8234541: C1 emits an empty message when it inlines successfully
Summary: Use "inline" as the message when successfull
Reviewed-by: thartmann, mdoerr
Contributed-by: navy.xliu@gmail.com
/*
* Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// no precompiled headers
#include "jvm.h"
#include "asm/macroAssembler.hpp"
#include "classfile/classLoader.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/codeCache.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "interpreter/interpreter.hpp"
#include "logging/log.hpp"
#include "memory/allocation.inline.hpp"
#include "os_share_solaris.hpp"
#include "prims/jniFastGetField.hpp"
#include "prims/jvm_misc.hpp"
#include "runtime/arguments.hpp"
#include "runtime/extendedPC.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/osThread.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/timer.hpp"
#include "utilities/align.hpp"
#include "utilities/events.hpp"
#include "utilities/vmError.hpp"
// put OS-includes here
# include <sys/types.h>
# include <sys/mman.h>
# include <pthread.h>
# include <signal.h>
# include <setjmp.h>
# include <errno.h>
# include <dlfcn.h>
# include <stdio.h>
# include <unistd.h>
# include <sys/resource.h>
# include <thread.h>
# include <sys/stat.h>
# include <sys/time.h>
# include <sys/filio.h>
# include <sys/utsname.h>
# include <sys/systeminfo.h>
# include <sys/socket.h>
# include <sys/trap.h>
# include <sys/lwp.h>
# include <poll.h>
# include <sys/lwp.h>
# include <procfs.h> // see comment in <sys/procfs.h>
#ifndef AMD64
// QQQ seems useless at this point
# define _STRUCTURED_PROC 1 // this gets us the new structured proc interfaces of 5.6 & later
#endif // AMD64
# include <sys/procfs.h> // see comment in <sys/procfs.h>
#define MAX_PATH (2 * K)
// Minimum usable stack sizes required to get to user code. Space for
// HotSpot guard pages is added later.
#ifdef _LP64
// The adlc generated method 'State::MachNodeGenerator(int)' used by the C2 compiler
// threads requires a large stack with the Solaris Studio C++ compiler version 5.13
// and product VM builds (debug builds require significantly less stack space).
size_t os::Posix::_compiler_thread_min_stack_allowed = 325 * K;
size_t os::Posix::_java_thread_min_stack_allowed = 48 * K;
size_t os::Posix::_vm_internal_thread_min_stack_allowed = 224 * K;
#else
size_t os::Posix::_compiler_thread_min_stack_allowed = 32 * K;
size_t os::Posix::_java_thread_min_stack_allowed = 32 * K;
size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
#endif // _LP64
#ifdef AMD64
#define REG_SP REG_RSP
#define REG_PC REG_RIP
#define REG_FP REG_RBP
#else
#define REG_SP UESP
#define REG_PC EIP
#define REG_FP EBP
// 4900493 counter to prevent runaway LDTR refresh attempt
static volatile int ldtr_refresh = 0;
// the libthread instruction that faults because of the stale LDTR
static const unsigned char movlfs[] = { 0x8e, 0xe0 // movl %eax,%fs
};
#endif // AMD64
char* os::non_memory_address_word() {
// Must never look like an address returned by reserve_memory,
// even in its subfields (as defined by the CPU immediate fields,
// if the CPU splits constants across multiple instructions).
return (char*) -1;
}
//
// Validate a ucontext retrieved from walking a uc_link of a ucontext.
// There are issues with libthread giving out uc_links for different threads
// on the same uc_link chain and bad or circular links.
//
bool os::Solaris::valid_ucontext(Thread* thread, const ucontext_t* valid, const ucontext_t* suspect) {
if (valid >= suspect ||
valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
valid->uc_stack.ss_sp != suspect->uc_stack.ss_sp ||
valid->uc_stack.ss_size != suspect->uc_stack.ss_size) {
DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
return false;
}
if (thread->is_Java_thread()) {
if (!valid_stack_address(thread, (address)suspect)) {
DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
return false;
}
if (!valid_stack_address(thread, (address) suspect->uc_mcontext.gregs[REG_SP])) {
DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
return false;
}
}
return true;
}
// We will only follow one level of uc_link since there are libthread
// issues with ucontext linking and it is better to be safe and just
// let caller retry later.
const ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
const ucontext_t *uc) {
const ucontext_t *retuc = NULL;
if (uc != NULL) {
if (uc->uc_link == NULL) {
// cannot validate without uc_link so accept current ucontext
retuc = uc;
} else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
// first ucontext is valid so try the next one
uc = uc->uc_link;
if (uc->uc_link == NULL) {
// cannot validate without uc_link so accept current ucontext
retuc = uc;
} else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
// the ucontext one level down is also valid so return it
retuc = uc;
}
}
}
return retuc;
}
// Assumes ucontext is valid
ExtendedPC os::Solaris::ucontext_get_ExtendedPC(const ucontext_t *uc) {
return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
}
void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) {
uc->uc_mcontext.gregs [REG_PC] = (greg_t) pc;
}
// Assumes ucontext is valid
intptr_t* os::Solaris::ucontext_get_sp(const ucontext_t *uc) {
return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
}
// Assumes ucontext is valid
intptr_t* os::Solaris::ucontext_get_fp(const ucontext_t *uc) {
return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
}
address os::Solaris::ucontext_get_pc(const ucontext_t *uc) {
return (address) uc->uc_mcontext.gregs[REG_PC];
}
// For Forte Analyzer AsyncGetCallTrace profiling support - thread
// is currently interrupted by SIGPROF.
//
// The difference between this and os::fetch_frame_from_context() is that
// here we try to skip nested signal frames.
// This method is also used for stack overflow signal handling.
ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
assert(thread != NULL, "just checking");
assert(ret_sp != NULL, "just checking");
assert(ret_fp != NULL, "just checking");
const ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
}
ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
intptr_t** ret_sp, intptr_t** ret_fp) {
ExtendedPC epc;
const ucontext_t *uc = (const ucontext_t*)ucVoid;
if (uc != NULL) {
epc = os::Solaris::ucontext_get_ExtendedPC(uc);
if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
} else {
// construct empty ExtendedPC for return value checking
epc = ExtendedPC(NULL);
if (ret_sp) *ret_sp = (intptr_t *)NULL;
if (ret_fp) *ret_fp = (intptr_t *)NULL;
}
return epc;
}
frame os::fetch_frame_from_context(const void* ucVoid) {
intptr_t* sp;
intptr_t* fp;
ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
return frame(sp, fp, epc.pc());
}
frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
intptr_t* sp;
intptr_t* fp;
ExtendedPC epc = os::Solaris::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
return frame(sp, fp, epc.pc());
}
bool os::Solaris::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
address pc = (address) os::Solaris::ucontext_get_pc(uc);
if (Interpreter::contains(pc)) {
// interpreter performs stack banging after the fixed frame header has
// been generated while the compilers perform it before. To maintain
// semantic consistency between interpreted and compiled frames, the
// method returns the Java sender of the current frame.
*fr = os::fetch_frame_from_ucontext(thread, uc);
if (!fr->is_first_java_frame()) {
// get_frame_at_stack_banging_point() is only called when we
// have well defined stacks so java_sender() calls do not need
// to assert safe_for_sender() first.
*fr = fr->java_sender();
}
} else {
// more complex code with compiled code
assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
CodeBlob* cb = CodeCache::find_blob(pc);
if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
// Not sure where the pc points to, fallback to default
// stack overflow handling
return false;
} else {
// in compiled code, the stack banging is performed just after the return pc
// has been pushed on the stack
intptr_t* fp = os::Solaris::ucontext_get_fp(uc);
intptr_t* sp = os::Solaris::ucontext_get_sp(uc);
*fr = frame(sp + 1, fp, (address)*sp);
if (!fr->is_java_frame()) {
// See java_sender() comment above.
*fr = fr->java_sender();
}
}
}
assert(fr->is_java_frame(), "Safety check");
return true;
}
frame os::get_sender_for_C_frame(frame* fr) {
return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
}
extern "C" intptr_t *_get_current_sp(); // in .il file
address os::current_stack_pointer() {
return (address)_get_current_sp();
}
extern "C" intptr_t *_get_current_fp(); // in .il file
frame os::current_frame() {
intptr_t* fp = _get_current_fp(); // it's inlined so want current fp
// fp is for os::current_frame. We want the fp for our caller.
frame myframe((intptr_t*)os::current_stack_pointer(),
(intptr_t*)fp,
CAST_FROM_FN_PTR(address, os::current_frame));
frame caller_frame = os::get_sender_for_C_frame(&myframe);
if (os::is_first_C_frame(&caller_frame)) {
// stack is not walkable
frame ret; // This will be a null useless frame
return ret;
} else {
// return frame for our caller's caller
return os::get_sender_for_C_frame(&caller_frame);
}
}
#ifndef AMD64
// Detecting SSE support by OS
// From solaris_i486.s
extern "C" bool sse_check();
extern "C" bool sse_unavailable();
enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
static int sse_status = SSE_UNKNOWN;
static void check_for_sse_support() {
if (!VM_Version::supports_sse()) {
sse_status = SSE_NOT_SUPPORTED;
return;
}
// looking for _sse_hw in libc.so, if it does not exist or
// the value (int) is 0, OS has no support for SSE
int *sse_hwp;
void *h;
if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
//open failed, presume no support for SSE
sse_status = SSE_NOT_SUPPORTED;
return;
}
if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
sse_status = SSE_NOT_SUPPORTED;
} else if (*sse_hwp == 0) {
sse_status = SSE_NOT_SUPPORTED;
}
dlclose(h);
if (sse_status == SSE_UNKNOWN) {
bool (*try_sse)() = (bool (*)())sse_check;
sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
}
}
#endif // AMD64
bool os::supports_sse() {
#ifdef AMD64
return true;
#else
if (sse_status == SSE_UNKNOWN)
check_for_sse_support();
return sse_status == SSE_SUPPORTED;
#endif // AMD64
}
bool os::is_allocatable(size_t bytes) {
#ifdef AMD64
return true;
#else
if (bytes < 2 * G) {
return true;
}
char* addr = reserve_memory(bytes, NULL);
if (addr != NULL) {
release_memory(addr, bytes);
}
return addr != NULL;
#endif // AMD64
}
extern "C" JNIEXPORT int
JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
int abort_if_unrecognized) {
ucontext_t* uc = (ucontext_t*) ucVoid;
#ifndef AMD64
if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
// the SSE instruction faulted. supports_sse() need return false.
uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
return true;
}
#endif // !AMD64
Thread* t = Thread::current_or_null_safe();
// Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
// (no destructors can be run)
os::ThreadCrashProtection::check_crash_protection(sig, t);
SignalHandlerMark shm(t);
if(sig == SIGPIPE || sig == SIGXFSZ) {
if (os::Solaris::chained_handler(sig, info, ucVoid)) {
return true;
} else {
// Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
return true;
}
}
JavaThread* thread = NULL;
VMThread* vmthread = NULL;
if (os::Solaris::signal_handlers_are_installed) {
if (t != NULL ){
if(t->is_Java_thread()) {
thread = (JavaThread*)t;
}
else if(t->is_VM_thread()){
vmthread = (VMThread *)t;
}
}
}
if (sig == ASYNC_SIGNAL) {
if(thread || vmthread){
OSThread::SR_handler(t, uc);
return true;
} else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
return true;
} else {
// If ASYNC_SIGNAL not chained, and this is a non-vm and
// non-java thread
return true;
}
}
if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
// can't decode this kind of signal
info = NULL;
} else {
assert(sig == info->si_signo, "bad siginfo");
}
// decide if this trap can be handled by a stub
address stub = NULL;
address pc = NULL;
//%note os_trap_1
if (info != NULL && uc != NULL && thread != NULL) {
// factor me: getPCfromContext
pc = (address) uc->uc_mcontext.gregs[REG_PC];
if (StubRoutines::is_safefetch_fault(pc)) {
os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
return true;
}
// Handle ALL stack overflow variations here
if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
address addr = (address) info->si_addr;
if (thread->in_stack_yellow_reserved_zone(addr)) {
if (thread->thread_state() == _thread_in_Java) {
if (thread->in_stack_reserved_zone(addr)) {
frame fr;
if (os::Solaris::get_frame_at_stack_banging_point(thread, uc, &fr)) {
assert(fr.is_java_frame(), "Must be Java frame");
frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
if (activation.sp() != NULL) {
thread->disable_stack_reserved_zone();
if (activation.is_interpreted_frame()) {
thread->set_reserved_stack_activation((address)(
activation.fp() + frame::interpreter_frame_initial_sp_offset));
} else {
thread->set_reserved_stack_activation((address)activation.unextended_sp());
}
return true;
}
}
}
// Throw a stack overflow exception. Guard pages will be reenabled
// while unwinding the stack.
thread->disable_stack_yellow_reserved_zone();
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
} else {
// Thread was in the vm or native code. Return and try to finish.
thread->disable_stack_yellow_reserved_zone();
return true;
}
} else if (thread->in_stack_red_zone(addr)) {
// Fatal red zone violation. Disable the guard pages and fall through
// to handle_unexpected_exception way down below.
thread->disable_stack_red_zone();
tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
}
}
if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
// Verify that OS save/restore AVX registers.
stub = VM_Version::cpuinfo_cont_addr();
}
if (thread->thread_state() == _thread_in_vm ||
thread->thread_state() == _thread_in_native) {
if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
address next_pc = Assembler::locate_next_instruction(pc);
if (UnsafeCopyMemory::contains_pc(pc)) {
next_pc = UnsafeCopyMemory::page_error_continue_pc(pc);
}
stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
}
}
if (thread->thread_state() == _thread_in_Java) {
// Support Safepoint Polling
if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
stub = SharedRuntime::get_poll_stub(pc);
}
else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
// BugId 4454115: A read from a MappedByteBuffer can fault
// here if the underlying file has been truncated.
// Do not crash the VM in such a case.
CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
if (cb != NULL) {
CompiledMethod* nm = cb->as_compiled_method_or_null();
bool is_unsafe_arraycopy = thread->doing_unsafe_access() && UnsafeCopyMemory::contains_pc(pc);
if ((nm != NULL && nm->has_unsafe_access()) || is_unsafe_arraycopy) {
address next_pc = Assembler::locate_next_instruction(pc);
if (is_unsafe_arraycopy) {
next_pc = UnsafeCopyMemory::page_error_continue_pc(pc);
}
stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
}
}
}
else
if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
// integer divide by zero
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
}
#ifndef AMD64
else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
// floating-point divide by zero
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
}
else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
// The encoding of D2I in i486.ad can cause an exception prior
// to the fist instruction if there was an invalid operation
// pending. We want to dismiss that exception. From the win_32
// side it also seems that if it really was the fist causing
// the exception that we do the d2i by hand with different
// rounding. Seems kind of weird. QQQ TODO
// Note that we take the exception at the NEXT floating point instruction.
if (pc[0] == 0xDB) {
assert(pc[0] == 0xDB, "not a FIST opcode");
assert(pc[1] == 0x14, "not a FIST opcode");
assert(pc[2] == 0x24, "not a FIST opcode");
return true;
} else {
assert(pc[-3] == 0xDB, "not an flt invalid opcode");
assert(pc[-2] == 0x14, "not an flt invalid opcode");
assert(pc[-1] == 0x24, "not an flt invalid opcode");
}
}
else if (sig == SIGFPE ) {
tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
}
#endif // !AMD64
// QQQ It doesn't seem that we need to do this on x86 because we should be able
// to return properly from the handler without this extra stuff on the back side.
else if (sig == SIGSEGV && info->si_code > 0 &&
MacroAssembler::uses_implicit_null_check(info->si_addr)) {
// Determination of interpreter/vtable stub/compiled code null exception
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
}
}
// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
// and the heap gets shrunk before the field access.
if ((sig == SIGSEGV) || (sig == SIGBUS)) {
address addr = JNI_FastGetField::find_slowcase_pc(pc);
if (addr != (address)-1) {
stub = addr;
}
}
}
// Execution protection violation
//
// Preventative code for future versions of Solaris which may
// enable execution protection when running the 32-bit VM on AMD64.
//
// This should be kept as the last step in the triage. We don't
// have a dedicated trap number for a no-execute fault, so be
// conservative and allow other handlers the first shot.
//
// Note: We don't test that info->si_code == SEGV_ACCERR here.
// this si_code is so generic that it is almost meaningless; and
// the si_code for this condition may change in the future.
// Furthermore, a false-positive should be harmless.
if (UnguardOnExecutionViolation > 0 &&
(sig == SIGSEGV || sig == SIGBUS) &&
uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) { // page fault
int page_size = os::vm_page_size();
address addr = (address) info->si_addr;
address pc = (address) uc->uc_mcontext.gregs[REG_PC];
// Make sure the pc and the faulting address are sane.
//
// If an instruction spans a page boundary, and the page containing
// the beginning of the instruction is executable but the following
// page is not, the pc and the faulting address might be slightly
// different - we still want to unguard the 2nd page in this case.
//
// 15 bytes seems to be a (very) safe value for max instruction size.
bool pc_is_near_addr =
(pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
bool instr_spans_page_boundary =
(align_down((intptr_t) pc ^ (intptr_t) addr,
(intptr_t) page_size) > 0);
if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
static volatile address last_addr =
(address) os::non_memory_address_word();
// In conservative mode, don't unguard unless the address is in the VM
if (addr != last_addr &&
(UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
// Make memory rwx and retry
address page_start = align_down(addr, page_size);
bool res = os::protect_memory((char*) page_start, page_size,
os::MEM_PROT_RWX);
log_debug(os)("Execution protection violation "
"at " INTPTR_FORMAT
", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
p2i(page_start), (res ? "success" : "failed"), errno);
stub = pc;
// Set last_addr so if we fault again at the same address, we don't end
// up in an endless loop.
//
// There are two potential complications here. Two threads trapping at
// the same address at the same time could cause one of the threads to
// think it already unguarded, and abort the VM. Likely very rare.
//
// The other race involves two threads alternately trapping at
// different addresses and failing to unguard the page, resulting in
// an endless loop. This condition is probably even more unlikely than
// the first.
//
// Although both cases could be avoided by using locks or thread local
// last_addr, these solutions are unnecessary complication: this
// handler is a best-effort safety net, not a complete solution. It is
// disabled by default and should only be used as a workaround in case
// we missed any no-execute-unsafe VM code.
last_addr = addr;
}
}
}
if (stub != NULL) {
// save all thread context in case we need to restore it
if (thread != NULL) thread->set_saved_exception_pc(pc);
// 12/02/99: On Sparc it appears that the full context is also saved
// but as yet, no one looks at or restores that saved context
os::Solaris::ucontext_set_pc(uc, stub);
return true;
}
// signal-chaining
if (os::Solaris::chained_handler(sig, info, ucVoid)) {
return true;
}
if (!abort_if_unrecognized) {
// caller wants another chance, so give it to him
return false;
}
if (!os::Solaris::libjsig_is_loaded) {
struct sigaction oldAct;
sigaction(sig, (struct sigaction *)0, &oldAct);
if (oldAct.sa_sigaction != signalHandler) {
void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
: CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
}
}
if (pc == NULL && uc != NULL) {
pc = (address) uc->uc_mcontext.gregs[REG_PC];
}
// unmask current signal
sigset_t newset;
sigemptyset(&newset);
sigaddset(&newset, sig);
sigprocmask(SIG_UNBLOCK, &newset, NULL);
// Determine which sort of error to throw. Out of swap may signal
// on the thread stack, which could get a mapping error when touched.
address addr = (address) info->si_addr;
if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
}
VMError::report_and_die(t, sig, pc, info, ucVoid);
ShouldNotReachHere();
return false;
}
void os::print_context(outputStream *st, const void *context) {
if (context == NULL) return;
const ucontext_t *uc = (const ucontext_t*)context;
st->print_cr("Registers:");
#ifdef AMD64
st->print( "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
st->cr();
st->print( "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
st->cr();
st->print( "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
st->cr();
st->print( "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
st->cr();
st->print( "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
#else
st->print( "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
st->cr();
st->print( "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
st->cr();
st->print( "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
#endif // AMD64
st->cr();
st->cr();
intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
st->cr();
// Note: it may be unsafe to inspect memory near pc. For example, pc may
// point to garbage if entry point in an nmethod is corrupted. Leave
// this at the end, and hope for the best.
ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
address pc = epc.pc();
print_instructions(st, pc, sizeof(char));
st->cr();
}
void os::print_register_info(outputStream *st, const void *context) {
if (context == NULL) return;
const ucontext_t *uc = (const ucontext_t*)context;
st->print_cr("Register to memory mapping:");
st->cr();
// this is horrendously verbose but the layout of the registers in the
// context does not match how we defined our abstract Register set, so
// we can't just iterate through the gregs area
// this is only for the "general purpose" registers
#ifdef AMD64
st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
#else
st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
#endif
st->cr();
}
#ifdef AMD64
void os::Solaris::init_thread_fpu_state(void) {
// Nothing to do
}
#else
// From solaris_i486.s
extern "C" void fixcw();
void os::Solaris::init_thread_fpu_state(void) {
// Set fpu to 53 bit precision. This happens too early to use a stub.
fixcw();
}
// These routines are the initial value of atomic_xchg_entry(),
// atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
// until initialization is complete.
// TODO - replace with .il implementation when compiler supports it.
typedef int32_t xchg_func_t (int32_t, volatile int32_t*);
typedef int32_t cmpxchg_func_t (int32_t, volatile int32_t*, int32_t);
typedef int64_t cmpxchg_long_func_t(int64_t, volatile int64_t*, int64_t);
typedef int32_t add_func_t (int32_t, volatile int32_t*);
int32_t os::atomic_xchg_bootstrap(int32_t exchange_value, volatile int32_t* dest) {
// try to use the stub:
xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
if (func != NULL) {
os::atomic_xchg_func = func;
return (*func)(exchange_value, dest);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
int32_t old_value = *dest;
*dest = exchange_value;
return old_value;
}
int32_t os::atomic_cmpxchg_bootstrap(int32_t exchange_value, volatile int32_t* dest, int32_t compare_value) {
// try to use the stub:
cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
if (func != NULL) {
os::atomic_cmpxchg_func = func;
return (*func)(exchange_value, dest, compare_value);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
int32_t old_value = *dest;
if (old_value == compare_value)
*dest = exchange_value;
return old_value;
}
int64_t os::atomic_cmpxchg_long_bootstrap(int64_t exchange_value, volatile int64_t* dest, int64_t compare_value) {
// try to use the stub:
cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
if (func != NULL) {
os::atomic_cmpxchg_long_func = func;
return (*func)(exchange_value, dest, compare_value);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
int64_t old_value = *dest;
if (old_value == compare_value)
*dest = exchange_value;
return old_value;
}
int32_t os::atomic_add_bootstrap(int32_t add_value, volatile int32_t* dest) {
// try to use the stub:
add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
if (func != NULL) {
os::atomic_add_func = func;
return (*func)(add_value, dest);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
return (*dest) += add_value;
}
xchg_func_t* os::atomic_xchg_func = os::atomic_xchg_bootstrap;
cmpxchg_func_t* os::atomic_cmpxchg_func = os::atomic_cmpxchg_bootstrap;
cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
add_func_t* os::atomic_add_func = os::atomic_add_bootstrap;
extern "C" void _solaris_raw_setup_fpu(address ptr);
void os::setup_fpu() {
address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
_solaris_raw_setup_fpu(fpu_cntrl);
}
#endif // AMD64
#ifndef PRODUCT
void os::verify_stack_alignment() {
#ifdef AMD64
assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
#endif
}
#endif
int os::extra_bang_size_in_bytes() {
// JDK-8050147 requires the full cache line bang for x86.
return VM_Version::L1_line_size();
}