6840752: Provide out-of-the-box support for ECC algorithms
Reviewed-by: alanb, mullan, wetmore
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/* Uses Montgomery reduction for field arithmetic. See mpi/mpmontg.c for
* code implementation. */
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#include "ecl-priv.h"
#include "ecp.h"
#ifndef _KERNEL
#include <stdlib.h>
#include <stdio.h>
#endif
/* Construct a generic GFMethod for arithmetic over prime fields with
* irreducible irr. */
GFMethod *
GFMethod_consGFp_mont(const mp_int *irr)
{
mp_err res = MP_OKAY;
int i;
GFMethod *meth = NULL;
mp_mont_modulus *mmm;
meth = GFMethod_consGFp(irr);
if (meth == NULL)
return NULL;
#ifdef _KERNEL
mmm = (mp_mont_modulus *) kmem_alloc(sizeof(mp_mont_modulus),
FLAG(irr));
#else
mmm = (mp_mont_modulus *) malloc(sizeof(mp_mont_modulus));
#endif
if (mmm == NULL) {
res = MP_MEM;
goto CLEANUP;
}
meth->field_mul = &ec_GFp_mul_mont;
meth->field_sqr = &ec_GFp_sqr_mont;
meth->field_div = &ec_GFp_div_mont;
meth->field_enc = &ec_GFp_enc_mont;
meth->field_dec = &ec_GFp_dec_mont;
meth->extra1 = mmm;
meth->extra2 = NULL;
meth->extra_free = &ec_GFp_extra_free_mont;
mmm->N = meth->irr;
i = mpl_significant_bits(&meth->irr);
i += MP_DIGIT_BIT - 1;
mmm->b = i - i % MP_DIGIT_BIT;
mmm->n0prime = 0 - s_mp_invmod_radix(MP_DIGIT(&meth->irr, 0));
CLEANUP:
if (res != MP_OKAY) {
GFMethod_free(meth);
return NULL;
}
return meth;
}
/* Wrapper functions for generic prime field arithmetic. */
/* Field multiplication using Montgomery reduction. */
mp_err
ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
#ifdef MP_MONT_USE_MP_MUL
/* if MP_MONT_USE_MP_MUL is defined, then the function s_mp_mul_mont
* is not implemented and we have to use mp_mul and s_mp_redc directly
*/
MP_CHECKOK(mp_mul(a, b, r));
MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
#else
mp_int s;
MP_DIGITS(&s) = 0;
/* s_mp_mul_mont doesn't allow source and destination to be the same */
if ((a == r) || (b == r)) {
MP_CHECKOK(mp_init(&s, FLAG(a)));
MP_CHECKOK(s_mp_mul_mont
(a, b, &s, (mp_mont_modulus *) meth->extra1));
MP_CHECKOK(mp_copy(&s, r));
mp_clear(&s);
} else {
return s_mp_mul_mont(a, b, r, (mp_mont_modulus *) meth->extra1);
}
#endif
CLEANUP:
return res;
}
/* Field squaring using Montgomery reduction. */
mp_err
ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
{
return ec_GFp_mul_mont(a, a, r, meth);
}
/* Field division using Montgomery reduction. */
mp_err
ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
/* if A=aZ represents a encoded in montgomery coordinates with Z and #
* and \ respectively represent multiplication and division in
* montgomery coordinates, then A\B = (a/b)Z = (A/B)Z and Binv =
* (1/b)Z = (1/B)(Z^2) where B # Binv = Z */
MP_CHECKOK(ec_GFp_div(a, b, r, meth));
MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
if (a == NULL) {
MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
}
CLEANUP:
return res;
}
/* Encode a field element in Montgomery form. See s_mp_to_mont in
* mpi/mpmontg.c */
mp_err
ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_mont_modulus *mmm;
mp_err res = MP_OKAY;
mmm = (mp_mont_modulus *) meth->extra1;
MP_CHECKOK(mpl_lsh(a, r, mmm->b));
MP_CHECKOK(mp_mod(r, &mmm->N, r));
CLEANUP:
return res;
}
/* Decode a field element from Montgomery form. */
mp_err
ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
if (a != r) {
MP_CHECKOK(mp_copy(a, r));
}
MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
CLEANUP:
return res;
}
/* Free the memory allocated to the extra fields of Montgomery GFMethod
* object. */
void
ec_GFp_extra_free_mont(GFMethod *meth)
{
if (meth->extra1 != NULL) {
#ifdef _KERNEL
kmem_free(meth->extra1, sizeof(mp_mont_modulus));
#else
free(meth->extra1);
#endif
meth->extra1 = NULL;
}
}