8234541: C1 emits an empty message when it inlines successfully
Summary: Use "inline" as the message when successfull
Reviewed-by: thartmann, mdoerr
Contributed-by: navy.xliu@gmail.com
/*
* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/connode.hpp"
#include "opto/vectornode.hpp"
//------------------------------VectorNode--------------------------------------
// Return the vector operator for the specified scalar operation
// and vector length.
int VectorNode::opcode(int sopc, BasicType bt) {
switch (sopc) {
case Op_AddI:
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_AddVB;
case T_CHAR:
case T_SHORT: return Op_AddVS;
case T_INT: return Op_AddVI;
default: ShouldNotReachHere(); return 0;
}
case Op_AddL:
assert(bt == T_LONG, "must be");
return Op_AddVL;
case Op_AddF:
assert(bt == T_FLOAT, "must be");
return Op_AddVF;
case Op_AddD:
assert(bt == T_DOUBLE, "must be");
return Op_AddVD;
case Op_SubI:
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_SubVB;
case T_CHAR:
case T_SHORT: return Op_SubVS;
case T_INT: return Op_SubVI;
default: ShouldNotReachHere(); return 0;
}
case Op_SubL:
assert(bt == T_LONG, "must be");
return Op_SubVL;
case Op_SubF:
assert(bt == T_FLOAT, "must be");
return Op_SubVF;
case Op_SubD:
assert(bt == T_DOUBLE, "must be");
return Op_SubVD;
case Op_MulI:
switch (bt) {
case T_BOOLEAN:return 0;
case T_BYTE: return Op_MulVB;
case T_CHAR:
case T_SHORT: return Op_MulVS;
case T_INT: return Op_MulVI;
default: ShouldNotReachHere(); return 0;
}
case Op_MulL:
assert(bt == T_LONG, "must be");
return Op_MulVL;
case Op_MulF:
assert(bt == T_FLOAT, "must be");
return Op_MulVF;
case Op_MulD:
assert(bt == T_DOUBLE, "must be");
return Op_MulVD;
case Op_FmaD:
assert(bt == T_DOUBLE, "must be");
return Op_FmaVD;
case Op_FmaF:
assert(bt == T_FLOAT, "must be");
return Op_FmaVF;
case Op_CMoveF:
assert(bt == T_FLOAT, "must be");
return Op_CMoveVF;
case Op_CMoveD:
assert(bt == T_DOUBLE, "must be");
return Op_CMoveVD;
case Op_DivF:
assert(bt == T_FLOAT, "must be");
return Op_DivVF;
case Op_DivD:
assert(bt == T_DOUBLE, "must be");
return Op_DivVD;
case Op_AbsI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0; // abs does not make sense for unsigned
case T_BYTE: return Op_AbsVB;
case T_SHORT: return Op_AbsVS;
case T_INT: return Op_AbsVI;
default: ShouldNotReachHere(); return 0;
}
case Op_AbsL:
assert(bt == T_LONG, "must be");
return Op_AbsVL;
case Op_AbsF:
assert(bt == T_FLOAT, "must be");
return Op_AbsVF;
case Op_AbsD:
assert(bt == T_DOUBLE, "must be");
return Op_AbsVD;
case Op_NegF:
assert(bt == T_FLOAT, "must be");
return Op_NegVF;
case Op_NegD:
assert(bt == T_DOUBLE, "must be");
return Op_NegVD;
case Op_RoundDoubleMode:
assert(bt == T_DOUBLE, "must be");
return Op_RoundDoubleModeV;
case Op_SqrtF:
assert(bt == T_FLOAT, "must be");
return Op_SqrtVF;
case Op_SqrtD:
assert(bt == T_DOUBLE, "must be");
return Op_SqrtVD;
case Op_PopCountI:
if (bt == T_INT) {
return Op_PopCountVI;
}
// Unimplemented for subword types since bit count changes
// depending on size of lane (and sign bit).
return 0;
case Op_LShiftI:
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_LShiftVB;
case T_CHAR:
case T_SHORT: return Op_LShiftVS;
case T_INT: return Op_LShiftVI;
default: ShouldNotReachHere(); return 0;
}
case Op_LShiftL:
assert(bt == T_LONG, "must be");
return Op_LShiftVL;
case Op_RShiftI:
switch (bt) {
case T_BOOLEAN:return Op_URShiftVB; // boolean is unsigned value
case T_CHAR: return Op_URShiftVS; // char is unsigned value
case T_BYTE: return Op_RShiftVB;
case T_SHORT: return Op_RShiftVS;
case T_INT: return Op_RShiftVI;
default: ShouldNotReachHere(); return 0;
}
case Op_RShiftL:
assert(bt == T_LONG, "must be");
return Op_RShiftVL;
case Op_URShiftI:
switch (bt) {
case T_BOOLEAN:return Op_URShiftVB;
case T_CHAR: return Op_URShiftVS;
case T_BYTE:
case T_SHORT: return 0; // Vector logical right shift for signed short
// values produces incorrect Java result for
// negative data because java code should convert
// a short value into int value with sign
// extension before a shift.
case T_INT: return Op_URShiftVI;
default: ShouldNotReachHere(); return 0;
}
case Op_URShiftL:
assert(bt == T_LONG, "must be");
return Op_URShiftVL;
case Op_AndI:
case Op_AndL:
return Op_AndV;
case Op_OrI:
case Op_OrL:
return Op_OrV;
case Op_XorI:
case Op_XorL:
return Op_XorV;
case Op_MinF:
assert(bt == T_FLOAT, "must be");
return Op_MinV;
case Op_MinD:
assert(bt == T_DOUBLE, "must be");
return Op_MinV;
case Op_MaxF:
assert(bt == T_FLOAT, "must be");
return Op_MaxV;
case Op_MaxD:
assert(bt == T_DOUBLE, "must be");
return Op_MaxV;
case Op_LoadB:
case Op_LoadUB:
case Op_LoadUS:
case Op_LoadS:
case Op_LoadI:
case Op_LoadL:
case Op_LoadF:
case Op_LoadD:
return Op_LoadVector;
case Op_StoreB:
case Op_StoreC:
case Op_StoreI:
case Op_StoreL:
case Op_StoreF:
case Op_StoreD:
return Op_StoreVector;
case Op_MulAddS2I:
return Op_MulAddVS2VI;
default:
return 0; // Unimplemented
}
}
// Also used to check if the code generator
// supports the vector operation.
bool VectorNode::implemented(int opc, uint vlen, BasicType bt) {
if (is_java_primitive(bt) &&
(vlen > 1) && is_power_of_2(vlen) &&
Matcher::vector_size_supported(bt, vlen)) {
int vopc = VectorNode::opcode(opc, bt);
return vopc > 0 && Matcher::match_rule_supported_vector(vopc, vlen);
}
return false;
}
bool VectorNode::is_type_transition_short_to_int(Node* n) {
switch (n->Opcode()) {
case Op_MulAddS2I:
return true;
}
return false;
}
bool VectorNode::is_type_transition_to_int(Node* n) {
return is_type_transition_short_to_int(n);
}
bool VectorNode::is_muladds2i(Node* n) {
if (n->Opcode() == Op_MulAddS2I) {
return true;
}
return false;
}
bool VectorNode::is_roundopD(Node *n) {
if (n->Opcode() == Op_RoundDoubleMode) {
return true;
}
return false;
}
bool VectorNode::is_shift(Node* n) {
switch (n->Opcode()) {
case Op_LShiftI:
case Op_LShiftL:
case Op_RShiftI:
case Op_RShiftL:
case Op_URShiftI:
case Op_URShiftL:
return true;
default:
return false;
}
}
// Check if input is loop invariant vector.
bool VectorNode::is_invariant_vector(Node* n) {
// Only Replicate vector nodes are loop invariant for now.
switch (n->Opcode()) {
case Op_ReplicateB:
case Op_ReplicateS:
case Op_ReplicateI:
case Op_ReplicateL:
case Op_ReplicateF:
case Op_ReplicateD:
return true;
default:
return false;
}
}
// [Start, end) half-open range defining which operands are vectors
void VectorNode::vector_operands(Node* n, uint* start, uint* end) {
switch (n->Opcode()) {
case Op_LoadB: case Op_LoadUB:
case Op_LoadS: case Op_LoadUS:
case Op_LoadI: case Op_LoadL:
case Op_LoadF: case Op_LoadD:
case Op_LoadP: case Op_LoadN:
*start = 0;
*end = 0; // no vector operands
break;
case Op_StoreB: case Op_StoreC:
case Op_StoreI: case Op_StoreL:
case Op_StoreF: case Op_StoreD:
case Op_StoreP: case Op_StoreN:
*start = MemNode::ValueIn;
*end = MemNode::ValueIn + 1; // 1 vector operand
break;
case Op_LShiftI: case Op_LShiftL:
case Op_RShiftI: case Op_RShiftL:
case Op_URShiftI: case Op_URShiftL:
*start = 1;
*end = 2; // 1 vector operand
break;
case Op_AddI: case Op_AddL: case Op_AddF: case Op_AddD:
case Op_SubI: case Op_SubL: case Op_SubF: case Op_SubD:
case Op_MulI: case Op_MulL: case Op_MulF: case Op_MulD:
case Op_DivF: case Op_DivD:
case Op_AndI: case Op_AndL:
case Op_OrI: case Op_OrL:
case Op_XorI: case Op_XorL:
case Op_MulAddS2I:
*start = 1;
*end = 3; // 2 vector operands
break;
case Op_CMoveI: case Op_CMoveL: case Op_CMoveF: case Op_CMoveD:
*start = 2;
*end = n->req();
break;
case Op_FmaD:
case Op_FmaF:
*start = 1;
*end = 4; // 3 vector operands
break;
default:
*start = 1;
*end = n->req(); // default is all operands
}
}
// Return the vector version of a scalar operation node.
VectorNode* VectorNode::make(int opc, Node* n1, Node* n2, uint vlen, BasicType bt) {
const TypeVect* vt = TypeVect::make(bt, vlen);
int vopc = VectorNode::opcode(opc, bt);
// This method should not be called for unimplemented vectors.
guarantee(vopc > 0, "Vector for '%s' is not implemented", NodeClassNames[opc]);
switch (vopc) {
case Op_AddVB: return new AddVBNode(n1, n2, vt);
case Op_AddVS: return new AddVSNode(n1, n2, vt);
case Op_AddVI: return new AddVINode(n1, n2, vt);
case Op_AddVL: return new AddVLNode(n1, n2, vt);
case Op_AddVF: return new AddVFNode(n1, n2, vt);
case Op_AddVD: return new AddVDNode(n1, n2, vt);
case Op_SubVB: return new SubVBNode(n1, n2, vt);
case Op_SubVS: return new SubVSNode(n1, n2, vt);
case Op_SubVI: return new SubVINode(n1, n2, vt);
case Op_SubVL: return new SubVLNode(n1, n2, vt);
case Op_SubVF: return new SubVFNode(n1, n2, vt);
case Op_SubVD: return new SubVDNode(n1, n2, vt);
case Op_MulVB: return new MulVBNode(n1, n2, vt);
case Op_MulVS: return new MulVSNode(n1, n2, vt);
case Op_MulVI: return new MulVINode(n1, n2, vt);
case Op_MulVL: return new MulVLNode(n1, n2, vt);
case Op_MulVF: return new MulVFNode(n1, n2, vt);
case Op_MulVD: return new MulVDNode(n1, n2, vt);
case Op_DivVF: return new DivVFNode(n1, n2, vt);
case Op_DivVD: return new DivVDNode(n1, n2, vt);
case Op_AbsVB: return new AbsVBNode(n1, vt);
case Op_AbsVS: return new AbsVSNode(n1, vt);
case Op_AbsVI: return new AbsVINode(n1, vt);
case Op_AbsVL: return new AbsVLNode(n1, vt);
case Op_AbsVF: return new AbsVFNode(n1, vt);
case Op_AbsVD: return new AbsVDNode(n1, vt);
case Op_NegVF: return new NegVFNode(n1, vt);
case Op_NegVD: return new NegVDNode(n1, vt);
case Op_SqrtVF: return new SqrtVFNode(n1, vt);
case Op_SqrtVD: return new SqrtVDNode(n1, vt);
case Op_PopCountVI: return new PopCountVINode(n1, vt);
case Op_LShiftVB: return new LShiftVBNode(n1, n2, vt);
case Op_LShiftVS: return new LShiftVSNode(n1, n2, vt);
case Op_LShiftVI: return new LShiftVINode(n1, n2, vt);
case Op_LShiftVL: return new LShiftVLNode(n1, n2, vt);
case Op_RShiftVB: return new RShiftVBNode(n1, n2, vt);
case Op_RShiftVS: return new RShiftVSNode(n1, n2, vt);
case Op_RShiftVI: return new RShiftVINode(n1, n2, vt);
case Op_RShiftVL: return new RShiftVLNode(n1, n2, vt);
case Op_URShiftVB: return new URShiftVBNode(n1, n2, vt);
case Op_URShiftVS: return new URShiftVSNode(n1, n2, vt);
case Op_URShiftVI: return new URShiftVINode(n1, n2, vt);
case Op_URShiftVL: return new URShiftVLNode(n1, n2, vt);
case Op_AndV: return new AndVNode(n1, n2, vt);
case Op_OrV: return new OrVNode (n1, n2, vt);
case Op_XorV: return new XorVNode(n1, n2, vt);
case Op_MinV: return new MinVNode(n1, n2, vt);
case Op_MaxV: return new MaxVNode(n1, n2, vt);
case Op_RoundDoubleModeV: return new RoundDoubleModeVNode(n1, n2, vt);
case Op_MulAddVS2VI: return new MulAddVS2VINode(n1, n2, vt);
default:
fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
return NULL;
}
}
VectorNode* VectorNode::make(int opc, Node* n1, Node* n2, Node* n3, uint vlen, BasicType bt) {
const TypeVect* vt = TypeVect::make(bt, vlen);
int vopc = VectorNode::opcode(opc, bt);
// This method should not be called for unimplemented vectors.
guarantee(vopc > 0, "Vector for '%s' is not implemented", NodeClassNames[opc]);
switch (vopc) {
case Op_FmaVD: return new FmaVDNode(n1, n2, n3, vt);
case Op_FmaVF: return new FmaVFNode(n1, n2, n3, vt);
default:
fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
return NULL;
}
}
// Scalar promotion
VectorNode* VectorNode::scalar2vector(Node* s, uint vlen, const Type* opd_t) {
BasicType bt = opd_t->array_element_basic_type();
const TypeVect* vt = opd_t->singleton() ? TypeVect::make(opd_t, vlen)
: TypeVect::make(bt, vlen);
switch (bt) {
case T_BOOLEAN:
case T_BYTE:
return new ReplicateBNode(s, vt);
case T_CHAR:
case T_SHORT:
return new ReplicateSNode(s, vt);
case T_INT:
return new ReplicateINode(s, vt);
case T_LONG:
return new ReplicateLNode(s, vt);
case T_FLOAT:
return new ReplicateFNode(s, vt);
case T_DOUBLE:
return new ReplicateDNode(s, vt);
default:
fatal("Type '%s' is not supported for vectors", type2name(bt));
return NULL;
}
}
VectorNode* VectorNode::shift_count(Node* shift, Node* cnt, uint vlen, BasicType bt) {
assert(VectorNode::is_shift(shift) && !cnt->is_Con(), "only variable shift count");
// Match shift count type with shift vector type.
const TypeVect* vt = TypeVect::make(bt, vlen);
switch (shift->Opcode()) {
case Op_LShiftI:
case Op_LShiftL:
return new LShiftCntVNode(cnt, vt);
case Op_RShiftI:
case Op_RShiftL:
case Op_URShiftI:
case Op_URShiftL:
return new RShiftCntVNode(cnt, vt);
default:
fatal("Missed vector creation for '%s'", NodeClassNames[shift->Opcode()]);
return NULL;
}
}
// Return initial Pack node. Additional operands added with add_opd() calls.
PackNode* PackNode::make(Node* s, uint vlen, BasicType bt) {
const TypeVect* vt = TypeVect::make(bt, vlen);
switch (bt) {
case T_BOOLEAN:
case T_BYTE:
return new PackBNode(s, vt);
case T_CHAR:
case T_SHORT:
return new PackSNode(s, vt);
case T_INT:
return new PackINode(s, vt);
case T_LONG:
return new PackLNode(s, vt);
case T_FLOAT:
return new PackFNode(s, vt);
case T_DOUBLE:
return new PackDNode(s, vt);
default:
fatal("Type '%s' is not supported for vectors", type2name(bt));
return NULL;
}
}
// Create a binary tree form for Packs. [lo, hi) (half-open) range
PackNode* PackNode::binary_tree_pack(int lo, int hi) {
int ct = hi - lo;
assert(is_power_of_2(ct), "power of 2");
if (ct == 2) {
PackNode* pk = PackNode::make(in(lo), 2, vect_type()->element_basic_type());
pk->add_opd(in(lo+1));
return pk;
} else {
int mid = lo + ct/2;
PackNode* n1 = binary_tree_pack(lo, mid);
PackNode* n2 = binary_tree_pack(mid, hi );
BasicType bt = n1->vect_type()->element_basic_type();
assert(bt == n2->vect_type()->element_basic_type(), "should be the same");
switch (bt) {
case T_BOOLEAN:
case T_BYTE:
return new PackSNode(n1, n2, TypeVect::make(T_SHORT, 2));
case T_CHAR:
case T_SHORT:
return new PackINode(n1, n2, TypeVect::make(T_INT, 2));
case T_INT:
return new PackLNode(n1, n2, TypeVect::make(T_LONG, 2));
case T_LONG:
return new Pack2LNode(n1, n2, TypeVect::make(T_LONG, 2));
case T_FLOAT:
return new PackDNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
case T_DOUBLE:
return new Pack2DNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
default:
fatal("Type '%s' is not supported for vectors", type2name(bt));
return NULL;
}
}
}
// Return the vector version of a scalar load node.
LoadVectorNode* LoadVectorNode::make(int opc, Node* ctl, Node* mem,
Node* adr, const TypePtr* atyp,
uint vlen, BasicType bt,
ControlDependency control_dependency) {
const TypeVect* vt = TypeVect::make(bt, vlen);
return new LoadVectorNode(ctl, mem, adr, atyp, vt, control_dependency);
}
// Return the vector version of a scalar store node.
StoreVectorNode* StoreVectorNode::make(int opc, Node* ctl, Node* mem,
Node* adr, const TypePtr* atyp, Node* val,
uint vlen) {
return new StoreVectorNode(ctl, mem, adr, atyp, val);
}
// Extract a scalar element of vector.
Node* ExtractNode::make(Node* v, uint position, BasicType bt) {
assert((int)position < Matcher::max_vector_size(bt), "pos in range");
ConINode* pos = ConINode::make((int)position);
switch (bt) {
case T_BOOLEAN:
return new ExtractUBNode(v, pos);
case T_BYTE:
return new ExtractBNode(v, pos);
case T_CHAR:
return new ExtractCNode(v, pos);
case T_SHORT:
return new ExtractSNode(v, pos);
case T_INT:
return new ExtractINode(v, pos);
case T_LONG:
return new ExtractLNode(v, pos);
case T_FLOAT:
return new ExtractFNode(v, pos);
case T_DOUBLE:
return new ExtractDNode(v, pos);
default:
fatal("Type '%s' is not supported for vectors", type2name(bt));
return NULL;
}
}
int ReductionNode::opcode(int opc, BasicType bt) {
int vopc = opc;
switch (opc) {
case Op_AddI:
assert(bt == T_INT, "must be");
vopc = Op_AddReductionVI;
break;
case Op_AddL:
assert(bt == T_LONG, "must be");
vopc = Op_AddReductionVL;
break;
case Op_AddF:
assert(bt == T_FLOAT, "must be");
vopc = Op_AddReductionVF;
break;
case Op_AddD:
assert(bt == T_DOUBLE, "must be");
vopc = Op_AddReductionVD;
break;
case Op_MulI:
assert(bt == T_INT, "must be");
vopc = Op_MulReductionVI;
break;
case Op_MulL:
assert(bt == T_LONG, "must be");
vopc = Op_MulReductionVL;
break;
case Op_MulF:
assert(bt == T_FLOAT, "must be");
vopc = Op_MulReductionVF;
break;
case Op_MulD:
assert(bt == T_DOUBLE, "must be");
vopc = Op_MulReductionVD;
break;
case Op_MinF:
assert(bt == T_FLOAT, "must be");
vopc = Op_MinReductionV;
break;
case Op_MinD:
assert(bt == T_DOUBLE, "must be");
vopc = Op_MinReductionV;
break;
case Op_MaxF:
assert(bt == T_FLOAT, "must be");
vopc = Op_MaxReductionV;
break;
case Op_MaxD:
assert(bt == T_DOUBLE, "must be");
vopc = Op_MaxReductionV;
break;
// TODO: add MulL for targets that support it
default:
break;
}
return vopc;
}
// Return the appropriate reduction node.
ReductionNode* ReductionNode::make(int opc, Node *ctrl, Node* n1, Node* n2, BasicType bt) {
int vopc = opcode(opc, bt);
// This method should not be called for unimplemented vectors.
guarantee(vopc != opc, "Vector for '%s' is not implemented", NodeClassNames[opc]);
switch (vopc) {
case Op_AddReductionVI: return new AddReductionVINode(ctrl, n1, n2);
case Op_AddReductionVL: return new AddReductionVLNode(ctrl, n1, n2);
case Op_AddReductionVF: return new AddReductionVFNode(ctrl, n1, n2);
case Op_AddReductionVD: return new AddReductionVDNode(ctrl, n1, n2);
case Op_MulReductionVI: return new MulReductionVINode(ctrl, n1, n2);
case Op_MulReductionVL: return new MulReductionVLNode(ctrl, n1, n2);
case Op_MulReductionVF: return new MulReductionVFNode(ctrl, n1, n2);
case Op_MulReductionVD: return new MulReductionVDNode(ctrl, n1, n2);
case Op_MinReductionV: return new MinReductionVNode(ctrl, n1, n2);
case Op_MaxReductionV: return new MaxReductionVNode(ctrl, n1, n2);
default:
fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
return NULL;
}
}
bool ReductionNode::implemented(int opc, uint vlen, BasicType bt) {
if (is_java_primitive(bt) &&
(vlen > 1) && is_power_of_2(vlen) &&
Matcher::vector_size_supported(bt, vlen)) {
int vopc = ReductionNode::opcode(opc, bt);
return vopc != opc && Matcher::match_rule_supported(vopc);
}
return false;
}