8234541: C1 emits an empty message when it inlines successfully
Summary: Use "inline" as the message when successfull
Reviewed-by: thartmann, mdoerr
Contributed-by: navy.xliu@gmail.com
/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_X86_VM_VERSION_X86_HPP
#define CPU_X86_VM_VERSION_X86_HPP
#include "memory/universe.hpp"
#include "runtime/abstract_vm_version.hpp"
#include "runtime/globals_extension.hpp"
class VM_Version : public Abstract_VM_Version {
friend class VMStructs;
friend class JVMCIVMStructs;
public:
// cpuid result register layouts. These are all unions of a uint32_t
// (in case anyone wants access to the register as a whole) and a bitfield.
union StdCpuid1Eax {
uint32_t value;
struct {
uint32_t stepping : 4,
model : 4,
family : 4,
proc_type : 2,
: 2,
ext_model : 4,
ext_family : 8,
: 4;
} bits;
};
union StdCpuid1Ebx { // example, unused
uint32_t value;
struct {
uint32_t brand_id : 8,
clflush_size : 8,
threads_per_cpu : 8,
apic_id : 8;
} bits;
};
union StdCpuid1Ecx {
uint32_t value;
struct {
uint32_t sse3 : 1,
clmul : 1,
: 1,
monitor : 1,
: 1,
vmx : 1,
: 1,
est : 1,
: 1,
ssse3 : 1,
cid : 1,
: 1,
fma : 1,
cmpxchg16: 1,
: 4,
dca : 1,
sse4_1 : 1,
sse4_2 : 1,
: 2,
popcnt : 1,
: 1,
aes : 1,
: 1,
osxsave : 1,
avx : 1,
: 3;
} bits;
};
union StdCpuid1Edx {
uint32_t value;
struct {
uint32_t : 4,
tsc : 1,
: 3,
cmpxchg8 : 1,
: 6,
cmov : 1,
: 3,
clflush : 1,
: 3,
mmx : 1,
fxsr : 1,
sse : 1,
sse2 : 1,
: 1,
ht : 1,
: 3;
} bits;
};
union DcpCpuid4Eax {
uint32_t value;
struct {
uint32_t cache_type : 5,
: 21,
cores_per_cpu : 6;
} bits;
};
union DcpCpuid4Ebx {
uint32_t value;
struct {
uint32_t L1_line_size : 12,
partitions : 10,
associativity : 10;
} bits;
};
union TplCpuidBEbx {
uint32_t value;
struct {
uint32_t logical_cpus : 16,
: 16;
} bits;
};
union ExtCpuid1Ecx {
uint32_t value;
struct {
uint32_t LahfSahf : 1,
CmpLegacy : 1,
: 3,
lzcnt_intel : 1,
lzcnt : 1,
sse4a : 1,
misalignsse : 1,
prefetchw : 1,
: 22;
} bits;
};
union ExtCpuid1Edx {
uint32_t value;
struct {
uint32_t : 22,
mmx_amd : 1,
mmx : 1,
fxsr : 1,
: 4,
long_mode : 1,
tdnow2 : 1,
tdnow : 1;
} bits;
};
union ExtCpuid5Ex {
uint32_t value;
struct {
uint32_t L1_line_size : 8,
L1_tag_lines : 8,
L1_assoc : 8,
L1_size : 8;
} bits;
};
union ExtCpuid7Edx {
uint32_t value;
struct {
uint32_t : 8,
tsc_invariance : 1,
: 23;
} bits;
};
union ExtCpuid8Ecx {
uint32_t value;
struct {
uint32_t cores_per_cpu : 8,
: 24;
} bits;
};
union SefCpuid7Eax {
uint32_t value;
};
union SefCpuid7Ebx {
uint32_t value;
struct {
uint32_t fsgsbase : 1,
: 2,
bmi1 : 1,
: 1,
avx2 : 1,
: 2,
bmi2 : 1,
erms : 1,
: 1,
rtm : 1,
: 4,
avx512f : 1,
avx512dq : 1,
: 1,
adx : 1,
: 3,
clflushopt : 1,
clwb : 1,
: 1,
avx512pf : 1,
avx512er : 1,
avx512cd : 1,
sha : 1,
avx512bw : 1,
avx512vl : 1;
} bits;
};
union SefCpuid7Ecx {
uint32_t value;
struct {
uint32_t prefetchwt1 : 1,
avx512_vbmi : 1,
umip : 1,
pku : 1,
ospke : 1,
: 1,
avx512_vbmi2 : 1,
: 1,
gfni : 1,
vaes : 1,
vpclmulqdq : 1,
avx512_vnni : 1,
avx512_bitalg : 1,
: 1,
avx512_vpopcntdq : 1,
: 17;
} bits;
};
union SefCpuid7Edx {
uint32_t value;
struct {
uint32_t : 2,
avx512_4vnniw : 1,
avx512_4fmaps : 1,
: 28;
} bits;
};
union ExtCpuid1EEbx {
uint32_t value;
struct {
uint32_t : 8,
threads_per_core : 8,
: 16;
} bits;
};
union XemXcr0Eax {
uint32_t value;
struct {
uint32_t x87 : 1,
sse : 1,
ymm : 1,
bndregs : 1,
bndcsr : 1,
opmask : 1,
zmm512 : 1,
zmm32 : 1,
: 24;
} bits;
};
protected:
static int _cpu;
static int _model;
static int _stepping;
static address _cpuinfo_segv_addr; // address of instruction which causes SEGV
static address _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
enum Feature_Flag {
CPU_CX8 = (1 << 0), // next bits are from cpuid 1 (EDX)
CPU_CMOV = (1 << 1),
CPU_FXSR = (1 << 2),
CPU_HT = (1 << 3),
CPU_MMX = (1 << 4),
CPU_3DNOW_PREFETCH = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
// may not necessarily support other 3dnow instructions
CPU_SSE = (1 << 6),
CPU_SSE2 = (1 << 7),
CPU_SSE3 = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
CPU_SSSE3 = (1 << 9),
CPU_SSE4A = (1 << 10),
CPU_SSE4_1 = (1 << 11),
CPU_SSE4_2 = (1 << 12),
CPU_POPCNT = (1 << 13),
CPU_LZCNT = (1 << 14),
CPU_TSC = (1 << 15),
CPU_TSCINV = (1 << 16),
CPU_AVX = (1 << 17),
CPU_AVX2 = (1 << 18),
CPU_AES = (1 << 19),
CPU_ERMS = (1 << 20), // enhanced 'rep movsb/stosb' instructions
CPU_CLMUL = (1 << 21), // carryless multiply for CRC
CPU_BMI1 = (1 << 22),
CPU_BMI2 = (1 << 23),
CPU_RTM = (1 << 24), // Restricted Transactional Memory instructions
CPU_ADX = (1 << 25),
CPU_AVX512F = (1 << 26), // AVX 512bit foundation instructions
CPU_AVX512DQ = (1 << 27),
CPU_AVX512PF = (1 << 28),
CPU_AVX512ER = (1 << 29),
CPU_AVX512CD = (1 << 30)
// Keeping sign bit 31 unassigned.
};
#define CPU_AVX512BW ((uint64_t)UCONST64(0x100000000)) // enums are limited to 31 bit
#define CPU_AVX512VL ((uint64_t)UCONST64(0x200000000)) // EVEX instructions with smaller vector length
#define CPU_SHA ((uint64_t)UCONST64(0x400000000)) // SHA instructions
#define CPU_FMA ((uint64_t)UCONST64(0x800000000)) // FMA instructions
#define CPU_VZEROUPPER ((uint64_t)UCONST64(0x1000000000)) // Vzeroupper instruction
#define CPU_AVX512_VPOPCNTDQ ((uint64_t)UCONST64(0x2000000000)) // Vector popcount
#define CPU_VPCLMULQDQ ((uint64_t)UCONST64(0x4000000000)) //Vector carryless multiplication
#define CPU_VAES ((uint64_t)UCONST64(0x8000000000)) // Vector AES instructions
#define CPU_VNNI ((uint64_t)UCONST64(0x10000000000)) // Vector Neural Network Instructions
#define CPU_FLUSH ((uint64_t)UCONST64(0x20000000000)) // flush instruction
#define CPU_FLUSHOPT ((uint64_t)UCONST64(0x40000000000)) // flushopt instruction
#define CPU_CLWB ((uint64_t)UCONST64(0x80000000000)) // clwb instruction
enum Extended_Family {
// AMD
CPU_FAMILY_AMD_11H = 0x11,
// ZX
CPU_FAMILY_ZX_CORE_F6 = 6,
CPU_FAMILY_ZX_CORE_F7 = 7,
// Intel
CPU_FAMILY_INTEL_CORE = 6,
CPU_MODEL_NEHALEM = 0x1e,
CPU_MODEL_NEHALEM_EP = 0x1a,
CPU_MODEL_NEHALEM_EX = 0x2e,
CPU_MODEL_WESTMERE = 0x25,
CPU_MODEL_WESTMERE_EP = 0x2c,
CPU_MODEL_WESTMERE_EX = 0x2f,
CPU_MODEL_SANDYBRIDGE = 0x2a,
CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
CPU_MODEL_IVYBRIDGE_EP = 0x3a,
CPU_MODEL_HASWELL_E3 = 0x3c,
CPU_MODEL_HASWELL_E7 = 0x3f,
CPU_MODEL_BROADWELL = 0x3d,
CPU_MODEL_SKYLAKE = 0x55
};
// cpuid information block. All info derived from executing cpuid with
// various function numbers is stored here. Intel and AMD info is
// merged in this block: accessor methods disentangle it.
//
// The info block is laid out in subblocks of 4 dwords corresponding to
// eax, ebx, ecx and edx, whether or not they contain anything useful.
struct CpuidInfo {
// cpuid function 0
uint32_t std_max_function;
uint32_t std_vendor_name_0;
uint32_t std_vendor_name_1;
uint32_t std_vendor_name_2;
// cpuid function 1
StdCpuid1Eax std_cpuid1_eax;
StdCpuid1Ebx std_cpuid1_ebx;
StdCpuid1Ecx std_cpuid1_ecx;
StdCpuid1Edx std_cpuid1_edx;
// cpuid function 4 (deterministic cache parameters)
DcpCpuid4Eax dcp_cpuid4_eax;
DcpCpuid4Ebx dcp_cpuid4_ebx;
uint32_t dcp_cpuid4_ecx; // unused currently
uint32_t dcp_cpuid4_edx; // unused currently
// cpuid function 7 (structured extended features)
SefCpuid7Eax sef_cpuid7_eax;
SefCpuid7Ebx sef_cpuid7_ebx;
SefCpuid7Ecx sef_cpuid7_ecx;
SefCpuid7Edx sef_cpuid7_edx;
// cpuid function 0xB (processor topology)
// ecx = 0
uint32_t tpl_cpuidB0_eax;
TplCpuidBEbx tpl_cpuidB0_ebx;
uint32_t tpl_cpuidB0_ecx; // unused currently
uint32_t tpl_cpuidB0_edx; // unused currently
// ecx = 1
uint32_t tpl_cpuidB1_eax;
TplCpuidBEbx tpl_cpuidB1_ebx;
uint32_t tpl_cpuidB1_ecx; // unused currently
uint32_t tpl_cpuidB1_edx; // unused currently
// ecx = 2
uint32_t tpl_cpuidB2_eax;
TplCpuidBEbx tpl_cpuidB2_ebx;
uint32_t tpl_cpuidB2_ecx; // unused currently
uint32_t tpl_cpuidB2_edx; // unused currently
// cpuid function 0x80000000 // example, unused
uint32_t ext_max_function;
uint32_t ext_vendor_name_0;
uint32_t ext_vendor_name_1;
uint32_t ext_vendor_name_2;
// cpuid function 0x80000001
uint32_t ext_cpuid1_eax; // reserved
uint32_t ext_cpuid1_ebx; // reserved
ExtCpuid1Ecx ext_cpuid1_ecx;
ExtCpuid1Edx ext_cpuid1_edx;
// cpuid functions 0x80000002 thru 0x80000004: example, unused
uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
// cpuid function 0x80000005 // AMD L1, Intel reserved
uint32_t ext_cpuid5_eax; // unused currently
uint32_t ext_cpuid5_ebx; // reserved
ExtCpuid5Ex ext_cpuid5_ecx; // L1 data cache info (AMD)
ExtCpuid5Ex ext_cpuid5_edx; // L1 instruction cache info (AMD)
// cpuid function 0x80000007
uint32_t ext_cpuid7_eax; // reserved
uint32_t ext_cpuid7_ebx; // reserved
uint32_t ext_cpuid7_ecx; // reserved
ExtCpuid7Edx ext_cpuid7_edx; // tscinv
// cpuid function 0x80000008
uint32_t ext_cpuid8_eax; // unused currently
uint32_t ext_cpuid8_ebx; // reserved
ExtCpuid8Ecx ext_cpuid8_ecx;
uint32_t ext_cpuid8_edx; // reserved
// cpuid function 0x8000001E // AMD 17h
uint32_t ext_cpuid1E_eax;
ExtCpuid1EEbx ext_cpuid1E_ebx; // threads per core (AMD17h)
uint32_t ext_cpuid1E_ecx;
uint32_t ext_cpuid1E_edx; // unused currently
// extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
XemXcr0Eax xem_xcr0_eax;
uint32_t xem_xcr0_edx; // reserved
// Space to save ymm registers after signal handle
int ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
// Space to save zmm registers after signal handle
int zmm_save[16*4]; // Save zmm0, zmm7, zmm8, zmm31
};
// The actual cpuid info block
static CpuidInfo _cpuid_info;
// Extractors and predicates
static uint32_t extended_cpu_family() {
uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
return result;
}
static uint32_t extended_cpu_model() {
uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
return result;
}
static uint32_t cpu_stepping() {
uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
return result;
}
static uint logical_processor_count() {
uint result = threads_per_core();
return result;
}
static uint64_t feature_flags() {
uint64_t result = 0;
if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
result |= CPU_CX8;
if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
result |= CPU_CMOV;
if (_cpuid_info.std_cpuid1_edx.bits.clflush != 0)
result |= CPU_FLUSH;
#ifdef _LP64
// clflush should always be available on x86_64
// if not we are in real trouble because we rely on it
// to flush the code cache.
assert ((result & CPU_FLUSH) != 0, "clflush should be available");
#endif
if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd_family() &&
_cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
result |= CPU_FXSR;
// HT flag is set for multi-core processors also.
if (threads_per_core() > 1)
result |= CPU_HT;
if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd_family() &&
_cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
result |= CPU_MMX;
if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
result |= CPU_SSE;
if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
result |= CPU_SSE2;
if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
result |= CPU_SSE3;
if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
result |= CPU_SSSE3;
if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
result |= CPU_SSE4_1;
if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
result |= CPU_SSE4_2;
if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
result |= CPU_POPCNT;
if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
_cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
_cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
_cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
result |= CPU_AVX;
result |= CPU_VZEROUPPER;
if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
result |= CPU_AVX2;
if (_cpuid_info.sef_cpuid7_ebx.bits.avx512f != 0 &&
_cpuid_info.xem_xcr0_eax.bits.opmask != 0 &&
_cpuid_info.xem_xcr0_eax.bits.zmm512 != 0 &&
_cpuid_info.xem_xcr0_eax.bits.zmm32 != 0) {
result |= CPU_AVX512F;
if (_cpuid_info.sef_cpuid7_ebx.bits.avx512cd != 0)
result |= CPU_AVX512CD;
if (_cpuid_info.sef_cpuid7_ebx.bits.avx512dq != 0)
result |= CPU_AVX512DQ;
if (_cpuid_info.sef_cpuid7_ebx.bits.avx512pf != 0)
result |= CPU_AVX512PF;
if (_cpuid_info.sef_cpuid7_ebx.bits.avx512er != 0)
result |= CPU_AVX512ER;
if (_cpuid_info.sef_cpuid7_ebx.bits.avx512bw != 0)
result |= CPU_AVX512BW;
if (_cpuid_info.sef_cpuid7_ebx.bits.avx512vl != 0)
result |= CPU_AVX512VL;
if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vpopcntdq != 0)
result |= CPU_AVX512_VPOPCNTDQ;
if (_cpuid_info.sef_cpuid7_ecx.bits.vpclmulqdq != 0)
result |= CPU_VPCLMULQDQ;
if (_cpuid_info.sef_cpuid7_ecx.bits.vaes != 0)
result |= CPU_VAES;
if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vnni != 0)
result |= CPU_VNNI;
}
}
if (_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
result |= CPU_BMI1;
if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
result |= CPU_TSC;
if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
result |= CPU_TSCINV;
if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
result |= CPU_AES;
if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
result |= CPU_ERMS;
if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
result |= CPU_CLMUL;
if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0)
result |= CPU_RTM;
if (_cpuid_info.sef_cpuid7_ebx.bits.adx != 0)
result |= CPU_ADX;
if (_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0)
result |= CPU_BMI2;
if (_cpuid_info.sef_cpuid7_ebx.bits.sha != 0)
result |= CPU_SHA;
if (_cpuid_info.std_cpuid1_ecx.bits.fma != 0)
result |= CPU_FMA;
if (_cpuid_info.sef_cpuid7_ebx.bits.clflushopt != 0)
result |= CPU_FLUSHOPT;
// AMD|Hygon features.
if (is_amd_family()) {
if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
(_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
result |= CPU_3DNOW_PREFETCH;
if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
result |= CPU_LZCNT;
if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
result |= CPU_SSE4A;
}
// Intel features.
if (is_intel()) {
if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
result |= CPU_LZCNT;
// for Intel, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw
if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) {
result |= CPU_3DNOW_PREFETCH;
}
if (_cpuid_info.sef_cpuid7_ebx.bits.clwb != 0) {
result |= CPU_CLWB;
}
}
// ZX features.
if (is_zx()) {
if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
result |= CPU_LZCNT;
// for ZX, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw
if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) {
result |= CPU_3DNOW_PREFETCH;
}
}
return result;
}
static bool os_supports_avx_vectors() {
bool retVal = false;
int nreg = 2 LP64_ONLY(+2);
if (supports_evex()) {
// Verify that OS save/restore all bits of EVEX registers
// during signal processing.
retVal = true;
for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
retVal = false;
break;
}
}
} else if (supports_avx()) {
// Verify that OS save/restore all bits of AVX registers
// during signal processing.
retVal = true;
for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
retVal = false;
break;
}
}
// zmm_save will be set on a EVEX enabled machine even if we choose AVX code gen
if (retVal == false) {
// Verify that OS save/restore all bits of EVEX registers
// during signal processing.
retVal = true;
for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
retVal = false;
break;
}
}
}
}
return retVal;
}
static void get_processor_features();
public:
// Offsets for cpuid asm stub
static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
static ByteSize ext_cpuid1E_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1E_eax); }
static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
static ByteSize zmm_save_offset() { return byte_offset_of(CpuidInfo, zmm_save); }
// The value used to check ymm register after signal handle
static int ymm_test_value() { return 0xCAFEBABE; }
static void get_cpu_info_wrapper();
static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
static bool is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
static address cpuinfo_cont_addr() { return _cpuinfo_cont_addr; }
static void clean_cpuFeatures() { _features = 0; }
static void set_avx_cpuFeatures() { _features = (CPU_SSE | CPU_SSE2 | CPU_AVX | CPU_VZEROUPPER ); }
static void set_evex_cpuFeatures() { _features = (CPU_AVX512F | CPU_SSE | CPU_SSE2 | CPU_VZEROUPPER ); }
// Initialization
static void initialize();
// Override Abstract_VM_Version implementation
static void print_platform_virtualization_info(outputStream*);
// Override Abstract_VM_Version implementation
static bool use_biased_locking();
// Asserts
static void assert_is_initialized() {
assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
}
//
// Processor family:
// 3 - 386
// 4 - 486
// 5 - Pentium
// 6 - PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
// Pentium M, Core Solo, Core Duo, Core2 Duo
// family 6 model: 9, 13, 14, 15
// 0x0f - Pentium 4, Opteron
//
// Note: The cpu family should be used to select between
// instruction sequences which are valid on all Intel
// processors. Use the feature test functions below to
// determine whether a particular instruction is supported.
//
static int cpu_family() { return _cpu;}
static bool is_P6() { return cpu_family() >= 6; }
static bool is_amd() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
static bool is_hygon() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x6F677948; } // 'ogyH'
static bool is_amd_family() { return is_amd() || is_hygon(); }
static bool is_intel() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
static bool is_zx() { assert_is_initialized(); return (_cpuid_info.std_vendor_name_0 == 0x746e6543) || (_cpuid_info.std_vendor_name_0 == 0x68532020); } // 'tneC'||'hS '
static bool is_atom_family() { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x36) || (extended_cpu_model() == 0x37) || (extended_cpu_model() == 0x4D))); } //Silvermont and Centerton
static bool is_knights_family() { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x57) || (extended_cpu_model() == 0x85))); } // Xeon Phi 3200/5200/7200 and Future Xeon Phi
static bool supports_processor_topology() {
return (_cpuid_info.std_max_function >= 0xB) &&
// eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
// Some cpus have max cpuid >= 0xB but do not support processor topology.
(((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
}
static uint cores_per_cpu() {
uint result = 1;
if (is_intel()) {
bool supports_topology = supports_processor_topology();
if (supports_topology) {
result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
_cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
}
if (!supports_topology || result == 0) {
result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
}
} else if (is_amd_family()) {
result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
} else if (is_zx()) {
bool supports_topology = supports_processor_topology();
if (supports_topology) {
result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
_cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
}
if (!supports_topology || result == 0) {
result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
}
}
return result;
}
static uint threads_per_core() {
uint result = 1;
if (is_intel() && supports_processor_topology()) {
result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
} else if (is_zx() && supports_processor_topology()) {
result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
} else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
if (cpu_family() >= 0x17) {
result = _cpuid_info.ext_cpuid1E_ebx.bits.threads_per_core + 1;
} else {
result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
cores_per_cpu();
}
}
return (result == 0 ? 1 : result);
}
static intx L1_line_size() {
intx result = 0;
if (is_intel()) {
result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
} else if (is_amd_family()) {
result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
} else if (is_zx()) {
result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
}
if (result < 32) // not defined ?
result = 32; // 32 bytes by default on x86 and other x64
return result;
}
static intx prefetch_data_size() {
return L1_line_size();
}
//
// Feature identification
//
static bool supports_cpuid() { return _features != 0; }
static bool supports_cmpxchg8() { return (_features & CPU_CX8) != 0; }
static bool supports_cmov() { return (_features & CPU_CMOV) != 0; }
static bool supports_fxsr() { return (_features & CPU_FXSR) != 0; }
static bool supports_ht() { return (_features & CPU_HT) != 0; }
static bool supports_mmx() { return (_features & CPU_MMX) != 0; }
static bool supports_sse() { return (_features & CPU_SSE) != 0; }
static bool supports_sse2() { return (_features & CPU_SSE2) != 0; }
static bool supports_sse3() { return (_features & CPU_SSE3) != 0; }
static bool supports_ssse3() { return (_features & CPU_SSSE3)!= 0; }
static bool supports_sse4_1() { return (_features & CPU_SSE4_1) != 0; }
static bool supports_sse4_2() { return (_features & CPU_SSE4_2) != 0; }
static bool supports_popcnt() { return (_features & CPU_POPCNT) != 0; }
static bool supports_avx() { return (_features & CPU_AVX) != 0; }
static bool supports_avx2() { return (_features & CPU_AVX2) != 0; }
static bool supports_tsc() { return (_features & CPU_TSC) != 0; }
static bool supports_aes() { return (_features & CPU_AES) != 0; }
static bool supports_erms() { return (_features & CPU_ERMS) != 0; }
static bool supports_clmul() { return (_features & CPU_CLMUL) != 0; }
static bool supports_rtm() { return (_features & CPU_RTM) != 0; }
static bool supports_bmi1() { return (_features & CPU_BMI1) != 0; }
static bool supports_bmi2() { return (_features & CPU_BMI2) != 0; }
static bool supports_adx() { return (_features & CPU_ADX) != 0; }
static bool supports_evex() { return (_features & CPU_AVX512F) != 0; }
static bool supports_avx512dq() { return (_features & CPU_AVX512DQ) != 0; }
static bool supports_avx512pf() { return (_features & CPU_AVX512PF) != 0; }
static bool supports_avx512er() { return (_features & CPU_AVX512ER) != 0; }
static bool supports_avx512cd() { return (_features & CPU_AVX512CD) != 0; }
static bool supports_avx512bw() { return (_features & CPU_AVX512BW) != 0; }
static bool supports_avx512vl() { return (_features & CPU_AVX512VL) != 0; }
static bool supports_avx512vlbw() { return (supports_evex() && supports_avx512bw() && supports_avx512vl()); }
static bool supports_avx512vldq() { return (supports_evex() && supports_avx512dq() && supports_avx512vl()); }
static bool supports_avx512vlbwdq() { return (supports_evex() && supports_avx512vl() &&
supports_avx512bw() && supports_avx512dq()); }
static bool supports_avx512novl() { return (supports_evex() && !supports_avx512vl()); }
static bool supports_avx512nobw() { return (supports_evex() && !supports_avx512bw()); }
static bool supports_avx256only() { return (supports_avx2() && !supports_evex()); }
static bool supports_avxonly() { return ((supports_avx2() || supports_avx()) && !supports_evex()); }
static bool supports_sha() { return (_features & CPU_SHA) != 0; }
static bool supports_fma() { return (_features & CPU_FMA) != 0 && supports_avx(); }
static bool supports_vzeroupper() { return (_features & CPU_VZEROUPPER) != 0; }
static bool supports_vpopcntdq() { return (_features & CPU_AVX512_VPOPCNTDQ) != 0; }
static bool supports_vpclmulqdq() { return (_features & CPU_VPCLMULQDQ) != 0; }
static bool supports_vaes() { return (_features & CPU_VAES) != 0; }
static bool supports_vnni() { return (_features & CPU_VNNI) != 0; }
// Intel features
static bool is_intel_family_core() { return is_intel() &&
extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
static bool is_intel_tsc_synched_at_init() {
if (is_intel_family_core()) {
uint32_t ext_model = extended_cpu_model();
if (ext_model == CPU_MODEL_NEHALEM_EP ||
ext_model == CPU_MODEL_WESTMERE_EP ||
ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
ext_model == CPU_MODEL_IVYBRIDGE_EP) {
// <= 2-socket invariant tsc support. EX versions are usually used
// in > 2-socket systems and likely don't synchronize tscs at
// initialization.
// Code that uses tsc values must be prepared for them to arbitrarily
// jump forward or backward.
return true;
}
}
return false;
}
// AMD features
static bool supports_3dnow_prefetch() { return (_features & CPU_3DNOW_PREFETCH) != 0; }
static bool supports_mmx_ext() { return is_amd_family() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
static bool supports_lzcnt() { return (_features & CPU_LZCNT) != 0; }
static bool supports_sse4a() { return (_features & CPU_SSE4A) != 0; }
static bool is_amd_Barcelona() { return is_amd() &&
extended_cpu_family() == CPU_FAMILY_AMD_11H; }
// Intel and AMD newer cores support fast timestamps well
static bool supports_tscinv_bit() {
return (_features & CPU_TSCINV) != 0;
}
static bool supports_tscinv() {
return supports_tscinv_bit() &&
((is_amd_family() && !is_amd_Barcelona()) ||
is_intel_tsc_synched_at_init());
}
// Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
static bool has_fast_idiv() { return is_intel() && cpu_family() == 6 &&
supports_sse3() && _model != 0x1C; }
static bool supports_compare_and_exchange() { return true; }
static intx allocate_prefetch_distance(bool use_watermark_prefetch) {
// Hardware prefetching (distance/size in bytes):
// Pentium 3 - 64 / 32
// Pentium 4 - 256 / 128
// Athlon - 64 / 32 ????
// Opteron - 128 / 64 only when 2 sequential cache lines accessed
// Core - 128 / 64
//
// Software prefetching (distance in bytes / instruction with best score):
// Pentium 3 - 128 / prefetchnta
// Pentium 4 - 512 / prefetchnta
// Athlon - 128 / prefetchnta
// Opteron - 256 / prefetchnta
// Core - 256 / prefetchnta
// It will be used only when AllocatePrefetchStyle > 0
if (is_amd_family()) { // AMD | Hygon
if (supports_sse2()) {
return 256; // Opteron
} else {
return 128; // Athlon
}
} else { // Intel
if (supports_sse3() && cpu_family() == 6) {
if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus
return 192;
} else if (use_watermark_prefetch) { // watermark prefetching on Core
#ifdef _LP64
return 384;
#else
return 320;
#endif
}
}
if (supports_sse2()) {
if (cpu_family() == 6) {
return 256; // Pentium M, Core, Core2
} else {
return 512; // Pentium 4
}
} else {
return 128; // Pentium 3 (and all other old CPUs)
}
}
}
// SSE2 and later processors implement a 'pause' instruction
// that can be used for efficient implementation of
// the intrinsic for java.lang.Thread.onSpinWait()
static bool supports_on_spin_wait() { return supports_sse2(); }
// x86_64 supports fast class initialization checks for static methods.
static bool supports_fast_class_init_checks() {
return LP64_ONLY(true) NOT_LP64(false); // not implemented on x86_32
}
// there are several insns to force cache line sync to memory which
// we can use to ensure mapped non-volatile memory is up to date with
// pending in-cache changes.
//
// 64 bit cpus always support clflush which writes back and evicts
// on 32 bit cpus support is recorded via a feature flag
//
// clflushopt is optional and acts like clflush except it does
// not synchronize with other memory ops. it needs a preceding
// and trailing StoreStore fence
//
// clwb is an optional, intel-specific instruction optional which
// writes back without evicting the line. it also does not
// synchronize with other memory ops. so, it also needs a preceding
// and trailing StoreStore fence.
#ifdef _LP64
static bool supports_clflush() {
// clflush should always be available on x86_64
// if not we are in real trouble because we rely on it
// to flush the code cache.
// Unfortunately, Assembler::clflush is currently called as part
// of generation of the code cache flush routine. This happens
// under Universe::init before the processor features are set
// up. Assembler::flush calls this routine to check that clflush
// is allowed. So, we give the caller a free pass if Universe init
// is still in progress.
assert ((!Universe::is_fully_initialized() || (_features & CPU_FLUSH) != 0), "clflush should be available");
return true;
}
static bool supports_clflushopt() { return ((_features & CPU_FLUSHOPT) != 0); }
static bool supports_clwb() { return ((_features & CPU_CLWB) != 0); }
#else
static bool supports_clflush() { return ((_features & CPU_FLUSH) != 0); }
static bool supports_clflushopt() { return false; }
static bool supports_clwb() { return false; }
#endif // _LP64
// support functions for virtualization detection
private:
static void check_virt_cpuid(uint32_t idx, uint32_t *regs);
static void check_virtualizations();
};
#endif // CPU_X86_VM_VERSION_X86_HPP