8234541: C1 emits an empty message when it inlines successfully
Summary: Use "inline" as the message when successfull
Reviewed-by: thartmann, mdoerr
Contributed-by: navy.xliu@gmail.com
/*
* Copyright (c) 2012, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/gcTimer.hpp"
#include "utilities/growableArray.hpp"
// the "time" parameter for most functions
// has a default value set by Ticks::now()
void GCTimer::register_gc_start(const Ticks& time) {
_time_partitions.clear();
_gc_start = time;
}
void GCTimer::register_gc_end(const Ticks& time) {
assert(!_time_partitions.has_active_phases(),
"We should have ended all started phases, before ending the GC");
_gc_end = time;
}
void GCTimer::register_gc_pause_start(const char* name, const Ticks& time) {
_time_partitions.report_gc_phase_start(name, time);
}
void GCTimer::register_gc_pause_end(const Ticks& time) {
_time_partitions.report_gc_phase_end(time);
}
void GCTimer::register_gc_phase_start(const char* name, const Ticks& time) {
_time_partitions.report_gc_phase_start(name, time);
}
void GCTimer::register_gc_phase_end(const Ticks& time) {
_time_partitions.report_gc_phase_end(time);
}
void STWGCTimer::register_gc_start(const Ticks& time) {
GCTimer::register_gc_start(time);
register_gc_pause_start("GC Pause", time);
}
void STWGCTimer::register_gc_end(const Ticks& time) {
register_gc_pause_end(time);
GCTimer::register_gc_end(time);
}
void ConcurrentGCTimer::register_gc_pause_start(const char* name, const Ticks& time) {
assert(!_is_concurrent_phase_active, "A pause phase can't be started while a concurrent phase is active.");
GCTimer::register_gc_pause_start(name, time);
}
void ConcurrentGCTimer::register_gc_pause_end(const Ticks& time) {
assert(!_is_concurrent_phase_active, "A pause phase can't be ended while a concurrent phase is active.");
GCTimer::register_gc_pause_end(time);
}
void ConcurrentGCTimer::register_gc_concurrent_start(const char* name, const Ticks& time) {
assert(!_is_concurrent_phase_active, "A concurrent phase is already active.");
_time_partitions.report_gc_phase_start(name, time, GCPhase::ConcurrentPhaseType);
_is_concurrent_phase_active = true;
}
void ConcurrentGCTimer::register_gc_concurrent_end(const Ticks& time) {
assert(_is_concurrent_phase_active, "A concurrent phase is not active.");
_time_partitions.report_gc_phase_end(time, GCPhase::ConcurrentPhaseType);
_is_concurrent_phase_active = false;
}
void PhasesStack::clear() {
_next_phase_level = 0;
}
void PhasesStack::push(int phase_index) {
assert(_next_phase_level < PHASE_LEVELS, "Overflow");
_phase_indices[_next_phase_level] = phase_index;
_next_phase_level++;
}
int PhasesStack::pop() {
assert(_next_phase_level > 0, "Underflow");
_next_phase_level--;
return _phase_indices[_next_phase_level];
}
int PhasesStack::count() const {
return _next_phase_level;
}
TimePartitions::TimePartitions() {
_phases = new (ResourceObj::C_HEAP, mtGC) GrowableArray<GCPhase>(INITIAL_CAPACITY, true, mtGC);
clear();
}
TimePartitions::~TimePartitions() {
delete _phases;
_phases = NULL;
}
void TimePartitions::clear() {
_phases->clear();
_active_phases.clear();
_sum_of_pauses = Tickspan();
_longest_pause = Tickspan();
}
void TimePartitions::report_gc_phase_start(const char* name, const Ticks& time, GCPhase::PhaseType type) {
assert(_phases->length() <= 1000, "Too many recored phases?");
int level = _active_phases.count();
GCPhase phase;
phase.set_type(type);
phase.set_level(level);
phase.set_name(name);
phase.set_start(time);
int index = _phases->append(phase);
_active_phases.push(index);
}
void TimePartitions::update_statistics(GCPhase* phase) {
if ((phase->type() == GCPhase::PausePhaseType) && (phase->level() == 0)) {
const Tickspan pause = phase->end() - phase->start();
_sum_of_pauses += pause;
_longest_pause = MAX2(pause, _longest_pause);
}
}
void TimePartitions::report_gc_phase_end(const Ticks& time, GCPhase::PhaseType type) {
int phase_index = _active_phases.pop();
GCPhase* phase = _phases->adr_at(phase_index);
phase->set_end(time);
update_statistics(phase);
}
int TimePartitions::num_phases() const {
return _phases->length();
}
GCPhase* TimePartitions::phase_at(int index) const {
assert(index >= 0, "Out of bounds");
assert(index < _phases->length(), "Out of bounds");
return _phases->adr_at(index);
}
bool TimePartitions::has_active_phases() {
return _active_phases.count() > 0;
}
bool TimePartitionPhasesIterator::has_next() {
return _next < _time_partitions->num_phases();
}
GCPhase* TimePartitionPhasesIterator::next() {
assert(has_next(), "Must have phases left");
return _time_partitions->phase_at(_next++);
}