jdk/src/share/classes/java/util/TreeMap.java
author xdono
Wed, 02 Jul 2008 12:55:45 -0700
changeset 715 f16baef3a20e
parent 493 b8102e80be10
child 2428 e63d91602813
permissions -rw-r--r--
6719955: Update copyright year Summary: Update copyright year for files that have been modified in 2008 Reviewed-by: ohair, tbell

/*
 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Sun designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Sun in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 */

package java.util;

/**
 * A Red-Black tree based {@link NavigableMap} implementation.
 * The map is sorted according to the {@linkplain Comparable natural
 * ordering} of its keys, or by a {@link Comparator} provided at map
 * creation time, depending on which constructor is used.
 *
 * <p>This implementation provides guaranteed log(n) time cost for the
 * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and <tt>remove</tt>
 * operations.  Algorithms are adaptations of those in Cormen, Leiserson, and
 * Rivest's <I>Introduction to Algorithms</I>.
 *
 * <p>Note that the ordering maintained by a sorted map (whether or not an
 * explicit comparator is provided) must be <i>consistent with equals</i> if
 * this sorted map is to correctly implement the <tt>Map</tt> interface.  (See
 * <tt>Comparable</tt> or <tt>Comparator</tt> for a precise definition of
 * <i>consistent with equals</i>.)  This is so because the <tt>Map</tt>
 * interface is defined in terms of the equals operation, but a map performs
 * all key comparisons using its <tt>compareTo</tt> (or <tt>compare</tt>)
 * method, so two keys that are deemed equal by this method are, from the
 * standpoint of the sorted map, equal.  The behavior of a sorted map
 * <i>is</i> well-defined even if its ordering is inconsistent with equals; it
 * just fails to obey the general contract of the <tt>Map</tt> interface.
 *
 * <p><strong>Note that this implementation is not synchronized.</strong>
 * If multiple threads access a map concurrently, and at least one of the
 * threads modifies the map structurally, it <i>must</i> be synchronized
 * externally.  (A structural modification is any operation that adds or
 * deletes one or more mappings; merely changing the value associated
 * with an existing key is not a structural modification.)  This is
 * typically accomplished by synchronizing on some object that naturally
 * encapsulates the map.
 * If no such object exists, the map should be "wrapped" using the
 * {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap}
 * method.  This is best done at creation time, to prevent accidental
 * unsynchronized access to the map: <pre>
 *   SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre>
 *
 * <p>The iterators returned by the <tt>iterator</tt> method of the collections
 * returned by all of this class's "collection view methods" are
 * <i>fail-fast</i>: if the map is structurally modified at any time after the
 * iterator is created, in any way except through the iterator's own
 * <tt>remove</tt> method, the iterator will throw a {@link
 * ConcurrentModificationException}.  Thus, in the face of concurrent
 * modification, the iterator fails quickly and cleanly, rather than risking
 * arbitrary, non-deterministic behavior at an undetermined time in the future.
 *
 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 * as it is, generally speaking, impossible to make any hard guarantees in the
 * presence of unsynchronized concurrent modification.  Fail-fast iterators
 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 * Therefore, it would be wrong to write a program that depended on this
 * exception for its correctness:   <i>the fail-fast behavior of iterators
 * should be used only to detect bugs.</i>
 *
 * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
 * and its views represent snapshots of mappings at the time they were
 * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
 * method. (Note however that it is possible to change mappings in the
 * associated map using <tt>put</tt>.)
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @param <K> the type of keys maintained by this map
 * @param <V> the type of mapped values
 *
 * @author  Josh Bloch and Doug Lea
 * @see Map
 * @see HashMap
 * @see Hashtable
 * @see Comparable
 * @see Comparator
 * @see Collection
 * @since 1.2
 */

public class TreeMap<K,V>
    extends AbstractMap<K,V>
    implements NavigableMap<K,V>, Cloneable, java.io.Serializable
{
    /**
     * The comparator used to maintain order in this tree map, or
     * null if it uses the natural ordering of its keys.
     *
     * @serial
     */
    private final Comparator<? super K> comparator;

    private transient Entry<K,V> root = null;

    /**
     * The number of entries in the tree
     */
    private transient int size = 0;

    /**
     * The number of structural modifications to the tree.
     */
    private transient int modCount = 0;

    /**
     * Constructs a new, empty tree map, using the natural ordering of its
     * keys.  All keys inserted into the map must implement the {@link
     * Comparable} interface.  Furthermore, all such keys must be
     * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw
     * a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
     * <tt>k2</tt> in the map.  If the user attempts to put a key into the
     * map that violates this constraint (for example, the user attempts to
     * put a string key into a map whose keys are integers), the
     * <tt>put(Object key, Object value)</tt> call will throw a
     * <tt>ClassCastException</tt>.
     */
    public TreeMap() {
        comparator = null;
    }

    /**
     * Constructs a new, empty tree map, ordered according to the given
     * comparator.  All keys inserted into the map must be <i>mutually
     * comparable</i> by the given comparator: <tt>comparator.compare(k1,
     * k2)</tt> must not throw a <tt>ClassCastException</tt> for any keys
     * <tt>k1</tt> and <tt>k2</tt> in the map.  If the user attempts to put
     * a key into the map that violates this constraint, the <tt>put(Object
     * key, Object value)</tt> call will throw a
     * <tt>ClassCastException</tt>.
     *
     * @param comparator the comparator that will be used to order this map.
     *        If <tt>null</tt>, the {@linkplain Comparable natural
     *        ordering} of the keys will be used.
     */
    public TreeMap(Comparator<? super K> comparator) {
        this.comparator = comparator;
    }

    /**
     * Constructs a new tree map containing the same mappings as the given
     * map, ordered according to the <i>natural ordering</i> of its keys.
     * All keys inserted into the new map must implement the {@link
     * Comparable} interface.  Furthermore, all such keys must be
     * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw
     * a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
     * <tt>k2</tt> in the map.  This method runs in n*log(n) time.
     *
     * @param  m the map whose mappings are to be placed in this map
     * @throws ClassCastException if the keys in m are not {@link Comparable},
     *         or are not mutually comparable
     * @throws NullPointerException if the specified map is null
     */
    public TreeMap(Map<? extends K, ? extends V> m) {
        comparator = null;
        putAll(m);
    }

    /**
     * Constructs a new tree map containing the same mappings and
     * using the same ordering as the specified sorted map.  This
     * method runs in linear time.
     *
     * @param  m the sorted map whose mappings are to be placed in this map,
     *         and whose comparator is to be used to sort this map
     * @throws NullPointerException if the specified map is null
     */
    public TreeMap(SortedMap<K, ? extends V> m) {
        comparator = m.comparator();
        try {
            buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
        } catch (java.io.IOException cannotHappen) {
        } catch (ClassNotFoundException cannotHappen) {
        }
    }


    // Query Operations

    /**
     * Returns the number of key-value mappings in this map.
     *
     * @return the number of key-value mappings in this map
     */
    public int size() {
        return size;
    }

    /**
     * Returns <tt>true</tt> if this map contains a mapping for the specified
     * key.
     *
     * @param key key whose presence in this map is to be tested
     * @return <tt>true</tt> if this map contains a mapping for the
     *         specified key
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     */
    public boolean containsKey(Object key) {
        return getEntry(key) != null;
    }

    /**
     * Returns <tt>true</tt> if this map maps one or more keys to the
     * specified value.  More formally, returns <tt>true</tt> if and only if
     * this map contains at least one mapping to a value <tt>v</tt> such
     * that <tt>(value==null ? v==null : value.equals(v))</tt>.  This
     * operation will probably require time linear in the map size for
     * most implementations.
     *
     * @param value value whose presence in this map is to be tested
     * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
     *         <tt>false</tt> otherwise
     * @since 1.2
     */
    public boolean containsValue(Object value) {
        for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
            if (valEquals(value, e.value))
                return true;
        return false;
    }

    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code key} compares
     * equal to {@code k} according to the map's ordering, then this
     * method returns {@code v}; otherwise it returns {@code null}.
     * (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     */
    public V get(Object key) {
        Entry<K,V> p = getEntry(key);
        return (p==null ? null : p.value);
    }

    public Comparator<? super K> comparator() {
        return comparator;
    }

    /**
     * @throws NoSuchElementException {@inheritDoc}
     */
    public K firstKey() {
        return key(getFirstEntry());
    }

    /**
     * @throws NoSuchElementException {@inheritDoc}
     */
    public K lastKey() {
        return key(getLastEntry());
    }

    /**
     * Copies all of the mappings from the specified map to this map.
     * These mappings replace any mappings that this map had for any
     * of the keys currently in the specified map.
     *
     * @param  map mappings to be stored in this map
     * @throws ClassCastException if the class of a key or value in
     *         the specified map prevents it from being stored in this map
     * @throws NullPointerException if the specified map is null or
     *         the specified map contains a null key and this map does not
     *         permit null keys
     */
    public void putAll(Map<? extends K, ? extends V> map) {
        int mapSize = map.size();
        if (size==0 && mapSize!=0 && map instanceof SortedMap) {
            Comparator c = ((SortedMap)map).comparator();
            if (c == comparator || (c != null && c.equals(comparator))) {
                ++modCount;
                try {
                    buildFromSorted(mapSize, map.entrySet().iterator(),
                                    null, null);
                } catch (java.io.IOException cannotHappen) {
                } catch (ClassNotFoundException cannotHappen) {
                }
                return;
            }
        }
        super.putAll(map);
    }

    /**
     * Returns this map's entry for the given key, or <tt>null</tt> if the map
     * does not contain an entry for the key.
     *
     * @return this map's entry for the given key, or <tt>null</tt> if the map
     *         does not contain an entry for the key
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     */
    final Entry<K,V> getEntry(Object key) {
        // Offload comparator-based version for sake of performance
        if (comparator != null)
            return getEntryUsingComparator(key);
        if (key == null)
            throw new NullPointerException();
        Comparable<? super K> k = (Comparable<? super K>) key;
        Entry<K,V> p = root;
        while (p != null) {
            int cmp = k.compareTo(p.key);
            if (cmp < 0)
                p = p.left;
            else if (cmp > 0)
                p = p.right;
            else
                return p;
        }
        return null;
    }

    /**
     * Version of getEntry using comparator. Split off from getEntry
     * for performance. (This is not worth doing for most methods,
     * that are less dependent on comparator performance, but is
     * worthwhile here.)
     */
    final Entry<K,V> getEntryUsingComparator(Object key) {
        K k = (K) key;
        Comparator<? super K> cpr = comparator;
        if (cpr != null) {
            Entry<K,V> p = root;
            while (p != null) {
                int cmp = cpr.compare(k, p.key);
                if (cmp < 0)
                    p = p.left;
                else if (cmp > 0)
                    p = p.right;
                else
                    return p;
            }
        }
        return null;
    }

    /**
     * Gets the entry corresponding to the specified key; if no such entry
     * exists, returns the entry for the least key greater than the specified
     * key; if no such entry exists (i.e., the greatest key in the Tree is less
     * than the specified key), returns <tt>null</tt>.
     */
    final Entry<K,V> getCeilingEntry(K key) {
        Entry<K,V> p = root;
        while (p != null) {
            int cmp = compare(key, p.key);
            if (cmp < 0) {
                if (p.left != null)
                    p = p.left;
                else
                    return p;
            } else if (cmp > 0) {
                if (p.right != null) {
                    p = p.right;
                } else {
                    Entry<K,V> parent = p.parent;
                    Entry<K,V> ch = p;
                    while (parent != null && ch == parent.right) {
                        ch = parent;
                        parent = parent.parent;
                    }
                    return parent;
                }
            } else
                return p;
        }
        return null;
    }

    /**
     * Gets the entry corresponding to the specified key; if no such entry
     * exists, returns the entry for the greatest key less than the specified
     * key; if no such entry exists, returns <tt>null</tt>.
     */
    final Entry<K,V> getFloorEntry(K key) {
        Entry<K,V> p = root;
        while (p != null) {
            int cmp = compare(key, p.key);
            if (cmp > 0) {
                if (p.right != null)
                    p = p.right;
                else
                    return p;
            } else if (cmp < 0) {
                if (p.left != null) {
                    p = p.left;
                } else {
                    Entry<K,V> parent = p.parent;
                    Entry<K,V> ch = p;
                    while (parent != null && ch == parent.left) {
                        ch = parent;
                        parent = parent.parent;
                    }
                    return parent;
                }
            } else
                return p;

        }
        return null;
    }

    /**
     * Gets the entry for the least key greater than the specified
     * key; if no such entry exists, returns the entry for the least
     * key greater than the specified key; if no such entry exists
     * returns <tt>null</tt>.
     */
    final Entry<K,V> getHigherEntry(K key) {
        Entry<K,V> p = root;
        while (p != null) {
            int cmp = compare(key, p.key);
            if (cmp < 0) {
                if (p.left != null)
                    p = p.left;
                else
                    return p;
            } else {
                if (p.right != null) {
                    p = p.right;
                } else {
                    Entry<K,V> parent = p.parent;
                    Entry<K,V> ch = p;
                    while (parent != null && ch == parent.right) {
                        ch = parent;
                        parent = parent.parent;
                    }
                    return parent;
                }
            }
        }
        return null;
    }

    /**
     * Returns the entry for the greatest key less than the specified key; if
     * no such entry exists (i.e., the least key in the Tree is greater than
     * the specified key), returns <tt>null</tt>.
     */
    final Entry<K,V> getLowerEntry(K key) {
        Entry<K,V> p = root;
        while (p != null) {
            int cmp = compare(key, p.key);
            if (cmp > 0) {
                if (p.right != null)
                    p = p.right;
                else
                    return p;
            } else {
                if (p.left != null) {
                    p = p.left;
                } else {
                    Entry<K,V> parent = p.parent;
                    Entry<K,V> ch = p;
                    while (parent != null && ch == parent.left) {
                        ch = parent;
                        parent = parent.parent;
                    }
                    return parent;
                }
            }
        }
        return null;
    }

    /**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     *
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     */
    public V put(K key, V value) {
        Entry<K,V> t = root;
        if (t == null) {
            // TBD:
            // 5045147: (coll) Adding null to an empty TreeSet should
            // throw NullPointerException
            //
            // compare(key, key); // type check
            root = new Entry<K,V>(key, value, null);
            size = 1;
            modCount++;
            return null;
        }
        int cmp;
        Entry<K,V> parent;
        // split comparator and comparable paths
        Comparator<? super K> cpr = comparator;
        if (cpr != null) {
            do {
                parent = t;
                cmp = cpr.compare(key, t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value);
            } while (t != null);
        }
        else {
            if (key == null)
                throw new NullPointerException();
            Comparable<? super K> k = (Comparable<? super K>) key;
            do {
                parent = t;
                cmp = k.compareTo(t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value);
            } while (t != null);
        }
        Entry<K,V> e = new Entry<K,V>(key, value, parent);
        if (cmp < 0)
            parent.left = e;
        else
            parent.right = e;
        fixAfterInsertion(e);
        size++;
        modCount++;
        return null;
    }

    /**
     * Removes the mapping for this key from this TreeMap if present.
     *
     * @param  key key for which mapping should be removed
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     */
    public V remove(Object key) {
        Entry<K,V> p = getEntry(key);
        if (p == null)
            return null;

        V oldValue = p.value;
        deleteEntry(p);
        return oldValue;
    }

    /**
     * Removes all of the mappings from this map.
     * The map will be empty after this call returns.
     */
    public void clear() {
        modCount++;
        size = 0;
        root = null;
    }

    /**
     * Returns a shallow copy of this <tt>TreeMap</tt> instance. (The keys and
     * values themselves are not cloned.)
     *
     * @return a shallow copy of this map
     */
    public Object clone() {
        TreeMap<K,V> clone = null;
        try {
            clone = (TreeMap<K,V>) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new InternalError();
        }

        // Put clone into "virgin" state (except for comparator)
        clone.root = null;
        clone.size = 0;
        clone.modCount = 0;
        clone.entrySet = null;
        clone.navigableKeySet = null;
        clone.descendingMap = null;

        // Initialize clone with our mappings
        try {
            clone.buildFromSorted(size, entrySet().iterator(), null, null);
        } catch (java.io.IOException cannotHappen) {
        } catch (ClassNotFoundException cannotHappen) {
        }

        return clone;
    }

    // NavigableMap API methods

    /**
     * @since 1.6
     */
    public Map.Entry<K,V> firstEntry() {
        return exportEntry(getFirstEntry());
    }

    /**
     * @since 1.6
     */
    public Map.Entry<K,V> lastEntry() {
        return exportEntry(getLastEntry());
    }

    /**
     * @since 1.6
     */
    public Map.Entry<K,V> pollFirstEntry() {
        Entry<K,V> p = getFirstEntry();
        Map.Entry<K,V> result = exportEntry(p);
        if (p != null)
            deleteEntry(p);
        return result;
    }

    /**
     * @since 1.6
     */
    public Map.Entry<K,V> pollLastEntry() {
        Entry<K,V> p = getLastEntry();
        Map.Entry<K,V> result = exportEntry(p);
        if (p != null)
            deleteEntry(p);
        return result;
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @since 1.6
     */
    public Map.Entry<K,V> lowerEntry(K key) {
        return exportEntry(getLowerEntry(key));
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @since 1.6
     */
    public K lowerKey(K key) {
        return keyOrNull(getLowerEntry(key));
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @since 1.6
     */
    public Map.Entry<K,V> floorEntry(K key) {
        return exportEntry(getFloorEntry(key));
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @since 1.6
     */
    public K floorKey(K key) {
        return keyOrNull(getFloorEntry(key));
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @since 1.6
     */
    public Map.Entry<K,V> ceilingEntry(K key) {
        return exportEntry(getCeilingEntry(key));
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @since 1.6
     */
    public K ceilingKey(K key) {
        return keyOrNull(getCeilingEntry(key));
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @since 1.6
     */
    public Map.Entry<K,V> higherEntry(K key) {
        return exportEntry(getHigherEntry(key));
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @since 1.6
     */
    public K higherKey(K key) {
        return keyOrNull(getHigherEntry(key));
    }

    // Views

    /**
     * Fields initialized to contain an instance of the entry set view
     * the first time this view is requested.  Views are stateless, so
     * there's no reason to create more than one.
     */
    private transient EntrySet entrySet = null;
    private transient KeySet<K> navigableKeySet = null;
    private transient NavigableMap<K,V> descendingMap = null;

    /**
     * Returns a {@link Set} view of the keys contained in this map.
     * The set's iterator returns the keys in ascending order.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  If the map is modified
     * while an iteration over the set is in progress (except through
     * the iterator's own <tt>remove</tt> operation), the results of
     * the iteration are undefined.  The set supports element removal,
     * which removes the corresponding mapping from the map, via the
     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
     * operations.
     */
    public Set<K> keySet() {
        return navigableKeySet();
    }

    /**
     * @since 1.6
     */
    public NavigableSet<K> navigableKeySet() {
        KeySet<K> nks = navigableKeySet;
        return (nks != null) ? nks : (navigableKeySet = new KeySet(this));
    }

    /**
     * @since 1.6
     */
    public NavigableSet<K> descendingKeySet() {
        return descendingMap().navigableKeySet();
    }

    /**
     * Returns a {@link Collection} view of the values contained in this map.
     * The collection's iterator returns the values in ascending order
     * of the corresponding keys.
     * The collection is backed by the map, so changes to the map are
     * reflected in the collection, and vice-versa.  If the map is
     * modified while an iteration over the collection is in progress
     * (except through the iterator's own <tt>remove</tt> operation),
     * the results of the iteration are undefined.  The collection
     * supports element removal, which removes the corresponding
     * mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
     * support the <tt>add</tt> or <tt>addAll</tt> operations.
     */
    public Collection<V> values() {
        Collection<V> vs = values;
        return (vs != null) ? vs : (values = new Values());
    }

    /**
     * Returns a {@link Set} view of the mappings contained in this map.
     * The set's iterator returns the entries in ascending key order.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  If the map is modified
     * while an iteration over the set is in progress (except through
     * the iterator's own <tt>remove</tt> operation, or through the
     * <tt>setValue</tt> operation on a map entry returned by the
     * iterator) the results of the iteration are undefined.  The set
     * supports element removal, which removes the corresponding
     * mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
     * <tt>clear</tt> operations.  It does not support the
     * <tt>add</tt> or <tt>addAll</tt> operations.
     */
    public Set<Map.Entry<K,V>> entrySet() {
        EntrySet es = entrySet;
        return (es != null) ? es : (entrySet = new EntrySet());
    }

    /**
     * @since 1.6
     */
    public NavigableMap<K, V> descendingMap() {
        NavigableMap<K, V> km = descendingMap;
        return (km != null) ? km :
            (descendingMap = new DescendingSubMap(this,
                                                  true, null, true,
                                                  true, null, true));
    }

    /**
     * @throws ClassCastException       {@inheritDoc}
     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
     *         null and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @throws IllegalArgumentException {@inheritDoc}
     * @since 1.6
     */
    public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
                                    K toKey,   boolean toInclusive) {
        return new AscendingSubMap(this,
                                   false, fromKey, fromInclusive,
                                   false, toKey,   toInclusive);
    }

    /**
     * @throws ClassCastException       {@inheritDoc}
     * @throws NullPointerException if <tt>toKey</tt> is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @throws IllegalArgumentException {@inheritDoc}
     * @since 1.6
     */
    public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
        return new AscendingSubMap(this,
                                   true,  null,  true,
                                   false, toKey, inclusive);
    }

    /**
     * @throws ClassCastException       {@inheritDoc}
     * @throws NullPointerException if <tt>fromKey</tt> is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @throws IllegalArgumentException {@inheritDoc}
     * @since 1.6
     */
    public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
        return new AscendingSubMap(this,
                                   false, fromKey, inclusive,
                                   true,  null,    true);
    }

    /**
     * @throws ClassCastException       {@inheritDoc}
     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
     *         null and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @throws IllegalArgumentException {@inheritDoc}
     */
    public SortedMap<K,V> subMap(K fromKey, K toKey) {
        return subMap(fromKey, true, toKey, false);
    }

    /**
     * @throws ClassCastException       {@inheritDoc}
     * @throws NullPointerException if <tt>toKey</tt> is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @throws IllegalArgumentException {@inheritDoc}
     */
    public SortedMap<K,V> headMap(K toKey) {
        return headMap(toKey, false);
    }

    /**
     * @throws ClassCastException       {@inheritDoc}
     * @throws NullPointerException if <tt>fromKey</tt> is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @throws IllegalArgumentException {@inheritDoc}
     */
    public SortedMap<K,V> tailMap(K fromKey) {
        return tailMap(fromKey, true);
    }

    // View class support

    class Values extends AbstractCollection<V> {
        public Iterator<V> iterator() {
            return new ValueIterator(getFirstEntry());
        }

        public int size() {
            return TreeMap.this.size();
        }

        public boolean contains(Object o) {
            return TreeMap.this.containsValue(o);
        }

        public boolean remove(Object o) {
            for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
                if (valEquals(e.getValue(), o)) {
                    deleteEntry(e);
                    return true;
                }
            }
            return false;
        }

        public void clear() {
            TreeMap.this.clear();
        }
    }

    class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public Iterator<Map.Entry<K,V>> iterator() {
            return new EntryIterator(getFirstEntry());
        }

        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
            V value = entry.getValue();
            Entry<K,V> p = getEntry(entry.getKey());
            return p != null && valEquals(p.getValue(), value);
        }

        public boolean remove(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
            V value = entry.getValue();
            Entry<K,V> p = getEntry(entry.getKey());
            if (p != null && valEquals(p.getValue(), value)) {
                deleteEntry(p);
                return true;
            }
            return false;
        }

        public int size() {
            return TreeMap.this.size();
        }

        public void clear() {
            TreeMap.this.clear();
        }
    }

    /*
     * Unlike Values and EntrySet, the KeySet class is static,
     * delegating to a NavigableMap to allow use by SubMaps, which
     * outweighs the ugliness of needing type-tests for the following
     * Iterator methods that are defined appropriately in main versus
     * submap classes.
     */

    Iterator<K> keyIterator() {
        return new KeyIterator(getFirstEntry());
    }

    Iterator<K> descendingKeyIterator() {
        return new DescendingKeyIterator(getLastEntry());
    }

    static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
        private final NavigableMap<E, Object> m;
        KeySet(NavigableMap<E,Object> map) { m = map; }

        public Iterator<E> iterator() {
            if (m instanceof TreeMap)
                return ((TreeMap<E,Object>)m).keyIterator();
            else
                return (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator());
        }

        public Iterator<E> descendingIterator() {
            if (m instanceof TreeMap)
                return ((TreeMap<E,Object>)m).descendingKeyIterator();
            else
                return (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());
        }

        public int size() { return m.size(); }
        public boolean isEmpty() { return m.isEmpty(); }
        public boolean contains(Object o) { return m.containsKey(o); }
        public void clear() { m.clear(); }
        public E lower(E e) { return m.lowerKey(e); }
        public E floor(E e) { return m.floorKey(e); }
        public E ceiling(E e) { return m.ceilingKey(e); }
        public E higher(E e) { return m.higherKey(e); }
        public E first() { return m.firstKey(); }
        public E last() { return m.lastKey(); }
        public Comparator<? super E> comparator() { return m.comparator(); }
        public E pollFirst() {
            Map.Entry<E,Object> e = m.pollFirstEntry();
            return e == null? null : e.getKey();
        }
        public E pollLast() {
            Map.Entry<E,Object> e = m.pollLastEntry();
            return e == null? null : e.getKey();
        }
        public boolean remove(Object o) {
            int oldSize = size();
            m.remove(o);
            return size() != oldSize;
        }
        public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
                                      E toElement,   boolean toInclusive) {
            return new TreeSet<E>(m.subMap(fromElement, fromInclusive,
                                           toElement,   toInclusive));
        }
        public NavigableSet<E> headSet(E toElement, boolean inclusive) {
            return new TreeSet<E>(m.headMap(toElement, inclusive));
        }
        public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
            return new TreeSet<E>(m.tailMap(fromElement, inclusive));
        }
        public SortedSet<E> subSet(E fromElement, E toElement) {
            return subSet(fromElement, true, toElement, false);
        }
        public SortedSet<E> headSet(E toElement) {
            return headSet(toElement, false);
        }
        public SortedSet<E> tailSet(E fromElement) {
            return tailSet(fromElement, true);
        }
        public NavigableSet<E> descendingSet() {
            return new TreeSet(m.descendingMap());
        }
    }

    /**
     * Base class for TreeMap Iterators
     */
    abstract class PrivateEntryIterator<T> implements Iterator<T> {
        Entry<K,V> next;
        Entry<K,V> lastReturned;
        int expectedModCount;

        PrivateEntryIterator(Entry<K,V> first) {
            expectedModCount = modCount;
            lastReturned = null;
            next = first;
        }

        public final boolean hasNext() {
            return next != null;
        }

        final Entry<K,V> nextEntry() {
            Entry<K,V> e = next;
            if (e == null)
                throw new NoSuchElementException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            next = successor(e);
            lastReturned = e;
            return e;
        }

        final Entry<K,V> prevEntry() {
            Entry<K,V> e = next;
            if (e == null)
                throw new NoSuchElementException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            next = predecessor(e);
            lastReturned = e;
            return e;
        }

        public void remove() {
            if (lastReturned == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            // deleted entries are replaced by their successors
            if (lastReturned.left != null && lastReturned.right != null)
                next = lastReturned;
            deleteEntry(lastReturned);
            expectedModCount = modCount;
            lastReturned = null;
        }
    }

    final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
        EntryIterator(Entry<K,V> first) {
            super(first);
        }
        public Map.Entry<K,V> next() {
            return nextEntry();
        }
    }

    final class ValueIterator extends PrivateEntryIterator<V> {
        ValueIterator(Entry<K,V> first) {
            super(first);
        }
        public V next() {
            return nextEntry().value;
        }
    }

    final class KeyIterator extends PrivateEntryIterator<K> {
        KeyIterator(Entry<K,V> first) {
            super(first);
        }
        public K next() {
            return nextEntry().key;
        }
    }

    final class DescendingKeyIterator extends PrivateEntryIterator<K> {
        DescendingKeyIterator(Entry<K,V> first) {
            super(first);
        }
        public K next() {
            return prevEntry().key;
        }
    }

    // Little utilities

    /**
     * Compares two keys using the correct comparison method for this TreeMap.
     */
    final int compare(Object k1, Object k2) {
        return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
            : comparator.compare((K)k1, (K)k2);
    }

    /**
     * Test two values for equality.  Differs from o1.equals(o2) only in
     * that it copes with <tt>null</tt> o1 properly.
     */
    final static boolean valEquals(Object o1, Object o2) {
        return (o1==null ? o2==null : o1.equals(o2));
    }

    /**
     * Return SimpleImmutableEntry for entry, or null if null
     */
    static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
        return e == null? null :
            new AbstractMap.SimpleImmutableEntry<K,V>(e);
    }

    /**
     * Return key for entry, or null if null
     */
    static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
        return e == null? null : e.key;
    }

    /**
     * Returns the key corresponding to the specified Entry.
     * @throws NoSuchElementException if the Entry is null
     */
    static <K> K key(Entry<K,?> e) {
        if (e==null)
            throw new NoSuchElementException();
        return e.key;
    }


    // SubMaps

    /**
     * Dummy value serving as unmatchable fence key for unbounded
     * SubMapIterators
     */
    private static final Object UNBOUNDED = new Object();

    /**
     * @serial include
     */
    static abstract class NavigableSubMap<K,V> extends AbstractMap<K,V>
        implements NavigableMap<K,V>, java.io.Serializable {
        /**
         * The backing map.
         */
        final TreeMap<K,V> m;

        /**
         * Endpoints are represented as triples (fromStart, lo,
         * loInclusive) and (toEnd, hi, hiInclusive). If fromStart is
         * true, then the low (absolute) bound is the start of the
         * backing map, and the other values are ignored. Otherwise,
         * if loInclusive is true, lo is the inclusive bound, else lo
         * is the exclusive bound. Similarly for the upper bound.
         */
        final K lo, hi;
        final boolean fromStart, toEnd;
        final boolean loInclusive, hiInclusive;

        NavigableSubMap(TreeMap<K,V> m,
                        boolean fromStart, K lo, boolean loInclusive,
                        boolean toEnd,     K hi, boolean hiInclusive) {
            if (!fromStart && !toEnd) {
                if (m.compare(lo, hi) > 0)
                    throw new IllegalArgumentException("fromKey > toKey");
            } else {
                if (!fromStart) // type check
                    m.compare(lo, lo);
                if (!toEnd)
                    m.compare(hi, hi);
            }

            this.m = m;
            this.fromStart = fromStart;
            this.lo = lo;
            this.loInclusive = loInclusive;
            this.toEnd = toEnd;
            this.hi = hi;
            this.hiInclusive = hiInclusive;
        }

        // internal utilities

        final boolean tooLow(Object key) {
            if (!fromStart) {
                int c = m.compare(key, lo);
                if (c < 0 || (c == 0 && !loInclusive))
                    return true;
            }
            return false;
        }

        final boolean tooHigh(Object key) {
            if (!toEnd) {
                int c = m.compare(key, hi);
                if (c > 0 || (c == 0 && !hiInclusive))
                    return true;
            }
            return false;
        }

        final boolean inRange(Object key) {
            return !tooLow(key) && !tooHigh(key);
        }

        final boolean inClosedRange(Object key) {
            return (fromStart || m.compare(key, lo) >= 0)
                && (toEnd || m.compare(hi, key) >= 0);
        }

        final boolean inRange(Object key, boolean inclusive) {
            return inclusive ? inRange(key) : inClosedRange(key);
        }

        /*
         * Absolute versions of relation operations.
         * Subclasses map to these using like-named "sub"
         * versions that invert senses for descending maps
         */

        final TreeMap.Entry<K,V> absLowest() {
            TreeMap.Entry<K,V> e =
                (fromStart ?  m.getFirstEntry() :
                 (loInclusive ? m.getCeilingEntry(lo) :
                                m.getHigherEntry(lo)));
            return (e == null || tooHigh(e.key)) ? null : e;
        }

        final TreeMap.Entry<K,V> absHighest() {
            TreeMap.Entry<K,V> e =
                (toEnd ?  m.getLastEntry() :
                 (hiInclusive ?  m.getFloorEntry(hi) :
                                 m.getLowerEntry(hi)));
            return (e == null || tooLow(e.key)) ? null : e;
        }

        final TreeMap.Entry<K,V> absCeiling(K key) {
            if (tooLow(key))
                return absLowest();
            TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
            return (e == null || tooHigh(e.key)) ? null : e;
        }

        final TreeMap.Entry<K,V> absHigher(K key) {
            if (tooLow(key))
                return absLowest();
            TreeMap.Entry<K,V> e = m.getHigherEntry(key);
            return (e == null || tooHigh(e.key)) ? null : e;
        }

        final TreeMap.Entry<K,V> absFloor(K key) {
            if (tooHigh(key))
                return absHighest();
            TreeMap.Entry<K,V> e = m.getFloorEntry(key);
            return (e == null || tooLow(e.key)) ? null : e;
        }

        final TreeMap.Entry<K,V> absLower(K key) {
            if (tooHigh(key))
                return absHighest();
            TreeMap.Entry<K,V> e = m.getLowerEntry(key);
            return (e == null || tooLow(e.key)) ? null : e;
        }

        /** Returns the absolute high fence for ascending traversal */
        final TreeMap.Entry<K,V> absHighFence() {
            return (toEnd ? null : (hiInclusive ?
                                    m.getHigherEntry(hi) :
                                    m.getCeilingEntry(hi)));
        }

        /** Return the absolute low fence for descending traversal  */
        final TreeMap.Entry<K,V> absLowFence() {
            return (fromStart ? null : (loInclusive ?
                                        m.getLowerEntry(lo) :
                                        m.getFloorEntry(lo)));
        }

        // Abstract methods defined in ascending vs descending classes
        // These relay to the appropriate absolute versions

        abstract TreeMap.Entry<K,V> subLowest();
        abstract TreeMap.Entry<K,V> subHighest();
        abstract TreeMap.Entry<K,V> subCeiling(K key);
        abstract TreeMap.Entry<K,V> subHigher(K key);
        abstract TreeMap.Entry<K,V> subFloor(K key);
        abstract TreeMap.Entry<K,V> subLower(K key);

        /** Returns ascending iterator from the perspective of this submap */
        abstract Iterator<K> keyIterator();

        /** Returns descending iterator from the perspective of this submap */
        abstract Iterator<K> descendingKeyIterator();

        // public methods

        public boolean isEmpty() {
            return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
        }

        public int size() {
            return (fromStart && toEnd) ? m.size() : entrySet().size();
        }

        public final boolean containsKey(Object key) {
            return inRange(key) && m.containsKey(key);
        }

        public final V put(K key, V value) {
            if (!inRange(key))
                throw new IllegalArgumentException("key out of range");
            return m.put(key, value);
        }

        public final V get(Object key) {
            return !inRange(key)? null :  m.get(key);
        }

        public final V remove(Object key) {
            return !inRange(key)? null  : m.remove(key);
        }

        public final Map.Entry<K,V> ceilingEntry(K key) {
            return exportEntry(subCeiling(key));
        }

        public final K ceilingKey(K key) {
            return keyOrNull(subCeiling(key));
        }

        public final Map.Entry<K,V> higherEntry(K key) {
            return exportEntry(subHigher(key));
        }

        public final K higherKey(K key) {
            return keyOrNull(subHigher(key));
        }

        public final Map.Entry<K,V> floorEntry(K key) {
            return exportEntry(subFloor(key));
        }

        public final K floorKey(K key) {
            return keyOrNull(subFloor(key));
        }

        public final Map.Entry<K,V> lowerEntry(K key) {
            return exportEntry(subLower(key));
        }

        public final K lowerKey(K key) {
            return keyOrNull(subLower(key));
        }

        public final K firstKey() {
            return key(subLowest());
        }

        public final K lastKey() {
            return key(subHighest());
        }

        public final Map.Entry<K,V> firstEntry() {
            return exportEntry(subLowest());
        }

        public final Map.Entry<K,V> lastEntry() {
            return exportEntry(subHighest());
        }

        public final Map.Entry<K,V> pollFirstEntry() {
            TreeMap.Entry<K,V> e = subLowest();
            Map.Entry<K,V> result = exportEntry(e);
            if (e != null)
                m.deleteEntry(e);
            return result;
        }

        public final Map.Entry<K,V> pollLastEntry() {
            TreeMap.Entry<K,V> e = subHighest();
            Map.Entry<K,V> result = exportEntry(e);
            if (e != null)
                m.deleteEntry(e);
            return result;
        }

        // Views
        transient NavigableMap<K,V> descendingMapView = null;
        transient EntrySetView entrySetView = null;
        transient KeySet<K> navigableKeySetView = null;

        public final NavigableSet<K> navigableKeySet() {
            KeySet<K> nksv = navigableKeySetView;
            return (nksv != null) ? nksv :
                (navigableKeySetView = new TreeMap.KeySet(this));
        }

        public final Set<K> keySet() {
            return navigableKeySet();
        }

        public NavigableSet<K> descendingKeySet() {
            return descendingMap().navigableKeySet();
        }

        public final SortedMap<K,V> subMap(K fromKey, K toKey) {
            return subMap(fromKey, true, toKey, false);
        }

        public final SortedMap<K,V> headMap(K toKey) {
            return headMap(toKey, false);
        }

        public final SortedMap<K,V> tailMap(K fromKey) {
            return tailMap(fromKey, true);
        }

        // View classes

        abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
            private transient int size = -1, sizeModCount;

            public int size() {
                if (fromStart && toEnd)
                    return m.size();
                if (size == -1 || sizeModCount != m.modCount) {
                    sizeModCount = m.modCount;
                    size = 0;
                    Iterator i = iterator();
                    while (i.hasNext()) {
                        size++;
                        i.next();
                    }
                }
                return size;
            }

            public boolean isEmpty() {
                TreeMap.Entry<K,V> n = absLowest();
                return n == null || tooHigh(n.key);
            }

            public boolean contains(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
                K key = entry.getKey();
                if (!inRange(key))
                    return false;
                TreeMap.Entry node = m.getEntry(key);
                return node != null &&
                    valEquals(node.getValue(), entry.getValue());
            }

            public boolean remove(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
                K key = entry.getKey();
                if (!inRange(key))
                    return false;
                TreeMap.Entry<K,V> node = m.getEntry(key);
                if (node!=null && valEquals(node.getValue(),entry.getValue())){
                    m.deleteEntry(node);
                    return true;
                }
                return false;
            }
        }

        /**
         * Iterators for SubMaps
         */
        abstract class SubMapIterator<T> implements Iterator<T> {
            TreeMap.Entry<K,V> lastReturned;
            TreeMap.Entry<K,V> next;
            final Object fenceKey;
            int expectedModCount;

            SubMapIterator(TreeMap.Entry<K,V> first,
                           TreeMap.Entry<K,V> fence) {
                expectedModCount = m.modCount;
                lastReturned = null;
                next = first;
                fenceKey = fence == null ? UNBOUNDED : fence.key;
            }

            public final boolean hasNext() {
                return next != null && next.key != fenceKey;
            }

            final TreeMap.Entry<K,V> nextEntry() {
                TreeMap.Entry<K,V> e = next;
                if (e == null || e.key == fenceKey)
                    throw new NoSuchElementException();
                if (m.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                next = successor(e);
                lastReturned = e;
                return e;
            }

            final TreeMap.Entry<K,V> prevEntry() {
                TreeMap.Entry<K,V> e = next;
                if (e == null || e.key == fenceKey)
                    throw new NoSuchElementException();
                if (m.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                next = predecessor(e);
                lastReturned = e;
                return e;
            }

            final void removeAscending() {
                if (lastReturned == null)
                    throw new IllegalStateException();
                if (m.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                // deleted entries are replaced by their successors
                if (lastReturned.left != null && lastReturned.right != null)
                    next = lastReturned;
                m.deleteEntry(lastReturned);
                lastReturned = null;
                expectedModCount = m.modCount;
            }

            final void removeDescending() {
                if (lastReturned == null)
                    throw new IllegalStateException();
                if (m.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                m.deleteEntry(lastReturned);
                lastReturned = null;
                expectedModCount = m.modCount;
            }

        }

        final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
            SubMapEntryIterator(TreeMap.Entry<K,V> first,
                                TreeMap.Entry<K,V> fence) {
                super(first, fence);
            }
            public Map.Entry<K,V> next() {
                return nextEntry();
            }
            public void remove() {
                removeAscending();
            }
        }

        final class SubMapKeyIterator extends SubMapIterator<K> {
            SubMapKeyIterator(TreeMap.Entry<K,V> first,
                              TreeMap.Entry<K,V> fence) {
                super(first, fence);
            }
            public K next() {
                return nextEntry().key;
            }
            public void remove() {
                removeAscending();
            }
        }

        final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
            DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
                                          TreeMap.Entry<K,V> fence) {
                super(last, fence);
            }

            public Map.Entry<K,V> next() {
                return prevEntry();
            }
            public void remove() {
                removeDescending();
            }
        }

        final class DescendingSubMapKeyIterator extends SubMapIterator<K> {
            DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
                                        TreeMap.Entry<K,V> fence) {
                super(last, fence);
            }
            public K next() {
                return prevEntry().key;
            }
            public void remove() {
                removeDescending();
            }
        }
    }

    /**
     * @serial include
     */
    static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
        private static final long serialVersionUID = 912986545866124060L;

        AscendingSubMap(TreeMap<K,V> m,
                        boolean fromStart, K lo, boolean loInclusive,
                        boolean toEnd,     K hi, boolean hiInclusive) {
            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
        }

        public Comparator<? super K> comparator() {
            return m.comparator();
        }

        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
                                        K toKey,   boolean toInclusive) {
            if (!inRange(fromKey, fromInclusive))
                throw new IllegalArgumentException("fromKey out of range");
            if (!inRange(toKey, toInclusive))
                throw new IllegalArgumentException("toKey out of range");
            return new AscendingSubMap(m,
                                       false, fromKey, fromInclusive,
                                       false, toKey,   toInclusive);
        }

        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
            if (!inRange(toKey, inclusive))
                throw new IllegalArgumentException("toKey out of range");
            return new AscendingSubMap(m,
                                       fromStart, lo,    loInclusive,
                                       false,     toKey, inclusive);
        }

        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
            if (!inRange(fromKey, inclusive))
                throw new IllegalArgumentException("fromKey out of range");
            return new AscendingSubMap(m,
                                       false, fromKey, inclusive,
                                       toEnd, hi,      hiInclusive);
        }

        public NavigableMap<K,V> descendingMap() {
            NavigableMap<K,V> mv = descendingMapView;
            return (mv != null) ? mv :
                (descendingMapView =
                 new DescendingSubMap(m,
                                      fromStart, lo, loInclusive,
                                      toEnd,     hi, hiInclusive));
        }

        Iterator<K> keyIterator() {
            return new SubMapKeyIterator(absLowest(), absHighFence());
        }

        Iterator<K> descendingKeyIterator() {
            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
        }

        final class AscendingEntrySetView extends EntrySetView {
            public Iterator<Map.Entry<K,V>> iterator() {
                return new SubMapEntryIterator(absLowest(), absHighFence());
            }
        }

        public Set<Map.Entry<K,V>> entrySet() {
            EntrySetView es = entrySetView;
            return (es != null) ? es : new AscendingEntrySetView();
        }

        TreeMap.Entry<K,V> subLowest()       { return absLowest(); }
        TreeMap.Entry<K,V> subHighest()      { return absHighest(); }
        TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
        TreeMap.Entry<K,V> subHigher(K key)  { return absHigher(key); }
        TreeMap.Entry<K,V> subFloor(K key)   { return absFloor(key); }
        TreeMap.Entry<K,V> subLower(K key)   { return absLower(key); }
    }

    /**
     * @serial include
     */
    static final class DescendingSubMap<K,V>  extends NavigableSubMap<K,V> {
        private static final long serialVersionUID = 912986545866120460L;
        DescendingSubMap(TreeMap<K,V> m,
                        boolean fromStart, K lo, boolean loInclusive,
                        boolean toEnd,     K hi, boolean hiInclusive) {
            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
        }

        private final Comparator<? super K> reverseComparator =
            Collections.reverseOrder(m.comparator);

        public Comparator<? super K> comparator() {
            return reverseComparator;
        }

        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
                                        K toKey,   boolean toInclusive) {
            if (!inRange(fromKey, fromInclusive))
                throw new IllegalArgumentException("fromKey out of range");
            if (!inRange(toKey, toInclusive))
                throw new IllegalArgumentException("toKey out of range");
            return new DescendingSubMap(m,
                                        false, toKey,   toInclusive,
                                        false, fromKey, fromInclusive);
        }

        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
            if (!inRange(toKey, inclusive))
                throw new IllegalArgumentException("toKey out of range");
            return new DescendingSubMap(m,
                                        false, toKey, inclusive,
                                        toEnd, hi,    hiInclusive);
        }

        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
            if (!inRange(fromKey, inclusive))
                throw new IllegalArgumentException("fromKey out of range");
            return new DescendingSubMap(m,
                                        fromStart, lo, loInclusive,
                                        false, fromKey, inclusive);
        }

        public NavigableMap<K,V> descendingMap() {
            NavigableMap<K,V> mv = descendingMapView;
            return (mv != null) ? mv :
                (descendingMapView =
                 new AscendingSubMap(m,
                                     fromStart, lo, loInclusive,
                                     toEnd,     hi, hiInclusive));
        }

        Iterator<K> keyIterator() {
            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
        }

        Iterator<K> descendingKeyIterator() {
            return new SubMapKeyIterator(absLowest(), absHighFence());
        }

        final class DescendingEntrySetView extends EntrySetView {
            public Iterator<Map.Entry<K,V>> iterator() {
                return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
            }
        }

        public Set<Map.Entry<K,V>> entrySet() {
            EntrySetView es = entrySetView;
            return (es != null) ? es : new DescendingEntrySetView();
        }

        TreeMap.Entry<K,V> subLowest()       { return absHighest(); }
        TreeMap.Entry<K,V> subHighest()      { return absLowest(); }
        TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
        TreeMap.Entry<K,V> subHigher(K key)  { return absLower(key); }
        TreeMap.Entry<K,V> subFloor(K key)   { return absCeiling(key); }
        TreeMap.Entry<K,V> subLower(K key)   { return absHigher(key); }
    }

    /**
     * This class exists solely for the sake of serialization
     * compatibility with previous releases of TreeMap that did not
     * support NavigableMap.  It translates an old-version SubMap into
     * a new-version AscendingSubMap. This class is never otherwise
     * used.
     *
     * @serial include
     */
    private class SubMap extends AbstractMap<K,V>
        implements SortedMap<K,V>, java.io.Serializable {
        private static final long serialVersionUID = -6520786458950516097L;
        private boolean fromStart = false, toEnd = false;
        private K fromKey, toKey;
        private Object readResolve() {
            return new AscendingSubMap(TreeMap.this,
                                       fromStart, fromKey, true,
                                       toEnd, toKey, false);
        }
        public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
        public K lastKey() { throw new InternalError(); }
        public K firstKey() { throw new InternalError(); }
        public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
        public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
        public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
        public Comparator<? super K> comparator() { throw new InternalError(); }
    }


    // Red-black mechanics

    private static final boolean RED   = false;
    private static final boolean BLACK = true;

    /**
     * Node in the Tree.  Doubles as a means to pass key-value pairs back to
     * user (see Map.Entry).
     */

    static final class Entry<K,V> implements Map.Entry<K,V> {
        K key;
        V value;
        Entry<K,V> left = null;
        Entry<K,V> right = null;
        Entry<K,V> parent;
        boolean color = BLACK;

        /**
         * Make a new cell with given key, value, and parent, and with
         * <tt>null</tt> child links, and BLACK color.
         */
        Entry(K key, V value, Entry<K,V> parent) {
            this.key = key;
            this.value = value;
            this.parent = parent;
        }

        /**
         * Returns the key.
         *
         * @return the key
         */
        public K getKey() {
            return key;
        }

        /**
         * Returns the value associated with the key.
         *
         * @return the value associated with the key
         */
        public V getValue() {
            return value;
        }

        /**
         * Replaces the value currently associated with the key with the given
         * value.
         *
         * @return the value associated with the key before this method was
         *         called
         */
        public V setValue(V value) {
            V oldValue = this.value;
            this.value = value;
            return oldValue;
        }

        public boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;

            return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
        }

        public int hashCode() {
            int keyHash = (key==null ? 0 : key.hashCode());
            int valueHash = (value==null ? 0 : value.hashCode());
            return keyHash ^ valueHash;
        }

        public String toString() {
            return key + "=" + value;
        }
    }

    /**
     * Returns the first Entry in the TreeMap (according to the TreeMap's
     * key-sort function).  Returns null if the TreeMap is empty.
     */
    final Entry<K,V> getFirstEntry() {
        Entry<K,V> p = root;
        if (p != null)
            while (p.left != null)
                p = p.left;
        return p;
    }

    /**
     * Returns the last Entry in the TreeMap (according to the TreeMap's
     * key-sort function).  Returns null if the TreeMap is empty.
     */
    final Entry<K,V> getLastEntry() {
        Entry<K,V> p = root;
        if (p != null)
            while (p.right != null)
                p = p.right;
        return p;
    }

    /**
     * Returns the successor of the specified Entry, or null if no such.
     */
    static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
        if (t == null)
            return null;
        else if (t.right != null) {
            Entry<K,V> p = t.right;
            while (p.left != null)
                p = p.left;
            return p;
        } else {
            Entry<K,V> p = t.parent;
            Entry<K,V> ch = t;
            while (p != null && ch == p.right) {
                ch = p;
                p = p.parent;
            }
            return p;
        }
    }

    /**
     * Returns the predecessor of the specified Entry, or null if no such.
     */
    static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
        if (t == null)
            return null;
        else if (t.left != null) {
            Entry<K,V> p = t.left;
            while (p.right != null)
                p = p.right;
            return p;
        } else {
            Entry<K,V> p = t.parent;
            Entry<K,V> ch = t;
            while (p != null && ch == p.left) {
                ch = p;
                p = p.parent;
            }
            return p;
        }
    }

    /**
     * Balancing operations.
     *
     * Implementations of rebalancings during insertion and deletion are
     * slightly different than the CLR version.  Rather than using dummy
     * nilnodes, we use a set of accessors that deal properly with null.  They
     * are used to avoid messiness surrounding nullness checks in the main
     * algorithms.
     */

    private static <K,V> boolean colorOf(Entry<K,V> p) {
        return (p == null ? BLACK : p.color);
    }

    private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
        return (p == null ? null: p.parent);
    }

    private static <K,V> void setColor(Entry<K,V> p, boolean c) {
        if (p != null)
            p.color = c;
    }

    private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
        return (p == null) ? null: p.left;
    }

    private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
        return (p == null) ? null: p.right;
    }

    /** From CLR */
    private void rotateLeft(Entry<K,V> p) {
        if (p != null) {
            Entry<K,V> r = p.right;
            p.right = r.left;
            if (r.left != null)
                r.left.parent = p;
            r.parent = p.parent;
            if (p.parent == null)
                root = r;
            else if (p.parent.left == p)
                p.parent.left = r;
            else
                p.parent.right = r;
            r.left = p;
            p.parent = r;
        }
    }

    /** From CLR */
    private void rotateRight(Entry<K,V> p) {
        if (p != null) {
            Entry<K,V> l = p.left;
            p.left = l.right;
            if (l.right != null) l.right.parent = p;
            l.parent = p.parent;
            if (p.parent == null)
                root = l;
            else if (p.parent.right == p)
                p.parent.right = l;
            else p.parent.left = l;
            l.right = p;
            p.parent = l;
        }
    }

    /** From CLR */
    private void fixAfterInsertion(Entry<K,V> x) {
        x.color = RED;

        while (x != null && x != root && x.parent.color == RED) {
            if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
                Entry<K,V> y = rightOf(parentOf(parentOf(x)));
                if (colorOf(y) == RED) {
                    setColor(parentOf(x), BLACK);
                    setColor(y, BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    x = parentOf(parentOf(x));
                } else {
                    if (x == rightOf(parentOf(x))) {
                        x = parentOf(x);
                        rotateLeft(x);
                    }
                    setColor(parentOf(x), BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    rotateRight(parentOf(parentOf(x)));
                }
            } else {
                Entry<K,V> y = leftOf(parentOf(parentOf(x)));
                if (colorOf(y) == RED) {
                    setColor(parentOf(x), BLACK);
                    setColor(y, BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    x = parentOf(parentOf(x));
                } else {
                    if (x == leftOf(parentOf(x))) {
                        x = parentOf(x);
                        rotateRight(x);
                    }
                    setColor(parentOf(x), BLACK);
                    setColor(parentOf(parentOf(x)), RED);
                    rotateLeft(parentOf(parentOf(x)));
                }
            }
        }
        root.color = BLACK;
    }

    /**
     * Delete node p, and then rebalance the tree.
     */
    private void deleteEntry(Entry<K,V> p) {
        modCount++;
        size--;

        // If strictly internal, copy successor's element to p and then make p
        // point to successor.
        if (p.left != null && p.right != null) {
            Entry<K,V> s = successor (p);
            p.key = s.key;
            p.value = s.value;
            p = s;
        } // p has 2 children

        // Start fixup at replacement node, if it exists.
        Entry<K,V> replacement = (p.left != null ? p.left : p.right);

        if (replacement != null) {
            // Link replacement to parent
            replacement.parent = p.parent;
            if (p.parent == null)
                root = replacement;
            else if (p == p.parent.left)
                p.parent.left  = replacement;
            else
                p.parent.right = replacement;

            // Null out links so they are OK to use by fixAfterDeletion.
            p.left = p.right = p.parent = null;

            // Fix replacement
            if (p.color == BLACK)
                fixAfterDeletion(replacement);
        } else if (p.parent == null) { // return if we are the only node.
            root = null;
        } else { //  No children. Use self as phantom replacement and unlink.
            if (p.color == BLACK)
                fixAfterDeletion(p);

            if (p.parent != null) {
                if (p == p.parent.left)
                    p.parent.left = null;
                else if (p == p.parent.right)
                    p.parent.right = null;
                p.parent = null;
            }
        }
    }

    /** From CLR */
    private void fixAfterDeletion(Entry<K,V> x) {
        while (x != root && colorOf(x) == BLACK) {
            if (x == leftOf(parentOf(x))) {
                Entry<K,V> sib = rightOf(parentOf(x));

                if (colorOf(sib) == RED) {
                    setColor(sib, BLACK);
                    setColor(parentOf(x), RED);
                    rotateLeft(parentOf(x));
                    sib = rightOf(parentOf(x));
                }

                if (colorOf(leftOf(sib))  == BLACK &&
                    colorOf(rightOf(sib)) == BLACK) {
                    setColor(sib, RED);
                    x = parentOf(x);
                } else {
                    if (colorOf(rightOf(sib)) == BLACK) {
                        setColor(leftOf(sib), BLACK);
                        setColor(sib, RED);
                        rotateRight(sib);
                        sib = rightOf(parentOf(x));
                    }
                    setColor(sib, colorOf(parentOf(x)));
                    setColor(parentOf(x), BLACK);
                    setColor(rightOf(sib), BLACK);
                    rotateLeft(parentOf(x));
                    x = root;
                }
            } else { // symmetric
                Entry<K,V> sib = leftOf(parentOf(x));

                if (colorOf(sib) == RED) {
                    setColor(sib, BLACK);
                    setColor(parentOf(x), RED);
                    rotateRight(parentOf(x));
                    sib = leftOf(parentOf(x));
                }

                if (colorOf(rightOf(sib)) == BLACK &&
                    colorOf(leftOf(sib)) == BLACK) {
                    setColor(sib, RED);
                    x = parentOf(x);
                } else {
                    if (colorOf(leftOf(sib)) == BLACK) {
                        setColor(rightOf(sib), BLACK);
                        setColor(sib, RED);
                        rotateLeft(sib);
                        sib = leftOf(parentOf(x));
                    }
                    setColor(sib, colorOf(parentOf(x)));
                    setColor(parentOf(x), BLACK);
                    setColor(leftOf(sib), BLACK);
                    rotateRight(parentOf(x));
                    x = root;
                }
            }
        }

        setColor(x, BLACK);
    }

    private static final long serialVersionUID = 919286545866124006L;

    /**
     * Save the state of the <tt>TreeMap</tt> instance to a stream (i.e.,
     * serialize it).
     *
     * @serialData The <i>size</i> of the TreeMap (the number of key-value
     *             mappings) is emitted (int), followed by the key (Object)
     *             and value (Object) for each key-value mapping represented
     *             by the TreeMap. The key-value mappings are emitted in
     *             key-order (as determined by the TreeMap's Comparator,
     *             or by the keys' natural ordering if the TreeMap has no
     *             Comparator).
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        // Write out the Comparator and any hidden stuff
        s.defaultWriteObject();

        // Write out size (number of Mappings)
        s.writeInt(size);

        // Write out keys and values (alternating)
        for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
            Map.Entry<K,V> e = i.next();
            s.writeObject(e.getKey());
            s.writeObject(e.getValue());
        }
    }

    /**
     * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e.,
     * deserialize it).
     */
    private void readObject(final java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // Read in the Comparator and any hidden stuff
        s.defaultReadObject();

        // Read in size
        int size = s.readInt();

        buildFromSorted(size, null, s, null);
    }

    /** Intended to be called only from TreeSet.readObject */
    void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
        throws java.io.IOException, ClassNotFoundException {
        buildFromSorted(size, null, s, defaultVal);
    }

    /** Intended to be called only from TreeSet.addAll */
    void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
        try {
            buildFromSorted(set.size(), set.iterator(), null, defaultVal);
        } catch (java.io.IOException cannotHappen) {
        } catch (ClassNotFoundException cannotHappen) {
        }
    }


    /**
     * Linear time tree building algorithm from sorted data.  Can accept keys
     * and/or values from iterator or stream. This leads to too many
     * parameters, but seems better than alternatives.  The four formats
     * that this method accepts are:
     *
     *    1) An iterator of Map.Entries.  (it != null, defaultVal == null).
     *    2) An iterator of keys.         (it != null, defaultVal != null).
     *    3) A stream of alternating serialized keys and values.
     *                                   (it == null, defaultVal == null).
     *    4) A stream of serialized keys. (it == null, defaultVal != null).
     *
     * It is assumed that the comparator of the TreeMap is already set prior
     * to calling this method.
     *
     * @param size the number of keys (or key-value pairs) to be read from
     *        the iterator or stream
     * @param it If non-null, new entries are created from entries
     *        or keys read from this iterator.
     * @param str If non-null, new entries are created from keys and
     *        possibly values read from this stream in serialized form.
     *        Exactly one of it and str should be non-null.
     * @param defaultVal if non-null, this default value is used for
     *        each value in the map.  If null, each value is read from
     *        iterator or stream, as described above.
     * @throws IOException propagated from stream reads. This cannot
     *         occur if str is null.
     * @throws ClassNotFoundException propagated from readObject.
     *         This cannot occur if str is null.
     */
    private void buildFromSorted(int size, Iterator it,
                                 java.io.ObjectInputStream str,
                                 V defaultVal)
        throws  java.io.IOException, ClassNotFoundException {
        this.size = size;
        root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
                               it, str, defaultVal);
    }

    /**
     * Recursive "helper method" that does the real work of the
     * previous method.  Identically named parameters have
     * identical definitions.  Additional parameters are documented below.
     * It is assumed that the comparator and size fields of the TreeMap are
     * already set prior to calling this method.  (It ignores both fields.)
     *
     * @param level the current level of tree. Initial call should be 0.
     * @param lo the first element index of this subtree. Initial should be 0.
     * @param hi the last element index of this subtree.  Initial should be
     *        size-1.
     * @param redLevel the level at which nodes should be red.
     *        Must be equal to computeRedLevel for tree of this size.
     */
    private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
                                             int redLevel,
                                             Iterator it,
                                             java.io.ObjectInputStream str,
                                             V defaultVal)
        throws  java.io.IOException, ClassNotFoundException {
        /*
         * Strategy: The root is the middlemost element. To get to it, we
         * have to first recursively construct the entire left subtree,
         * so as to grab all of its elements. We can then proceed with right
         * subtree.
         *
         * The lo and hi arguments are the minimum and maximum
         * indices to pull out of the iterator or stream for current subtree.
         * They are not actually indexed, we just proceed sequentially,
         * ensuring that items are extracted in corresponding order.
         */

        if (hi < lo) return null;

        int mid = (lo + hi) >>> 1;

        Entry<K,V> left  = null;
        if (lo < mid)
            left = buildFromSorted(level+1, lo, mid - 1, redLevel,
                                   it, str, defaultVal);

        // extract key and/or value from iterator or stream
        K key;
        V value;
        if (it != null) {
            if (defaultVal==null) {
                Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next();
                key = entry.getKey();
                value = entry.getValue();
            } else {
                key = (K)it.next();
                value = defaultVal;
            }
        } else { // use stream
            key = (K) str.readObject();
            value = (defaultVal != null ? defaultVal : (V) str.readObject());
        }

        Entry<K,V> middle =  new Entry<K,V>(key, value, null);

        // color nodes in non-full bottommost level red
        if (level == redLevel)
            middle.color = RED;

        if (left != null) {
            middle.left = left;
            left.parent = middle;
        }

        if (mid < hi) {
            Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
                                               it, str, defaultVal);
            middle.right = right;
            right.parent = middle;
        }

        return middle;
    }

    /**
     * Find the level down to which to assign all nodes BLACK.  This is the
     * last `full' level of the complete binary tree produced by
     * buildTree. The remaining nodes are colored RED. (This makes a `nice'
     * set of color assignments wrt future insertions.) This level number is
     * computed by finding the number of splits needed to reach the zeroeth
     * node.  (The answer is ~lg(N), but in any case must be computed by same
     * quick O(lg(N)) loop.)
     */
    private static int computeRedLevel(int sz) {
        int level = 0;
        for (int m = sz - 1; m >= 0; m = m / 2 - 1)
            level++;
        return level;
    }
}