author | xdono |
Wed, 02 Jul 2008 12:55:45 -0700 | |
changeset 715 | f16baef3a20e |
parent 493 | b8102e80be10 |
child 2428 | e63d91602813 |
permissions | -rw-r--r-- |
2 | 1 |
/* |
493
b8102e80be10
6691185: (coll) TreeMap.navigableKeySet's descendingIterator method starts at first instead of last entry
martin
parents:
2
diff
changeset
|
2 |
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. |
2 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. Sun designates this |
|
8 |
* particular file as subject to the "Classpath" exception as provided |
|
9 |
* by Sun in the LICENSE file that accompanied this code. |
|
10 |
* |
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
15 |
* accompanied this code). |
|
16 |
* |
|
17 |
* You should have received a copy of the GNU General Public License version |
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 |
* |
|
21 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
22 |
* CA 95054 USA or visit www.sun.com if you need additional information or |
|
23 |
* have any questions. |
|
24 |
*/ |
|
25 |
||
26 |
package java.util; |
|
27 |
||
28 |
/** |
|
29 |
* A Red-Black tree based {@link NavigableMap} implementation. |
|
30 |
* The map is sorted according to the {@linkplain Comparable natural |
|
31 |
* ordering} of its keys, or by a {@link Comparator} provided at map |
|
32 |
* creation time, depending on which constructor is used. |
|
33 |
* |
|
34 |
* <p>This implementation provides guaranteed log(n) time cost for the |
|
35 |
* <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and <tt>remove</tt> |
|
36 |
* operations. Algorithms are adaptations of those in Cormen, Leiserson, and |
|
37 |
* Rivest's <I>Introduction to Algorithms</I>. |
|
38 |
* |
|
39 |
* <p>Note that the ordering maintained by a sorted map (whether or not an |
|
40 |
* explicit comparator is provided) must be <i>consistent with equals</i> if |
|
41 |
* this sorted map is to correctly implement the <tt>Map</tt> interface. (See |
|
42 |
* <tt>Comparable</tt> or <tt>Comparator</tt> for a precise definition of |
|
43 |
* <i>consistent with equals</i>.) This is so because the <tt>Map</tt> |
|
44 |
* interface is defined in terms of the equals operation, but a map performs |
|
45 |
* all key comparisons using its <tt>compareTo</tt> (or <tt>compare</tt>) |
|
46 |
* method, so two keys that are deemed equal by this method are, from the |
|
47 |
* standpoint of the sorted map, equal. The behavior of a sorted map |
|
48 |
* <i>is</i> well-defined even if its ordering is inconsistent with equals; it |
|
49 |
* just fails to obey the general contract of the <tt>Map</tt> interface. |
|
50 |
* |
|
51 |
* <p><strong>Note that this implementation is not synchronized.</strong> |
|
52 |
* If multiple threads access a map concurrently, and at least one of the |
|
53 |
* threads modifies the map structurally, it <i>must</i> be synchronized |
|
54 |
* externally. (A structural modification is any operation that adds or |
|
55 |
* deletes one or more mappings; merely changing the value associated |
|
56 |
* with an existing key is not a structural modification.) This is |
|
57 |
* typically accomplished by synchronizing on some object that naturally |
|
58 |
* encapsulates the map. |
|
59 |
* If no such object exists, the map should be "wrapped" using the |
|
60 |
* {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap} |
|
61 |
* method. This is best done at creation time, to prevent accidental |
|
62 |
* unsynchronized access to the map: <pre> |
|
63 |
* SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre> |
|
64 |
* |
|
65 |
* <p>The iterators returned by the <tt>iterator</tt> method of the collections |
|
66 |
* returned by all of this class's "collection view methods" are |
|
67 |
* <i>fail-fast</i>: if the map is structurally modified at any time after the |
|
68 |
* iterator is created, in any way except through the iterator's own |
|
69 |
* <tt>remove</tt> method, the iterator will throw a {@link |
|
70 |
* ConcurrentModificationException}. Thus, in the face of concurrent |
|
71 |
* modification, the iterator fails quickly and cleanly, rather than risking |
|
72 |
* arbitrary, non-deterministic behavior at an undetermined time in the future. |
|
73 |
* |
|
74 |
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed |
|
75 |
* as it is, generally speaking, impossible to make any hard guarantees in the |
|
76 |
* presence of unsynchronized concurrent modification. Fail-fast iterators |
|
77 |
* throw <tt>ConcurrentModificationException</tt> on a best-effort basis. |
|
78 |
* Therefore, it would be wrong to write a program that depended on this |
|
79 |
* exception for its correctness: <i>the fail-fast behavior of iterators |
|
80 |
* should be used only to detect bugs.</i> |
|
81 |
* |
|
82 |
* <p>All <tt>Map.Entry</tt> pairs returned by methods in this class |
|
83 |
* and its views represent snapshots of mappings at the time they were |
|
84 |
* produced. They do <em>not</em> support the <tt>Entry.setValue</tt> |
|
85 |
* method. (Note however that it is possible to change mappings in the |
|
86 |
* associated map using <tt>put</tt>.) |
|
87 |
* |
|
88 |
* <p>This class is a member of the |
|
89 |
* <a href="{@docRoot}/../technotes/guides/collections/index.html"> |
|
90 |
* Java Collections Framework</a>. |
|
91 |
* |
|
92 |
* @param <K> the type of keys maintained by this map |
|
93 |
* @param <V> the type of mapped values |
|
94 |
* |
|
95 |
* @author Josh Bloch and Doug Lea |
|
96 |
* @see Map |
|
97 |
* @see HashMap |
|
98 |
* @see Hashtable |
|
99 |
* @see Comparable |
|
100 |
* @see Comparator |
|
101 |
* @see Collection |
|
102 |
* @since 1.2 |
|
103 |
*/ |
|
104 |
||
105 |
public class TreeMap<K,V> |
|
106 |
extends AbstractMap<K,V> |
|
107 |
implements NavigableMap<K,V>, Cloneable, java.io.Serializable |
|
108 |
{ |
|
109 |
/** |
|
110 |
* The comparator used to maintain order in this tree map, or |
|
111 |
* null if it uses the natural ordering of its keys. |
|
112 |
* |
|
113 |
* @serial |
|
114 |
*/ |
|
115 |
private final Comparator<? super K> comparator; |
|
116 |
||
117 |
private transient Entry<K,V> root = null; |
|
118 |
||
119 |
/** |
|
120 |
* The number of entries in the tree |
|
121 |
*/ |
|
122 |
private transient int size = 0; |
|
123 |
||
124 |
/** |
|
125 |
* The number of structural modifications to the tree. |
|
126 |
*/ |
|
127 |
private transient int modCount = 0; |
|
128 |
||
129 |
/** |
|
130 |
* Constructs a new, empty tree map, using the natural ordering of its |
|
131 |
* keys. All keys inserted into the map must implement the {@link |
|
132 |
* Comparable} interface. Furthermore, all such keys must be |
|
133 |
* <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw |
|
134 |
* a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and |
|
135 |
* <tt>k2</tt> in the map. If the user attempts to put a key into the |
|
136 |
* map that violates this constraint (for example, the user attempts to |
|
137 |
* put a string key into a map whose keys are integers), the |
|
138 |
* <tt>put(Object key, Object value)</tt> call will throw a |
|
139 |
* <tt>ClassCastException</tt>. |
|
140 |
*/ |
|
141 |
public TreeMap() { |
|
142 |
comparator = null; |
|
143 |
} |
|
144 |
||
145 |
/** |
|
146 |
* Constructs a new, empty tree map, ordered according to the given |
|
147 |
* comparator. All keys inserted into the map must be <i>mutually |
|
148 |
* comparable</i> by the given comparator: <tt>comparator.compare(k1, |
|
149 |
* k2)</tt> must not throw a <tt>ClassCastException</tt> for any keys |
|
150 |
* <tt>k1</tt> and <tt>k2</tt> in the map. If the user attempts to put |
|
151 |
* a key into the map that violates this constraint, the <tt>put(Object |
|
152 |
* key, Object value)</tt> call will throw a |
|
153 |
* <tt>ClassCastException</tt>. |
|
154 |
* |
|
155 |
* @param comparator the comparator that will be used to order this map. |
|
156 |
* If <tt>null</tt>, the {@linkplain Comparable natural |
|
157 |
* ordering} of the keys will be used. |
|
158 |
*/ |
|
159 |
public TreeMap(Comparator<? super K> comparator) { |
|
160 |
this.comparator = comparator; |
|
161 |
} |
|
162 |
||
163 |
/** |
|
164 |
* Constructs a new tree map containing the same mappings as the given |
|
165 |
* map, ordered according to the <i>natural ordering</i> of its keys. |
|
166 |
* All keys inserted into the new map must implement the {@link |
|
167 |
* Comparable} interface. Furthermore, all such keys must be |
|
168 |
* <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw |
|
169 |
* a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and |
|
170 |
* <tt>k2</tt> in the map. This method runs in n*log(n) time. |
|
171 |
* |
|
172 |
* @param m the map whose mappings are to be placed in this map |
|
173 |
* @throws ClassCastException if the keys in m are not {@link Comparable}, |
|
174 |
* or are not mutually comparable |
|
175 |
* @throws NullPointerException if the specified map is null |
|
176 |
*/ |
|
177 |
public TreeMap(Map<? extends K, ? extends V> m) { |
|
178 |
comparator = null; |
|
179 |
putAll(m); |
|
180 |
} |
|
181 |
||
182 |
/** |
|
183 |
* Constructs a new tree map containing the same mappings and |
|
184 |
* using the same ordering as the specified sorted map. This |
|
185 |
* method runs in linear time. |
|
186 |
* |
|
187 |
* @param m the sorted map whose mappings are to be placed in this map, |
|
188 |
* and whose comparator is to be used to sort this map |
|
189 |
* @throws NullPointerException if the specified map is null |
|
190 |
*/ |
|
191 |
public TreeMap(SortedMap<K, ? extends V> m) { |
|
192 |
comparator = m.comparator(); |
|
193 |
try { |
|
194 |
buildFromSorted(m.size(), m.entrySet().iterator(), null, null); |
|
195 |
} catch (java.io.IOException cannotHappen) { |
|
196 |
} catch (ClassNotFoundException cannotHappen) { |
|
197 |
} |
|
198 |
} |
|
199 |
||
200 |
||
201 |
// Query Operations |
|
202 |
||
203 |
/** |
|
204 |
* Returns the number of key-value mappings in this map. |
|
205 |
* |
|
206 |
* @return the number of key-value mappings in this map |
|
207 |
*/ |
|
208 |
public int size() { |
|
209 |
return size; |
|
210 |
} |
|
211 |
||
212 |
/** |
|
213 |
* Returns <tt>true</tt> if this map contains a mapping for the specified |
|
214 |
* key. |
|
215 |
* |
|
216 |
* @param key key whose presence in this map is to be tested |
|
217 |
* @return <tt>true</tt> if this map contains a mapping for the |
|
218 |
* specified key |
|
219 |
* @throws ClassCastException if the specified key cannot be compared |
|
220 |
* with the keys currently in the map |
|
221 |
* @throws NullPointerException if the specified key is null |
|
222 |
* and this map uses natural ordering, or its comparator |
|
223 |
* does not permit null keys |
|
224 |
*/ |
|
225 |
public boolean containsKey(Object key) { |
|
226 |
return getEntry(key) != null; |
|
227 |
} |
|
228 |
||
229 |
/** |
|
230 |
* Returns <tt>true</tt> if this map maps one or more keys to the |
|
231 |
* specified value. More formally, returns <tt>true</tt> if and only if |
|
232 |
* this map contains at least one mapping to a value <tt>v</tt> such |
|
233 |
* that <tt>(value==null ? v==null : value.equals(v))</tt>. This |
|
234 |
* operation will probably require time linear in the map size for |
|
235 |
* most implementations. |
|
236 |
* |
|
237 |
* @param value value whose presence in this map is to be tested |
|
238 |
* @return <tt>true</tt> if a mapping to <tt>value</tt> exists; |
|
239 |
* <tt>false</tt> otherwise |
|
240 |
* @since 1.2 |
|
241 |
*/ |
|
242 |
public boolean containsValue(Object value) { |
|
243 |
for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) |
|
244 |
if (valEquals(value, e.value)) |
|
245 |
return true; |
|
246 |
return false; |
|
247 |
} |
|
248 |
||
249 |
/** |
|
250 |
* Returns the value to which the specified key is mapped, |
|
251 |
* or {@code null} if this map contains no mapping for the key. |
|
252 |
* |
|
253 |
* <p>More formally, if this map contains a mapping from a key |
|
254 |
* {@code k} to a value {@code v} such that {@code key} compares |
|
255 |
* equal to {@code k} according to the map's ordering, then this |
|
256 |
* method returns {@code v}; otherwise it returns {@code null}. |
|
257 |
* (There can be at most one such mapping.) |
|
258 |
* |
|
259 |
* <p>A return value of {@code null} does not <i>necessarily</i> |
|
260 |
* indicate that the map contains no mapping for the key; it's also |
|
261 |
* possible that the map explicitly maps the key to {@code null}. |
|
262 |
* The {@link #containsKey containsKey} operation may be used to |
|
263 |
* distinguish these two cases. |
|
264 |
* |
|
265 |
* @throws ClassCastException if the specified key cannot be compared |
|
266 |
* with the keys currently in the map |
|
267 |
* @throws NullPointerException if the specified key is null |
|
268 |
* and this map uses natural ordering, or its comparator |
|
269 |
* does not permit null keys |
|
270 |
*/ |
|
271 |
public V get(Object key) { |
|
272 |
Entry<K,V> p = getEntry(key); |
|
273 |
return (p==null ? null : p.value); |
|
274 |
} |
|
275 |
||
276 |
public Comparator<? super K> comparator() { |
|
277 |
return comparator; |
|
278 |
} |
|
279 |
||
280 |
/** |
|
281 |
* @throws NoSuchElementException {@inheritDoc} |
|
282 |
*/ |
|
283 |
public K firstKey() { |
|
284 |
return key(getFirstEntry()); |
|
285 |
} |
|
286 |
||
287 |
/** |
|
288 |
* @throws NoSuchElementException {@inheritDoc} |
|
289 |
*/ |
|
290 |
public K lastKey() { |
|
291 |
return key(getLastEntry()); |
|
292 |
} |
|
293 |
||
294 |
/** |
|
295 |
* Copies all of the mappings from the specified map to this map. |
|
296 |
* These mappings replace any mappings that this map had for any |
|
297 |
* of the keys currently in the specified map. |
|
298 |
* |
|
299 |
* @param map mappings to be stored in this map |
|
300 |
* @throws ClassCastException if the class of a key or value in |
|
301 |
* the specified map prevents it from being stored in this map |
|
302 |
* @throws NullPointerException if the specified map is null or |
|
303 |
* the specified map contains a null key and this map does not |
|
304 |
* permit null keys |
|
305 |
*/ |
|
306 |
public void putAll(Map<? extends K, ? extends V> map) { |
|
307 |
int mapSize = map.size(); |
|
308 |
if (size==0 && mapSize!=0 && map instanceof SortedMap) { |
|
309 |
Comparator c = ((SortedMap)map).comparator(); |
|
310 |
if (c == comparator || (c != null && c.equals(comparator))) { |
|
311 |
++modCount; |
|
312 |
try { |
|
313 |
buildFromSorted(mapSize, map.entrySet().iterator(), |
|
314 |
null, null); |
|
315 |
} catch (java.io.IOException cannotHappen) { |
|
316 |
} catch (ClassNotFoundException cannotHappen) { |
|
317 |
} |
|
318 |
return; |
|
319 |
} |
|
320 |
} |
|
321 |
super.putAll(map); |
|
322 |
} |
|
323 |
||
324 |
/** |
|
325 |
* Returns this map's entry for the given key, or <tt>null</tt> if the map |
|
326 |
* does not contain an entry for the key. |
|
327 |
* |
|
328 |
* @return this map's entry for the given key, or <tt>null</tt> if the map |
|
329 |
* does not contain an entry for the key |
|
330 |
* @throws ClassCastException if the specified key cannot be compared |
|
331 |
* with the keys currently in the map |
|
332 |
* @throws NullPointerException if the specified key is null |
|
333 |
* and this map uses natural ordering, or its comparator |
|
334 |
* does not permit null keys |
|
335 |
*/ |
|
336 |
final Entry<K,V> getEntry(Object key) { |
|
337 |
// Offload comparator-based version for sake of performance |
|
338 |
if (comparator != null) |
|
339 |
return getEntryUsingComparator(key); |
|
340 |
if (key == null) |
|
341 |
throw new NullPointerException(); |
|
342 |
Comparable<? super K> k = (Comparable<? super K>) key; |
|
343 |
Entry<K,V> p = root; |
|
344 |
while (p != null) { |
|
345 |
int cmp = k.compareTo(p.key); |
|
346 |
if (cmp < 0) |
|
347 |
p = p.left; |
|
348 |
else if (cmp > 0) |
|
349 |
p = p.right; |
|
350 |
else |
|
351 |
return p; |
|
352 |
} |
|
353 |
return null; |
|
354 |
} |
|
355 |
||
356 |
/** |
|
357 |
* Version of getEntry using comparator. Split off from getEntry |
|
358 |
* for performance. (This is not worth doing for most methods, |
|
359 |
* that are less dependent on comparator performance, but is |
|
360 |
* worthwhile here.) |
|
361 |
*/ |
|
362 |
final Entry<K,V> getEntryUsingComparator(Object key) { |
|
363 |
K k = (K) key; |
|
364 |
Comparator<? super K> cpr = comparator; |
|
365 |
if (cpr != null) { |
|
366 |
Entry<K,V> p = root; |
|
367 |
while (p != null) { |
|
368 |
int cmp = cpr.compare(k, p.key); |
|
369 |
if (cmp < 0) |
|
370 |
p = p.left; |
|
371 |
else if (cmp > 0) |
|
372 |
p = p.right; |
|
373 |
else |
|
374 |
return p; |
|
375 |
} |
|
376 |
} |
|
377 |
return null; |
|
378 |
} |
|
379 |
||
380 |
/** |
|
381 |
* Gets the entry corresponding to the specified key; if no such entry |
|
382 |
* exists, returns the entry for the least key greater than the specified |
|
383 |
* key; if no such entry exists (i.e., the greatest key in the Tree is less |
|
384 |
* than the specified key), returns <tt>null</tt>. |
|
385 |
*/ |
|
386 |
final Entry<K,V> getCeilingEntry(K key) { |
|
387 |
Entry<K,V> p = root; |
|
388 |
while (p != null) { |
|
389 |
int cmp = compare(key, p.key); |
|
390 |
if (cmp < 0) { |
|
391 |
if (p.left != null) |
|
392 |
p = p.left; |
|
393 |
else |
|
394 |
return p; |
|
395 |
} else if (cmp > 0) { |
|
396 |
if (p.right != null) { |
|
397 |
p = p.right; |
|
398 |
} else { |
|
399 |
Entry<K,V> parent = p.parent; |
|
400 |
Entry<K,V> ch = p; |
|
401 |
while (parent != null && ch == parent.right) { |
|
402 |
ch = parent; |
|
403 |
parent = parent.parent; |
|
404 |
} |
|
405 |
return parent; |
|
406 |
} |
|
407 |
} else |
|
408 |
return p; |
|
409 |
} |
|
410 |
return null; |
|
411 |
} |
|
412 |
||
413 |
/** |
|
414 |
* Gets the entry corresponding to the specified key; if no such entry |
|
415 |
* exists, returns the entry for the greatest key less than the specified |
|
416 |
* key; if no such entry exists, returns <tt>null</tt>. |
|
417 |
*/ |
|
418 |
final Entry<K,V> getFloorEntry(K key) { |
|
419 |
Entry<K,V> p = root; |
|
420 |
while (p != null) { |
|
421 |
int cmp = compare(key, p.key); |
|
422 |
if (cmp > 0) { |
|
423 |
if (p.right != null) |
|
424 |
p = p.right; |
|
425 |
else |
|
426 |
return p; |
|
427 |
} else if (cmp < 0) { |
|
428 |
if (p.left != null) { |
|
429 |
p = p.left; |
|
430 |
} else { |
|
431 |
Entry<K,V> parent = p.parent; |
|
432 |
Entry<K,V> ch = p; |
|
433 |
while (parent != null && ch == parent.left) { |
|
434 |
ch = parent; |
|
435 |
parent = parent.parent; |
|
436 |
} |
|
437 |
return parent; |
|
438 |
} |
|
439 |
} else |
|
440 |
return p; |
|
441 |
||
442 |
} |
|
443 |
return null; |
|
444 |
} |
|
445 |
||
446 |
/** |
|
447 |
* Gets the entry for the least key greater than the specified |
|
448 |
* key; if no such entry exists, returns the entry for the least |
|
449 |
* key greater than the specified key; if no such entry exists |
|
450 |
* returns <tt>null</tt>. |
|
451 |
*/ |
|
452 |
final Entry<K,V> getHigherEntry(K key) { |
|
453 |
Entry<K,V> p = root; |
|
454 |
while (p != null) { |
|
455 |
int cmp = compare(key, p.key); |
|
456 |
if (cmp < 0) { |
|
457 |
if (p.left != null) |
|
458 |
p = p.left; |
|
459 |
else |
|
460 |
return p; |
|
461 |
} else { |
|
462 |
if (p.right != null) { |
|
463 |
p = p.right; |
|
464 |
} else { |
|
465 |
Entry<K,V> parent = p.parent; |
|
466 |
Entry<K,V> ch = p; |
|
467 |
while (parent != null && ch == parent.right) { |
|
468 |
ch = parent; |
|
469 |
parent = parent.parent; |
|
470 |
} |
|
471 |
return parent; |
|
472 |
} |
|
473 |
} |
|
474 |
} |
|
475 |
return null; |
|
476 |
} |
|
477 |
||
478 |
/** |
|
479 |
* Returns the entry for the greatest key less than the specified key; if |
|
480 |
* no such entry exists (i.e., the least key in the Tree is greater than |
|
481 |
* the specified key), returns <tt>null</tt>. |
|
482 |
*/ |
|
483 |
final Entry<K,V> getLowerEntry(K key) { |
|
484 |
Entry<K,V> p = root; |
|
485 |
while (p != null) { |
|
486 |
int cmp = compare(key, p.key); |
|
487 |
if (cmp > 0) { |
|
488 |
if (p.right != null) |
|
489 |
p = p.right; |
|
490 |
else |
|
491 |
return p; |
|
492 |
} else { |
|
493 |
if (p.left != null) { |
|
494 |
p = p.left; |
|
495 |
} else { |
|
496 |
Entry<K,V> parent = p.parent; |
|
497 |
Entry<K,V> ch = p; |
|
498 |
while (parent != null && ch == parent.left) { |
|
499 |
ch = parent; |
|
500 |
parent = parent.parent; |
|
501 |
} |
|
502 |
return parent; |
|
503 |
} |
|
504 |
} |
|
505 |
} |
|
506 |
return null; |
|
507 |
} |
|
508 |
||
509 |
/** |
|
510 |
* Associates the specified value with the specified key in this map. |
|
511 |
* If the map previously contained a mapping for the key, the old |
|
512 |
* value is replaced. |
|
513 |
* |
|
514 |
* @param key key with which the specified value is to be associated |
|
515 |
* @param value value to be associated with the specified key |
|
516 |
* |
|
517 |
* @return the previous value associated with <tt>key</tt>, or |
|
518 |
* <tt>null</tt> if there was no mapping for <tt>key</tt>. |
|
519 |
* (A <tt>null</tt> return can also indicate that the map |
|
520 |
* previously associated <tt>null</tt> with <tt>key</tt>.) |
|
521 |
* @throws ClassCastException if the specified key cannot be compared |
|
522 |
* with the keys currently in the map |
|
523 |
* @throws NullPointerException if the specified key is null |
|
524 |
* and this map uses natural ordering, or its comparator |
|
525 |
* does not permit null keys |
|
526 |
*/ |
|
527 |
public V put(K key, V value) { |
|
528 |
Entry<K,V> t = root; |
|
529 |
if (t == null) { |
|
530 |
// TBD: |
|
531 |
// 5045147: (coll) Adding null to an empty TreeSet should |
|
532 |
// throw NullPointerException |
|
533 |
// |
|
534 |
// compare(key, key); // type check |
|
535 |
root = new Entry<K,V>(key, value, null); |
|
536 |
size = 1; |
|
537 |
modCount++; |
|
538 |
return null; |
|
539 |
} |
|
540 |
int cmp; |
|
541 |
Entry<K,V> parent; |
|
542 |
// split comparator and comparable paths |
|
543 |
Comparator<? super K> cpr = comparator; |
|
544 |
if (cpr != null) { |
|
545 |
do { |
|
546 |
parent = t; |
|
547 |
cmp = cpr.compare(key, t.key); |
|
548 |
if (cmp < 0) |
|
549 |
t = t.left; |
|
550 |
else if (cmp > 0) |
|
551 |
t = t.right; |
|
552 |
else |
|
553 |
return t.setValue(value); |
|
554 |
} while (t != null); |
|
555 |
} |
|
556 |
else { |
|
557 |
if (key == null) |
|
558 |
throw new NullPointerException(); |
|
559 |
Comparable<? super K> k = (Comparable<? super K>) key; |
|
560 |
do { |
|
561 |
parent = t; |
|
562 |
cmp = k.compareTo(t.key); |
|
563 |
if (cmp < 0) |
|
564 |
t = t.left; |
|
565 |
else if (cmp > 0) |
|
566 |
t = t.right; |
|
567 |
else |
|
568 |
return t.setValue(value); |
|
569 |
} while (t != null); |
|
570 |
} |
|
571 |
Entry<K,V> e = new Entry<K,V>(key, value, parent); |
|
572 |
if (cmp < 0) |
|
573 |
parent.left = e; |
|
574 |
else |
|
575 |
parent.right = e; |
|
576 |
fixAfterInsertion(e); |
|
577 |
size++; |
|
578 |
modCount++; |
|
579 |
return null; |
|
580 |
} |
|
581 |
||
582 |
/** |
|
583 |
* Removes the mapping for this key from this TreeMap if present. |
|
584 |
* |
|
585 |
* @param key key for which mapping should be removed |
|
586 |
* @return the previous value associated with <tt>key</tt>, or |
|
587 |
* <tt>null</tt> if there was no mapping for <tt>key</tt>. |
|
588 |
* (A <tt>null</tt> return can also indicate that the map |
|
589 |
* previously associated <tt>null</tt> with <tt>key</tt>.) |
|
590 |
* @throws ClassCastException if the specified key cannot be compared |
|
591 |
* with the keys currently in the map |
|
592 |
* @throws NullPointerException if the specified key is null |
|
593 |
* and this map uses natural ordering, or its comparator |
|
594 |
* does not permit null keys |
|
595 |
*/ |
|
596 |
public V remove(Object key) { |
|
597 |
Entry<K,V> p = getEntry(key); |
|
598 |
if (p == null) |
|
599 |
return null; |
|
600 |
||
601 |
V oldValue = p.value; |
|
602 |
deleteEntry(p); |
|
603 |
return oldValue; |
|
604 |
} |
|
605 |
||
606 |
/** |
|
607 |
* Removes all of the mappings from this map. |
|
608 |
* The map will be empty after this call returns. |
|
609 |
*/ |
|
610 |
public void clear() { |
|
611 |
modCount++; |
|
612 |
size = 0; |
|
613 |
root = null; |
|
614 |
} |
|
615 |
||
616 |
/** |
|
617 |
* Returns a shallow copy of this <tt>TreeMap</tt> instance. (The keys and |
|
618 |
* values themselves are not cloned.) |
|
619 |
* |
|
620 |
* @return a shallow copy of this map |
|
621 |
*/ |
|
622 |
public Object clone() { |
|
623 |
TreeMap<K,V> clone = null; |
|
624 |
try { |
|
625 |
clone = (TreeMap<K,V>) super.clone(); |
|
626 |
} catch (CloneNotSupportedException e) { |
|
627 |
throw new InternalError(); |
|
628 |
} |
|
629 |
||
630 |
// Put clone into "virgin" state (except for comparator) |
|
631 |
clone.root = null; |
|
632 |
clone.size = 0; |
|
633 |
clone.modCount = 0; |
|
634 |
clone.entrySet = null; |
|
635 |
clone.navigableKeySet = null; |
|
636 |
clone.descendingMap = null; |
|
637 |
||
638 |
// Initialize clone with our mappings |
|
639 |
try { |
|
640 |
clone.buildFromSorted(size, entrySet().iterator(), null, null); |
|
641 |
} catch (java.io.IOException cannotHappen) { |
|
642 |
} catch (ClassNotFoundException cannotHappen) { |
|
643 |
} |
|
644 |
||
645 |
return clone; |
|
646 |
} |
|
647 |
||
648 |
// NavigableMap API methods |
|
649 |
||
650 |
/** |
|
651 |
* @since 1.6 |
|
652 |
*/ |
|
653 |
public Map.Entry<K,V> firstEntry() { |
|
654 |
return exportEntry(getFirstEntry()); |
|
655 |
} |
|
656 |
||
657 |
/** |
|
658 |
* @since 1.6 |
|
659 |
*/ |
|
660 |
public Map.Entry<K,V> lastEntry() { |
|
661 |
return exportEntry(getLastEntry()); |
|
662 |
} |
|
663 |
||
664 |
/** |
|
665 |
* @since 1.6 |
|
666 |
*/ |
|
667 |
public Map.Entry<K,V> pollFirstEntry() { |
|
668 |
Entry<K,V> p = getFirstEntry(); |
|
669 |
Map.Entry<K,V> result = exportEntry(p); |
|
670 |
if (p != null) |
|
671 |
deleteEntry(p); |
|
672 |
return result; |
|
673 |
} |
|
674 |
||
675 |
/** |
|
676 |
* @since 1.6 |
|
677 |
*/ |
|
678 |
public Map.Entry<K,V> pollLastEntry() { |
|
679 |
Entry<K,V> p = getLastEntry(); |
|
680 |
Map.Entry<K,V> result = exportEntry(p); |
|
681 |
if (p != null) |
|
682 |
deleteEntry(p); |
|
683 |
return result; |
|
684 |
} |
|
685 |
||
686 |
/** |
|
687 |
* @throws ClassCastException {@inheritDoc} |
|
688 |
* @throws NullPointerException if the specified key is null |
|
689 |
* and this map uses natural ordering, or its comparator |
|
690 |
* does not permit null keys |
|
691 |
* @since 1.6 |
|
692 |
*/ |
|
693 |
public Map.Entry<K,V> lowerEntry(K key) { |
|
694 |
return exportEntry(getLowerEntry(key)); |
|
695 |
} |
|
696 |
||
697 |
/** |
|
698 |
* @throws ClassCastException {@inheritDoc} |
|
699 |
* @throws NullPointerException if the specified key is null |
|
700 |
* and this map uses natural ordering, or its comparator |
|
701 |
* does not permit null keys |
|
702 |
* @since 1.6 |
|
703 |
*/ |
|
704 |
public K lowerKey(K key) { |
|
705 |
return keyOrNull(getLowerEntry(key)); |
|
706 |
} |
|
707 |
||
708 |
/** |
|
709 |
* @throws ClassCastException {@inheritDoc} |
|
710 |
* @throws NullPointerException if the specified key is null |
|
711 |
* and this map uses natural ordering, or its comparator |
|
712 |
* does not permit null keys |
|
713 |
* @since 1.6 |
|
714 |
*/ |
|
715 |
public Map.Entry<K,V> floorEntry(K key) { |
|
716 |
return exportEntry(getFloorEntry(key)); |
|
717 |
} |
|
718 |
||
719 |
/** |
|
720 |
* @throws ClassCastException {@inheritDoc} |
|
721 |
* @throws NullPointerException if the specified key is null |
|
722 |
* and this map uses natural ordering, or its comparator |
|
723 |
* does not permit null keys |
|
724 |
* @since 1.6 |
|
725 |
*/ |
|
726 |
public K floorKey(K key) { |
|
727 |
return keyOrNull(getFloorEntry(key)); |
|
728 |
} |
|
729 |
||
730 |
/** |
|
731 |
* @throws ClassCastException {@inheritDoc} |
|
732 |
* @throws NullPointerException if the specified key is null |
|
733 |
* and this map uses natural ordering, or its comparator |
|
734 |
* does not permit null keys |
|
735 |
* @since 1.6 |
|
736 |
*/ |
|
737 |
public Map.Entry<K,V> ceilingEntry(K key) { |
|
738 |
return exportEntry(getCeilingEntry(key)); |
|
739 |
} |
|
740 |
||
741 |
/** |
|
742 |
* @throws ClassCastException {@inheritDoc} |
|
743 |
* @throws NullPointerException if the specified key is null |
|
744 |
* and this map uses natural ordering, or its comparator |
|
745 |
* does not permit null keys |
|
746 |
* @since 1.6 |
|
747 |
*/ |
|
748 |
public K ceilingKey(K key) { |
|
749 |
return keyOrNull(getCeilingEntry(key)); |
|
750 |
} |
|
751 |
||
752 |
/** |
|
753 |
* @throws ClassCastException {@inheritDoc} |
|
754 |
* @throws NullPointerException if the specified key is null |
|
755 |
* and this map uses natural ordering, or its comparator |
|
756 |
* does not permit null keys |
|
757 |
* @since 1.6 |
|
758 |
*/ |
|
759 |
public Map.Entry<K,V> higherEntry(K key) { |
|
760 |
return exportEntry(getHigherEntry(key)); |
|
761 |
} |
|
762 |
||
763 |
/** |
|
764 |
* @throws ClassCastException {@inheritDoc} |
|
765 |
* @throws NullPointerException if the specified key is null |
|
766 |
* and this map uses natural ordering, or its comparator |
|
767 |
* does not permit null keys |
|
768 |
* @since 1.6 |
|
769 |
*/ |
|
770 |
public K higherKey(K key) { |
|
771 |
return keyOrNull(getHigherEntry(key)); |
|
772 |
} |
|
773 |
||
774 |
// Views |
|
775 |
||
776 |
/** |
|
777 |
* Fields initialized to contain an instance of the entry set view |
|
778 |
* the first time this view is requested. Views are stateless, so |
|
779 |
* there's no reason to create more than one. |
|
780 |
*/ |
|
781 |
private transient EntrySet entrySet = null; |
|
782 |
private transient KeySet<K> navigableKeySet = null; |
|
783 |
private transient NavigableMap<K,V> descendingMap = null; |
|
784 |
||
785 |
/** |
|
786 |
* Returns a {@link Set} view of the keys contained in this map. |
|
787 |
* The set's iterator returns the keys in ascending order. |
|
788 |
* The set is backed by the map, so changes to the map are |
|
789 |
* reflected in the set, and vice-versa. If the map is modified |
|
790 |
* while an iteration over the set is in progress (except through |
|
791 |
* the iterator's own <tt>remove</tt> operation), the results of |
|
792 |
* the iteration are undefined. The set supports element removal, |
|
793 |
* which removes the corresponding mapping from the map, via the |
|
794 |
* <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, |
|
795 |
* <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> |
|
796 |
* operations. It does not support the <tt>add</tt> or <tt>addAll</tt> |
|
797 |
* operations. |
|
798 |
*/ |
|
799 |
public Set<K> keySet() { |
|
800 |
return navigableKeySet(); |
|
801 |
} |
|
802 |
||
803 |
/** |
|
804 |
* @since 1.6 |
|
805 |
*/ |
|
806 |
public NavigableSet<K> navigableKeySet() { |
|
807 |
KeySet<K> nks = navigableKeySet; |
|
808 |
return (nks != null) ? nks : (navigableKeySet = new KeySet(this)); |
|
809 |
} |
|
810 |
||
811 |
/** |
|
812 |
* @since 1.6 |
|
813 |
*/ |
|
814 |
public NavigableSet<K> descendingKeySet() { |
|
815 |
return descendingMap().navigableKeySet(); |
|
816 |
} |
|
817 |
||
818 |
/** |
|
819 |
* Returns a {@link Collection} view of the values contained in this map. |
|
820 |
* The collection's iterator returns the values in ascending order |
|
821 |
* of the corresponding keys. |
|
822 |
* The collection is backed by the map, so changes to the map are |
|
823 |
* reflected in the collection, and vice-versa. If the map is |
|
824 |
* modified while an iteration over the collection is in progress |
|
825 |
* (except through the iterator's own <tt>remove</tt> operation), |
|
826 |
* the results of the iteration are undefined. The collection |
|
827 |
* supports element removal, which removes the corresponding |
|
828 |
* mapping from the map, via the <tt>Iterator.remove</tt>, |
|
829 |
* <tt>Collection.remove</tt>, <tt>removeAll</tt>, |
|
830 |
* <tt>retainAll</tt> and <tt>clear</tt> operations. It does not |
|
831 |
* support the <tt>add</tt> or <tt>addAll</tt> operations. |
|
832 |
*/ |
|
833 |
public Collection<V> values() { |
|
834 |
Collection<V> vs = values; |
|
835 |
return (vs != null) ? vs : (values = new Values()); |
|
836 |
} |
|
837 |
||
838 |
/** |
|
839 |
* Returns a {@link Set} view of the mappings contained in this map. |
|
840 |
* The set's iterator returns the entries in ascending key order. |
|
841 |
* The set is backed by the map, so changes to the map are |
|
842 |
* reflected in the set, and vice-versa. If the map is modified |
|
843 |
* while an iteration over the set is in progress (except through |
|
844 |
* the iterator's own <tt>remove</tt> operation, or through the |
|
845 |
* <tt>setValue</tt> operation on a map entry returned by the |
|
846 |
* iterator) the results of the iteration are undefined. The set |
|
847 |
* supports element removal, which removes the corresponding |
|
848 |
* mapping from the map, via the <tt>Iterator.remove</tt>, |
|
849 |
* <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and |
|
850 |
* <tt>clear</tt> operations. It does not support the |
|
851 |
* <tt>add</tt> or <tt>addAll</tt> operations. |
|
852 |
*/ |
|
853 |
public Set<Map.Entry<K,V>> entrySet() { |
|
854 |
EntrySet es = entrySet; |
|
855 |
return (es != null) ? es : (entrySet = new EntrySet()); |
|
856 |
} |
|
857 |
||
858 |
/** |
|
859 |
* @since 1.6 |
|
860 |
*/ |
|
861 |
public NavigableMap<K, V> descendingMap() { |
|
862 |
NavigableMap<K, V> km = descendingMap; |
|
863 |
return (km != null) ? km : |
|
864 |
(descendingMap = new DescendingSubMap(this, |
|
865 |
true, null, true, |
|
866 |
true, null, true)); |
|
867 |
} |
|
868 |
||
869 |
/** |
|
870 |
* @throws ClassCastException {@inheritDoc} |
|
871 |
* @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is |
|
872 |
* null and this map uses natural ordering, or its comparator |
|
873 |
* does not permit null keys |
|
874 |
* @throws IllegalArgumentException {@inheritDoc} |
|
875 |
* @since 1.6 |
|
876 |
*/ |
|
877 |
public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive, |
|
878 |
K toKey, boolean toInclusive) { |
|
879 |
return new AscendingSubMap(this, |
|
880 |
false, fromKey, fromInclusive, |
|
881 |
false, toKey, toInclusive); |
|
882 |
} |
|
883 |
||
884 |
/** |
|
885 |
* @throws ClassCastException {@inheritDoc} |
|
886 |
* @throws NullPointerException if <tt>toKey</tt> is null |
|
887 |
* and this map uses natural ordering, or its comparator |
|
888 |
* does not permit null keys |
|
889 |
* @throws IllegalArgumentException {@inheritDoc} |
|
890 |
* @since 1.6 |
|
891 |
*/ |
|
892 |
public NavigableMap<K,V> headMap(K toKey, boolean inclusive) { |
|
893 |
return new AscendingSubMap(this, |
|
894 |
true, null, true, |
|
895 |
false, toKey, inclusive); |
|
896 |
} |
|
897 |
||
898 |
/** |
|
899 |
* @throws ClassCastException {@inheritDoc} |
|
900 |
* @throws NullPointerException if <tt>fromKey</tt> is null |
|
901 |
* and this map uses natural ordering, or its comparator |
|
902 |
* does not permit null keys |
|
903 |
* @throws IllegalArgumentException {@inheritDoc} |
|
904 |
* @since 1.6 |
|
905 |
*/ |
|
906 |
public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) { |
|
907 |
return new AscendingSubMap(this, |
|
908 |
false, fromKey, inclusive, |
|
909 |
true, null, true); |
|
910 |
} |
|
911 |
||
912 |
/** |
|
913 |
* @throws ClassCastException {@inheritDoc} |
|
914 |
* @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is |
|
915 |
* null and this map uses natural ordering, or its comparator |
|
916 |
* does not permit null keys |
|
917 |
* @throws IllegalArgumentException {@inheritDoc} |
|
918 |
*/ |
|
919 |
public SortedMap<K,V> subMap(K fromKey, K toKey) { |
|
920 |
return subMap(fromKey, true, toKey, false); |
|
921 |
} |
|
922 |
||
923 |
/** |
|
924 |
* @throws ClassCastException {@inheritDoc} |
|
925 |
* @throws NullPointerException if <tt>toKey</tt> is null |
|
926 |
* and this map uses natural ordering, or its comparator |
|
927 |
* does not permit null keys |
|
928 |
* @throws IllegalArgumentException {@inheritDoc} |
|
929 |
*/ |
|
930 |
public SortedMap<K,V> headMap(K toKey) { |
|
931 |
return headMap(toKey, false); |
|
932 |
} |
|
933 |
||
934 |
/** |
|
935 |
* @throws ClassCastException {@inheritDoc} |
|
936 |
* @throws NullPointerException if <tt>fromKey</tt> is null |
|
937 |
* and this map uses natural ordering, or its comparator |
|
938 |
* does not permit null keys |
|
939 |
* @throws IllegalArgumentException {@inheritDoc} |
|
940 |
*/ |
|
941 |
public SortedMap<K,V> tailMap(K fromKey) { |
|
942 |
return tailMap(fromKey, true); |
|
943 |
} |
|
944 |
||
945 |
// View class support |
|
946 |
||
947 |
class Values extends AbstractCollection<V> { |
|
948 |
public Iterator<V> iterator() { |
|
949 |
return new ValueIterator(getFirstEntry()); |
|
950 |
} |
|
951 |
||
952 |
public int size() { |
|
953 |
return TreeMap.this.size(); |
|
954 |
} |
|
955 |
||
956 |
public boolean contains(Object o) { |
|
957 |
return TreeMap.this.containsValue(o); |
|
958 |
} |
|
959 |
||
960 |
public boolean remove(Object o) { |
|
961 |
for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) { |
|
962 |
if (valEquals(e.getValue(), o)) { |
|
963 |
deleteEntry(e); |
|
964 |
return true; |
|
965 |
} |
|
966 |
} |
|
967 |
return false; |
|
968 |
} |
|
969 |
||
970 |
public void clear() { |
|
971 |
TreeMap.this.clear(); |
|
972 |
} |
|
973 |
} |
|
974 |
||
975 |
class EntrySet extends AbstractSet<Map.Entry<K,V>> { |
|
976 |
public Iterator<Map.Entry<K,V>> iterator() { |
|
977 |
return new EntryIterator(getFirstEntry()); |
|
978 |
} |
|
979 |
||
980 |
public boolean contains(Object o) { |
|
981 |
if (!(o instanceof Map.Entry)) |
|
982 |
return false; |
|
983 |
Map.Entry<K,V> entry = (Map.Entry<K,V>) o; |
|
984 |
V value = entry.getValue(); |
|
985 |
Entry<K,V> p = getEntry(entry.getKey()); |
|
986 |
return p != null && valEquals(p.getValue(), value); |
|
987 |
} |
|
988 |
||
989 |
public boolean remove(Object o) { |
|
990 |
if (!(o instanceof Map.Entry)) |
|
991 |
return false; |
|
992 |
Map.Entry<K,V> entry = (Map.Entry<K,V>) o; |
|
993 |
V value = entry.getValue(); |
|
994 |
Entry<K,V> p = getEntry(entry.getKey()); |
|
995 |
if (p != null && valEquals(p.getValue(), value)) { |
|
996 |
deleteEntry(p); |
|
997 |
return true; |
|
998 |
} |
|
999 |
return false; |
|
1000 |
} |
|
1001 |
||
1002 |
public int size() { |
|
1003 |
return TreeMap.this.size(); |
|
1004 |
} |
|
1005 |
||
1006 |
public void clear() { |
|
1007 |
TreeMap.this.clear(); |
|
1008 |
} |
|
1009 |
} |
|
1010 |
||
1011 |
/* |
|
1012 |
* Unlike Values and EntrySet, the KeySet class is static, |
|
1013 |
* delegating to a NavigableMap to allow use by SubMaps, which |
|
1014 |
* outweighs the ugliness of needing type-tests for the following |
|
1015 |
* Iterator methods that are defined appropriately in main versus |
|
1016 |
* submap classes. |
|
1017 |
*/ |
|
1018 |
||
1019 |
Iterator<K> keyIterator() { |
|
1020 |
return new KeyIterator(getFirstEntry()); |
|
1021 |
} |
|
1022 |
||
1023 |
Iterator<K> descendingKeyIterator() { |
|
493
b8102e80be10
6691185: (coll) TreeMap.navigableKeySet's descendingIterator method starts at first instead of last entry
martin
parents:
2
diff
changeset
|
1024 |
return new DescendingKeyIterator(getLastEntry()); |
2 | 1025 |
} |
1026 |
||
1027 |
static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> { |
|
1028 |
private final NavigableMap<E, Object> m; |
|
1029 |
KeySet(NavigableMap<E,Object> map) { m = map; } |
|
1030 |
||
1031 |
public Iterator<E> iterator() { |
|
1032 |
if (m instanceof TreeMap) |
|
1033 |
return ((TreeMap<E,Object>)m).keyIterator(); |
|
1034 |
else |
|
1035 |
return (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator()); |
|
1036 |
} |
|
1037 |
||
1038 |
public Iterator<E> descendingIterator() { |
|
1039 |
if (m instanceof TreeMap) |
|
1040 |
return ((TreeMap<E,Object>)m).descendingKeyIterator(); |
|
1041 |
else |
|
1042 |
return (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator()); |
|
1043 |
} |
|
1044 |
||
1045 |
public int size() { return m.size(); } |
|
1046 |
public boolean isEmpty() { return m.isEmpty(); } |
|
1047 |
public boolean contains(Object o) { return m.containsKey(o); } |
|
1048 |
public void clear() { m.clear(); } |
|
1049 |
public E lower(E e) { return m.lowerKey(e); } |
|
1050 |
public E floor(E e) { return m.floorKey(e); } |
|
1051 |
public E ceiling(E e) { return m.ceilingKey(e); } |
|
1052 |
public E higher(E e) { return m.higherKey(e); } |
|
1053 |
public E first() { return m.firstKey(); } |
|
1054 |
public E last() { return m.lastKey(); } |
|
1055 |
public Comparator<? super E> comparator() { return m.comparator(); } |
|
1056 |
public E pollFirst() { |
|
1057 |
Map.Entry<E,Object> e = m.pollFirstEntry(); |
|
1058 |
return e == null? null : e.getKey(); |
|
1059 |
} |
|
1060 |
public E pollLast() { |
|
1061 |
Map.Entry<E,Object> e = m.pollLastEntry(); |
|
1062 |
return e == null? null : e.getKey(); |
|
1063 |
} |
|
1064 |
public boolean remove(Object o) { |
|
1065 |
int oldSize = size(); |
|
1066 |
m.remove(o); |
|
1067 |
return size() != oldSize; |
|
1068 |
} |
|
1069 |
public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, |
|
1070 |
E toElement, boolean toInclusive) { |
|
1071 |
return new TreeSet<E>(m.subMap(fromElement, fromInclusive, |
|
1072 |
toElement, toInclusive)); |
|
1073 |
} |
|
1074 |
public NavigableSet<E> headSet(E toElement, boolean inclusive) { |
|
1075 |
return new TreeSet<E>(m.headMap(toElement, inclusive)); |
|
1076 |
} |
|
1077 |
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { |
|
1078 |
return new TreeSet<E>(m.tailMap(fromElement, inclusive)); |
|
1079 |
} |
|
1080 |
public SortedSet<E> subSet(E fromElement, E toElement) { |
|
1081 |
return subSet(fromElement, true, toElement, false); |
|
1082 |
} |
|
1083 |
public SortedSet<E> headSet(E toElement) { |
|
1084 |
return headSet(toElement, false); |
|
1085 |
} |
|
1086 |
public SortedSet<E> tailSet(E fromElement) { |
|
1087 |
return tailSet(fromElement, true); |
|
1088 |
} |
|
1089 |
public NavigableSet<E> descendingSet() { |
|
1090 |
return new TreeSet(m.descendingMap()); |
|
1091 |
} |
|
1092 |
} |
|
1093 |
||
1094 |
/** |
|
1095 |
* Base class for TreeMap Iterators |
|
1096 |
*/ |
|
1097 |
abstract class PrivateEntryIterator<T> implements Iterator<T> { |
|
1098 |
Entry<K,V> next; |
|
1099 |
Entry<K,V> lastReturned; |
|
1100 |
int expectedModCount; |
|
1101 |
||
1102 |
PrivateEntryIterator(Entry<K,V> first) { |
|
1103 |
expectedModCount = modCount; |
|
1104 |
lastReturned = null; |
|
1105 |
next = first; |
|
1106 |
} |
|
1107 |
||
1108 |
public final boolean hasNext() { |
|
1109 |
return next != null; |
|
1110 |
} |
|
1111 |
||
1112 |
final Entry<K,V> nextEntry() { |
|
1113 |
Entry<K,V> e = next; |
|
1114 |
if (e == null) |
|
1115 |
throw new NoSuchElementException(); |
|
1116 |
if (modCount != expectedModCount) |
|
1117 |
throw new ConcurrentModificationException(); |
|
1118 |
next = successor(e); |
|
1119 |
lastReturned = e; |
|
1120 |
return e; |
|
1121 |
} |
|
1122 |
||
1123 |
final Entry<K,V> prevEntry() { |
|
1124 |
Entry<K,V> e = next; |
|
1125 |
if (e == null) |
|
1126 |
throw new NoSuchElementException(); |
|
1127 |
if (modCount != expectedModCount) |
|
1128 |
throw new ConcurrentModificationException(); |
|
1129 |
next = predecessor(e); |
|
1130 |
lastReturned = e; |
|
1131 |
return e; |
|
1132 |
} |
|
1133 |
||
1134 |
public void remove() { |
|
1135 |
if (lastReturned == null) |
|
1136 |
throw new IllegalStateException(); |
|
1137 |
if (modCount != expectedModCount) |
|
1138 |
throw new ConcurrentModificationException(); |
|
1139 |
// deleted entries are replaced by their successors |
|
1140 |
if (lastReturned.left != null && lastReturned.right != null) |
|
1141 |
next = lastReturned; |
|
1142 |
deleteEntry(lastReturned); |
|
1143 |
expectedModCount = modCount; |
|
1144 |
lastReturned = null; |
|
1145 |
} |
|
1146 |
} |
|
1147 |
||
1148 |
final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> { |
|
1149 |
EntryIterator(Entry<K,V> first) { |
|
1150 |
super(first); |
|
1151 |
} |
|
1152 |
public Map.Entry<K,V> next() { |
|
1153 |
return nextEntry(); |
|
1154 |
} |
|
1155 |
} |
|
1156 |
||
1157 |
final class ValueIterator extends PrivateEntryIterator<V> { |
|
1158 |
ValueIterator(Entry<K,V> first) { |
|
1159 |
super(first); |
|
1160 |
} |
|
1161 |
public V next() { |
|
1162 |
return nextEntry().value; |
|
1163 |
} |
|
1164 |
} |
|
1165 |
||
1166 |
final class KeyIterator extends PrivateEntryIterator<K> { |
|
1167 |
KeyIterator(Entry<K,V> first) { |
|
1168 |
super(first); |
|
1169 |
} |
|
1170 |
public K next() { |
|
1171 |
return nextEntry().key; |
|
1172 |
} |
|
1173 |
} |
|
1174 |
||
1175 |
final class DescendingKeyIterator extends PrivateEntryIterator<K> { |
|
1176 |
DescendingKeyIterator(Entry<K,V> first) { |
|
1177 |
super(first); |
|
1178 |
} |
|
1179 |
public K next() { |
|
1180 |
return prevEntry().key; |
|
1181 |
} |
|
1182 |
} |
|
1183 |
||
1184 |
// Little utilities |
|
1185 |
||
1186 |
/** |
|
1187 |
* Compares two keys using the correct comparison method for this TreeMap. |
|
1188 |
*/ |
|
1189 |
final int compare(Object k1, Object k2) { |
|
1190 |
return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2) |
|
1191 |
: comparator.compare((K)k1, (K)k2); |
|
1192 |
} |
|
1193 |
||
1194 |
/** |
|
1195 |
* Test two values for equality. Differs from o1.equals(o2) only in |
|
1196 |
* that it copes with <tt>null</tt> o1 properly. |
|
1197 |
*/ |
|
1198 |
final static boolean valEquals(Object o1, Object o2) { |
|
1199 |
return (o1==null ? o2==null : o1.equals(o2)); |
|
1200 |
} |
|
1201 |
||
1202 |
/** |
|
1203 |
* Return SimpleImmutableEntry for entry, or null if null |
|
1204 |
*/ |
|
1205 |
static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) { |
|
1206 |
return e == null? null : |
|
1207 |
new AbstractMap.SimpleImmutableEntry<K,V>(e); |
|
1208 |
} |
|
1209 |
||
1210 |
/** |
|
1211 |
* Return key for entry, or null if null |
|
1212 |
*/ |
|
1213 |
static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) { |
|
1214 |
return e == null? null : e.key; |
|
1215 |
} |
|
1216 |
||
1217 |
/** |
|
1218 |
* Returns the key corresponding to the specified Entry. |
|
1219 |
* @throws NoSuchElementException if the Entry is null |
|
1220 |
*/ |
|
1221 |
static <K> K key(Entry<K,?> e) { |
|
1222 |
if (e==null) |
|
1223 |
throw new NoSuchElementException(); |
|
1224 |
return e.key; |
|
1225 |
} |
|
1226 |
||
1227 |
||
1228 |
// SubMaps |
|
1229 |
||
1230 |
/** |
|
1231 |
* Dummy value serving as unmatchable fence key for unbounded |
|
1232 |
* SubMapIterators |
|
1233 |
*/ |
|
1234 |
private static final Object UNBOUNDED = new Object(); |
|
1235 |
||
1236 |
/** |
|
1237 |
* @serial include |
|
1238 |
*/ |
|
1239 |
static abstract class NavigableSubMap<K,V> extends AbstractMap<K,V> |
|
1240 |
implements NavigableMap<K,V>, java.io.Serializable { |
|
1241 |
/** |
|
1242 |
* The backing map. |
|
1243 |
*/ |
|
1244 |
final TreeMap<K,V> m; |
|
1245 |
||
1246 |
/** |
|
1247 |
* Endpoints are represented as triples (fromStart, lo, |
|
1248 |
* loInclusive) and (toEnd, hi, hiInclusive). If fromStart is |
|
1249 |
* true, then the low (absolute) bound is the start of the |
|
1250 |
* backing map, and the other values are ignored. Otherwise, |
|
1251 |
* if loInclusive is true, lo is the inclusive bound, else lo |
|
1252 |
* is the exclusive bound. Similarly for the upper bound. |
|
1253 |
*/ |
|
1254 |
final K lo, hi; |
|
1255 |
final boolean fromStart, toEnd; |
|
1256 |
final boolean loInclusive, hiInclusive; |
|
1257 |
||
1258 |
NavigableSubMap(TreeMap<K,V> m, |
|
1259 |
boolean fromStart, K lo, boolean loInclusive, |
|
1260 |
boolean toEnd, K hi, boolean hiInclusive) { |
|
1261 |
if (!fromStart && !toEnd) { |
|
1262 |
if (m.compare(lo, hi) > 0) |
|
1263 |
throw new IllegalArgumentException("fromKey > toKey"); |
|
1264 |
} else { |
|
1265 |
if (!fromStart) // type check |
|
1266 |
m.compare(lo, lo); |
|
1267 |
if (!toEnd) |
|
1268 |
m.compare(hi, hi); |
|
1269 |
} |
|
1270 |
||
1271 |
this.m = m; |
|
1272 |
this.fromStart = fromStart; |
|
1273 |
this.lo = lo; |
|
1274 |
this.loInclusive = loInclusive; |
|
1275 |
this.toEnd = toEnd; |
|
1276 |
this.hi = hi; |
|
1277 |
this.hiInclusive = hiInclusive; |
|
1278 |
} |
|
1279 |
||
1280 |
// internal utilities |
|
1281 |
||
1282 |
final boolean tooLow(Object key) { |
|
1283 |
if (!fromStart) { |
|
1284 |
int c = m.compare(key, lo); |
|
1285 |
if (c < 0 || (c == 0 && !loInclusive)) |
|
1286 |
return true; |
|
1287 |
} |
|
1288 |
return false; |
|
1289 |
} |
|
1290 |
||
1291 |
final boolean tooHigh(Object key) { |
|
1292 |
if (!toEnd) { |
|
1293 |
int c = m.compare(key, hi); |
|
1294 |
if (c > 0 || (c == 0 && !hiInclusive)) |
|
1295 |
return true; |
|
1296 |
} |
|
1297 |
return false; |
|
1298 |
} |
|
1299 |
||
1300 |
final boolean inRange(Object key) { |
|
1301 |
return !tooLow(key) && !tooHigh(key); |
|
1302 |
} |
|
1303 |
||
1304 |
final boolean inClosedRange(Object key) { |
|
1305 |
return (fromStart || m.compare(key, lo) >= 0) |
|
1306 |
&& (toEnd || m.compare(hi, key) >= 0); |
|
1307 |
} |
|
1308 |
||
1309 |
final boolean inRange(Object key, boolean inclusive) { |
|
1310 |
return inclusive ? inRange(key) : inClosedRange(key); |
|
1311 |
} |
|
1312 |
||
1313 |
/* |
|
1314 |
* Absolute versions of relation operations. |
|
1315 |
* Subclasses map to these using like-named "sub" |
|
1316 |
* versions that invert senses for descending maps |
|
1317 |
*/ |
|
1318 |
||
1319 |
final TreeMap.Entry<K,V> absLowest() { |
|
1320 |
TreeMap.Entry<K,V> e = |
|
1321 |
(fromStart ? m.getFirstEntry() : |
|
1322 |
(loInclusive ? m.getCeilingEntry(lo) : |
|
1323 |
m.getHigherEntry(lo))); |
|
1324 |
return (e == null || tooHigh(e.key)) ? null : e; |
|
1325 |
} |
|
1326 |
||
1327 |
final TreeMap.Entry<K,V> absHighest() { |
|
1328 |
TreeMap.Entry<K,V> e = |
|
1329 |
(toEnd ? m.getLastEntry() : |
|
1330 |
(hiInclusive ? m.getFloorEntry(hi) : |
|
1331 |
m.getLowerEntry(hi))); |
|
1332 |
return (e == null || tooLow(e.key)) ? null : e; |
|
1333 |
} |
|
1334 |
||
1335 |
final TreeMap.Entry<K,V> absCeiling(K key) { |
|
1336 |
if (tooLow(key)) |
|
1337 |
return absLowest(); |
|
1338 |
TreeMap.Entry<K,V> e = m.getCeilingEntry(key); |
|
1339 |
return (e == null || tooHigh(e.key)) ? null : e; |
|
1340 |
} |
|
1341 |
||
1342 |
final TreeMap.Entry<K,V> absHigher(K key) { |
|
1343 |
if (tooLow(key)) |
|
1344 |
return absLowest(); |
|
1345 |
TreeMap.Entry<K,V> e = m.getHigherEntry(key); |
|
1346 |
return (e == null || tooHigh(e.key)) ? null : e; |
|
1347 |
} |
|
1348 |
||
1349 |
final TreeMap.Entry<K,V> absFloor(K key) { |
|
1350 |
if (tooHigh(key)) |
|
1351 |
return absHighest(); |
|
1352 |
TreeMap.Entry<K,V> e = m.getFloorEntry(key); |
|
1353 |
return (e == null || tooLow(e.key)) ? null : e; |
|
1354 |
} |
|
1355 |
||
1356 |
final TreeMap.Entry<K,V> absLower(K key) { |
|
1357 |
if (tooHigh(key)) |
|
1358 |
return absHighest(); |
|
1359 |
TreeMap.Entry<K,V> e = m.getLowerEntry(key); |
|
1360 |
return (e == null || tooLow(e.key)) ? null : e; |
|
1361 |
} |
|
1362 |
||
1363 |
/** Returns the absolute high fence for ascending traversal */ |
|
1364 |
final TreeMap.Entry<K,V> absHighFence() { |
|
1365 |
return (toEnd ? null : (hiInclusive ? |
|
1366 |
m.getHigherEntry(hi) : |
|
1367 |
m.getCeilingEntry(hi))); |
|
1368 |
} |
|
1369 |
||
1370 |
/** Return the absolute low fence for descending traversal */ |
|
1371 |
final TreeMap.Entry<K,V> absLowFence() { |
|
1372 |
return (fromStart ? null : (loInclusive ? |
|
1373 |
m.getLowerEntry(lo) : |
|
1374 |
m.getFloorEntry(lo))); |
|
1375 |
} |
|
1376 |
||
1377 |
// Abstract methods defined in ascending vs descending classes |
|
1378 |
// These relay to the appropriate absolute versions |
|
1379 |
||
1380 |
abstract TreeMap.Entry<K,V> subLowest(); |
|
1381 |
abstract TreeMap.Entry<K,V> subHighest(); |
|
1382 |
abstract TreeMap.Entry<K,V> subCeiling(K key); |
|
1383 |
abstract TreeMap.Entry<K,V> subHigher(K key); |
|
1384 |
abstract TreeMap.Entry<K,V> subFloor(K key); |
|
1385 |
abstract TreeMap.Entry<K,V> subLower(K key); |
|
1386 |
||
1387 |
/** Returns ascending iterator from the perspective of this submap */ |
|
1388 |
abstract Iterator<K> keyIterator(); |
|
1389 |
||
1390 |
/** Returns descending iterator from the perspective of this submap */ |
|
1391 |
abstract Iterator<K> descendingKeyIterator(); |
|
1392 |
||
1393 |
// public methods |
|
1394 |
||
1395 |
public boolean isEmpty() { |
|
1396 |
return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty(); |
|
1397 |
} |
|
1398 |
||
1399 |
public int size() { |
|
1400 |
return (fromStart && toEnd) ? m.size() : entrySet().size(); |
|
1401 |
} |
|
1402 |
||
1403 |
public final boolean containsKey(Object key) { |
|
1404 |
return inRange(key) && m.containsKey(key); |
|
1405 |
} |
|
1406 |
||
1407 |
public final V put(K key, V value) { |
|
1408 |
if (!inRange(key)) |
|
1409 |
throw new IllegalArgumentException("key out of range"); |
|
1410 |
return m.put(key, value); |
|
1411 |
} |
|
1412 |
||
1413 |
public final V get(Object key) { |
|
1414 |
return !inRange(key)? null : m.get(key); |
|
1415 |
} |
|
1416 |
||
1417 |
public final V remove(Object key) { |
|
1418 |
return !inRange(key)? null : m.remove(key); |
|
1419 |
} |
|
1420 |
||
1421 |
public final Map.Entry<K,V> ceilingEntry(K key) { |
|
1422 |
return exportEntry(subCeiling(key)); |
|
1423 |
} |
|
1424 |
||
1425 |
public final K ceilingKey(K key) { |
|
1426 |
return keyOrNull(subCeiling(key)); |
|
1427 |
} |
|
1428 |
||
1429 |
public final Map.Entry<K,V> higherEntry(K key) { |
|
1430 |
return exportEntry(subHigher(key)); |
|
1431 |
} |
|
1432 |
||
1433 |
public final K higherKey(K key) { |
|
1434 |
return keyOrNull(subHigher(key)); |
|
1435 |
} |
|
1436 |
||
1437 |
public final Map.Entry<K,V> floorEntry(K key) { |
|
1438 |
return exportEntry(subFloor(key)); |
|
1439 |
} |
|
1440 |
||
1441 |
public final K floorKey(K key) { |
|
1442 |
return keyOrNull(subFloor(key)); |
|
1443 |
} |
|
1444 |
||
1445 |
public final Map.Entry<K,V> lowerEntry(K key) { |
|
1446 |
return exportEntry(subLower(key)); |
|
1447 |
} |
|
1448 |
||
1449 |
public final K lowerKey(K key) { |
|
1450 |
return keyOrNull(subLower(key)); |
|
1451 |
} |
|
1452 |
||
1453 |
public final K firstKey() { |
|
1454 |
return key(subLowest()); |
|
1455 |
} |
|
1456 |
||
1457 |
public final K lastKey() { |
|
1458 |
return key(subHighest()); |
|
1459 |
} |
|
1460 |
||
1461 |
public final Map.Entry<K,V> firstEntry() { |
|
1462 |
return exportEntry(subLowest()); |
|
1463 |
} |
|
1464 |
||
1465 |
public final Map.Entry<K,V> lastEntry() { |
|
1466 |
return exportEntry(subHighest()); |
|
1467 |
} |
|
1468 |
||
1469 |
public final Map.Entry<K,V> pollFirstEntry() { |
|
1470 |
TreeMap.Entry<K,V> e = subLowest(); |
|
1471 |
Map.Entry<K,V> result = exportEntry(e); |
|
1472 |
if (e != null) |
|
1473 |
m.deleteEntry(e); |
|
1474 |
return result; |
|
1475 |
} |
|
1476 |
||
1477 |
public final Map.Entry<K,V> pollLastEntry() { |
|
1478 |
TreeMap.Entry<K,V> e = subHighest(); |
|
1479 |
Map.Entry<K,V> result = exportEntry(e); |
|
1480 |
if (e != null) |
|
1481 |
m.deleteEntry(e); |
|
1482 |
return result; |
|
1483 |
} |
|
1484 |
||
1485 |
// Views |
|
1486 |
transient NavigableMap<K,V> descendingMapView = null; |
|
1487 |
transient EntrySetView entrySetView = null; |
|
1488 |
transient KeySet<K> navigableKeySetView = null; |
|
1489 |
||
1490 |
public final NavigableSet<K> navigableKeySet() { |
|
1491 |
KeySet<K> nksv = navigableKeySetView; |
|
1492 |
return (nksv != null) ? nksv : |
|
1493 |
(navigableKeySetView = new TreeMap.KeySet(this)); |
|
1494 |
} |
|
1495 |
||
1496 |
public final Set<K> keySet() { |
|
1497 |
return navigableKeySet(); |
|
1498 |
} |
|
1499 |
||
1500 |
public NavigableSet<K> descendingKeySet() { |
|
1501 |
return descendingMap().navigableKeySet(); |
|
1502 |
} |
|
1503 |
||
1504 |
public final SortedMap<K,V> subMap(K fromKey, K toKey) { |
|
1505 |
return subMap(fromKey, true, toKey, false); |
|
1506 |
} |
|
1507 |
||
1508 |
public final SortedMap<K,V> headMap(K toKey) { |
|
1509 |
return headMap(toKey, false); |
|
1510 |
} |
|
1511 |
||
1512 |
public final SortedMap<K,V> tailMap(K fromKey) { |
|
1513 |
return tailMap(fromKey, true); |
|
1514 |
} |
|
1515 |
||
1516 |
// View classes |
|
1517 |
||
1518 |
abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> { |
|
1519 |
private transient int size = -1, sizeModCount; |
|
1520 |
||
1521 |
public int size() { |
|
1522 |
if (fromStart && toEnd) |
|
1523 |
return m.size(); |
|
1524 |
if (size == -1 || sizeModCount != m.modCount) { |
|
1525 |
sizeModCount = m.modCount; |
|
1526 |
size = 0; |
|
1527 |
Iterator i = iterator(); |
|
1528 |
while (i.hasNext()) { |
|
1529 |
size++; |
|
1530 |
i.next(); |
|
1531 |
} |
|
1532 |
} |
|
1533 |
return size; |
|
1534 |
} |
|
1535 |
||
1536 |
public boolean isEmpty() { |
|
1537 |
TreeMap.Entry<K,V> n = absLowest(); |
|
1538 |
return n == null || tooHigh(n.key); |
|
1539 |
} |
|
1540 |
||
1541 |
public boolean contains(Object o) { |
|
1542 |
if (!(o instanceof Map.Entry)) |
|
1543 |
return false; |
|
1544 |
Map.Entry<K,V> entry = (Map.Entry<K,V>) o; |
|
1545 |
K key = entry.getKey(); |
|
1546 |
if (!inRange(key)) |
|
1547 |
return false; |
|
1548 |
TreeMap.Entry node = m.getEntry(key); |
|
1549 |
return node != null && |
|
1550 |
valEquals(node.getValue(), entry.getValue()); |
|
1551 |
} |
|
1552 |
||
1553 |
public boolean remove(Object o) { |
|
1554 |
if (!(o instanceof Map.Entry)) |
|
1555 |
return false; |
|
1556 |
Map.Entry<K,V> entry = (Map.Entry<K,V>) o; |
|
1557 |
K key = entry.getKey(); |
|
1558 |
if (!inRange(key)) |
|
1559 |
return false; |
|
1560 |
TreeMap.Entry<K,V> node = m.getEntry(key); |
|
1561 |
if (node!=null && valEquals(node.getValue(),entry.getValue())){ |
|
1562 |
m.deleteEntry(node); |
|
1563 |
return true; |
|
1564 |
} |
|
1565 |
return false; |
|
1566 |
} |
|
1567 |
} |
|
1568 |
||
1569 |
/** |
|
1570 |
* Iterators for SubMaps |
|
1571 |
*/ |
|
1572 |
abstract class SubMapIterator<T> implements Iterator<T> { |
|
1573 |
TreeMap.Entry<K,V> lastReturned; |
|
1574 |
TreeMap.Entry<K,V> next; |
|
1575 |
final Object fenceKey; |
|
1576 |
int expectedModCount; |
|
1577 |
||
1578 |
SubMapIterator(TreeMap.Entry<K,V> first, |
|
1579 |
TreeMap.Entry<K,V> fence) { |
|
1580 |
expectedModCount = m.modCount; |
|
1581 |
lastReturned = null; |
|
1582 |
next = first; |
|
1583 |
fenceKey = fence == null ? UNBOUNDED : fence.key; |
|
1584 |
} |
|
1585 |
||
1586 |
public final boolean hasNext() { |
|
1587 |
return next != null && next.key != fenceKey; |
|
1588 |
} |
|
1589 |
||
1590 |
final TreeMap.Entry<K,V> nextEntry() { |
|
1591 |
TreeMap.Entry<K,V> e = next; |
|
1592 |
if (e == null || e.key == fenceKey) |
|
1593 |
throw new NoSuchElementException(); |
|
1594 |
if (m.modCount != expectedModCount) |
|
1595 |
throw new ConcurrentModificationException(); |
|
1596 |
next = successor(e); |
|
1597 |
lastReturned = e; |
|
1598 |
return e; |
|
1599 |
} |
|
1600 |
||
1601 |
final TreeMap.Entry<K,V> prevEntry() { |
|
1602 |
TreeMap.Entry<K,V> e = next; |
|
1603 |
if (e == null || e.key == fenceKey) |
|
1604 |
throw new NoSuchElementException(); |
|
1605 |
if (m.modCount != expectedModCount) |
|
1606 |
throw new ConcurrentModificationException(); |
|
1607 |
next = predecessor(e); |
|
1608 |
lastReturned = e; |
|
1609 |
return e; |
|
1610 |
} |
|
1611 |
||
1612 |
final void removeAscending() { |
|
1613 |
if (lastReturned == null) |
|
1614 |
throw new IllegalStateException(); |
|
1615 |
if (m.modCount != expectedModCount) |
|
1616 |
throw new ConcurrentModificationException(); |
|
1617 |
// deleted entries are replaced by their successors |
|
1618 |
if (lastReturned.left != null && lastReturned.right != null) |
|
1619 |
next = lastReturned; |
|
1620 |
m.deleteEntry(lastReturned); |
|
1621 |
lastReturned = null; |
|
1622 |
expectedModCount = m.modCount; |
|
1623 |
} |
|
1624 |
||
1625 |
final void removeDescending() { |
|
1626 |
if (lastReturned == null) |
|
1627 |
throw new IllegalStateException(); |
|
1628 |
if (m.modCount != expectedModCount) |
|
1629 |
throw new ConcurrentModificationException(); |
|
1630 |
m.deleteEntry(lastReturned); |
|
1631 |
lastReturned = null; |
|
1632 |
expectedModCount = m.modCount; |
|
1633 |
} |
|
1634 |
||
1635 |
} |
|
1636 |
||
1637 |
final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> { |
|
1638 |
SubMapEntryIterator(TreeMap.Entry<K,V> first, |
|
1639 |
TreeMap.Entry<K,V> fence) { |
|
1640 |
super(first, fence); |
|
1641 |
} |
|
1642 |
public Map.Entry<K,V> next() { |
|
1643 |
return nextEntry(); |
|
1644 |
} |
|
1645 |
public void remove() { |
|
1646 |
removeAscending(); |
|
1647 |
} |
|
1648 |
} |
|
1649 |
||
1650 |
final class SubMapKeyIterator extends SubMapIterator<K> { |
|
1651 |
SubMapKeyIterator(TreeMap.Entry<K,V> first, |
|
1652 |
TreeMap.Entry<K,V> fence) { |
|
1653 |
super(first, fence); |
|
1654 |
} |
|
1655 |
public K next() { |
|
1656 |
return nextEntry().key; |
|
1657 |
} |
|
1658 |
public void remove() { |
|
1659 |
removeAscending(); |
|
1660 |
} |
|
1661 |
} |
|
1662 |
||
1663 |
final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> { |
|
1664 |
DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last, |
|
1665 |
TreeMap.Entry<K,V> fence) { |
|
1666 |
super(last, fence); |
|
1667 |
} |
|
1668 |
||
1669 |
public Map.Entry<K,V> next() { |
|
1670 |
return prevEntry(); |
|
1671 |
} |
|
1672 |
public void remove() { |
|
1673 |
removeDescending(); |
|
1674 |
} |
|
1675 |
} |
|
1676 |
||
1677 |
final class DescendingSubMapKeyIterator extends SubMapIterator<K> { |
|
1678 |
DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last, |
|
1679 |
TreeMap.Entry<K,V> fence) { |
|
1680 |
super(last, fence); |
|
1681 |
} |
|
1682 |
public K next() { |
|
1683 |
return prevEntry().key; |
|
1684 |
} |
|
1685 |
public void remove() { |
|
1686 |
removeDescending(); |
|
1687 |
} |
|
1688 |
} |
|
1689 |
} |
|
1690 |
||
1691 |
/** |
|
1692 |
* @serial include |
|
1693 |
*/ |
|
1694 |
static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> { |
|
1695 |
private static final long serialVersionUID = 912986545866124060L; |
|
1696 |
||
1697 |
AscendingSubMap(TreeMap<K,V> m, |
|
1698 |
boolean fromStart, K lo, boolean loInclusive, |
|
1699 |
boolean toEnd, K hi, boolean hiInclusive) { |
|
1700 |
super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive); |
|
1701 |
} |
|
1702 |
||
1703 |
public Comparator<? super K> comparator() { |
|
1704 |
return m.comparator(); |
|
1705 |
} |
|
1706 |
||
1707 |
public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive, |
|
1708 |
K toKey, boolean toInclusive) { |
|
1709 |
if (!inRange(fromKey, fromInclusive)) |
|
1710 |
throw new IllegalArgumentException("fromKey out of range"); |
|
1711 |
if (!inRange(toKey, toInclusive)) |
|
1712 |
throw new IllegalArgumentException("toKey out of range"); |
|
1713 |
return new AscendingSubMap(m, |
|
1714 |
false, fromKey, fromInclusive, |
|
1715 |
false, toKey, toInclusive); |
|
1716 |
} |
|
1717 |
||
1718 |
public NavigableMap<K,V> headMap(K toKey, boolean inclusive) { |
|
1719 |
if (!inRange(toKey, inclusive)) |
|
1720 |
throw new IllegalArgumentException("toKey out of range"); |
|
1721 |
return new AscendingSubMap(m, |
|
1722 |
fromStart, lo, loInclusive, |
|
1723 |
false, toKey, inclusive); |
|
1724 |
} |
|
1725 |
||
1726 |
public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){ |
|
1727 |
if (!inRange(fromKey, inclusive)) |
|
1728 |
throw new IllegalArgumentException("fromKey out of range"); |
|
1729 |
return new AscendingSubMap(m, |
|
1730 |
false, fromKey, inclusive, |
|
1731 |
toEnd, hi, hiInclusive); |
|
1732 |
} |
|
1733 |
||
1734 |
public NavigableMap<K,V> descendingMap() { |
|
1735 |
NavigableMap<K,V> mv = descendingMapView; |
|
1736 |
return (mv != null) ? mv : |
|
1737 |
(descendingMapView = |
|
1738 |
new DescendingSubMap(m, |
|
1739 |
fromStart, lo, loInclusive, |
|
1740 |
toEnd, hi, hiInclusive)); |
|
1741 |
} |
|
1742 |
||
1743 |
Iterator<K> keyIterator() { |
|
1744 |
return new SubMapKeyIterator(absLowest(), absHighFence()); |
|
1745 |
} |
|
1746 |
||
1747 |
Iterator<K> descendingKeyIterator() { |
|
1748 |
return new DescendingSubMapKeyIterator(absHighest(), absLowFence()); |
|
1749 |
} |
|
1750 |
||
1751 |
final class AscendingEntrySetView extends EntrySetView { |
|
1752 |
public Iterator<Map.Entry<K,V>> iterator() { |
|
1753 |
return new SubMapEntryIterator(absLowest(), absHighFence()); |
|
1754 |
} |
|
1755 |
} |
|
1756 |
||
1757 |
public Set<Map.Entry<K,V>> entrySet() { |
|
1758 |
EntrySetView es = entrySetView; |
|
1759 |
return (es != null) ? es : new AscendingEntrySetView(); |
|
1760 |
} |
|
1761 |
||
1762 |
TreeMap.Entry<K,V> subLowest() { return absLowest(); } |
|
1763 |
TreeMap.Entry<K,V> subHighest() { return absHighest(); } |
|
1764 |
TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); } |
|
1765 |
TreeMap.Entry<K,V> subHigher(K key) { return absHigher(key); } |
|
1766 |
TreeMap.Entry<K,V> subFloor(K key) { return absFloor(key); } |
|
1767 |
TreeMap.Entry<K,V> subLower(K key) { return absLower(key); } |
|
1768 |
} |
|
1769 |
||
1770 |
/** |
|
1771 |
* @serial include |
|
1772 |
*/ |
|
1773 |
static final class DescendingSubMap<K,V> extends NavigableSubMap<K,V> { |
|
1774 |
private static final long serialVersionUID = 912986545866120460L; |
|
1775 |
DescendingSubMap(TreeMap<K,V> m, |
|
1776 |
boolean fromStart, K lo, boolean loInclusive, |
|
1777 |
boolean toEnd, K hi, boolean hiInclusive) { |
|
1778 |
super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive); |
|
1779 |
} |
|
1780 |
||
1781 |
private final Comparator<? super K> reverseComparator = |
|
1782 |
Collections.reverseOrder(m.comparator); |
|
1783 |
||
1784 |
public Comparator<? super K> comparator() { |
|
1785 |
return reverseComparator; |
|
1786 |
} |
|
1787 |
||
1788 |
public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive, |
|
1789 |
K toKey, boolean toInclusive) { |
|
1790 |
if (!inRange(fromKey, fromInclusive)) |
|
1791 |
throw new IllegalArgumentException("fromKey out of range"); |
|
1792 |
if (!inRange(toKey, toInclusive)) |
|
1793 |
throw new IllegalArgumentException("toKey out of range"); |
|
1794 |
return new DescendingSubMap(m, |
|
1795 |
false, toKey, toInclusive, |
|
1796 |
false, fromKey, fromInclusive); |
|
1797 |
} |
|
1798 |
||
1799 |
public NavigableMap<K,V> headMap(K toKey, boolean inclusive) { |
|
1800 |
if (!inRange(toKey, inclusive)) |
|
1801 |
throw new IllegalArgumentException("toKey out of range"); |
|
1802 |
return new DescendingSubMap(m, |
|
1803 |
false, toKey, inclusive, |
|
1804 |
toEnd, hi, hiInclusive); |
|
1805 |
} |
|
1806 |
||
1807 |
public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){ |
|
1808 |
if (!inRange(fromKey, inclusive)) |
|
1809 |
throw new IllegalArgumentException("fromKey out of range"); |
|
1810 |
return new DescendingSubMap(m, |
|
1811 |
fromStart, lo, loInclusive, |
|
1812 |
false, fromKey, inclusive); |
|
1813 |
} |
|
1814 |
||
1815 |
public NavigableMap<K,V> descendingMap() { |
|
1816 |
NavigableMap<K,V> mv = descendingMapView; |
|
1817 |
return (mv != null) ? mv : |
|
1818 |
(descendingMapView = |
|
1819 |
new AscendingSubMap(m, |
|
1820 |
fromStart, lo, loInclusive, |
|
1821 |
toEnd, hi, hiInclusive)); |
|
1822 |
} |
|
1823 |
||
1824 |
Iterator<K> keyIterator() { |
|
1825 |
return new DescendingSubMapKeyIterator(absHighest(), absLowFence()); |
|
1826 |
} |
|
1827 |
||
1828 |
Iterator<K> descendingKeyIterator() { |
|
1829 |
return new SubMapKeyIterator(absLowest(), absHighFence()); |
|
1830 |
} |
|
1831 |
||
1832 |
final class DescendingEntrySetView extends EntrySetView { |
|
1833 |
public Iterator<Map.Entry<K,V>> iterator() { |
|
1834 |
return new DescendingSubMapEntryIterator(absHighest(), absLowFence()); |
|
1835 |
} |
|
1836 |
} |
|
1837 |
||
1838 |
public Set<Map.Entry<K,V>> entrySet() { |
|
1839 |
EntrySetView es = entrySetView; |
|
1840 |
return (es != null) ? es : new DescendingEntrySetView(); |
|
1841 |
} |
|
1842 |
||
1843 |
TreeMap.Entry<K,V> subLowest() { return absHighest(); } |
|
1844 |
TreeMap.Entry<K,V> subHighest() { return absLowest(); } |
|
1845 |
TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); } |
|
1846 |
TreeMap.Entry<K,V> subHigher(K key) { return absLower(key); } |
|
1847 |
TreeMap.Entry<K,V> subFloor(K key) { return absCeiling(key); } |
|
1848 |
TreeMap.Entry<K,V> subLower(K key) { return absHigher(key); } |
|
1849 |
} |
|
1850 |
||
1851 |
/** |
|
1852 |
* This class exists solely for the sake of serialization |
|
1853 |
* compatibility with previous releases of TreeMap that did not |
|
1854 |
* support NavigableMap. It translates an old-version SubMap into |
|
1855 |
* a new-version AscendingSubMap. This class is never otherwise |
|
1856 |
* used. |
|
1857 |
* |
|
1858 |
* @serial include |
|
1859 |
*/ |
|
1860 |
private class SubMap extends AbstractMap<K,V> |
|
1861 |
implements SortedMap<K,V>, java.io.Serializable { |
|
1862 |
private static final long serialVersionUID = -6520786458950516097L; |
|
1863 |
private boolean fromStart = false, toEnd = false; |
|
1864 |
private K fromKey, toKey; |
|
1865 |
private Object readResolve() { |
|
1866 |
return new AscendingSubMap(TreeMap.this, |
|
1867 |
fromStart, fromKey, true, |
|
1868 |
toEnd, toKey, false); |
|
1869 |
} |
|
1870 |
public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); } |
|
1871 |
public K lastKey() { throw new InternalError(); } |
|
1872 |
public K firstKey() { throw new InternalError(); } |
|
1873 |
public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); } |
|
1874 |
public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); } |
|
1875 |
public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); } |
|
1876 |
public Comparator<? super K> comparator() { throw new InternalError(); } |
|
1877 |
} |
|
1878 |
||
1879 |
||
1880 |
// Red-black mechanics |
|
1881 |
||
1882 |
private static final boolean RED = false; |
|
1883 |
private static final boolean BLACK = true; |
|
1884 |
||
1885 |
/** |
|
1886 |
* Node in the Tree. Doubles as a means to pass key-value pairs back to |
|
1887 |
* user (see Map.Entry). |
|
1888 |
*/ |
|
1889 |
||
1890 |
static final class Entry<K,V> implements Map.Entry<K,V> { |
|
1891 |
K key; |
|
1892 |
V value; |
|
1893 |
Entry<K,V> left = null; |
|
1894 |
Entry<K,V> right = null; |
|
1895 |
Entry<K,V> parent; |
|
1896 |
boolean color = BLACK; |
|
1897 |
||
1898 |
/** |
|
1899 |
* Make a new cell with given key, value, and parent, and with |
|
1900 |
* <tt>null</tt> child links, and BLACK color. |
|
1901 |
*/ |
|
1902 |
Entry(K key, V value, Entry<K,V> parent) { |
|
1903 |
this.key = key; |
|
1904 |
this.value = value; |
|
1905 |
this.parent = parent; |
|
1906 |
} |
|
1907 |
||
1908 |
/** |
|
1909 |
* Returns the key. |
|
1910 |
* |
|
1911 |
* @return the key |
|
1912 |
*/ |
|
1913 |
public K getKey() { |
|
1914 |
return key; |
|
1915 |
} |
|
1916 |
||
1917 |
/** |
|
1918 |
* Returns the value associated with the key. |
|
1919 |
* |
|
1920 |
* @return the value associated with the key |
|
1921 |
*/ |
|
1922 |
public V getValue() { |
|
1923 |
return value; |
|
1924 |
} |
|
1925 |
||
1926 |
/** |
|
1927 |
* Replaces the value currently associated with the key with the given |
|
1928 |
* value. |
|
1929 |
* |
|
1930 |
* @return the value associated with the key before this method was |
|
1931 |
* called |
|
1932 |
*/ |
|
1933 |
public V setValue(V value) { |
|
1934 |
V oldValue = this.value; |
|
1935 |
this.value = value; |
|
1936 |
return oldValue; |
|
1937 |
} |
|
1938 |
||
1939 |
public boolean equals(Object o) { |
|
1940 |
if (!(o instanceof Map.Entry)) |
|
1941 |
return false; |
|
1942 |
Map.Entry<?,?> e = (Map.Entry<?,?>)o; |
|
1943 |
||
1944 |
return valEquals(key,e.getKey()) && valEquals(value,e.getValue()); |
|
1945 |
} |
|
1946 |
||
1947 |
public int hashCode() { |
|
1948 |
int keyHash = (key==null ? 0 : key.hashCode()); |
|
1949 |
int valueHash = (value==null ? 0 : value.hashCode()); |
|
1950 |
return keyHash ^ valueHash; |
|
1951 |
} |
|
1952 |
||
1953 |
public String toString() { |
|
1954 |
return key + "=" + value; |
|
1955 |
} |
|
1956 |
} |
|
1957 |
||
1958 |
/** |
|
1959 |
* Returns the first Entry in the TreeMap (according to the TreeMap's |
|
1960 |
* key-sort function). Returns null if the TreeMap is empty. |
|
1961 |
*/ |
|
1962 |
final Entry<K,V> getFirstEntry() { |
|
1963 |
Entry<K,V> p = root; |
|
1964 |
if (p != null) |
|
1965 |
while (p.left != null) |
|
1966 |
p = p.left; |
|
1967 |
return p; |
|
1968 |
} |
|
1969 |
||
1970 |
/** |
|
1971 |
* Returns the last Entry in the TreeMap (according to the TreeMap's |
|
1972 |
* key-sort function). Returns null if the TreeMap is empty. |
|
1973 |
*/ |
|
1974 |
final Entry<K,V> getLastEntry() { |
|
1975 |
Entry<K,V> p = root; |
|
1976 |
if (p != null) |
|
1977 |
while (p.right != null) |
|
1978 |
p = p.right; |
|
1979 |
return p; |
|
1980 |
} |
|
1981 |
||
1982 |
/** |
|
1983 |
* Returns the successor of the specified Entry, or null if no such. |
|
1984 |
*/ |
|
1985 |
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) { |
|
1986 |
if (t == null) |
|
1987 |
return null; |
|
1988 |
else if (t.right != null) { |
|
1989 |
Entry<K,V> p = t.right; |
|
1990 |
while (p.left != null) |
|
1991 |
p = p.left; |
|
1992 |
return p; |
|
1993 |
} else { |
|
1994 |
Entry<K,V> p = t.parent; |
|
1995 |
Entry<K,V> ch = t; |
|
1996 |
while (p != null && ch == p.right) { |
|
1997 |
ch = p; |
|
1998 |
p = p.parent; |
|
1999 |
} |
|
2000 |
return p; |
|
2001 |
} |
|
2002 |
} |
|
2003 |
||
2004 |
/** |
|
2005 |
* Returns the predecessor of the specified Entry, or null if no such. |
|
2006 |
*/ |
|
2007 |
static <K,V> Entry<K,V> predecessor(Entry<K,V> t) { |
|
2008 |
if (t == null) |
|
2009 |
return null; |
|
2010 |
else if (t.left != null) { |
|
2011 |
Entry<K,V> p = t.left; |
|
2012 |
while (p.right != null) |
|
2013 |
p = p.right; |
|
2014 |
return p; |
|
2015 |
} else { |
|
2016 |
Entry<K,V> p = t.parent; |
|
2017 |
Entry<K,V> ch = t; |
|
2018 |
while (p != null && ch == p.left) { |
|
2019 |
ch = p; |
|
2020 |
p = p.parent; |
|
2021 |
} |
|
2022 |
return p; |
|
2023 |
} |
|
2024 |
} |
|
2025 |
||
2026 |
/** |
|
2027 |
* Balancing operations. |
|
2028 |
* |
|
2029 |
* Implementations of rebalancings during insertion and deletion are |
|
2030 |
* slightly different than the CLR version. Rather than using dummy |
|
2031 |
* nilnodes, we use a set of accessors that deal properly with null. They |
|
2032 |
* are used to avoid messiness surrounding nullness checks in the main |
|
2033 |
* algorithms. |
|
2034 |
*/ |
|
2035 |
||
2036 |
private static <K,V> boolean colorOf(Entry<K,V> p) { |
|
2037 |
return (p == null ? BLACK : p.color); |
|
2038 |
} |
|
2039 |
||
2040 |
private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) { |
|
2041 |
return (p == null ? null: p.parent); |
|
2042 |
} |
|
2043 |
||
2044 |
private static <K,V> void setColor(Entry<K,V> p, boolean c) { |
|
2045 |
if (p != null) |
|
2046 |
p.color = c; |
|
2047 |
} |
|
2048 |
||
2049 |
private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) { |
|
2050 |
return (p == null) ? null: p.left; |
|
2051 |
} |
|
2052 |
||
2053 |
private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) { |
|
2054 |
return (p == null) ? null: p.right; |
|
2055 |
} |
|
2056 |
||
2057 |
/** From CLR */ |
|
2058 |
private void rotateLeft(Entry<K,V> p) { |
|
2059 |
if (p != null) { |
|
2060 |
Entry<K,V> r = p.right; |
|
2061 |
p.right = r.left; |
|
2062 |
if (r.left != null) |
|
2063 |
r.left.parent = p; |
|
2064 |
r.parent = p.parent; |
|
2065 |
if (p.parent == null) |
|
2066 |
root = r; |
|
2067 |
else if (p.parent.left == p) |
|
2068 |
p.parent.left = r; |
|
2069 |
else |
|
2070 |
p.parent.right = r; |
|
2071 |
r.left = p; |
|
2072 |
p.parent = r; |
|
2073 |
} |
|
2074 |
} |
|
2075 |
||
2076 |
/** From CLR */ |
|
2077 |
private void rotateRight(Entry<K,V> p) { |
|
2078 |
if (p != null) { |
|
2079 |
Entry<K,V> l = p.left; |
|
2080 |
p.left = l.right; |
|
2081 |
if (l.right != null) l.right.parent = p; |
|
2082 |
l.parent = p.parent; |
|
2083 |
if (p.parent == null) |
|
2084 |
root = l; |
|
2085 |
else if (p.parent.right == p) |
|
2086 |
p.parent.right = l; |
|
2087 |
else p.parent.left = l; |
|
2088 |
l.right = p; |
|
2089 |
p.parent = l; |
|
2090 |
} |
|
2091 |
} |
|
2092 |
||
2093 |
/** From CLR */ |
|
2094 |
private void fixAfterInsertion(Entry<K,V> x) { |
|
2095 |
x.color = RED; |
|
2096 |
||
2097 |
while (x != null && x != root && x.parent.color == RED) { |
|
2098 |
if (parentOf(x) == leftOf(parentOf(parentOf(x)))) { |
|
2099 |
Entry<K,V> y = rightOf(parentOf(parentOf(x))); |
|
2100 |
if (colorOf(y) == RED) { |
|
2101 |
setColor(parentOf(x), BLACK); |
|
2102 |
setColor(y, BLACK); |
|
2103 |
setColor(parentOf(parentOf(x)), RED); |
|
2104 |
x = parentOf(parentOf(x)); |
|
2105 |
} else { |
|
2106 |
if (x == rightOf(parentOf(x))) { |
|
2107 |
x = parentOf(x); |
|
2108 |
rotateLeft(x); |
|
2109 |
} |
|
2110 |
setColor(parentOf(x), BLACK); |
|
2111 |
setColor(parentOf(parentOf(x)), RED); |
|
2112 |
rotateRight(parentOf(parentOf(x))); |
|
2113 |
} |
|
2114 |
} else { |
|
2115 |
Entry<K,V> y = leftOf(parentOf(parentOf(x))); |
|
2116 |
if (colorOf(y) == RED) { |
|
2117 |
setColor(parentOf(x), BLACK); |
|
2118 |
setColor(y, BLACK); |
|
2119 |
setColor(parentOf(parentOf(x)), RED); |
|
2120 |
x = parentOf(parentOf(x)); |
|
2121 |
} else { |
|
2122 |
if (x == leftOf(parentOf(x))) { |
|
2123 |
x = parentOf(x); |
|
2124 |
rotateRight(x); |
|
2125 |
} |
|
2126 |
setColor(parentOf(x), BLACK); |
|
2127 |
setColor(parentOf(parentOf(x)), RED); |
|
2128 |
rotateLeft(parentOf(parentOf(x))); |
|
2129 |
} |
|
2130 |
} |
|
2131 |
} |
|
2132 |
root.color = BLACK; |
|
2133 |
} |
|
2134 |
||
2135 |
/** |
|
2136 |
* Delete node p, and then rebalance the tree. |
|
2137 |
*/ |
|
2138 |
private void deleteEntry(Entry<K,V> p) { |
|
2139 |
modCount++; |
|
2140 |
size--; |
|
2141 |
||
2142 |
// If strictly internal, copy successor's element to p and then make p |
|
2143 |
// point to successor. |
|
2144 |
if (p.left != null && p.right != null) { |
|
2145 |
Entry<K,V> s = successor (p); |
|
2146 |
p.key = s.key; |
|
2147 |
p.value = s.value; |
|
2148 |
p = s; |
|
2149 |
} // p has 2 children |
|
2150 |
||
2151 |
// Start fixup at replacement node, if it exists. |
|
2152 |
Entry<K,V> replacement = (p.left != null ? p.left : p.right); |
|
2153 |
||
2154 |
if (replacement != null) { |
|
2155 |
// Link replacement to parent |
|
2156 |
replacement.parent = p.parent; |
|
2157 |
if (p.parent == null) |
|
2158 |
root = replacement; |
|
2159 |
else if (p == p.parent.left) |
|
2160 |
p.parent.left = replacement; |
|
2161 |
else |
|
2162 |
p.parent.right = replacement; |
|
2163 |
||
2164 |
// Null out links so they are OK to use by fixAfterDeletion. |
|
2165 |
p.left = p.right = p.parent = null; |
|
2166 |
||
2167 |
// Fix replacement |
|
2168 |
if (p.color == BLACK) |
|
2169 |
fixAfterDeletion(replacement); |
|
2170 |
} else if (p.parent == null) { // return if we are the only node. |
|
2171 |
root = null; |
|
2172 |
} else { // No children. Use self as phantom replacement and unlink. |
|
2173 |
if (p.color == BLACK) |
|
2174 |
fixAfterDeletion(p); |
|
2175 |
||
2176 |
if (p.parent != null) { |
|
2177 |
if (p == p.parent.left) |
|
2178 |
p.parent.left = null; |
|
2179 |
else if (p == p.parent.right) |
|
2180 |
p.parent.right = null; |
|
2181 |
p.parent = null; |
|
2182 |
} |
|
2183 |
} |
|
2184 |
} |
|
2185 |
||
2186 |
/** From CLR */ |
|
2187 |
private void fixAfterDeletion(Entry<K,V> x) { |
|
2188 |
while (x != root && colorOf(x) == BLACK) { |
|
2189 |
if (x == leftOf(parentOf(x))) { |
|
2190 |
Entry<K,V> sib = rightOf(parentOf(x)); |
|
2191 |
||
2192 |
if (colorOf(sib) == RED) { |
|
2193 |
setColor(sib, BLACK); |
|
2194 |
setColor(parentOf(x), RED); |
|
2195 |
rotateLeft(parentOf(x)); |
|
2196 |
sib = rightOf(parentOf(x)); |
|
2197 |
} |
|
2198 |
||
2199 |
if (colorOf(leftOf(sib)) == BLACK && |
|
2200 |
colorOf(rightOf(sib)) == BLACK) { |
|
2201 |
setColor(sib, RED); |
|
2202 |
x = parentOf(x); |
|
2203 |
} else { |
|
2204 |
if (colorOf(rightOf(sib)) == BLACK) { |
|
2205 |
setColor(leftOf(sib), BLACK); |
|
2206 |
setColor(sib, RED); |
|
2207 |
rotateRight(sib); |
|
2208 |
sib = rightOf(parentOf(x)); |
|
2209 |
} |
|
2210 |
setColor(sib, colorOf(parentOf(x))); |
|
2211 |
setColor(parentOf(x), BLACK); |
|
2212 |
setColor(rightOf(sib), BLACK); |
|
2213 |
rotateLeft(parentOf(x)); |
|
2214 |
x = root; |
|
2215 |
} |
|
2216 |
} else { // symmetric |
|
2217 |
Entry<K,V> sib = leftOf(parentOf(x)); |
|
2218 |
||
2219 |
if (colorOf(sib) == RED) { |
|
2220 |
setColor(sib, BLACK); |
|
2221 |
setColor(parentOf(x), RED); |
|
2222 |
rotateRight(parentOf(x)); |
|
2223 |
sib = leftOf(parentOf(x)); |
|
2224 |
} |
|
2225 |
||
2226 |
if (colorOf(rightOf(sib)) == BLACK && |
|
2227 |
colorOf(leftOf(sib)) == BLACK) { |
|
2228 |
setColor(sib, RED); |
|
2229 |
x = parentOf(x); |
|
2230 |
} else { |
|
2231 |
if (colorOf(leftOf(sib)) == BLACK) { |
|
2232 |
setColor(rightOf(sib), BLACK); |
|
2233 |
setColor(sib, RED); |
|
2234 |
rotateLeft(sib); |
|
2235 |
sib = leftOf(parentOf(x)); |
|
2236 |
} |
|
2237 |
setColor(sib, colorOf(parentOf(x))); |
|
2238 |
setColor(parentOf(x), BLACK); |
|
2239 |
setColor(leftOf(sib), BLACK); |
|
2240 |
rotateRight(parentOf(x)); |
|
2241 |
x = root; |
|
2242 |
} |
|
2243 |
} |
|
2244 |
} |
|
2245 |
||
2246 |
setColor(x, BLACK); |
|
2247 |
} |
|
2248 |
||
2249 |
private static final long serialVersionUID = 919286545866124006L; |
|
2250 |
||
2251 |
/** |
|
2252 |
* Save the state of the <tt>TreeMap</tt> instance to a stream (i.e., |
|
2253 |
* serialize it). |
|
2254 |
* |
|
2255 |
* @serialData The <i>size</i> of the TreeMap (the number of key-value |
|
2256 |
* mappings) is emitted (int), followed by the key (Object) |
|
2257 |
* and value (Object) for each key-value mapping represented |
|
2258 |
* by the TreeMap. The key-value mappings are emitted in |
|
2259 |
* key-order (as determined by the TreeMap's Comparator, |
|
2260 |
* or by the keys' natural ordering if the TreeMap has no |
|
2261 |
* Comparator). |
|
2262 |
*/ |
|
2263 |
private void writeObject(java.io.ObjectOutputStream s) |
|
2264 |
throws java.io.IOException { |
|
2265 |
// Write out the Comparator and any hidden stuff |
|
2266 |
s.defaultWriteObject(); |
|
2267 |
||
2268 |
// Write out size (number of Mappings) |
|
2269 |
s.writeInt(size); |
|
2270 |
||
2271 |
// Write out keys and values (alternating) |
|
2272 |
for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) { |
|
2273 |
Map.Entry<K,V> e = i.next(); |
|
2274 |
s.writeObject(e.getKey()); |
|
2275 |
s.writeObject(e.getValue()); |
|
2276 |
} |
|
2277 |
} |
|
2278 |
||
2279 |
/** |
|
2280 |
* Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e., |
|
2281 |
* deserialize it). |
|
2282 |
*/ |
|
2283 |
private void readObject(final java.io.ObjectInputStream s) |
|
2284 |
throws java.io.IOException, ClassNotFoundException { |
|
2285 |
// Read in the Comparator and any hidden stuff |
|
2286 |
s.defaultReadObject(); |
|
2287 |
||
2288 |
// Read in size |
|
2289 |
int size = s.readInt(); |
|
2290 |
||
2291 |
buildFromSorted(size, null, s, null); |
|
2292 |
} |
|
2293 |
||
2294 |
/** Intended to be called only from TreeSet.readObject */ |
|
2295 |
void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal) |
|
2296 |
throws java.io.IOException, ClassNotFoundException { |
|
2297 |
buildFromSorted(size, null, s, defaultVal); |
|
2298 |
} |
|
2299 |
||
2300 |
/** Intended to be called only from TreeSet.addAll */ |
|
2301 |
void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) { |
|
2302 |
try { |
|
2303 |
buildFromSorted(set.size(), set.iterator(), null, defaultVal); |
|
2304 |
} catch (java.io.IOException cannotHappen) { |
|
2305 |
} catch (ClassNotFoundException cannotHappen) { |
|
2306 |
} |
|
2307 |
} |
|
2308 |
||
2309 |
||
2310 |
/** |
|
2311 |
* Linear time tree building algorithm from sorted data. Can accept keys |
|
2312 |
* and/or values from iterator or stream. This leads to too many |
|
2313 |
* parameters, but seems better than alternatives. The four formats |
|
2314 |
* that this method accepts are: |
|
2315 |
* |
|
2316 |
* 1) An iterator of Map.Entries. (it != null, defaultVal == null). |
|
2317 |
* 2) An iterator of keys. (it != null, defaultVal != null). |
|
2318 |
* 3) A stream of alternating serialized keys and values. |
|
2319 |
* (it == null, defaultVal == null). |
|
2320 |
* 4) A stream of serialized keys. (it == null, defaultVal != null). |
|
2321 |
* |
|
2322 |
* It is assumed that the comparator of the TreeMap is already set prior |
|
2323 |
* to calling this method. |
|
2324 |
* |
|
2325 |
* @param size the number of keys (or key-value pairs) to be read from |
|
2326 |
* the iterator or stream |
|
2327 |
* @param it If non-null, new entries are created from entries |
|
2328 |
* or keys read from this iterator. |
|
2329 |
* @param str If non-null, new entries are created from keys and |
|
2330 |
* possibly values read from this stream in serialized form. |
|
2331 |
* Exactly one of it and str should be non-null. |
|
2332 |
* @param defaultVal if non-null, this default value is used for |
|
2333 |
* each value in the map. If null, each value is read from |
|
2334 |
* iterator or stream, as described above. |
|
2335 |
* @throws IOException propagated from stream reads. This cannot |
|
2336 |
* occur if str is null. |
|
2337 |
* @throws ClassNotFoundException propagated from readObject. |
|
2338 |
* This cannot occur if str is null. |
|
2339 |
*/ |
|
2340 |
private void buildFromSorted(int size, Iterator it, |
|
2341 |
java.io.ObjectInputStream str, |
|
2342 |
V defaultVal) |
|
2343 |
throws java.io.IOException, ClassNotFoundException { |
|
2344 |
this.size = size; |
|
2345 |
root = buildFromSorted(0, 0, size-1, computeRedLevel(size), |
|
2346 |
it, str, defaultVal); |
|
2347 |
} |
|
2348 |
||
2349 |
/** |
|
2350 |
* Recursive "helper method" that does the real work of the |
|
2351 |
* previous method. Identically named parameters have |
|
2352 |
* identical definitions. Additional parameters are documented below. |
|
2353 |
* It is assumed that the comparator and size fields of the TreeMap are |
|
2354 |
* already set prior to calling this method. (It ignores both fields.) |
|
2355 |
* |
|
2356 |
* @param level the current level of tree. Initial call should be 0. |
|
2357 |
* @param lo the first element index of this subtree. Initial should be 0. |
|
2358 |
* @param hi the last element index of this subtree. Initial should be |
|
2359 |
* size-1. |
|
2360 |
* @param redLevel the level at which nodes should be red. |
|
2361 |
* Must be equal to computeRedLevel for tree of this size. |
|
2362 |
*/ |
|
2363 |
private final Entry<K,V> buildFromSorted(int level, int lo, int hi, |
|
2364 |
int redLevel, |
|
2365 |
Iterator it, |
|
2366 |
java.io.ObjectInputStream str, |
|
2367 |
V defaultVal) |
|
2368 |
throws java.io.IOException, ClassNotFoundException { |
|
2369 |
/* |
|
2370 |
* Strategy: The root is the middlemost element. To get to it, we |
|
2371 |
* have to first recursively construct the entire left subtree, |
|
2372 |
* so as to grab all of its elements. We can then proceed with right |
|
2373 |
* subtree. |
|
2374 |
* |
|
2375 |
* The lo and hi arguments are the minimum and maximum |
|
2376 |
* indices to pull out of the iterator or stream for current subtree. |
|
2377 |
* They are not actually indexed, we just proceed sequentially, |
|
2378 |
* ensuring that items are extracted in corresponding order. |
|
2379 |
*/ |
|
2380 |
||
2381 |
if (hi < lo) return null; |
|
2382 |
||
2383 |
int mid = (lo + hi) >>> 1; |
|
2384 |
||
2385 |
Entry<K,V> left = null; |
|
2386 |
if (lo < mid) |
|
2387 |
left = buildFromSorted(level+1, lo, mid - 1, redLevel, |
|
2388 |
it, str, defaultVal); |
|
2389 |
||
2390 |
// extract key and/or value from iterator or stream |
|
2391 |
K key; |
|
2392 |
V value; |
|
2393 |
if (it != null) { |
|
2394 |
if (defaultVal==null) { |
|
2395 |
Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next(); |
|
2396 |
key = entry.getKey(); |
|
2397 |
value = entry.getValue(); |
|
2398 |
} else { |
|
2399 |
key = (K)it.next(); |
|
2400 |
value = defaultVal; |
|
2401 |
} |
|
2402 |
} else { // use stream |
|
2403 |
key = (K) str.readObject(); |
|
2404 |
value = (defaultVal != null ? defaultVal : (V) str.readObject()); |
|
2405 |
} |
|
2406 |
||
2407 |
Entry<K,V> middle = new Entry<K,V>(key, value, null); |
|
2408 |
||
2409 |
// color nodes in non-full bottommost level red |
|
2410 |
if (level == redLevel) |
|
2411 |
middle.color = RED; |
|
2412 |
||
2413 |
if (left != null) { |
|
2414 |
middle.left = left; |
|
2415 |
left.parent = middle; |
|
2416 |
} |
|
2417 |
||
2418 |
if (mid < hi) { |
|
2419 |
Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel, |
|
2420 |
it, str, defaultVal); |
|
2421 |
middle.right = right; |
|
2422 |
right.parent = middle; |
|
2423 |
} |
|
2424 |
||
2425 |
return middle; |
|
2426 |
} |
|
2427 |
||
2428 |
/** |
|
2429 |
* Find the level down to which to assign all nodes BLACK. This is the |
|
2430 |
* last `full' level of the complete binary tree produced by |
|
2431 |
* buildTree. The remaining nodes are colored RED. (This makes a `nice' |
|
2432 |
* set of color assignments wrt future insertions.) This level number is |
|
2433 |
* computed by finding the number of splits needed to reach the zeroeth |
|
2434 |
* node. (The answer is ~lg(N), but in any case must be computed by same |
|
2435 |
* quick O(lg(N)) loop.) |
|
2436 |
*/ |
|
2437 |
private static int computeRedLevel(int sz) { |
|
2438 |
int level = 0; |
|
2439 |
for (int m = sz - 1; m >= 0; m = m / 2 - 1) |
|
2440 |
level++; |
|
2441 |
return level; |
|
2442 |
} |
|
2443 |
} |