8234541: C1 emits an empty message when it inlines successfully
Summary: Use "inline" as the message when successfull
Reviewed-by: thartmann, mdoerr
Contributed-by: navy.xliu@gmail.com
/*
* Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2019, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/templateInterpreterGenerator.hpp"
#include "interpreter/templateTable.hpp"
#include "interpreter/bytecodeTracer.hpp"
#include "memory/resourceArea.hpp"
#include "oops/arrayOop.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/debug.hpp"
#include <sys/types.h>
#ifndef PRODUCT
#include "oops/method.hpp"
#endif // !PRODUCT
// Size of interpreter code. Increase if too small. Interpreter will
// fail with a guarantee ("not enough space for interpreter generation");
// if too small.
// Run with +PrintInterpreter to get the VM to print out the size.
// Max size with JVMTI
int TemplateInterpreter::InterpreterCodeSize = 200 * 1024;
#define __ _masm->
//-----------------------------------------------------------------------------
extern "C" void entry(CodeBuffer*);
//-----------------------------------------------------------------------------
address TemplateInterpreterGenerator::generate_slow_signature_handler() {
address entry = __ pc();
__ andr(esp, esp, -16);
__ mov(c_rarg3, esp);
// rmethod
// rlocals
// c_rarg3: first stack arg - wordSize
// adjust sp
__ sub(sp, c_rarg3, 18 * wordSize);
__ str(lr, Address(__ pre(sp, -2 * wordSize)));
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::slow_signature_handler),
rmethod, rlocals, c_rarg3);
// r0: result handler
// Stack layout:
// rsp: return address <- sp
// 1 garbage
// 8 integer args (if static first is unused)
// 1 float/double identifiers
// 8 double args
// stack args <- esp
// garbage
// expression stack bottom
// bcp (NULL)
// ...
// Restore LR
__ ldr(lr, Address(__ post(sp, 2 * wordSize)));
// Do FP first so we can use c_rarg3 as temp
__ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers
for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
const FloatRegister r = as_FloatRegister(i);
Label d, done;
__ tbnz(c_rarg3, i, d);
__ ldrs(r, Address(sp, (10 + i) * wordSize));
__ b(done);
__ bind(d);
__ ldrd(r, Address(sp, (10 + i) * wordSize));
__ bind(done);
}
// c_rarg0 contains the result from the call of
// InterpreterRuntime::slow_signature_handler so we don't touch it
// here. It will be loaded with the JNIEnv* later.
__ ldr(c_rarg1, Address(sp, 1 * wordSize));
for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) {
Register rm = as_Register(i), rn = as_Register(i+1);
__ ldp(rm, rn, Address(sp, i * wordSize));
}
__ add(sp, sp, 18 * wordSize);
__ ret(lr);
return entry;
}
//
// Various method entries
//
address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
// rmethod: Method*
// r13: sender sp
// esp: args
if (!InlineIntrinsics) return NULL; // Generate a vanilla entry
// These don't need a safepoint check because they aren't virtually
// callable. We won't enter these intrinsics from compiled code.
// If in the future we added an intrinsic which was virtually callable
// we'd have to worry about how to safepoint so that this code is used.
// mathematical functions inlined by compiler
// (interpreter must provide identical implementation
// in order to avoid monotonicity bugs when switching
// from interpreter to compiler in the middle of some
// computation)
//
// stack:
// [ arg ] <-- esp
// [ arg ]
// retaddr in lr
address entry_point = NULL;
Register continuation = lr;
switch (kind) {
case Interpreter::java_lang_math_abs:
entry_point = __ pc();
__ ldrd(v0, Address(esp));
__ fabsd(v0, v0);
__ mov(sp, r13); // Restore caller's SP
break;
case Interpreter::java_lang_math_sqrt:
entry_point = __ pc();
__ ldrd(v0, Address(esp));
__ fsqrtd(v0, v0);
__ mov(sp, r13);
break;
case Interpreter::java_lang_math_sin :
case Interpreter::java_lang_math_cos :
case Interpreter::java_lang_math_tan :
case Interpreter::java_lang_math_log :
case Interpreter::java_lang_math_log10 :
case Interpreter::java_lang_math_exp :
entry_point = __ pc();
__ ldrd(v0, Address(esp));
__ mov(sp, r13);
__ mov(r19, lr);
continuation = r19; // The first callee-saved register
generate_transcendental_entry(kind, 1);
break;
case Interpreter::java_lang_math_pow :
entry_point = __ pc();
__ mov(r19, lr);
continuation = r19;
__ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize));
__ ldrd(v1, Address(esp));
__ mov(sp, r13);
generate_transcendental_entry(kind, 2);
break;
case Interpreter::java_lang_math_fmaD :
if (UseFMA) {
entry_point = __ pc();
__ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize));
__ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize));
__ ldrd(v2, Address(esp));
__ fmaddd(v0, v0, v1, v2);
__ mov(sp, r13); // Restore caller's SP
}
break;
case Interpreter::java_lang_math_fmaF :
if (UseFMA) {
entry_point = __ pc();
__ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize));
__ ldrs(v1, Address(esp, Interpreter::stackElementSize));
__ ldrs(v2, Address(esp));
__ fmadds(v0, v0, v1, v2);
__ mov(sp, r13); // Restore caller's SP
}
break;
default:
;
}
if (entry_point) {
__ br(continuation);
}
return entry_point;
}
// double trigonometrics and transcendentals
// static jdouble dsin(jdouble x);
// static jdouble dcos(jdouble x);
// static jdouble dtan(jdouble x);
// static jdouble dlog(jdouble x);
// static jdouble dlog10(jdouble x);
// static jdouble dexp(jdouble x);
// static jdouble dpow(jdouble x, jdouble y);
void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) {
address fn;
switch (kind) {
case Interpreter::java_lang_math_sin :
if (StubRoutines::dsin() == NULL) {
fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
} else {
fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin());
}
break;
case Interpreter::java_lang_math_cos :
if (StubRoutines::dcos() == NULL) {
fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
} else {
fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos());
}
break;
case Interpreter::java_lang_math_tan :
if (StubRoutines::dtan() == NULL) {
fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
} else {
fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan());
}
break;
case Interpreter::java_lang_math_log :
if (StubRoutines::dlog() == NULL) {
fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
} else {
fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog());
}
break;
case Interpreter::java_lang_math_log10 :
if (StubRoutines::dlog10() == NULL) {
fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
} else {
fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10());
}
break;
case Interpreter::java_lang_math_exp :
if (StubRoutines::dexp() == NULL) {
fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
} else {
fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp());
}
break;
case Interpreter::java_lang_math_pow :
if (StubRoutines::dpow() == NULL) {
fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
} else {
fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow());
}
break;
default:
ShouldNotReachHere();
fn = NULL; // unreachable
}
__ mov(rscratch1, fn);
__ blr(rscratch1);
}
// Abstract method entry
// Attempt to execute abstract method. Throw exception
address TemplateInterpreterGenerator::generate_abstract_entry(void) {
// rmethod: Method*
// r13: sender SP
address entry_point = __ pc();
// abstract method entry
// pop return address, reset last_sp to NULL
__ empty_expression_stack();
__ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
__ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
// throw exception
__ call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
rmethod);
// the call_VM checks for exception, so we should never return here.
__ should_not_reach_here();
return entry_point;
}
address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
address entry = __ pc();
#ifdef ASSERT
{
Label L;
__ ldr(rscratch1, Address(rfp,
frame::interpreter_frame_monitor_block_top_offset *
wordSize));
__ mov(rscratch2, sp);
__ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack
// grows negative)
__ br(Assembler::HS, L); // check if frame is complete
__ stop ("interpreter frame not set up");
__ bind(L);
}
#endif // ASSERT
// Restore bcp under the assumption that the current frame is still
// interpreted
__ restore_bcp();
// expression stack must be empty before entering the VM if an
// exception happened
__ empty_expression_stack();
// throw exception
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_StackOverflowError));
return entry;
}
address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
address entry = __ pc();
// expression stack must be empty before entering the VM if an
// exception happened
__ empty_expression_stack();
// setup parameters
// ??? convention: expect aberrant index in register r1
__ movw(c_rarg2, r1);
// ??? convention: expect array in register r3
__ mov(c_rarg1, r3);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::
throw_ArrayIndexOutOfBoundsException),
c_rarg1, c_rarg2);
return entry;
}
address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
address entry = __ pc();
// object is at TOS
__ pop(c_rarg1);
// expression stack must be empty before entering the VM if an
// exception happened
__ empty_expression_stack();
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::
throw_ClassCastException),
c_rarg1);
return entry;
}
address TemplateInterpreterGenerator::generate_exception_handler_common(
const char* name, const char* message, bool pass_oop) {
assert(!pass_oop || message == NULL, "either oop or message but not both");
address entry = __ pc();
if (pass_oop) {
// object is at TOS
__ pop(c_rarg2);
}
// expression stack must be empty before entering the VM if an
// exception happened
__ empty_expression_stack();
// setup parameters
__ lea(c_rarg1, Address((address)name));
if (pass_oop) {
__ call_VM(r0, CAST_FROM_FN_PTR(address,
InterpreterRuntime::
create_klass_exception),
c_rarg1, c_rarg2);
} else {
// kind of lame ExternalAddress can't take NULL because
// external_word_Relocation will assert.
if (message != NULL) {
__ lea(c_rarg2, Address((address)message));
} else {
__ mov(c_rarg2, NULL_WORD);
}
__ call_VM(r0,
CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
c_rarg1, c_rarg2);
}
// throw exception
__ b(address(Interpreter::throw_exception_entry()));
return entry;
}
address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
address entry = __ pc();
// Restore stack bottom in case i2c adjusted stack
__ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
// and NULL it as marker that esp is now tos until next java call
__ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
__ restore_bcp();
__ restore_locals();
__ restore_constant_pool_cache();
__ get_method(rmethod);
if (state == atos) {
Register obj = r0;
Register mdp = r1;
Register tmp = r2;
__ profile_return_type(mdp, obj, tmp);
}
// Pop N words from the stack
__ get_cache_and_index_at_bcp(r1, r2, 1, index_size);
__ ldr(r1, Address(r1, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
__ andr(r1, r1, ConstantPoolCacheEntry::parameter_size_mask);
__ add(esp, esp, r1, Assembler::LSL, 3);
// Restore machine SP
__ ldr(rscratch1, Address(rmethod, Method::const_offset()));
__ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
__ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
__ ldr(rscratch2,
Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
__ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3);
__ andr(sp, rscratch1, -16);
__ check_and_handle_popframe(rthread);
__ check_and_handle_earlyret(rthread);
__ get_dispatch();
__ dispatch_next(state, step);
return entry;
}
address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
int step,
address continuation) {
address entry = __ pc();
__ restore_bcp();
__ restore_locals();
__ restore_constant_pool_cache();
__ get_method(rmethod);
__ get_dispatch();
// Calculate stack limit
__ ldr(rscratch1, Address(rmethod, Method::const_offset()));
__ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
__ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
__ ldr(rscratch2,
Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
__ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3);
__ andr(sp, rscratch1, -16);
// Restore expression stack pointer
__ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
// NULL last_sp until next java call
__ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
#if INCLUDE_JVMCI
// Check if we need to take lock at entry of synchronized method. This can
// only occur on method entry so emit it only for vtos with step 0.
if ((EnableJVMCI || UseAOT) && state == vtos && step == 0) {
Label L;
__ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset()));
__ cbz(rscratch1, L);
// Clear flag.
__ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset()));
// Take lock.
lock_method();
__ bind(L);
} else {
#ifdef ASSERT
if (EnableJVMCI) {
Label L;
__ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset()));
__ cbz(rscratch1, L);
__ stop("unexpected pending monitor in deopt entry");
__ bind(L);
}
#endif
}
#endif
// handle exceptions
{
Label L;
__ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
__ cbz(rscratch1, L);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_pending_exception));
__ should_not_reach_here();
__ bind(L);
}
if (continuation == NULL) {
__ dispatch_next(state, step);
} else {
__ jump_to_entry(continuation);
}
return entry;
}
address TemplateInterpreterGenerator::generate_result_handler_for(
BasicType type) {
address entry = __ pc();
switch (type) {
case T_BOOLEAN: __ c2bool(r0); break;
case T_CHAR : __ uxth(r0, r0); break;
case T_BYTE : __ sxtb(r0, r0); break;
case T_SHORT : __ sxth(r0, r0); break;
case T_INT : __ uxtw(r0, r0); break; // FIXME: We almost certainly don't need this
case T_LONG : /* nothing to do */ break;
case T_VOID : /* nothing to do */ break;
case T_FLOAT : /* nothing to do */ break;
case T_DOUBLE : /* nothing to do */ break;
case T_OBJECT :
// retrieve result from frame
__ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
// and verify it
__ verify_oop(r0);
break;
default : ShouldNotReachHere();
}
__ ret(lr); // return from result handler
return entry;
}
address TemplateInterpreterGenerator::generate_safept_entry_for(
TosState state,
address runtime_entry) {
address entry = __ pc();
__ push(state);
__ call_VM(noreg, runtime_entry);
__ membar(Assembler::AnyAny);
__ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
return entry;
}
// Helpers for commoning out cases in the various type of method entries.
//
// increment invocation count & check for overflow
//
// Note: checking for negative value instead of overflow
// so we have a 'sticky' overflow test
//
// rmethod: method
//
void TemplateInterpreterGenerator::generate_counter_incr(
Label* overflow,
Label* profile_method,
Label* profile_method_continue) {
Label done;
// Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
if (TieredCompilation) {
int increment = InvocationCounter::count_increment;
Label no_mdo;
if (ProfileInterpreter) {
// Are we profiling?
__ ldr(r0, Address(rmethod, Method::method_data_offset()));
__ cbz(r0, no_mdo);
// Increment counter in the MDO
const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) +
in_bytes(InvocationCounter::counter_offset()));
const Address mask(r0, in_bytes(MethodData::invoke_mask_offset()));
__ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow);
__ b(done);
}
__ bind(no_mdo);
// Increment counter in MethodCounters
const Address invocation_counter(rscratch2,
MethodCounters::invocation_counter_offset() +
InvocationCounter::counter_offset());
__ get_method_counters(rmethod, rscratch2, done);
const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset()));
__ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow);
__ bind(done);
} else { // not TieredCompilation
const Address backedge_counter(rscratch2,
MethodCounters::backedge_counter_offset() +
InvocationCounter::counter_offset());
const Address invocation_counter(rscratch2,
MethodCounters::invocation_counter_offset() +
InvocationCounter::counter_offset());
__ get_method_counters(rmethod, rscratch2, done);
if (ProfileInterpreter) { // %%% Merge this into MethodData*
__ ldrw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset()));
__ addw(r1, r1, 1);
__ strw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset()));
}
// Update standard invocation counters
__ ldrw(r1, invocation_counter);
__ ldrw(r0, backedge_counter);
__ addw(r1, r1, InvocationCounter::count_increment);
__ andw(r0, r0, InvocationCounter::count_mask_value);
__ strw(r1, invocation_counter);
__ addw(r0, r0, r1); // add both counters
// profile_method is non-null only for interpreted method so
// profile_method != NULL == !native_call
if (ProfileInterpreter && profile_method != NULL) {
// Test to see if we should create a method data oop
__ ldr(rscratch2, Address(rmethod, Method::method_counters_offset()));
__ ldrw(rscratch2, Address(rscratch2, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
__ cmpw(r0, rscratch2);
__ br(Assembler::LT, *profile_method_continue);
// if no method data exists, go to profile_method
__ test_method_data_pointer(rscratch2, *profile_method);
}
{
__ ldr(rscratch2, Address(rmethod, Method::method_counters_offset()));
__ ldrw(rscratch2, Address(rscratch2, in_bytes(MethodCounters::interpreter_invocation_limit_offset())));
__ cmpw(r0, rscratch2);
__ br(Assembler::HS, *overflow);
}
__ bind(done);
}
}
void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
// Asm interpreter on entry
// On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
// Everything as it was on entry
// InterpreterRuntime::frequency_counter_overflow takes two
// arguments, the first (thread) is passed by call_VM, the second
// indicates if the counter overflow occurs at a backwards branch
// (NULL bcp). We pass zero for it. The call returns the address
// of the verified entry point for the method or NULL if the
// compilation did not complete (either went background or bailed
// out).
__ mov(c_rarg1, 0);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::frequency_counter_overflow),
c_rarg1);
__ b(do_continue);
}
// See if we've got enough room on the stack for locals plus overhead
// below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
// without going through the signal handler, i.e., reserved and yellow zones
// will not be made usable. The shadow zone must suffice to handle the
// overflow.
// The expression stack grows down incrementally, so the normal guard
// page mechanism will work for that.
//
// NOTE: Since the additional locals are also always pushed (wasn't
// obvious in generate_method_entry) so the guard should work for them
// too.
//
// Args:
// r3: number of additional locals this frame needs (what we must check)
// rmethod: Method*
//
// Kills:
// r0
void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
// monitor entry size: see picture of stack set
// (generate_method_entry) and frame_amd64.hpp
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
// total overhead size: entry_size + (saved rbp through expr stack
// bottom). be sure to change this if you add/subtract anything
// to/from the overhead area
const int overhead_size =
-(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
const int page_size = os::vm_page_size();
Label after_frame_check;
// see if the frame is greater than one page in size. If so,
// then we need to verify there is enough stack space remaining
// for the additional locals.
//
// Note that we use SUBS rather than CMP here because the immediate
// field of this instruction may overflow. SUBS can cope with this
// because it is a macro that will expand to some number of MOV
// instructions and a register operation.
__ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize);
__ br(Assembler::LS, after_frame_check);
// compute rsp as if this were going to be the last frame on
// the stack before the red zone
// locals + overhead, in bytes
__ mov(r0, overhead_size);
__ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize); // 2 slots per parameter.
const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset());
__ ldr(rscratch1, stack_limit);
#ifdef ASSERT
Label limit_okay;
// Verify that thread stack limit is non-zero.
__ cbnz(rscratch1, limit_okay);
__ stop("stack overflow limit is zero");
__ bind(limit_okay);
#endif
// Add stack limit to locals.
__ add(r0, r0, rscratch1);
// Check against the current stack bottom.
__ cmp(sp, r0);
__ br(Assembler::HI, after_frame_check);
// Remove the incoming args, peeling the machine SP back to where it
// was in the caller. This is not strictly necessary, but unless we
// do so the stack frame may have a garbage FP; this ensures a
// correct call stack that we can always unwind. The ANDR should be
// unnecessary because the sender SP in r13 is always aligned, but
// it doesn't hurt.
__ andr(sp, r13, -16);
// Note: the restored frame is not necessarily interpreted.
// Use the shared runtime version of the StackOverflowError.
assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
__ far_jump(RuntimeAddress(StubRoutines::throw_StackOverflowError_entry()));
// all done with frame size check
__ bind(after_frame_check);
}
// Allocate monitor and lock method (asm interpreter)
//
// Args:
// rmethod: Method*
// rlocals: locals
//
// Kills:
// r0
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
// rscratch1, rscratch2 (scratch regs)
void TemplateInterpreterGenerator::lock_method() {
// synchronize method
const Address access_flags(rmethod, Method::access_flags_offset());
const Address monitor_block_top(
rfp,
frame::interpreter_frame_monitor_block_top_offset * wordSize);
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
#ifdef ASSERT
{
Label L;
__ ldrw(r0, access_flags);
__ tst(r0, JVM_ACC_SYNCHRONIZED);
__ br(Assembler::NE, L);
__ stop("method doesn't need synchronization");
__ bind(L);
}
#endif // ASSERT
// get synchronization object
{
Label done;
__ ldrw(r0, access_flags);
__ tst(r0, JVM_ACC_STATIC);
// get receiver (assume this is frequent case)
__ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0)));
__ br(Assembler::EQ, done);
__ load_mirror(r0, rmethod);
#ifdef ASSERT
{
Label L;
__ cbnz(r0, L);
__ stop("synchronization object is NULL");
__ bind(L);
}
#endif // ASSERT
__ bind(done);
__ resolve(IS_NOT_NULL, r0);
}
// add space for monitor & lock
__ sub(sp, sp, entry_size); // add space for a monitor entry
__ sub(esp, esp, entry_size);
__ mov(rscratch1, esp);
__ str(rscratch1, monitor_block_top); // set new monitor block top
// store object
__ str(r0, Address(esp, BasicObjectLock::obj_offset_in_bytes()));
__ mov(c_rarg1, esp); // object address
__ lock_object(c_rarg1);
}
// Generate a fixed interpreter frame. This is identical setup for
// interpreted methods and for native methods hence the shared code.
//
// Args:
// lr: return address
// rmethod: Method*
// rlocals: pointer to locals
// rcpool: cp cache
// stack_pointer: previous sp
void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
// initialize fixed part of activation frame
if (native_call) {
__ sub(esp, sp, 14 * wordSize);
__ mov(rbcp, zr);
__ stp(esp, zr, Address(__ pre(sp, -14 * wordSize)));
// add 2 zero-initialized slots for native calls
__ stp(zr, zr, Address(sp, 12 * wordSize));
} else {
__ sub(esp, sp, 12 * wordSize);
__ ldr(rscratch1, Address(rmethod, Method::const_offset())); // get ConstMethod
__ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase
__ stp(esp, rbcp, Address(__ pre(sp, -12 * wordSize)));
}
if (ProfileInterpreter) {
Label method_data_continue;
__ ldr(rscratch1, Address(rmethod, Method::method_data_offset()));
__ cbz(rscratch1, method_data_continue);
__ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset())));
__ bind(method_data_continue);
__ stp(rscratch1, rmethod, Address(sp, 6 * wordSize)); // save Method* and mdp (method data pointer)
} else {
__ stp(zr, rmethod, Address(sp, 6 * wordSize)); // save Method* (no mdp)
}
// Get mirror and store it in the frame as GC root for this Method*
__ load_mirror(r10, rmethod);
__ stp(r10, zr, Address(sp, 4 * wordSize));
__ ldr(rcpool, Address(rmethod, Method::const_offset()));
__ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset()));
__ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset_in_bytes()));
__ stp(rlocals, rcpool, Address(sp, 2 * wordSize));
__ stp(rfp, lr, Address(sp, 10 * wordSize));
__ lea(rfp, Address(sp, 10 * wordSize));
// set sender sp
// leave last_sp as null
__ stp(zr, r13, Address(sp, 8 * wordSize));
// Move SP out of the way
if (! native_call) {
__ ldr(rscratch1, Address(rmethod, Method::const_offset()));
__ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
__ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
__ sub(rscratch1, sp, rscratch1, ext::uxtw, 3);
__ andr(sp, rscratch1, -16);
}
}
// End of helpers
// Various method entries
//------------------------------------------------------------------------------------------------------------------------
//
//
// Method entry for java.lang.ref.Reference.get.
address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
// Code: _aload_0, _getfield, _areturn
// parameter size = 1
//
// The code that gets generated by this routine is split into 2 parts:
// 1. The "intrinsified" code for G1 (or any SATB based GC),
// 2. The slow path - which is an expansion of the regular method entry.
//
// Notes:-
// * In the G1 code we do not check whether we need to block for
// a safepoint. If G1 is enabled then we must execute the specialized
// code for Reference.get (except when the Reference object is null)
// so that we can log the value in the referent field with an SATB
// update buffer.
// If the code for the getfield template is modified so that the
// G1 pre-barrier code is executed when the current method is
// Reference.get() then going through the normal method entry
// will be fine.
// * The G1 code can, however, check the receiver object (the instance
// of java.lang.Reference) and jump to the slow path if null. If the
// Reference object is null then we obviously cannot fetch the referent
// and so we don't need to call the G1 pre-barrier. Thus we can use the
// regular method entry code to generate the NPE.
//
// This code is based on generate_accessor_entry.
//
// rmethod: Method*
// r13: senderSP must preserve for slow path, set SP to it on fast path
// LR is live. It must be saved around calls.
address entry = __ pc();
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "referent offset not initialized");
Label slow_path;
const Register local_0 = c_rarg0;
// Check if local 0 != NULL
// If the receiver is null then it is OK to jump to the slow path.
__ ldr(local_0, Address(esp, 0));
__ cbz(local_0, slow_path);
__ mov(r19, r13); // Move senderSP to a callee-saved register
// Load the value of the referent field.
const Address field_address(local_0, referent_offset);
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch2, /*tmp2*/ rscratch1);
// areturn
__ andr(sp, r19, -16); // done with stack
__ ret(lr);
// generate a vanilla interpreter entry as the slow path
__ bind(slow_path);
__ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
return entry;
}
/**
* Method entry for static native methods:
* int java.util.zip.CRC32.update(int crc, int b)
*/
address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
if (UseCRC32Intrinsics) {
address entry = __ pc();
// rmethod: Method*
// r13: senderSP must preserved for slow path
// esp: args
Label slow_path;
// If we need a safepoint check, generate full interpreter entry.
__ safepoint_poll(slow_path);
// We don't generate local frame and don't align stack because
// we call stub code and there is no safepoint on this path.
// Load parameters
const Register crc = c_rarg0; // crc
const Register val = c_rarg1; // source java byte value
const Register tbl = c_rarg2; // scratch
// Arguments are reversed on java expression stack
__ ldrw(val, Address(esp, 0)); // byte value
__ ldrw(crc, Address(esp, wordSize)); // Initial CRC
unsigned long offset;
__ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset);
__ add(tbl, tbl, offset);
__ mvnw(crc, crc); // ~crc
__ update_byte_crc32(crc, val, tbl);
__ mvnw(crc, crc); // ~crc
// result in c_rarg0
__ andr(sp, r13, -16);
__ ret(lr);
// generate a vanilla native entry as the slow path
__ bind(slow_path);
__ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
return entry;
}
return NULL;
}
/**
* Method entry for static native methods:
* int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
* int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
*/
address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
if (UseCRC32Intrinsics) {
address entry = __ pc();
// rmethod,: Method*
// r13: senderSP must preserved for slow path
Label slow_path;
// If we need a safepoint check, generate full interpreter entry.
__ safepoint_poll(slow_path);
// We don't generate local frame and don't align stack because
// we call stub code and there is no safepoint on this path.
// Load parameters
const Register crc = c_rarg0; // crc
const Register buf = c_rarg1; // source java byte array address
const Register len = c_rarg2; // length
const Register off = len; // offset (never overlaps with 'len')
// Arguments are reversed on java expression stack
// Calculate address of start element
if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
__ ldr(buf, Address(esp, 2*wordSize)); // long buf
__ ldrw(off, Address(esp, wordSize)); // offset
__ add(buf, buf, off); // + offset
__ ldrw(crc, Address(esp, 4*wordSize)); // Initial CRC
} else {
__ ldr(buf, Address(esp, 2*wordSize)); // byte[] array
__ resolve(IS_NOT_NULL | ACCESS_READ, buf);
__ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
__ ldrw(off, Address(esp, wordSize)); // offset
__ add(buf, buf, off); // + offset
__ ldrw(crc, Address(esp, 3*wordSize)); // Initial CRC
}
// Can now load 'len' since we're finished with 'off'
__ ldrw(len, Address(esp, 0x0)); // Length
__ andr(sp, r13, -16); // Restore the caller's SP
// We are frameless so we can just jump to the stub.
__ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()));
// generate a vanilla native entry as the slow path
__ bind(slow_path);
__ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
return entry;
}
return NULL;
}
/**
* Method entry for intrinsic-candidate (non-native) methods:
* int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
* int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
* Unlike CRC32, CRC32C does not have any methods marked as native
* CRC32C also uses an "end" variable instead of the length variable CRC32 uses
*/
address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
if (UseCRC32CIntrinsics) {
address entry = __ pc();
// Prepare jump to stub using parameters from the stack
const Register crc = c_rarg0; // initial crc
const Register buf = c_rarg1; // source java byte array address
const Register len = c_rarg2; // len argument to the kernel
const Register end = len; // index of last element to process
const Register off = crc; // offset
__ ldrw(end, Address(esp)); // int end
__ ldrw(off, Address(esp, wordSize)); // int offset
__ sub(len, end, off);
__ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf
if (kind == Interpreter::java_util_zip_CRC32C_updateBytes) {
__ resolve(IS_NOT_NULL | ACCESS_READ, buf);
}
__ add(buf, buf, off); // + offset
if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) {
__ ldrw(crc, Address(esp, 4*wordSize)); // long crc
} else {
__ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
__ ldrw(crc, Address(esp, 3*wordSize)); // long crc
}
__ andr(sp, r13, -16); // Restore the caller's SP
// Jump to the stub.
__ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C()));
return entry;
}
return NULL;
}
void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
// Bang each page in the shadow zone. We can't assume it's been done for
// an interpreter frame with greater than a page of locals, so each page
// needs to be checked. Only true for non-native.
if (UseStackBanging) {
const int n_shadow_pages = JavaThread::stack_shadow_zone_size() / os::vm_page_size();
const int start_page = native_call ? n_shadow_pages : 1;
const int page_size = os::vm_page_size();
for (int pages = start_page; pages <= n_shadow_pages ; pages++) {
__ sub(rscratch2, sp, pages*page_size);
__ str(zr, Address(rscratch2));
}
}
}
// Interpreter stub for calling a native method. (asm interpreter)
// This sets up a somewhat different looking stack for calling the
// native method than the typical interpreter frame setup.
address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
// determine code generation flags
bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
// r1: Method*
// rscratch1: sender sp
address entry_point = __ pc();
const Address constMethod (rmethod, Method::const_offset());
const Address access_flags (rmethod, Method::access_flags_offset());
const Address size_of_parameters(r2, ConstMethod::
size_of_parameters_offset());
// get parameter size (always needed)
__ ldr(r2, constMethod);
__ load_unsigned_short(r2, size_of_parameters);
// Native calls don't need the stack size check since they have no
// expression stack and the arguments are already on the stack and
// we only add a handful of words to the stack.
// rmethod: Method*
// r2: size of parameters
// rscratch1: sender sp
// for natives the size of locals is zero
// compute beginning of parameters (rlocals)
__ add(rlocals, esp, r2, ext::uxtx, 3);
__ add(rlocals, rlocals, -wordSize);
// Pull SP back to minimum size: this avoids holes in the stack
__ andr(sp, esp, -16);
// initialize fixed part of activation frame
generate_fixed_frame(true);
// make sure method is native & not abstract
#ifdef ASSERT
__ ldrw(r0, access_flags);
{
Label L;
__ tst(r0, JVM_ACC_NATIVE);
__ br(Assembler::NE, L);
__ stop("tried to execute non-native method as native");
__ bind(L);
}
{
Label L;
__ tst(r0, JVM_ACC_ABSTRACT);
__ br(Assembler::EQ, L);
__ stop("tried to execute abstract method in interpreter");
__ bind(L);
}
#endif
// Since at this point in the method invocation the exception
// handler would try to exit the monitor of synchronized methods
// which hasn't been entered yet, we set the thread local variable
// _do_not_unlock_if_synchronized to true. The remove_activation
// will check this flag.
const Address do_not_unlock_if_synchronized(rthread,
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
__ mov(rscratch2, true);
__ strb(rscratch2, do_not_unlock_if_synchronized);
// increment invocation count & check for overflow
Label invocation_counter_overflow;
if (inc_counter) {
generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
}
Label continue_after_compile;
__ bind(continue_after_compile);
bang_stack_shadow_pages(true);
// reset the _do_not_unlock_if_synchronized flag
__ strb(zr, do_not_unlock_if_synchronized);
// check for synchronized methods
// Must happen AFTER invocation_counter check and stack overflow check,
// so method is not locked if overflows.
if (synchronized) {
lock_method();
} else {
// no synchronization necessary
#ifdef ASSERT
{
Label L;
__ ldrw(r0, access_flags);
__ tst(r0, JVM_ACC_SYNCHRONIZED);
__ br(Assembler::EQ, L);
__ stop("method needs synchronization");
__ bind(L);
}
#endif
}
// start execution
#ifdef ASSERT
{
Label L;
const Address monitor_block_top(rfp,
frame::interpreter_frame_monitor_block_top_offset * wordSize);
__ ldr(rscratch1, monitor_block_top);
__ cmp(esp, rscratch1);
__ br(Assembler::EQ, L);
__ stop("broken stack frame setup in interpreter");
__ bind(L);
}
#endif
// jvmti support
__ notify_method_entry();
// work registers
const Register t = r17;
const Register result_handler = r19;
// allocate space for parameters
__ ldr(t, Address(rmethod, Method::const_offset()));
__ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
__ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize);
__ andr(sp, rscratch1, -16);
__ mov(esp, rscratch1);
// get signature handler
{
Label L;
__ ldr(t, Address(rmethod, Method::signature_handler_offset()));
__ cbnz(t, L);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::prepare_native_call),
rmethod);
__ ldr(t, Address(rmethod, Method::signature_handler_offset()));
__ bind(L);
}
// call signature handler
assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals,
"adjust this code");
assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp,
"adjust this code");
assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
"adjust this code");
// The generated handlers do not touch rmethod (the method).
// However, large signatures cannot be cached and are generated
// each time here. The slow-path generator can do a GC on return,
// so we must reload it after the call.
__ blr(t);
__ get_method(rmethod); // slow path can do a GC, reload rmethod
// result handler is in r0
// set result handler
__ mov(result_handler, r0);
// pass mirror handle if static call
{
Label L;
__ ldrw(t, Address(rmethod, Method::access_flags_offset()));
__ tbz(t, exact_log2(JVM_ACC_STATIC), L);
// get mirror
__ load_mirror(t, rmethod);
// copy mirror into activation frame
__ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize));
// pass handle to mirror
__ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize);
__ bind(L);
}
// get native function entry point in r10
{
Label L;
__ ldr(r10, Address(rmethod, Method::native_function_offset()));
address unsatisfied = (SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
__ mov(rscratch2, unsatisfied);
__ ldr(rscratch2, rscratch2);
__ cmp(r10, rscratch2);
__ br(Assembler::NE, L);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::prepare_native_call),
rmethod);
__ get_method(rmethod);
__ ldr(r10, Address(rmethod, Method::native_function_offset()));
__ bind(L);
}
// pass JNIEnv
__ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset()));
// Set the last Java PC in the frame anchor to be the return address from
// the call to the native method: this will allow the debugger to
// generate an accurate stack trace.
Label native_return;
__ set_last_Java_frame(esp, rfp, native_return, rscratch1);
// change thread state
#ifdef ASSERT
{
Label L;
__ ldrw(t, Address(rthread, JavaThread::thread_state_offset()));
__ cmp(t, (u1)_thread_in_Java);
__ br(Assembler::EQ, L);
__ stop("Wrong thread state in native stub");
__ bind(L);
}
#endif
// Change state to native
__ mov(rscratch1, _thread_in_native);
__ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
__ stlrw(rscratch1, rscratch2);
// Call the native method.
__ blr(r10);
__ bind(native_return);
__ maybe_isb();
__ get_method(rmethod);
// result potentially in r0 or v0
// make room for the pushes we're about to do
__ sub(rscratch1, esp, 4 * wordSize);
__ andr(sp, rscratch1, -16);
// NOTE: The order of these pushes is known to frame::interpreter_frame_result
// in order to extract the result of a method call. If the order of these
// pushes change or anything else is added to the stack then the code in
// interpreter_frame_result must also change.
__ push(dtos);
__ push(ltos);
// change thread state
__ mov(rscratch1, _thread_in_native_trans);
__ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
__ stlrw(rscratch1, rscratch2);
// Force this write out before the read below
__ dmb(Assembler::ISH);
// check for safepoint operation in progress and/or pending suspend requests
{
Label L, Continue;
__ safepoint_poll_acquire(L);
__ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset()));
__ cbz(rscratch2, Continue);
__ bind(L);
// Don't use call_VM as it will see a possible pending exception
// and forward it and never return here preventing us from
// clearing _last_native_pc down below. So we do a runtime call by
// hand.
//
__ mov(c_rarg0, rthread);
__ mov(rscratch2, CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
__ blr(rscratch2);
__ maybe_isb();
__ get_method(rmethod);
__ reinit_heapbase();
__ bind(Continue);
}
// change thread state
__ mov(rscratch1, _thread_in_Java);
__ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
__ stlrw(rscratch1, rscratch2);
// reset_last_Java_frame
__ reset_last_Java_frame(true);
if (CheckJNICalls) {
// clear_pending_jni_exception_check
__ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
}
// reset handle block
__ ldr(t, Address(rthread, JavaThread::active_handles_offset()));
__ str(zr, Address(t, JNIHandleBlock::top_offset_in_bytes()));
// If result is an oop unbox and store it in frame where gc will see it
// and result handler will pick it up
{
Label no_oop;
__ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
__ cmp(t, result_handler);
__ br(Assembler::NE, no_oop);
// Unbox oop result, e.g. JNIHandles::resolve result.
__ pop(ltos);
__ resolve_jobject(r0, rthread, t);
__ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
// keep stack depth as expected by pushing oop which will eventually be discarded
__ push(ltos);
__ bind(no_oop);
}
{
Label no_reguard;
__ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset())));
__ ldrw(rscratch1, Address(rscratch1));
__ cmp(rscratch1, (u1)JavaThread::stack_guard_yellow_reserved_disabled);
__ br(Assembler::NE, no_reguard);
__ pusha(); // XXX only save smashed registers
__ mov(c_rarg0, rthread);
__ mov(rscratch2, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
__ blr(rscratch2);
__ popa(); // XXX only restore smashed registers
__ bind(no_reguard);
}
// The method register is junk from after the thread_in_native transition
// until here. Also can't call_VM until the bcp has been
// restored. Need bcp for throwing exception below so get it now.
__ get_method(rmethod);
// restore bcp to have legal interpreter frame, i.e., bci == 0 <=>
// rbcp == code_base()
__ ldr(rbcp, Address(rmethod, Method::const_offset())); // get ConstMethod*
__ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); // get codebase
// handle exceptions (exception handling will handle unlocking!)
{
Label L;
__ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
__ cbz(rscratch1, L);
// Note: At some point we may want to unify this with the code
// used in call_VM_base(); i.e., we should use the
// StubRoutines::forward_exception code. For now this doesn't work
// here because the rsp is not correctly set at this point.
__ MacroAssembler::call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_pending_exception));
__ should_not_reach_here();
__ bind(L);
}
// do unlocking if necessary
{
Label L;
__ ldrw(t, Address(rmethod, Method::access_flags_offset()));
__ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L);
// the code below should be shared with interpreter macro
// assembler implementation
{
Label unlock;
// BasicObjectLock will be first in list, since this is a
// synchronized method. However, need to check that the object
// has not been unlocked by an explicit monitorexit bytecode.
// monitor expect in c_rarg1 for slow unlock path
__ lea (c_rarg1, Address(rfp, // address of first monitor
(intptr_t)(frame::interpreter_frame_initial_sp_offset *
wordSize - sizeof(BasicObjectLock))));
__ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
__ cbnz(t, unlock);
// Entry already unlocked, need to throw exception
__ MacroAssembler::call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_illegal_monitor_state_exception));
__ should_not_reach_here();
__ bind(unlock);
__ unlock_object(c_rarg1);
}
__ bind(L);
}
// jvmti support
// Note: This must happen _after_ handling/throwing any exceptions since
// the exception handler code notifies the runtime of method exits
// too. If this happens before, method entry/exit notifications are
// not properly paired (was bug - gri 11/22/99).
__ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
// restore potential result in r0:d0, call result handler to
// restore potential result in ST0 & handle result
__ pop(ltos);
__ pop(dtos);
__ blr(result_handler);
// remove activation
__ ldr(esp, Address(rfp,
frame::interpreter_frame_sender_sp_offset *
wordSize)); // get sender sp
// remove frame anchor
__ leave();
// resture sender sp
__ mov(sp, esp);
__ ret(lr);
if (inc_counter) {
// Handle overflow of counter and compile method
__ bind(invocation_counter_overflow);
generate_counter_overflow(continue_after_compile);
}
return entry_point;
}
//
// Generic interpreted method entry to (asm) interpreter
//
address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
// determine code generation flags
bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
// rscratch1: sender sp
address entry_point = __ pc();
const Address constMethod(rmethod, Method::const_offset());
const Address access_flags(rmethod, Method::access_flags_offset());
const Address size_of_parameters(r3,
ConstMethod::size_of_parameters_offset());
const Address size_of_locals(r3, ConstMethod::size_of_locals_offset());
// get parameter size (always needed)
// need to load the const method first
__ ldr(r3, constMethod);
__ load_unsigned_short(r2, size_of_parameters);
// r2: size of parameters
__ load_unsigned_short(r3, size_of_locals); // get size of locals in words
__ sub(r3, r3, r2); // r3 = no. of additional locals
// see if we've got enough room on the stack for locals plus overhead.
generate_stack_overflow_check();
// compute beginning of parameters (rlocals)
__ add(rlocals, esp, r2, ext::uxtx, 3);
__ sub(rlocals, rlocals, wordSize);
// Make room for locals
__ sub(rscratch1, esp, r3, ext::uxtx, 3);
__ andr(sp, rscratch1, -16);
// r3 - # of additional locals
// allocate space for locals
// explicitly initialize locals
{
Label exit, loop;
__ ands(zr, r3, r3);
__ br(Assembler::LE, exit); // do nothing if r3 <= 0
__ bind(loop);
__ str(zr, Address(__ post(rscratch1, wordSize)));
__ sub(r3, r3, 1); // until everything initialized
__ cbnz(r3, loop);
__ bind(exit);
}
// And the base dispatch table
__ get_dispatch();
// initialize fixed part of activation frame
generate_fixed_frame(false);
// make sure method is not native & not abstract
#ifdef ASSERT
__ ldrw(r0, access_flags);
{
Label L;
__ tst(r0, JVM_ACC_NATIVE);
__ br(Assembler::EQ, L);
__ stop("tried to execute native method as non-native");
__ bind(L);
}
{
Label L;
__ tst(r0, JVM_ACC_ABSTRACT);
__ br(Assembler::EQ, L);
__ stop("tried to execute abstract method in interpreter");
__ bind(L);
}
#endif
// Since at this point in the method invocation the exception
// handler would try to exit the monitor of synchronized methods
// which hasn't been entered yet, we set the thread local variable
// _do_not_unlock_if_synchronized to true. The remove_activation
// will check this flag.
const Address do_not_unlock_if_synchronized(rthread,
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
__ mov(rscratch2, true);
__ strb(rscratch2, do_not_unlock_if_synchronized);
Register mdp = r3;
__ profile_parameters_type(mdp, r1, r2);
// increment invocation count & check for overflow
Label invocation_counter_overflow;
Label profile_method;
Label profile_method_continue;
if (inc_counter) {
generate_counter_incr(&invocation_counter_overflow,
&profile_method,
&profile_method_continue);
if (ProfileInterpreter) {
__ bind(profile_method_continue);
}
}
Label continue_after_compile;
__ bind(continue_after_compile);
bang_stack_shadow_pages(false);
// reset the _do_not_unlock_if_synchronized flag
__ strb(zr, do_not_unlock_if_synchronized);
// check for synchronized methods
// Must happen AFTER invocation_counter check and stack overflow check,
// so method is not locked if overflows.
if (synchronized) {
// Allocate monitor and lock method
lock_method();
} else {
// no synchronization necessary
#ifdef ASSERT
{
Label L;
__ ldrw(r0, access_flags);
__ tst(r0, JVM_ACC_SYNCHRONIZED);
__ br(Assembler::EQ, L);
__ stop("method needs synchronization");
__ bind(L);
}
#endif
}
// start execution
#ifdef ASSERT
{
Label L;
const Address monitor_block_top (rfp,
frame::interpreter_frame_monitor_block_top_offset * wordSize);
__ ldr(rscratch1, monitor_block_top);
__ cmp(esp, rscratch1);
__ br(Assembler::EQ, L);
__ stop("broken stack frame setup in interpreter");
__ bind(L);
}
#endif
// jvmti support
__ notify_method_entry();
__ dispatch_next(vtos);
// invocation counter overflow
if (inc_counter) {
if (ProfileInterpreter) {
// We have decided to profile this method in the interpreter
__ bind(profile_method);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
__ set_method_data_pointer_for_bcp();
// don't think we need this
__ get_method(r1);
__ b(profile_method_continue);
}
// Handle overflow of counter and compile method
__ bind(invocation_counter_overflow);
generate_counter_overflow(continue_after_compile);
}
return entry_point;
}
//-----------------------------------------------------------------------------
// Exceptions
void TemplateInterpreterGenerator::generate_throw_exception() {
// Entry point in previous activation (i.e., if the caller was
// interpreted)
Interpreter::_rethrow_exception_entry = __ pc();
// Restore sp to interpreter_frame_last_sp even though we are going
// to empty the expression stack for the exception processing.
__ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
// r0: exception
// r3: return address/pc that threw exception
__ restore_bcp(); // rbcp points to call/send
__ restore_locals();
__ restore_constant_pool_cache();
__ reinit_heapbase(); // restore rheapbase as heapbase.
__ get_dispatch();
// Entry point for exceptions thrown within interpreter code
Interpreter::_throw_exception_entry = __ pc();
// If we came here via a NullPointerException on the receiver of a
// method, rmethod may be corrupt.
__ get_method(rmethod);
// expression stack is undefined here
// r0: exception
// rbcp: exception bcp
__ verify_oop(r0);
__ mov(c_rarg1, r0);
// expression stack must be empty before entering the VM in case of
// an exception
__ empty_expression_stack();
// find exception handler address and preserve exception oop
__ call_VM(r3,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::exception_handler_for_exception),
c_rarg1);
// Calculate stack limit
__ ldr(rscratch1, Address(rmethod, Method::const_offset()));
__ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
__ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4);
__ ldr(rscratch2,
Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
__ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3);
__ andr(sp, rscratch1, -16);
// r0: exception handler entry point
// r3: preserved exception oop
// rbcp: bcp for exception handler
__ push_ptr(r3); // push exception which is now the only value on the stack
__ br(r0); // jump to exception handler (may be _remove_activation_entry!)
// If the exception is not handled in the current frame the frame is
// removed and the exception is rethrown (i.e. exception
// continuation is _rethrow_exception).
//
// Note: At this point the bci is still the bxi for the instruction
// which caused the exception and the expression stack is
// empty. Thus, for any VM calls at this point, GC will find a legal
// oop map (with empty expression stack).
//
// JVMTI PopFrame support
//
Interpreter::_remove_activation_preserving_args_entry = __ pc();
__ empty_expression_stack();
// Set the popframe_processing bit in pending_popframe_condition
// indicating that we are currently handling popframe, so that
// call_VMs that may happen later do not trigger new popframe
// handling cycles.
__ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
__ orr(r3, r3, JavaThread::popframe_processing_bit);
__ strw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
{
// Check to see whether we are returning to a deoptimized frame.
// (The PopFrame call ensures that the caller of the popped frame is
// either interpreted or compiled and deoptimizes it if compiled.)
// In this case, we can't call dispatch_next() after the frame is
// popped, but instead must save the incoming arguments and restore
// them after deoptimization has occurred.
//
// Note that we don't compare the return PC against the
// deoptimization blob's unpack entry because of the presence of
// adapter frames in C2.
Label caller_not_deoptimized;
__ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize));
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
InterpreterRuntime::interpreter_contains), c_rarg1);
__ cbnz(r0, caller_not_deoptimized);
// Compute size of arguments for saving when returning to
// deoptimized caller
__ get_method(r0);
__ ldr(r0, Address(r0, Method::const_offset()));
__ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod::
size_of_parameters_offset())));
__ lsl(r0, r0, Interpreter::logStackElementSize);
__ restore_locals(); // XXX do we need this?
__ sub(rlocals, rlocals, r0);
__ add(rlocals, rlocals, wordSize);
// Save these arguments
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
Deoptimization::
popframe_preserve_args),
rthread, r0, rlocals);
__ remove_activation(vtos,
/* throw_monitor_exception */ false,
/* install_monitor_exception */ false,
/* notify_jvmdi */ false);
// Inform deoptimization that it is responsible for restoring
// these arguments
__ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit);
__ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
// Continue in deoptimization handler
__ ret(lr);
__ bind(caller_not_deoptimized);
}
__ remove_activation(vtos,
/* throw_monitor_exception */ false,
/* install_monitor_exception */ false,
/* notify_jvmdi */ false);
// Restore the last_sp and null it out
__ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
__ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
__ restore_bcp();
__ restore_locals();
__ restore_constant_pool_cache();
__ get_method(rmethod);
__ get_dispatch();
// The method data pointer was incremented already during
// call profiling. We have to restore the mdp for the current bcp.
if (ProfileInterpreter) {
__ set_method_data_pointer_for_bcp();
}
// Clear the popframe condition flag
__ strw(zr, Address(rthread, JavaThread::popframe_condition_offset()));
assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive");
#if INCLUDE_JVMTI
{
Label L_done;
__ ldrb(rscratch1, Address(rbcp, 0));
__ cmpw(rscratch1, Bytecodes::_invokestatic);
__ br(Assembler::NE, L_done);
// The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
// Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
__ ldr(c_rarg0, Address(rlocals, 0));
__ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp);
__ cbz(r0, L_done);
__ str(r0, Address(esp, 0));
__ bind(L_done);
}
#endif // INCLUDE_JVMTI
// Restore machine SP
__ ldr(rscratch1, Address(rmethod, Method::const_offset()));
__ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
__ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4);
__ ldr(rscratch2,
Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
__ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3);
__ andr(sp, rscratch1, -16);
__ dispatch_next(vtos);
// end of PopFrame support
Interpreter::_remove_activation_entry = __ pc();
// preserve exception over this code sequence
__ pop_ptr(r0);
__ str(r0, Address(rthread, JavaThread::vm_result_offset()));
// remove the activation (without doing throws on illegalMonitorExceptions)
__ remove_activation(vtos, false, true, false);
// restore exception
__ get_vm_result(r0, rthread);
// In between activations - previous activation type unknown yet
// compute continuation point - the continuation point expects the
// following registers set up:
//
// r0: exception
// lr: return address/pc that threw exception
// esp: expression stack of caller
// rfp: fp of caller
__ stp(r0, lr, Address(__ pre(sp, -2 * wordSize))); // save exception & return address
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
SharedRuntime::exception_handler_for_return_address),
rthread, lr);
__ mov(r1, r0); // save exception handler
__ ldp(r0, lr, Address(__ post(sp, 2 * wordSize))); // restore exception & return address
// We might be returning to a deopt handler that expects r3 to
// contain the exception pc
__ mov(r3, lr);
// Note that an "issuing PC" is actually the next PC after the call
__ br(r1); // jump to exception
// handler of caller
}
//
// JVMTI ForceEarlyReturn support
//
address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
address entry = __ pc();
__ restore_bcp();
__ restore_locals();
__ empty_expression_stack();
__ load_earlyret_value(state);
__ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset());
// Clear the earlyret state
assert(JvmtiThreadState::earlyret_inactive == 0, "should be");
__ str(zr, cond_addr);
__ remove_activation(state,
false, /* throw_monitor_exception */
false, /* install_monitor_exception */
true); /* notify_jvmdi */
__ ret(lr);
return entry;
} // end of ForceEarlyReturn support
//-----------------------------------------------------------------------------
// Helper for vtos entry point generation
void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
address& bep,
address& cep,
address& sep,
address& aep,
address& iep,
address& lep,
address& fep,
address& dep,
address& vep) {
assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
Label L;
aep = __ pc(); __ push_ptr(); __ b(L);
fep = __ pc(); __ push_f(); __ b(L);
dep = __ pc(); __ push_d(); __ b(L);
lep = __ pc(); __ push_l(); __ b(L);
bep = cep = sep =
iep = __ pc(); __ push_i();
vep = __ pc();
__ bind(L);
generate_and_dispatch(t);
}
//-----------------------------------------------------------------------------
// Non-product code
#ifndef PRODUCT
address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
address entry = __ pc();
__ push(lr);
__ push(state);
__ push(RegSet::range(r0, r15), sp);
__ mov(c_rarg2, r0); // Pass itos
__ call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode),
c_rarg1, c_rarg2, c_rarg3);
__ pop(RegSet::range(r0, r15), sp);
__ pop(state);
__ pop(lr);
__ ret(lr); // return from result handler
return entry;
}
void TemplateInterpreterGenerator::count_bytecode() {
Register rscratch3 = r0;
__ push(rscratch1);
__ push(rscratch2);
__ push(rscratch3);
__ mov(rscratch3, (address) &BytecodeCounter::_counter_value);
__ atomic_add(noreg, 1, rscratch3);
__ pop(rscratch3);
__ pop(rscratch2);
__ pop(rscratch1);
}
void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { ; }
void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { ; }
void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
// Call a little run-time stub to avoid blow-up for each bytecode.
// The run-time runtime saves the right registers, depending on
// the tosca in-state for the given template.
assert(Interpreter::trace_code(t->tos_in()) != NULL,
"entry must have been generated");
__ bl(Interpreter::trace_code(t->tos_in()));
__ reinit_heapbase();
}
void TemplateInterpreterGenerator::stop_interpreter_at() {
Label L;
__ push(rscratch1);
__ mov(rscratch1, (address) &BytecodeCounter::_counter_value);
__ ldr(rscratch1, Address(rscratch1));
__ mov(rscratch2, StopInterpreterAt);
__ cmpw(rscratch1, rscratch2);
__ br(Assembler::NE, L);
__ brk(0);
__ bind(L);
__ pop(rscratch1);
}
#endif // !PRODUCT