8234541: C1 emits an empty message when it inlines successfully
Summary: Use "inline" as the message when successfull
Reviewed-by: thartmann, mdoerr
Contributed-by: navy.xliu@gmail.com
/*
* Copyright (c) 1996, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.x509;
import java.io.*;
import java.security.spec.AlgorithmParameterSpec;
import java.security.spec.InvalidParameterSpecException;
import java.security.spec.MGF1ParameterSpec;
import java.security.spec.PSSParameterSpec;
import java.util.*;
import java.security.*;
import sun.security.rsa.PSSParameters;
import sun.security.util.*;
/**
* This class identifies algorithms, such as cryptographic transforms, each
* of which may be associated with parameters. Instances of this base class
* are used when this runtime environment has no special knowledge of the
* algorithm type, and may also be used in other cases. Equivalence is
* defined according to OID and (where relevant) parameters.
*
* <P>Subclasses may be used, for example when the algorithm ID has
* associated parameters which some code (e.g. code using public keys) needs
* to have parsed. Two examples of such algorithms are Diffie-Hellman key
* exchange, and the Digital Signature Standard Algorithm (DSS/DSA).
*
* <P>The OID constants defined in this class correspond to some widely
* used algorithms, for which conventional string names have been defined.
* This class is not a general repository for OIDs, or for such string names.
* Note that the mappings between algorithm IDs and algorithm names is
* not one-to-one.
*
*
* @author David Brownell
* @author Amit Kapoor
* @author Hemma Prafullchandra
*/
public class AlgorithmId implements Serializable, DerEncoder {
/** use serialVersionUID from JDK 1.1. for interoperability */
@java.io.Serial
private static final long serialVersionUID = 7205873507486557157L;
/**
* The object identitifer being used for this algorithm.
*/
private ObjectIdentifier algid;
// The (parsed) parameters
@SuppressWarnings("serial") // Not statically typed as Serializable
private AlgorithmParameters algParams;
private boolean constructedFromDer = true;
/**
* Parameters for this algorithm. These are stored in unparsed
* DER-encoded form; subclasses can be made to automaticaly parse
* them so there is fast access to these parameters.
*/
@SuppressWarnings("serial") // Not statically typed as Serializable
protected DerValue params;
/**
* Constructs an algorithm ID which will be initialized
* separately, for example by deserialization.
* @deprecated use one of the other constructors.
*/
@Deprecated
public AlgorithmId() { }
/**
* Constructs a parameterless algorithm ID.
*
* @param oid the identifier for the algorithm
*/
public AlgorithmId(ObjectIdentifier oid) {
algid = oid;
}
/**
* Constructs an algorithm ID with algorithm parameters.
*
* @param oid the identifier for the algorithm.
* @param algparams the associated algorithm parameters.
*/
public AlgorithmId(ObjectIdentifier oid, AlgorithmParameters algparams) {
algid = oid;
algParams = algparams;
constructedFromDer = false;
}
private AlgorithmId(ObjectIdentifier oid, DerValue params)
throws IOException {
this.algid = oid;
this.params = params;
if (this.params != null) {
decodeParams();
}
}
protected void decodeParams() throws IOException {
String algidString = algid.toString();
try {
algParams = AlgorithmParameters.getInstance(algidString);
} catch (NoSuchAlgorithmException e) {
/*
* This algorithm parameter type is not supported, so we cannot
* parse the parameters.
*/
algParams = null;
return;
}
// Decode (parse) the parameters
algParams.init(params.toByteArray());
}
/**
* Marshal a DER-encoded "AlgorithmID" sequence on the DER stream.
*/
public final void encode(DerOutputStream out) throws IOException {
derEncode(out);
}
/**
* DER encode this object onto an output stream.
* Implements the <code>DerEncoder</code> interface.
*
* @param out
* the output stream on which to write the DER encoding.
*
* @exception IOException on encoding error.
*/
public void derEncode (OutputStream out) throws IOException {
DerOutputStream bytes = new DerOutputStream();
DerOutputStream tmp = new DerOutputStream();
bytes.putOID(algid);
// Setup params from algParams since no DER encoding is given
if (constructedFromDer == false) {
if (algParams != null) {
params = new DerValue(algParams.getEncoded());
} else {
params = null;
}
}
if (params == null) {
// Changes backed out for compatibility with Solaris
// Several AlgorithmId should omit the whole parameter part when
// it's NULL. They are ---
// RFC 3370 2.1: Implementations SHOULD generate SHA-1
// AlgorithmIdentifiers with absent parameters.
// RFC 3447 C1: When id-sha1, id-sha224, id-sha256, id-sha384 and
// id-sha512 are used in an AlgorithmIdentifier the parameters
// (which are optional) SHOULD be omitted.
// RFC 3279 2.3.2: The id-dsa algorithm syntax includes optional
// domain parameters... When omitted, the parameters component
// MUST be omitted entirely
// RFC 3370 3.1: When the id-dsa-with-sha1 algorithm identifier
// is used, the AlgorithmIdentifier parameters field MUST be absent.
/*if (
algid.equals((Object)SHA_oid) ||
algid.equals((Object)SHA224_oid) ||
algid.equals((Object)SHA256_oid) ||
algid.equals((Object)SHA384_oid) ||
algid.equals((Object)SHA512_oid) ||
algid.equals((Object)SHA512_224_oid) ||
algid.equals((Object)SHA512_256_oid) ||
algid.equals((Object)DSA_oid) ||
algid.equals((Object)sha1WithDSA_oid)) {
; // no parameter part encoded
} else {
bytes.putNull();
}*/
if (algid.equals(RSASSA_PSS_oid)) {
// RFC 4055 3.3: when an RSASSA-PSS key does not require
// parameter validation, field is absent.
} else {
bytes.putNull();
}
} else {
bytes.putDerValue(params);
}
tmp.write(DerValue.tag_Sequence, bytes);
out.write(tmp.toByteArray());
}
/**
* Returns the DER-encoded X.509 AlgorithmId as a byte array.
*/
public final byte[] encode() throws IOException {
DerOutputStream out = new DerOutputStream();
derEncode(out);
return out.toByteArray();
}
/**
* Returns the ISO OID for this algorithm. This is usually converted
* to a string and used as part of an algorithm name, for example
* "OID.1.3.14.3.2.13" style notation. Use the <code>getName</code>
* call when you do not need to ensure cross-system portability
* of algorithm names, or need a user friendly name.
*/
public final ObjectIdentifier getOID () {
return algid;
}
/**
* Returns a name for the algorithm which may be more intelligible
* to humans than the algorithm's OID, but which won't necessarily
* be comprehensible on other systems. For example, this might
* return a name such as "MD5withRSA" for a signature algorithm on
* some systems. It also returns names like "OID.1.2.3.4", when
* no particular name for the algorithm is known.
*/
public String getName() {
String algName = nameTable.get(algid);
if (algName != null) {
return algName;
}
if ((params != null) && algid.equals((Object)specifiedWithECDSA_oid)) {
try {
AlgorithmId paramsId =
AlgorithmId.parse(new DerValue(getEncodedParams()));
String paramsName = paramsId.getName();
algName = makeSigAlg(paramsName, "EC");
} catch (IOException e) {
// ignore
}
}
return (algName == null) ? algid.toString() : algName;
}
public AlgorithmParameters getParameters() {
return algParams;
}
/**
* Returns the DER encoded parameter, which can then be
* used to initialize java.security.AlgorithmParamters.
*
* @return DER encoded parameters, or null not present.
*/
public byte[] getEncodedParams() throws IOException {
return (params == null) ? null : params.toByteArray();
}
/**
* Returns true iff the argument indicates the same algorithm
* with the same parameters.
*/
public boolean equals(AlgorithmId other) {
boolean paramsEqual = Objects.equals(other.params, params);
return (algid.equals((Object)other.algid) && paramsEqual);
}
/**
* Compares this AlgorithmID to another. If algorithm parameters are
* available, they are compared. Otherwise, just the object IDs
* for the algorithm are compared.
*
* @param other preferably an AlgorithmId, else an ObjectIdentifier
*/
public boolean equals(Object other) {
if (this == other) {
return true;
}
if (other instanceof AlgorithmId) {
return equals((AlgorithmId) other);
} else if (other instanceof ObjectIdentifier) {
return equals((ObjectIdentifier) other);
} else {
return false;
}
}
/**
* Compares two algorithm IDs for equality. Returns true iff
* they are the same algorithm, ignoring algorithm parameters.
*/
public final boolean equals(ObjectIdentifier id) {
return algid.equals((Object)id);
}
/**
* Returns a hashcode for this AlgorithmId.
*
* @return a hashcode for this AlgorithmId.
*/
public int hashCode() {
StringBuilder sbuf = new StringBuilder();
sbuf.append(algid.toString());
sbuf.append(paramsToString());
return sbuf.toString().hashCode();
}
/**
* Provides a human-readable description of the algorithm parameters.
* This may be redefined by subclasses which parse those parameters.
*/
protected String paramsToString() {
if (params == null) {
return "";
} else if (algParams != null) {
return algParams.toString();
} else {
return ", params unparsed";
}
}
/**
* Returns a string describing the algorithm and its parameters.
*/
public String toString() {
return getName() + paramsToString();
}
/**
* Parse (unmarshal) an ID from a DER sequence input value. This form
* parsing might be used when expanding a value which has already been
* partially unmarshaled as a set or sequence member.
*
* @exception IOException on error.
* @param val the input value, which contains the algid and, if
* there are any parameters, those parameters.
* @return an ID for the algorithm. If the system is configured
* appropriately, this may be an instance of a class
* with some kind of special support for this algorithm.
* In that case, you may "narrow" the type of the ID.
*/
public static AlgorithmId parse(DerValue val) throws IOException {
if (val.tag != DerValue.tag_Sequence) {
throw new IOException("algid parse error, not a sequence");
}
/*
* Get the algorithm ID and any parameters.
*/
ObjectIdentifier algid;
DerValue params;
DerInputStream in = val.toDerInputStream();
algid = in.getOID();
if (in.available() == 0) {
params = null;
} else {
params = in.getDerValue();
if (params.tag == DerValue.tag_Null) {
if (params.length() != 0) {
throw new IOException("invalid NULL");
}
params = null;
}
if (in.available() != 0) {
throw new IOException("Invalid AlgorithmIdentifier: extra data");
}
}
return new AlgorithmId(algid, params);
}
/**
* Returns one of the algorithm IDs most commonly associated
* with this algorithm name.
*
* @param algname the name being used
* @deprecated use the short get form of this method.
* @exception NoSuchAlgorithmException on error.
*/
@Deprecated
public static AlgorithmId getAlgorithmId(String algname)
throws NoSuchAlgorithmException {
return get(algname);
}
/**
* Returns one of the algorithm IDs most commonly associated
* with this algorithm name.
*
* @param algname the name being used
* @exception NoSuchAlgorithmException on error.
*/
public static AlgorithmId get(String algname)
throws NoSuchAlgorithmException {
ObjectIdentifier oid;
try {
oid = algOID(algname);
} catch (IOException ioe) {
throw new NoSuchAlgorithmException
("Invalid ObjectIdentifier " + algname);
}
if (oid == null) {
throw new NoSuchAlgorithmException
("unrecognized algorithm name: " + algname);
}
return new AlgorithmId(oid);
}
/**
* Returns one of the algorithm IDs most commonly associated
* with this algorithm parameters.
*
* @param algparams the associated algorithm parameters.
* @exception NoSuchAlgorithmException on error.
*/
public static AlgorithmId get(AlgorithmParameters algparams)
throws NoSuchAlgorithmException {
ObjectIdentifier oid;
String algname = algparams.getAlgorithm();
try {
oid = algOID(algname);
} catch (IOException ioe) {
throw new NoSuchAlgorithmException
("Invalid ObjectIdentifier " + algname);
}
if (oid == null) {
throw new NoSuchAlgorithmException
("unrecognized algorithm name: " + algname);
}
return new AlgorithmId(oid, algparams);
}
/*
* Translates from some common algorithm names to the
* OID with which they're usually associated ... this mapping
* is the reverse of the one below, except in those cases
* where synonyms are supported or where a given algorithm
* is commonly associated with multiple OIDs.
*
* XXX This method needs to be enhanced so that we can also pass the
* scope of the algorithm name to it, e.g., the algorithm name "DSA"
* may have a different OID when used as a "Signature" algorithm than when
* used as a "KeyPairGenerator" algorithm.
*/
private static ObjectIdentifier algOID(String name) throws IOException {
// See if algname is in printable OID ("dot-dot") notation
if (name.indexOf('.') != -1) {
if (name.startsWith("OID.")) {
return new ObjectIdentifier(name.substring("OID.".length()));
} else {
return new ObjectIdentifier(name);
}
}
// Digesting algorithms
if (name.equalsIgnoreCase("MD5")) {
return AlgorithmId.MD5_oid;
}
if (name.equalsIgnoreCase("MD2")) {
return AlgorithmId.MD2_oid;
}
if (name.equalsIgnoreCase("SHA") || name.equalsIgnoreCase("SHA1")
|| name.equalsIgnoreCase("SHA-1")) {
return AlgorithmId.SHA_oid;
}
if (name.equalsIgnoreCase("SHA-256") ||
name.equalsIgnoreCase("SHA256")) {
return AlgorithmId.SHA256_oid;
}
if (name.equalsIgnoreCase("SHA-384") ||
name.equalsIgnoreCase("SHA384")) {
return AlgorithmId.SHA384_oid;
}
if (name.equalsIgnoreCase("SHA-512") ||
name.equalsIgnoreCase("SHA512")) {
return AlgorithmId.SHA512_oid;
}
if (name.equalsIgnoreCase("SHA-224") ||
name.equalsIgnoreCase("SHA224")) {
return AlgorithmId.SHA224_oid;
}
if (name.equalsIgnoreCase("SHA-512/224") ||
name.equalsIgnoreCase("SHA512/224")) {
return AlgorithmId.SHA512_224_oid;
}
if (name.equalsIgnoreCase("SHA-512/256") ||
name.equalsIgnoreCase("SHA512/256")) {
return AlgorithmId.SHA512_256_oid;
}
// Various public key algorithms
if (name.equalsIgnoreCase("RSA")) {
return AlgorithmId.RSAEncryption_oid;
}
if (name.equalsIgnoreCase("RSASSA-PSS")) {
return AlgorithmId.RSASSA_PSS_oid;
}
if (name.equalsIgnoreCase("RSAES-OAEP")) {
return AlgorithmId.RSAES_OAEP_oid;
}
if (name.equalsIgnoreCase("Diffie-Hellman")
|| name.equalsIgnoreCase("DH")) {
return AlgorithmId.DH_oid;
}
if (name.equalsIgnoreCase("DSA")) {
return AlgorithmId.DSA_oid;
}
if (name.equalsIgnoreCase("EC")) {
return EC_oid;
}
if (name.equalsIgnoreCase("ECDH")) {
return AlgorithmId.ECDH_oid;
}
// Secret key algorithms
if (name.equalsIgnoreCase("AES")) {
return AlgorithmId.AES_oid;
}
// Common signature types
if (name.equalsIgnoreCase("MD5withRSA")
|| name.equalsIgnoreCase("MD5/RSA")) {
return AlgorithmId.md5WithRSAEncryption_oid;
}
if (name.equalsIgnoreCase("MD2withRSA")
|| name.equalsIgnoreCase("MD2/RSA")) {
return AlgorithmId.md2WithRSAEncryption_oid;
}
if (name.equalsIgnoreCase("SHAwithDSA")
|| name.equalsIgnoreCase("SHA1withDSA")
|| name.equalsIgnoreCase("SHA/DSA")
|| name.equalsIgnoreCase("SHA1/DSA")
|| name.equalsIgnoreCase("DSAWithSHA1")
|| name.equalsIgnoreCase("DSS")
|| name.equalsIgnoreCase("SHA-1/DSA")) {
return AlgorithmId.sha1WithDSA_oid;
}
if (name.equalsIgnoreCase("SHA224WithDSA")) {
return AlgorithmId.sha224WithDSA_oid;
}
if (name.equalsIgnoreCase("SHA256WithDSA")) {
return AlgorithmId.sha256WithDSA_oid;
}
if (name.equalsIgnoreCase("SHA1WithRSA")
|| name.equalsIgnoreCase("SHA1/RSA")) {
return AlgorithmId.sha1WithRSAEncryption_oid;
}
if (name.equalsIgnoreCase("SHA1withECDSA")
|| name.equalsIgnoreCase("ECDSA")) {
return AlgorithmId.sha1WithECDSA_oid;
}
if (name.equalsIgnoreCase("SHA224withECDSA")) {
return AlgorithmId.sha224WithECDSA_oid;
}
if (name.equalsIgnoreCase("SHA256withECDSA")) {
return AlgorithmId.sha256WithECDSA_oid;
}
if (name.equalsIgnoreCase("SHA384withECDSA")) {
return AlgorithmId.sha384WithECDSA_oid;
}
if (name.equalsIgnoreCase("SHA512withECDSA")) {
return AlgorithmId.sha512WithECDSA_oid;
}
return oidTable().get(name.toUpperCase(Locale.ENGLISH));
}
private static ObjectIdentifier oid(int ... values) {
return ObjectIdentifier.newInternal(values);
}
private static volatile Map<String,ObjectIdentifier> oidTable;
private static final Map<ObjectIdentifier,String> nameTable;
/** Returns the oidTable, lazily initializing it on first access. */
private static Map<String,ObjectIdentifier> oidTable()
throws IOException {
// Double checked locking; safe because oidTable is volatile
Map<String,ObjectIdentifier> tab;
if ((tab = oidTable) == null) {
synchronized (AlgorithmId.class) {
if ((tab = oidTable) == null)
oidTable = tab = computeOidTable();
}
}
return tab;
}
/** Collects the algorithm names from the installed providers. */
private static HashMap<String,ObjectIdentifier> computeOidTable()
throws IOException {
HashMap<String,ObjectIdentifier> tab = new HashMap<>();
for (Provider provider : Security.getProviders()) {
for (Object key : provider.keySet()) {
String alias = (String)key;
String upperCaseAlias = alias.toUpperCase(Locale.ENGLISH);
int index;
if (upperCaseAlias.startsWith("ALG.ALIAS") &&
(index=upperCaseAlias.indexOf("OID.", 0)) != -1) {
index += "OID.".length();
if (index == alias.length()) {
// invalid alias entry
break;
}
String oidString = alias.substring(index);
String stdAlgName = provider.getProperty(alias);
if (stdAlgName != null) {
stdAlgName = stdAlgName.toUpperCase(Locale.ENGLISH);
}
if (stdAlgName != null &&
tab.get(stdAlgName) == null) {
tab.put(stdAlgName, new ObjectIdentifier(oidString));
}
}
}
}
return tab;
}
/*****************************************************************/
/*
* HASHING ALGORITHMS
*/
/**
* Algorithm ID for the MD2 Message Digest Algorthm, from RFC 1319.
* OID = 1.2.840.113549.2.2
*/
public static final ObjectIdentifier MD2_oid =
ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 2, 2});
/**
* Algorithm ID for the MD5 Message Digest Algorthm, from RFC 1321.
* OID = 1.2.840.113549.2.5
*/
public static final ObjectIdentifier MD5_oid =
ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 2, 5});
/**
* Algorithm ID for the SHA1 Message Digest Algorithm, from FIPS 180-1.
* This is sometimes called "SHA", though that is often confusing since
* many people refer to FIPS 180 (which has an error) as defining SHA.
* OID = 1.3.14.3.2.26. Old SHA-0 OID: 1.3.14.3.2.18.
*/
public static final ObjectIdentifier SHA_oid =
ObjectIdentifier.newInternal(new int[] {1, 3, 14, 3, 2, 26});
public static final ObjectIdentifier SHA224_oid =
ObjectIdentifier.newInternal(new int[] {2, 16, 840, 1, 101, 3, 4, 2, 4});
public static final ObjectIdentifier SHA256_oid =
ObjectIdentifier.newInternal(new int[] {2, 16, 840, 1, 101, 3, 4, 2, 1});
public static final ObjectIdentifier SHA384_oid =
ObjectIdentifier.newInternal(new int[] {2, 16, 840, 1, 101, 3, 4, 2, 2});
public static final ObjectIdentifier SHA512_oid =
ObjectIdentifier.newInternal(new int[] {2, 16, 840, 1, 101, 3, 4, 2, 3});
public static final ObjectIdentifier SHA512_224_oid =
ObjectIdentifier.newInternal(new int[] {2, 16, 840, 1, 101, 3, 4, 2, 5});
public static final ObjectIdentifier SHA512_256_oid =
ObjectIdentifier.newInternal(new int[] {2, 16, 840, 1, 101, 3, 4, 2, 6});
/*
* COMMON PUBLIC KEY TYPES
*/
private static final int[] DH_data = { 1, 2, 840, 113549, 1, 3, 1 };
private static final int[] DH_PKIX_data = { 1, 2, 840, 10046, 2, 1 };
private static final int[] DSA_OIW_data = { 1, 3, 14, 3, 2, 12 };
private static final int[] DSA_PKIX_data = { 1, 2, 840, 10040, 4, 1 };
private static final int[] RSA_data = { 2, 5, 8, 1, 1 };
public static final ObjectIdentifier DH_oid;
public static final ObjectIdentifier DH_PKIX_oid;
public static final ObjectIdentifier DSA_oid;
public static final ObjectIdentifier DSA_OIW_oid;
public static final ObjectIdentifier EC_oid = oid(1, 2, 840, 10045, 2, 1);
public static final ObjectIdentifier ECDH_oid = oid(1, 3, 132, 1, 12);
public static final ObjectIdentifier RSA_oid;
public static final ObjectIdentifier RSAEncryption_oid =
oid(1, 2, 840, 113549, 1, 1, 1);
public static final ObjectIdentifier RSAES_OAEP_oid =
oid(1, 2, 840, 113549, 1, 1, 7);
public static final ObjectIdentifier mgf1_oid =
oid(1, 2, 840, 113549, 1, 1, 8);
public static final ObjectIdentifier RSASSA_PSS_oid =
oid(1, 2, 840, 113549, 1, 1, 10);
/*
* COMMON SECRET KEY TYPES
*/
public static final ObjectIdentifier AES_oid =
oid(2, 16, 840, 1, 101, 3, 4, 1);
/*
* COMMON SIGNATURE ALGORITHMS
*/
private static final int[] md2WithRSAEncryption_data =
{ 1, 2, 840, 113549, 1, 1, 2 };
private static final int[] md5WithRSAEncryption_data =
{ 1, 2, 840, 113549, 1, 1, 4 };
private static final int[] sha1WithRSAEncryption_data =
{ 1, 2, 840, 113549, 1, 1, 5 };
private static final int[] sha1WithRSAEncryption_OIW_data =
{ 1, 3, 14, 3, 2, 29 };
private static final int[] sha224WithRSAEncryption_data =
{ 1, 2, 840, 113549, 1, 1, 14 };
private static final int[] sha256WithRSAEncryption_data =
{ 1, 2, 840, 113549, 1, 1, 11 };
private static final int[] sha384WithRSAEncryption_data =
{ 1, 2, 840, 113549, 1, 1, 12 };
private static final int[] sha512WithRSAEncryption_data =
{ 1, 2, 840, 113549, 1, 1, 13 };
private static final int[] shaWithDSA_OIW_data =
{ 1, 3, 14, 3, 2, 13 };
private static final int[] sha1WithDSA_OIW_data =
{ 1, 3, 14, 3, 2, 27 };
private static final int[] dsaWithSHA1_PKIX_data =
{ 1, 2, 840, 10040, 4, 3 };
public static final ObjectIdentifier md2WithRSAEncryption_oid;
public static final ObjectIdentifier md5WithRSAEncryption_oid;
public static final ObjectIdentifier sha1WithRSAEncryption_oid;
public static final ObjectIdentifier sha1WithRSAEncryption_OIW_oid;
public static final ObjectIdentifier sha224WithRSAEncryption_oid;
public static final ObjectIdentifier sha256WithRSAEncryption_oid;
public static final ObjectIdentifier sha384WithRSAEncryption_oid;
public static final ObjectIdentifier sha512WithRSAEncryption_oid;
public static final ObjectIdentifier sha512_224WithRSAEncryption_oid =
oid(1, 2, 840, 113549, 1, 1, 15);
public static final ObjectIdentifier sha512_256WithRSAEncryption_oid =
oid(1, 2, 840, 113549, 1, 1, 16);;
public static final ObjectIdentifier shaWithDSA_OIW_oid;
public static final ObjectIdentifier sha1WithDSA_OIW_oid;
public static final ObjectIdentifier sha1WithDSA_oid;
public static final ObjectIdentifier sha224WithDSA_oid =
oid(2, 16, 840, 1, 101, 3, 4, 3, 1);
public static final ObjectIdentifier sha256WithDSA_oid =
oid(2, 16, 840, 1, 101, 3, 4, 3, 2);
public static final ObjectIdentifier sha1WithECDSA_oid =
oid(1, 2, 840, 10045, 4, 1);
public static final ObjectIdentifier sha224WithECDSA_oid =
oid(1, 2, 840, 10045, 4, 3, 1);
public static final ObjectIdentifier sha256WithECDSA_oid =
oid(1, 2, 840, 10045, 4, 3, 2);
public static final ObjectIdentifier sha384WithECDSA_oid =
oid(1, 2, 840, 10045, 4, 3, 3);
public static final ObjectIdentifier sha512WithECDSA_oid =
oid(1, 2, 840, 10045, 4, 3, 4);
public static final ObjectIdentifier specifiedWithECDSA_oid =
oid(1, 2, 840, 10045, 4, 3);
/**
* Algorithm ID for the PBE encryption algorithms from PKCS#5 and
* PKCS#12.
*/
public static final ObjectIdentifier pbeWithMD5AndDES_oid =
ObjectIdentifier.newInternal(new int[]{1, 2, 840, 113549, 1, 5, 3});
public static final ObjectIdentifier pbeWithMD5AndRC2_oid =
ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 1, 5, 6});
public static final ObjectIdentifier pbeWithSHA1AndDES_oid =
ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 1, 5, 10});
public static final ObjectIdentifier pbeWithSHA1AndRC2_oid =
ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 1, 5, 11});
public static ObjectIdentifier pbeWithSHA1AndRC4_128_oid =
ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 1, 12, 1, 1});
public static ObjectIdentifier pbeWithSHA1AndRC4_40_oid =
ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 1, 12, 1, 2});
public static ObjectIdentifier pbeWithSHA1AndDESede_oid =
ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 1, 12, 1, 3});
public static ObjectIdentifier pbeWithSHA1AndRC2_128_oid =
ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 1, 12, 1, 5});
public static ObjectIdentifier pbeWithSHA1AndRC2_40_oid =
ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 1, 12, 1, 6});
static {
/*
* Note the preferred OIDs are named simply with no "OIW" or
* "PKIX" in them, even though they may point to data from these
* specs; e.g. SHA_oid, DH_oid, DSA_oid, SHA1WithDSA_oid...
*/
/**
* Algorithm ID for Diffie Hellman Key agreement, from PKCS #3.
* Parameters include public values P and G, and may optionally specify
* the length of the private key X. Alternatively, algorithm parameters
* may be derived from another source such as a Certificate Authority's
* certificate.
* OID = 1.2.840.113549.1.3.1
*/
DH_oid = ObjectIdentifier.newInternal(DH_data);
/**
* Algorithm ID for the Diffie Hellman Key Agreement (DH), from RFC 3279.
* Parameters may include public values P and G.
* OID = 1.2.840.10046.2.1
*/
DH_PKIX_oid = ObjectIdentifier.newInternal(DH_PKIX_data);
/**
* Algorithm ID for the Digital Signing Algorithm (DSA), from the
* NIST OIW Stable Agreements part 12.
* Parameters may include public values P, Q, and G; or these may be
* derived from
* another source such as a Certificate Authority's certificate.
* OID = 1.3.14.3.2.12
*/
DSA_OIW_oid = ObjectIdentifier.newInternal(DSA_OIW_data);
/**
* Algorithm ID for the Digital Signing Algorithm (DSA), from RFC 3279.
* Parameters may include public values P, Q, and G; or these may be
* derived from another source such as a Certificate Authority's
* certificate.
* OID = 1.2.840.10040.4.1
*/
DSA_oid = ObjectIdentifier.newInternal(DSA_PKIX_data);
/**
* Algorithm ID for RSA keys used for any purpose, as defined in X.509.
* The algorithm parameter is a single value, the number of bits in the
* public modulus.
* OID = 2.5.8.1.1
*/
RSA_oid = ObjectIdentifier.newInternal(RSA_data);
/**
* Identifies a signing algorithm where an MD2 digest is encrypted
* using an RSA private key; defined in PKCS #1. Use of this
* signing algorithm is discouraged due to MD2 vulnerabilities.
* OID = 1.2.840.113549.1.1.2
*/
md2WithRSAEncryption_oid =
ObjectIdentifier.newInternal(md2WithRSAEncryption_data);
/**
* Identifies a signing algorithm where an MD5 digest is
* encrypted using an RSA private key; defined in PKCS #1.
* OID = 1.2.840.113549.1.1.4
*/
md5WithRSAEncryption_oid =
ObjectIdentifier.newInternal(md5WithRSAEncryption_data);
/**
* Identifies a signing algorithm where a SHA1 digest is
* encrypted using an RSA private key; defined by RSA DSI.
* OID = 1.2.840.113549.1.1.5
*/
sha1WithRSAEncryption_oid =
ObjectIdentifier.newInternal(sha1WithRSAEncryption_data);
/**
* Identifies a signing algorithm where a SHA1 digest is
* encrypted using an RSA private key; defined in NIST OIW.
* OID = 1.3.14.3.2.29
*/
sha1WithRSAEncryption_OIW_oid =
ObjectIdentifier.newInternal(sha1WithRSAEncryption_OIW_data);
/**
* Identifies a signing algorithm where a SHA224 digest is
* encrypted using an RSA private key; defined by PKCS #1.
* OID = 1.2.840.113549.1.1.14
*/
sha224WithRSAEncryption_oid =
ObjectIdentifier.newInternal(sha224WithRSAEncryption_data);
/**
* Identifies a signing algorithm where a SHA256 digest is
* encrypted using an RSA private key; defined by PKCS #1.
* OID = 1.2.840.113549.1.1.11
*/
sha256WithRSAEncryption_oid =
ObjectIdentifier.newInternal(sha256WithRSAEncryption_data);
/**
* Identifies a signing algorithm where a SHA384 digest is
* encrypted using an RSA private key; defined by PKCS #1.
* OID = 1.2.840.113549.1.1.12
*/
sha384WithRSAEncryption_oid =
ObjectIdentifier.newInternal(sha384WithRSAEncryption_data);
/**
* Identifies a signing algorithm where a SHA512 digest is
* encrypted using an RSA private key; defined by PKCS #1.
* OID = 1.2.840.113549.1.1.13
*/
sha512WithRSAEncryption_oid =
ObjectIdentifier.newInternal(sha512WithRSAEncryption_data);
/**
* Identifies the FIPS 186 "Digital Signature Standard" (DSS), where a
* SHA digest is signed using the Digital Signing Algorithm (DSA).
* This should not be used.
* OID = 1.3.14.3.2.13
*/
shaWithDSA_OIW_oid = ObjectIdentifier.newInternal(shaWithDSA_OIW_data);
/**
* Identifies the FIPS 186 "Digital Signature Standard" (DSS), where a
* SHA1 digest is signed using the Digital Signing Algorithm (DSA).
* OID = 1.3.14.3.2.27
*/
sha1WithDSA_OIW_oid = ObjectIdentifier.newInternal(sha1WithDSA_OIW_data);
/**
* Identifies the FIPS 186 "Digital Signature Standard" (DSS), where a
* SHA1 digest is signed using the Digital Signing Algorithm (DSA).
* OID = 1.2.840.10040.4.3
*/
sha1WithDSA_oid = ObjectIdentifier.newInternal(dsaWithSHA1_PKIX_data);
nameTable = new HashMap<>();
nameTable.put(MD5_oid, "MD5");
nameTable.put(MD2_oid, "MD2");
nameTable.put(SHA_oid, "SHA-1");
nameTable.put(SHA224_oid, "SHA-224");
nameTable.put(SHA256_oid, "SHA-256");
nameTable.put(SHA384_oid, "SHA-384");
nameTable.put(SHA512_oid, "SHA-512");
nameTable.put(SHA512_224_oid, "SHA-512/224");
nameTable.put(SHA512_256_oid, "SHA-512/256");
nameTable.put(RSAEncryption_oid, "RSA");
nameTable.put(RSA_oid, "RSA");
nameTable.put(DH_oid, "Diffie-Hellman");
nameTable.put(DH_PKIX_oid, "Diffie-Hellman");
nameTable.put(DSA_oid, "DSA");
nameTable.put(DSA_OIW_oid, "DSA");
nameTable.put(EC_oid, "EC");
nameTable.put(ECDH_oid, "ECDH");
nameTable.put(AES_oid, "AES");
nameTable.put(sha1WithECDSA_oid, "SHA1withECDSA");
nameTable.put(sha224WithECDSA_oid, "SHA224withECDSA");
nameTable.put(sha256WithECDSA_oid, "SHA256withECDSA");
nameTable.put(sha384WithECDSA_oid, "SHA384withECDSA");
nameTable.put(sha512WithECDSA_oid, "SHA512withECDSA");
nameTable.put(md5WithRSAEncryption_oid, "MD5withRSA");
nameTable.put(md2WithRSAEncryption_oid, "MD2withRSA");
nameTable.put(sha1WithDSA_oid, "SHA1withDSA");
nameTable.put(sha1WithDSA_OIW_oid, "SHA1withDSA");
nameTable.put(shaWithDSA_OIW_oid, "SHA1withDSA");
nameTable.put(sha224WithDSA_oid, "SHA224withDSA");
nameTable.put(sha256WithDSA_oid, "SHA256withDSA");
nameTable.put(sha1WithRSAEncryption_oid, "SHA1withRSA");
nameTable.put(sha1WithRSAEncryption_OIW_oid, "SHA1withRSA");
nameTable.put(sha224WithRSAEncryption_oid, "SHA224withRSA");
nameTable.put(sha256WithRSAEncryption_oid, "SHA256withRSA");
nameTable.put(sha384WithRSAEncryption_oid, "SHA384withRSA");
nameTable.put(sha512WithRSAEncryption_oid, "SHA512withRSA");
nameTable.put(sha512_224WithRSAEncryption_oid, "SHA512/224withRSA");
nameTable.put(sha512_256WithRSAEncryption_oid, "SHA512/256withRSA");
nameTable.put(RSASSA_PSS_oid, "RSASSA-PSS");
nameTable.put(RSAES_OAEP_oid, "RSAES-OAEP");
nameTable.put(pbeWithMD5AndDES_oid, "PBEWithMD5AndDES");
nameTable.put(pbeWithMD5AndRC2_oid, "PBEWithMD5AndRC2");
nameTable.put(pbeWithSHA1AndDES_oid, "PBEWithSHA1AndDES");
nameTable.put(pbeWithSHA1AndRC2_oid, "PBEWithSHA1AndRC2");
nameTable.put(pbeWithSHA1AndRC4_128_oid, "PBEWithSHA1AndRC4_128");
nameTable.put(pbeWithSHA1AndRC4_40_oid, "PBEWithSHA1AndRC4_40");
nameTable.put(pbeWithSHA1AndDESede_oid, "PBEWithSHA1AndDESede");
nameTable.put(pbeWithSHA1AndRC2_128_oid, "PBEWithSHA1AndRC2_128");
nameTable.put(pbeWithSHA1AndRC2_40_oid, "PBEWithSHA1AndRC2_40");
}
/**
* Creates a signature algorithm name from a digest algorithm
* name and a encryption algorithm name.
*/
public static String makeSigAlg(String digAlg, String encAlg) {
digAlg = digAlg.replace("-", "");
if (encAlg.equalsIgnoreCase("EC")) encAlg = "ECDSA";
return digAlg + "with" + encAlg;
}
/**
* Extracts the encryption algorithm name from a signature
* algorithm name.
*/
public static String getEncAlgFromSigAlg(String signatureAlgorithm) {
signatureAlgorithm = signatureAlgorithm.toUpperCase(Locale.ENGLISH);
int with = signatureAlgorithm.indexOf("WITH");
String keyAlgorithm = null;
if (with > 0) {
int and = signatureAlgorithm.indexOf("AND", with + 4);
if (and > 0) {
keyAlgorithm = signatureAlgorithm.substring(with + 4, and);
} else {
keyAlgorithm = signatureAlgorithm.substring(with + 4);
}
if (keyAlgorithm.equalsIgnoreCase("ECDSA")) {
keyAlgorithm = "EC";
}
}
return keyAlgorithm;
}
/**
* Extracts the digest algorithm name from a signature
* algorithm name.
*/
public static String getDigAlgFromSigAlg(String signatureAlgorithm) {
signatureAlgorithm = signatureAlgorithm.toUpperCase(Locale.ENGLISH);
int with = signatureAlgorithm.indexOf("WITH");
if (with > 0) {
return signatureAlgorithm.substring(0, with);
}
return null;
}
/**
* Checks if a signature algorithm matches a key algorithm, i.e. a
* signature can be initialized with a key.
*
* @param kAlg must not be null
* @param sAlg must not be null
* @throws IllegalArgumentException if they do not match
*/
public static void checkKeyAndSigAlgMatch(String kAlg, String sAlg) {
String sAlgUp = sAlg.toUpperCase(Locale.US);
if ((sAlgUp.endsWith("WITHRSA") && !kAlg.equalsIgnoreCase("RSA")) ||
(sAlgUp.endsWith("WITHECDSA") && !kAlg.equalsIgnoreCase("EC")) ||
(sAlgUp.endsWith("WITHDSA") && !kAlg.equalsIgnoreCase("DSA"))) {
throw new IllegalArgumentException(
"key algorithm not compatible with signature algorithm");
}
}
/**
* Returns the default signature algorithm for a private key. The digest
* part might evolve with time. Remember to update the spec of
* {@link jdk.security.jarsigner.JarSigner.Builder#getDefaultSignatureAlgorithm(PrivateKey)}
* if updated.
*
* @param k cannot be null
* @return the default alg, might be null if unsupported
*/
public static String getDefaultSigAlgForKey(PrivateKey k) {
switch (k.getAlgorithm().toUpperCase(Locale.ENGLISH)) {
case "EC":
return ecStrength(KeyUtil.getKeySize(k))
+ "withECDSA";
case "DSA":
return ifcFfcStrength(KeyUtil.getKeySize(k))
+ "withDSA";
case "RSA":
return ifcFfcStrength(KeyUtil.getKeySize(k))
+ "withRSA";
default:
return null;
}
}
// Most commonly used PSSParameterSpec and AlgorithmId
private static class PSSParamsHolder {
final static PSSParameterSpec PSS_256_SPEC = new PSSParameterSpec(
"SHA-256", "MGF1",
new MGF1ParameterSpec("SHA-256"),
32, PSSParameterSpec.TRAILER_FIELD_BC);
final static PSSParameterSpec PSS_384_SPEC = new PSSParameterSpec(
"SHA-384", "MGF1",
new MGF1ParameterSpec("SHA-384"),
48, PSSParameterSpec.TRAILER_FIELD_BC);
final static PSSParameterSpec PSS_512_SPEC = new PSSParameterSpec(
"SHA-512", "MGF1",
new MGF1ParameterSpec("SHA-512"),
64, PSSParameterSpec.TRAILER_FIELD_BC);
final static AlgorithmId PSS_256_ID;
final static AlgorithmId PSS_384_ID;
final static AlgorithmId PSS_512_ID;
static {
try {
PSS_256_ID = new AlgorithmId(RSASSA_PSS_oid,
new DerValue(PSSParameters.getEncoded(PSS_256_SPEC)));
PSS_384_ID = new AlgorithmId(RSASSA_PSS_oid,
new DerValue(PSSParameters.getEncoded(PSS_384_SPEC)));
PSS_512_ID = new AlgorithmId(RSASSA_PSS_oid,
new DerValue(PSSParameters.getEncoded(PSS_512_SPEC)));
} catch (IOException e) {
throw new AssertionError("Should not happen", e);
}
}
}
public static AlgorithmId getWithParameterSpec(String algName,
AlgorithmParameterSpec spec) throws NoSuchAlgorithmException {
if (spec == null) {
return AlgorithmId.get(algName);
} else if (spec == PSSParamsHolder.PSS_256_SPEC) {
return PSSParamsHolder.PSS_256_ID;
} else if (spec == PSSParamsHolder.PSS_384_SPEC) {
return PSSParamsHolder.PSS_384_ID;
} else if (spec == PSSParamsHolder.PSS_512_SPEC) {
return PSSParamsHolder.PSS_512_ID;
} else {
try {
AlgorithmParameters result =
AlgorithmParameters.getInstance(algName);
result.init(spec);
return get(result);
} catch (InvalidParameterSpecException | NoSuchAlgorithmException e) {
throw new ProviderException(e);
}
}
}
public static PSSParameterSpec getDefaultAlgorithmParameterSpec(
String sigAlg, PrivateKey k) {
if (sigAlg.equalsIgnoreCase("RSASSA-PSS")) {
switch (ifcFfcStrength(KeyUtil.getKeySize(k))) {
case "SHA256":
return PSSParamsHolder.PSS_256_SPEC;
case "SHA384":
return PSSParamsHolder.PSS_384_SPEC;
case "SHA512":
return PSSParamsHolder.PSS_512_SPEC;
default:
throw new AssertionError("Should not happen");
}
} else {
return null;
}
}
// Values from SP800-57 part 1 rev 4 tables 2 and 3
private static String ecStrength (int bitLength) {
if (bitLength >= 512) { // 256 bits of strength
return "SHA512";
} else if (bitLength >= 384) { // 192 bits of strength
return "SHA384";
} else { // 128 bits of strength and less
return "SHA256";
}
}
// Same values for RSA and DSA
private static String ifcFfcStrength (int bitLength) {
if (bitLength > 7680) { // 256 bits
return "SHA512";
} else if (bitLength > 3072) { // 192 bits
return "SHA384";
} else { // 128 bits and less
return "SHA256";
}
}
}