),
(void*) (3 * sizeof (float)));
glEnableVertexAttribArray(ProgAttr.aTextureXY);
glBufferData(GL_ARRAY_BUFFER,
vertices.size() * sizeof (vertices[0]),
vertices.data(),
GL_STATIC_DRAW);
// GL_STATIC_DRAW:
// The vertex data will be uploaded once
// and drawn many times(e.g. the world).
// GL_DYNAMIC_DRAW:
// The vertex data will be created once, changed from
// time to time, but drawn many times more than that.
// GL_STREAM_DRAW:
// The vertex data will be uploaded once and drawn once.
// see also glBindBuffer(GL_ARRAY_BUFFER, vbo); where we set current VBO
}
}
const std::string
Shark::Impl::getDefaultFile(const std::string& relativePath) {
const char* envName = "SHADER_SHARK_DATA_DIR";
const char* envValue = ::getenv(envName);
if (envValue) {
return std::string(envValue) + "/" + relativePath;
} else {
throw std::invalid_argument(std::string("Configure $") + envName
+ " in order to use defaults"
" or specify textures and shaders as parameters");
}
}
void Shark::Impl::parametrizeTexture(std::shared_ptr<Texture> tex) {
XAttrs xa(tex->getFileName());
std::string magf = xa["shader-shark.texture.mag-filter"];
std::string minf = xa["shader-shark.texture.min-filter"];
std::string scale = xa["shader-shark.texture.scale"];
auto GLT2D = GL_TEXTURE_2D;
auto MAG = GL_TEXTURE_MAG_FILTER;
auto MIN = GL_TEXTURE_MIN_FILTER;
if (magf == "linear") glTexParameteri(GLT2D, MAG, GL_LINEAR);
else if (magf == "nearest") glTexParameteri(GLT2D, MAG, GL_NEAREST);
if (minf == "linear") glTexParameteri(GLT2D, MIN, GL_LINEAR);
else if (minf == "nearest") glTexParameteri(GLT2D, MIN, GL_NEAREST);
if (scale.size()) {
float sc;
if (std::from_chars(scale.data(), scale.data() + scale.size(), sc).ec
== std::errc{}) tex->setScale(sc);
else std::cerr << "Invalid texture scale value - expecting float\n";
// tex->setScale(std::stof(scale)); // locale-dependent (. vs ,)
} else {
tex->setScale(1.);
}
}
void Shark::Impl::loadTextures() {
// Load default texture if there is no configured:
if (cfg.textures.empty())
cfg.textures.push_back({getDefaultFile("textures/default.img")});
for (const Configuration::Texture& tex : cfg.textures) {
std::shared_ptr<ImageLoader::ImageBuffer>
img(imageLoader.loadImage(MappedFile(tex.fileName)));
textures.push_back(std::make_shared<Texture>(
img->width, img->height, *img, tex.fileName));
parametrizeTexture(textures.back());
// static const uint32_t watchMask = IN_CLOSE_WRITE | IN_ATTRIB;
// watchedFiles.push_back(fileMonitor.watch(tex.fileName, watchMask));
watchedFiles.push_back(fileMonitor.watch(tex.fileName));
// TODO: review texture loading and binding
// works even without this - default texture
// glUniform1i(..., ...);
// checkError(&std::cerr);
}
}
bool Shark::Impl::reloadTexture(const std::string& fileName) {
for (std::shared_ptr<Texture> tex : textures) {
if (tex->getFileName() == fileName) {
std::shared_ptr<ImageLoader::ImageBuffer>
img(imageLoader.loadImage(MappedFile(fileName)));
tex->update(img->width, img->height, *img);
parametrizeTexture(tex);
loadVertices();
return true;
}
}
return false;
}
void Shark::Impl::loadShaders() {
// Vertex Array Object (VAO)
GLuint vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
// VAO - something like context for bound data/variables
// We can switch multiple VAOs. VAO can contain multiple VBOs.
// what-are-vertex-array-objects
// Vertex Buffer Object (VBO):
GLuint vbo;
glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
{
// Load default shaders if there are no configured:
int vc = 0;
int fc = 0;
auto& ss = cfg.shaders;
for (const auto& s : ss) if (s.type == "vertex") vc++;
for (const auto& s : ss) if (s.type == "fragment") fc++;
auto& d = getDefaultFile;
if (vc == 0) ss.push_back({d("shaders/default.vert"), "vertex"});
if (fc == 0) ss.push_back({d("shaders/default.frag"), "fragment"});
}
shaderProgram = std::make_shared<Program>();
// glBindFragDataLocation(program, 0, "outColor");
// glBindAttribLocation(program, LOC.input, "vertices");
for (const Configuration::Shader definition : cfg.shaders) {
Shader::Type type;
std::string fileName = definition.fileName;
if (definition.type == "fragment") type = Shader::Type::FRAGMENT;
else if (definition.type == "vertex") type = Shader::Type::VERTEX;
else throw std::invalid_argument("unsupported shader type");
MappedFile file(fileName);
std::shared_ptr<Shader> shader = std::make_shared<Shader>(
type, file, fileName);
shaderProgram->attachShader(*shader.get());
shaders.push_back(shader);
watchedFiles.push_back(fileMonitor.watch(fileName));
std::cerr << "GLSL loaded: " << fileName.c_str() << std::endl;
// We may detach and delete shaders,
// but our shaders are small, so we keep them for later reloading.
}
shaderProgram->link();
updateVariableLocations();
// listVariables(program);
std::cerr << "GLSL shader count: " << shaders.size() << std::endl;
}
void Shark::Impl::updateVariableLocations() {
// GLSL compiler does very efficient / aggressive optimization.
// Attributes and uniforms that are not used in the shader are deleted.
// And even if we e.g. read color from a texture and overwrite it,
// the variable is still deleted and considered „inactive“.
// Functions glGetAttribLocation() and glGetUniformLocation() return -1.
ProgAttr.aVertexXYZ = shaderProgram->getAttribLocation("aVertexXYZ");
ProgAttr.aTextureXY = shaderProgram->getAttribLocation("aTextureXY");
ProgAttr.uModel = shaderProgram->getUniformLocation("uModel");
ProgAttr.uView = shaderProgram->getUniformLocation("uView");
ProgAttr.uProjection = shaderProgram->getUniformLocation("uProjection");
ProgAttr.uTexture = shaderProgram->getUniformLocation("uTexture");
ProgAttr.uTextureScale = shaderProgram->getUniformLocation("uTextureScale");
ProgAttr.fColor = shaderProgram->getFragDataLocation("fColor");
shaderProgram->bindFragDataLocation("fColor", ProgAttr.fColor);
}
bool Shark::Impl::reloadShader(const std::string& fileName) {
for (auto shader : shaders) {
if (shader->getFileName() == fileName) {
shader->update(MappedFile(fileName));
shaderProgram->link();
updateVariableLocations();
return true;
}
}
return false;
}